JP4474851B2 - Dielectric-resin composite and manufacturing method thereof - Google Patents
Dielectric-resin composite and manufacturing method thereof Download PDFInfo
- Publication number
- JP4474851B2 JP4474851B2 JP2003184719A JP2003184719A JP4474851B2 JP 4474851 B2 JP4474851 B2 JP 4474851B2 JP 2003184719 A JP2003184719 A JP 2003184719A JP 2003184719 A JP2003184719 A JP 2003184719A JP 4474851 B2 JP4474851 B2 JP 4474851B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- resin
- fine particles
- dispersion
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規な誘電体−樹脂コンポジットおよびその製造方法に関する。
【0002】
【従来の技術】
誘電体粒子を樹脂中に分散させた誘電体−樹脂コンポジットは様々な用途に用いられている。特に、近年の移動体通信の発展にともない、マイクロ波と呼ばれる高周波帯において使用される電子部品の構成材料としての使用が期待されており、誘電特性に優れた誘電体−樹脂コンポジットおよびその製造方法の提供が求められている。
【0003】
誘電体−樹脂コンポジットの誘電特性を向上させるためにはコンポジット中の誘電体粒子の充填率を高める必要がある。従来提案されている誘電体−樹脂コンポジットは、例えば特許文献1のように、比較的大きい粒子径(数百nm以上)を有する誘電体粒子を含むものであったため、コンポジットの機械的強度を保ちながら誘電体粒子の充填率を高度に高めることが困難であり、誘電特性の点で充分ではなかった。
【0004】
【特許文献1】
特開平2−222458号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記の問題点を解消し、優れた誘電特性を有するフィルム状の誘電体−樹脂コンポジットおよびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、ガラスマトリックス中で結晶化された後に、前記ガラスマトリックス成分が除去されて得られた平均粒子径が10〜50nmの、BaxTizOx+2z(z/x=2〜5.5である。)で表される組成式を有する結晶性誘電体微粒子(板状または針状の形状であり、かつ、アスペクト比が2以上)からなる群より選ばれる1種以上を樹脂成分中に含有し、膜厚1〜500μmのフィルムである誘電体−樹脂コンポジットを提供する。
【0008】
また、本発明は、樹脂成分を主体とする固形分を含む液体中に、ガラスマトリックス中で結晶化された後に、前記ガラスマトリックス成分が除去されて得られた平均粒子径が10〜50nmの、BaxTizOx+2z(z/x=2〜5.5である。)で表される組成式を有する結晶性誘電体微粒子(板状または針状の形状であり、かつ、アスペクト比が2以上)からなる群より選ばれる1種以上を分散させて分散液を得る工程と、前記分散液を成形する工程と、得られた成形体を400℃以下で加熱するか、または紫外線を照射して硬化する工程と、をこの順に含み膜厚1〜500μmのフィルムとしたことを特徴とする誘電体−樹脂コンポジットの製造方法を提供する。
【0010】
また、本発明は、樹脂成分を主体とする固形分を含む液体中に、ガラスマトリックス中で結晶化された後に、前記ガラスマトリックス成分が除去されて得られた平均粒子径が10〜50nmの、BaxTizOx+2z(z/x=2〜5.5である。)で表される組成式を有する結晶性誘電体微粒子(板状または針状の形状であり、かつ、アスペクト比が2以上)からなる群より選ばれる1種以上が分散したことを特徴とする分散液を提供する。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0013】
本発明では、結晶性誘電体微粒子(以下、単に誘電体微粒子ともいう。)として平均粒子径が10〜100nmの、BaxTizOx+2z(z/x=2〜5.5である。)で表される組成式を有するポリチタン酸バリウムまたはBaxLnyTizOx+(2/3)y+2z(Ln=La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbまたはLuで表される群から選ばれる少なくとも1種であり、y/x=0.01〜3であり、z/x=2〜5.5である。)で表される組成式を有するポリチタン酸バリウム系化合物のうち1種以上を用いる。
【0014】
ここで、粒子径は粒子の長径を基準としており、また、平均粒子径は数平均粒子径を指す。平均粒子径が100nmを超える場合、コンポジットの機械的強度や可とう性を保ちながら誘電体粒子の充填率を高めることが困難となり、また、薄いフィルム状のコンポジットを得がたくなるため好ましくない。一方、平均粒子径が10nm未満の場合、誘電特性が低下するおそれがあるため好ましくない。特に好ましくは、平均粒子径を20〜50nmとする。なお、平均粒子径が100nm以下の範囲であれば、一次粒子径が100nmを超える粒子を少量混合して用いることは差し支えなく、場合によってはより充填率が上げられるため、好ましい場合もある。
【0015】
BaxTizOx+2z(z/x=2〜5.5である。)で表される組成式を有する、高チタニア質のポリチタン酸バリウムは、マイクロ波帯における誘電特性の低下が少ない誘電体として知られており、BaTi4O9、Ba2Ti9O20、BaTi5O11などがその代表的な組成式として挙げられる。マイクロ波帯での誘電特性や粒子の作製の容易性などを考慮すると、BaTi4O9および/またはBa2Ti9O20で表される組成式を有するポリチタン酸バリウムを用いると特に好ましい。また、BaxLnyTizOx+(2/3)y+2z(Ln=La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbまたはLuであり、y/x=0.01〜3であり、z/x=2〜5.5である。)で表される組成式を有するポリチタン酸バリウム系化合物を用いると、微粒子の比誘電率などの誘電特性を変化させうる点で好ましい。さらに、共振周波数の温度依存性を制御する目的から、例えば(SnnZr1−n)TiO4などの誘電体粒子を少量混合して用いてもよい。
【0016】
誘電体微粒子として、上記範囲の平均粒子径を有し、かつ、アスペクト比が2以上の異方性、すなわち板状または針状の結晶粒子を用いると、粒子の充填率を高度に高められるうえ、コンポジット中の粒子の配向性を向上できるため好ましい。
【0017】
ここで、アスペクト比は異方性粒子の長径/短径の比率を指し、板状結晶であれば直径/厚さの比率、針状結晶であれば長さ/直径の比率に相当する。特に、誘電体−樹脂コンポジットのような誘電率の異なる2種の材料のコンポジットにおいては、同じ充填量で比較した場合、異方性粒子を用いた方が、等方性粒子を用いた場合より誘電特性を高くできると考えられているため、本発明では、アスペクト比の大きな粒子を用いるほど、優れた誘電特性の発現が期待できる。
【0018】
誘電体微粒子の製造方法については特に限定されないが、高い誘電特性を発現させるためには高い結晶性を有する微粒子とする必要があるため、ガラスマトリックス中で誘電体微粒子を結晶化した後、ガラスマトリックス成分を除去して得られる粒子であると好ましい。すなわち、ガラス母材融液中に誘電体粒子として結晶化させる成分を溶融させておき、溶融物を急速冷却してガラス化させた後、再度加熱アニールを行うことで母材中に微結晶を析出させるガラス結晶化法により得られる粒子である。析出した微結晶は、ガラスマトリックスを適宜の薬液などによって溶脱させることにより取り出される。
【0019】
かかるガラス結晶化法によれば、微粒子の形状制御が容易であり、アニール処理の条件などによって比較的異方性の大きい微粒子を作製しやすく、アスペクト比の大きい粒子が得られやすいという利点も併せ有している。
【0020】
上記ガラス母材としては、ホウ酸塩系、リン酸塩系、ケイ酸塩系などが使用できるが、溶融性や目的酸化物との複合化合物の作りやすさ、またマトリックスの溶離の容易性などを考慮すると、ホウ酸塩系のガラス母材が好ましく用いられる。
【0021】
以下に、四チタン酸バリウム(BaTi4O9)微結晶を作製する方法を例にとって具体的に説明すると、次の(1)〜(4)の工程により微結晶を得ることができる。
【0022】
(1)ガラス形成成分(例えば、酸化ホウ素)と、目的とする誘電体酸化物組成の金属酸化物(例えば、酸化バリウムと酸化チタン)とを所定量混合し、1200℃以上の温度で全体を溶融させる[溶融]。
【0023】
(2)溶融ガラスを急速冷却させることによって誘電体酸化物組成の金属イオンを含むガラスを得る[ガラス化]。
【0024】
(3)550℃〜700℃程度の温度でアニール処理を行うことでガラス中に誘電体酸化物の結晶核を形成させ、アニール条件を制御して所定の粒子径まで成長させる[結晶化]。
【0025】
(4)酸、水、あるいはその混合物によりガラス母材成分(例えば、酸化ホウ素やホウ酸バリウム)を取り除き誘電体粒子(例えば、BaTi4O9)を得る[リーチング]。
【0026】
上記一連の方法によれば、アニール温度領域において粘度が非常に高いガラスを母材として結晶化を行っているため、粒子径や粒子形態の制御が容易であり、また結晶性の高い微結晶が得られるという特徴がある。
【0027】
次に、本発明の誘電体−樹脂コンポジットにおいて、樹脂成分は、前記誘電体微粒子の結合剤および可とう性付与剤としての働きを有する構成材料である。樹脂成分の種類は特に限定されないが、コンポジットを作製する際の成形性や、コンポジットの誘電特性などを考慮するとエポキシ樹脂および/またはポリイミド樹脂が好ましく用いられる。
【0028】
本発明の誘電体−樹脂コンポジットにおいて、結晶性誘電体微粒子/樹脂成分の含有比率は、質量比で10/90〜99/1であることが好ましい。この範囲より樹脂成分が多いと誘電体微粒子の添加効果が発現しにくく、所望の誘電特性が得られないおそれがあり、一方、この範囲より樹脂成分が少ない場合、これ以下ではコンポジットとしての成形性が低下し、また可とう性が低下するおそれがあるためいずれも好ましくない。上記含有比率は、50/50〜99/1であると特に好ましい。
【0029】
本発明の誘電体−樹脂コンポジットは、上記誘電体微粒子を分散させるための分散剤や、樹脂成分の硬化に寄与する触媒や架橋剤、可塑剤、安定剤などを含んでいてもよい。なかでも、無機成分である結晶性誘電体微粒子と有機成分である樹脂成分との親和性の高いコンポジットを得る目的から、カップリング剤を含有すると好ましい。カップリング剤としては、シラン系、チタネート系およびアルミネート系カップリング剤などが知られているが、特にシラン系カップリング剤が好ましく用いられる。
【0030】
シラン系カップリング剤を添加する場合、一般式R1 aR2 bSi(OR3)4−a―bで表される有機シラン化合物(ここで、R1はヘテロ原子を含む置換基を有していてもよい総炭素数8以下の脂肪族または芳香族炭化水素基であり、R2はメチル基、エチル基、フェニル基または水素原子であり、R3は鎖中にエーテル酸素を含んでいてもよい炭素数8以下の炭化水素基である。ここで、a=1であり、b=0または1である。)、該有機シラン化合物の加水分解物または重縮合物からなる群より選ばれる1種以上を用いると好ましい。
【0031】
ここで、上記樹脂成分の種類に応じてR1基を適切に選択すれば、誘電体微粒子と樹脂成分との親和性を高度に高められ、結果的に得られるコンポジットの機械的強度や緻密性向上に役立つ。例えば、樹脂成分として前述のポリイミド樹脂やエポキシ樹脂を用いる場合には、R1基として鎖中にアミノ基、ウレイド基、エポキシ基、イソシアナト基から選ばれる1種以上の官能基を有する炭化水素基が特に好ましい。
【0032】
なお、シランカップリング剤の含有量は、誘電体微粒子に対して0.1〜20質量%とすると好ましい。0.1質量%未満ではシランカップリング剤の添加効果が得られにくく、一方、20質量%を超える割合で添加しても添加効果は向上しないうえ、未反応のカップリング剤が残留し、損失の増大などにつながるおそれがあるため好ましくない。
【0033】
上記結晶性誘電体微粒子と樹脂成分とは、樹脂成分を主体とする固形分を含む液体中に、誘電体微粒子を分散させた分散液として、誘電体−樹脂コンポジットの形成工程に使用される。このとき、分散液中に液状の希釈剤を0.1〜95質量%含むと、分散液の粘度などを調整でき、コンポジットを成形する際の操作性に優れるため好ましい。また、分散液中における誘電体微粒子の分散性を高められるため、塗布後に異方性の誘電体微粒子が自発的に整列、すなわち配向しやすくなり、コンポジットの配向性を向上できるという利点もある。さらに、誘電体微粒子の配向性を向上できるため、フィルム状コンポジットの疲労特性の向上にもつながると考えられる。
【0034】
液状の希釈剤を含む分散液とする場合、誘電体微粒子と樹脂成分とを同一の液状媒体に分散または溶解してもよいし、それぞれを同一または異なる液状媒体中に分散または溶解したものを混合してもよい。液状媒体の種類は特に限定されず、水、アルコール(エタノール、2−プロパノールなど)、エーテル(ジブチルエーテル、ジオキサンなど)、脂肪酸炭化水素(シクロヘキサン、デカンなど)、芳香族炭化水素(トルエン、キシレンなど)、含窒素有機溶媒(N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなど)、ケトン(アセトン、メチルイソブチルケトンなど)、エステル(酢酸ブチル、乳酸エチルなど)、或いはこれら2種以上の混合溶媒を用いることができる。具体的には、誘電体微粒子の表面状態、樹脂成分の種類、塗布方法などに応じて液状媒体を適宜選択、混合して用いればよい。
【0035】
また、上記誘電体微粒子や上記樹脂成分を液状媒体中に溶解または分散させる際には、例えばボールミル、ビーズミル、などのメディアミル、超音波式、撹拌式などの各種ホモジナイザー、ジェットミル、ロールミルなど、既知の方法や装置を使用できる。
【0036】
次に、上記で得られた分散液を成形する工程には、従来知られている樹脂成形の方法(射出、ロールプレスなど)を用いることができる。また、比較的膜厚の薄いフィルム状コンポジットを作製する場合、分散液を基板上に塗布する方法を用いると好ましい。塗布方法としてはスピンコート法、ディップコート法、スプレーコート法、印刷法、ロールコート法、バーコート法、ドクターブレード法、ダイコート法、カーテンフローコート法など、既知の方法が好ましく用いられる。このとき、フィルム状コンポジットの膜厚が1〜500μmとなるように成形すると、機械的強度および柔軟性に優れたコンポジットが得られやすく、かつ、電子部品を小型化できるため好ましい。
【0037】
分散液を塗布する際に用いる基板としては、続く硬化工程における加熱温度程度の耐熱性、あるいは紫外線照射への耐性をある程度有するものを用いればよく用途や目的に合わせて適宜の基板を使用可能である。具体的には樹脂基板、ガラスエポキシ基板、セラミック基板、ガラス基板や、半導体用のウェハー、金属箔、およびこれらの基板上に既に他の被覆層が形成されている基板などが挙げられる。また、コンポジットの作製後、これらの基板が不要となることが想定される場合には、続く硬化工程の後、基板からコンポジットを剥離できるように、表面に剥離処理がなされた樹脂基板などを使用すると好ましい。
【0038】
上記で得られた成形体を400℃以下で加熱するか、または紫外線を照射して硬化する工程を経て、本発明の誘電体−樹脂コンポジットが得られる。加熱温度は好ましくは350℃以下とする。加熱温度が400℃を超える場合、基板上に形成された配線や回路などの部品を劣化させるおそれがあるため好ましくない。
【0039】
【実施例】
以下、本発明を実施例によって説明するが、本発明はこれらにより限定されるものではない。
【0040】
[例1 BaTi4O9微粒子の作製]
炭酸バリウム、酸化チタン(ルチル)および酸化ホウ素を、BaO、TiO2およびB2O3基準のモル%表示でそれぞれ20.0%、26.6%および53.4%含むように秤量した混合物に少量のエタノールを添加し、自動乳鉢で混合・粉砕した。その後、乾燥させて原料粉末を得た。得られた原料粉末を、ノズル付きの白金製容器(ロジウムを10%含有)に装填し、ケイ化モリブデンを発熱体とした電気炉において1350℃で2時間加熱し、完全に溶融させた。
【0041】
次に、ノズル部を電気炉で加熱しながら溶融物を滴下させ、50rpmで回転する直径15cmの双ロールを通すことにより液滴を急速冷却し、フレーク状の固形物を得た。得られたフレーク状固形物は透明を呈し、粉末X線回折の結果、非晶質物質であることが確認された。また、フレーク状固形物の厚さをマイクロメーターで測定したところ、80〜150μmであった。
【0042】
フレーク状固形物を590℃で12時間加熱することによりチタン酸バリウム結晶を析出させた。結晶化処理後のフレークを70℃の1mol/L酢酸溶液中に12時間放置してマトリックス成分である酸化ホウ素、ホウ酸バリウムを溶脱した後、水洗を繰り返して白色の粉末を得た。
【0043】
得られた白色粉末を粉末X線回折によって同定したところ、得られた粉末はいずれも結晶性の高い粒子であり、BaTi4O9結晶のみからなる粉末であった。また、透過型電子顕微鏡によって観察を行った結果、この結晶は板状形状をしており、長径(平均一次粒子径)30nm、厚さ11nmであり、アスペクト比は2.72であった。
【0044】
[例2 誘電体−樹脂コンポジットの作製]
例1によって得られたBaTi4O9微粒子を、湿式ジェットミルを用いて、pH=3に調整した硝酸水溶液に分散させたのち、高速遠心分離によって凝集粒子を除去して20質量%のBaTi4O9微粒子を含む分散液を調製した。得られた分散液を、エバポレータを用いて30質量%まで濃縮しながらジメチルアセトアミドへと溶媒置換を行ったのち、3−イソシアナトプロピルトリメトキシシランを誘電体微粒子に対して3質量%となるように添加した後、よく撹拌した。その後、ポリイミド樹脂を、BaTi4O9粒子とポリイミドの含有比率が質量比で80/20となるように混合して分散液Aとした。分散液A中のジメチルアセトアミド濃度は31質量%であった。
【0045】
分散液Aを、Siウェーハ基板上にスピンコート法によって塗布し、ホットプレート上、100℃で5分間乾燥させたのち、電気炉中、10℃/分の速度で300℃まで昇温し、300℃で15分保持して焼成して硬化させた後、徐冷し、基板を剥離して厚さ25μmのフィルム状誘電体−樹脂コンポジットを得た。得られたフィルム状誘電体−樹脂コンポジットは柔軟で、90°折り曲げ試験でも亀裂や伸びは生じなかった。
【0046】
本実施例で得られたフィルム状誘電体−樹脂コンポジットの誘電特性を測定するために、厚さ0.55mmの無アルカリガラス基板上に、上記と同一条件で分散液Aを塗布し、乾燥、硬化の各操作を行って得られた積層物に、DCスパッタリング法によって線幅1.1mm、厚さ1μm、線路長25mmの銅のマイクロストリップラインを形成し、共振器法で誘電特性を測定した。
【0047】
[例3 誘電体−樹脂コンポジットの作製]
例1によって得られたBaTi4O9微粒子を湿式ジェットミルを用いて、硝酸を100ppm含むエタノール中に分散させたのち、高速遠心分離によって粗大粒子を除去して20質量%のBaTi4O9微粒子を含む分散液を調製した。得られた分散液を、エバポレータを用いて30質量%まで濃縮しながらデカリンへと溶媒置換させたのち、3−グリシジルオキシプロピルメチルジメトキシシランを誘電体微粒子に対して3質量%となるように添加した後、よく撹拌した。その後、エポキシ樹脂を、BaTi4O9粒子とエポキシ樹脂の含有比率が質量比で70/30となるよう混合し、さらにエポキシ樹脂硬化剤として2−エチル4−メチルイミダゾールを8phr添加して分散液Bを得た。分散液B中のデカリン濃度は25質量%であった。
【0048】
分散液Bを、表面がシリコーン処理された厚さ25μmのPETフィルム上に幅150μmのドクターブレードを用いて塗布、成膜し、室温で15分乾燥させたのち、熱風循環オーブンにおいて110℃で40分間焼成し、徐冷後、基板を剥離して厚さ30μmのフィルム状誘電体−樹脂コンポジットを得た。得られたフィルム状誘電体−樹脂コンポジットは柔軟で、90°折り曲げ試験でも亀裂や伸びは生じなかった。
【0049】
厚さ0.55mmの無アルカリガラス基板上に、上記と同一条件で分散液Bを塗布し、乾燥、硬化の各操作を行って積層物を得た後、例2と同様にして誘電特性を測定した。
【0050】
[例4 誘電体−樹脂コンポジットの作製]
分散液Aを、厚さ50μmのポリイミドフィルム上に、幅150μmのドクターブレードを用いて塗布した後、例2と同様にして乾燥、硬化させて、ポリイミドフィルム上に厚さ35μmのフィルム状誘電体−樹脂コンポジットが形成された積層物を得た。得られた積層物は柔軟で、90°折り曲げ試験でも亀裂や伸びは生じなかった。
【0051】
積層物からフィルム状誘電体−樹脂コンポジットを剥離させることなく、例2と同様にして積層物の誘電特性を測定した。
【0052】
[例5 誘電体−樹脂コンポジットの作製]
分散液A中のBaTi4O9微粒子のうち10%を、固相反応法で作製した平均一次粒子径550nm(アスペクト比1)の、球状の結晶性BaTi4O9粒子に置き換えて分散液Cを調製した。この分散液Cを用いた以外は例2と同様にして、厚さ40μmのフィルム状誘電体−樹脂コンポジットを得た。得られたフィルム状誘電体−樹脂コンポジットは柔軟で、90°折り曲げ試験でも亀裂や伸びは生じなかった。
【0053】
厚さ0.55mmの無アルカリガラス基板上に、上記と同一条件で分散液Cを塗布し、乾燥、硬化の各操作を行って積層物を得た後、例2と同様にして誘電特性を評価した。
【0054】
[例6 比較例]
分散液A中のBaTi4O9微粒子を、固相反応法で作製した平均一次粒子径550nm(アスペクト比1)の、球状の結晶性BaTi4O9粒子に置き換えて分散液Dを調製した。この分散液Dを用いた以外は例2と同様にして、厚さ45μmのフィルム状誘電体−樹脂コンポジットを得た。得られたフィルム状誘電体−樹脂コンポジットは非常に脆く、90°折り曲げ試験では簡単に亀裂が発生した。
【0055】
厚さ0.55mmの無アルカリガラス基板上に、上記と同一条件で分散液Dを塗布し、乾燥、硬化の各操作を行って積層物を得た後、例2と同様にして誘電特性を評価した。
【0056】
例2〜6におけるフィルム状誘電体−樹脂コンポジットの作製条件を表1に、例2〜6により得られた誘電体−樹脂コンポジットの誘電特性を表2に示す。なお、表2において、比誘電率εrおよび誘電正接tanδは2.45GHzにおける測定値である。
【0057】
【表1】
【0058】
【表2】
【0059】
【発明の効果】
本発明の結晶性誘電体−樹脂コンポジットは、マイクロ波帯において優れた誘電特性を有し、かつ、ハンドリングのしやすい適度な可とう性も具備しているため、様々な電子部品の構成材料として使用でき、該電子部品の高密度化、軽量化、小型化が可能となる。なかでも本発明の結晶性誘電体−樹脂コンポジットをマイクロ波通信用電子部品の構成材料として利用すると効果が高く、具体的には、(1)ICタグ、ICカードなどの平面アンテナ、(2)フレキシブルプリント回路基板、(3)コンデンサ(4)半導体パッケージなどに好適に使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel dielectric-resin composite and a method for producing the same.
[0002]
[Prior art]
Dielectric-resin composites in which dielectric particles are dispersed in a resin are used in various applications. In particular, with the development of mobile communications in recent years, it is expected to be used as a constituent material of electronic components used in a high-frequency band called a microwave, and a dielectric-resin composite having excellent dielectric characteristics and a method for producing the same Is required.
[0003]
In order to improve the dielectric properties of the dielectric-resin composite, it is necessary to increase the filling rate of the dielectric particles in the composite. Conventionally proposed dielectric-resin composites include dielectric particles having a relatively large particle diameter (several hundreds of nanometers or more) as in Patent Document 1, for example, so that the mechanical strength of the composite is maintained. However, it is difficult to increase the filling rate of the dielectric particles to a high degree, and the dielectric properties are not sufficient.
[0004]
[Patent Document 1]
JP-A-2-222458 (Claims)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a film-like dielectric-resin composite having a superior dielectric characteristic and a method for producing the same, by solving the above problems.
[0006]
[Means for Solving the Problems]
In the present invention, Ba x Ti z O x + 2z (z / x = 2 to 5) having an average particle diameter of 10 to 50 nm obtained by removing the glass matrix component after crystallization in a glass matrix. 1.5 or more.) One or more selected from the group consisting of crystalline dielectric fine particles having a compositional formula (plate or needle shape and an aspect ratio of 2 or more) are used as a resin component Provided is a dielectric-resin composite which is contained in a film having a thickness of 1 to 500 μm.
[0008]
Further, in the present invention, an average particle diameter obtained by removing the glass matrix component after crystallization in a glass matrix in a liquid containing a solid component mainly composed of a resin component is 10 to 50 nm. Crystalline dielectric fine particles having a composition formula represented by Ba x Ti z O x + 2z (z / x = 2 to 5.5) (plate-like or needle-like shape and aspect ratio) Is obtained by dispersing at least one selected from the group consisting of 2 or more) , forming the dispersion, heating the obtained molded body at 400 ° C. or lower, or applying ultraviolet rays. There is provided a method for producing a dielectric-resin composite comprising a step of irradiating and curing in this order to form a film having a thickness of 1 to 500 μm.
[0010]
Further, in the present invention, an average particle diameter obtained by removing the glass matrix component after crystallization in a glass matrix in a liquid containing a solid component mainly composed of a resin component is 10 to 50 nm. Crystalline dielectric fine particles having a composition formula represented by Ba x Ti z O x + 2z (z / x = 2 to 5.5) (plate-like or needle-like shape and aspect ratio) 1 or more selected from the group consisting of 2 or more) is dispersed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
In the present invention, Ba x Ti z O x + 2z (z / x = 2 to 5.5) having an average particle diameter of 10 to 100 nm as crystalline dielectric fine particles (hereinafter also simply referred to as dielectric fine particles). Barium titanate or Ba x Ln y Ti z O x + (2/3) y + 2z (Ln = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho And at least one selected from the group represented by Er, Tm, Yb or Lu, y / x = 0.01-3, and z / x = 2-5.5. One or more of barium titanate compounds having the following composition formula are used.
[0014]
Here, the particle diameter is based on the major axis of the particle, and the average particle diameter refers to the number average particle diameter. When the average particle diameter exceeds 100 nm, it is difficult to increase the filling rate of the dielectric particles while maintaining the mechanical strength and flexibility of the composite, and it is difficult to obtain a thin film composite, which is not preferable. On the other hand, when the average particle diameter is less than 10 nm, the dielectric properties may be lowered, which is not preferable. Particularly preferably, the average particle size is 20 to 50 nm. If the average particle size is in the range of 100 nm or less, it is possible to mix a small amount of particles having a primary particle size exceeding 100 nm, and in some cases it is preferable because the filling rate can be further increased.
[0015]
A highly titania-based barium titanate having a composition formula represented by Ba x Ti z O x + 2z (z / x = 2 to 5.5) is a dielectric having a small decrease in dielectric properties in the microwave band. BaTi 4 O 9 , Ba 2 Ti 9 O 20 , BaTi 5 O 11 and the like are listed as typical composition formulas. In consideration of dielectric properties in the microwave band, ease of production of particles, and the like, it is particularly preferable to use barium polytitanate having a composition formula represented by BaTi 4 O 9 and / or Ba 2 Ti 9 O 20 . Moreover, Ba x Ln y Ti z O x + (2/3) y + 2z (Ln = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, be Yb or Lu Y / x = 0.01 to 3 and z / x = 2 to 5.5.) When a barium titanate-based compound having a composition formula represented by: This is preferable in that the dielectric characteristics can be changed. Further, for the purpose of controlling the temperature dependency of the resonance frequency, a small amount of dielectric particles such as (Sn n Zr 1-n ) TiO 4 may be mixed and used.
[0016]
The use of anisotropic fine particles having an average particle diameter in the above range and an aspect ratio of 2 or more as the dielectric fine particles, that is, plate-like or needle-like crystal particles can increase the particle packing rate to a high degree. It is preferable because the orientation of particles in the composite can be improved.
[0017]
Here, the aspect ratio refers to the ratio of the major axis / minor axis of anisotropic particles, and corresponds to the ratio of diameter / thickness for plate crystals and to the ratio of length / diameter for needle crystals. In particular, in composites of two types of materials having different dielectric constants such as dielectric-resin composites, when using the same filling amount, using anisotropic particles is more effective than using isotropic particles. Since it is thought that the dielectric property can be enhanced, in the present invention, the better the dielectric property can be expected as the particles having a larger aspect ratio are used.
[0018]
The method for producing the dielectric fine particles is not particularly limited, but in order to develop high dielectric properties, it is necessary to use fine particles having high crystallinity. Therefore, after crystallization of the dielectric fine particles in the glass matrix, Particles obtained by removing the components are preferred. That is, a component to be crystallized as dielectric particles is melted in a glass base material melt, the melt is rapidly cooled to vitrify, and then heat annealing is performed again to form microcrystals in the base material. It is a particle obtained by the glass crystallization method to be deposited. The precipitated microcrystals are taken out by leaching the glass matrix with an appropriate chemical solution.
[0019]
According to such a glass crystallization method, it is easy to control the shape of the fine particles, and it is easy to produce fine particles with relatively large anisotropy depending on annealing conditions, etc., and it is easy to obtain particles with a large aspect ratio. Have.
[0020]
As the glass base material, borate, phosphate, silicate, etc. can be used, but meltability, ease of making complex compounds with target oxides, easiness of matrix elution, etc. In view of the above, a borate-based glass base material is preferably used.
[0021]
The method for producing barium tetratitanate (BaTi 4 O 9 ) microcrystals will be specifically described below as an example. Microcrystals can be obtained by the following steps (1) to (4).
[0022]
(1) A predetermined amount of a glass forming component (for example, boron oxide) and a metal oxide having a target dielectric oxide composition (for example, barium oxide and titanium oxide) are mixed, and the whole is heated at a temperature of 1200 ° C. or higher. Melt [melting].
[0023]
(2) A glass containing metal ions having a dielectric oxide composition is obtained by rapidly cooling the molten glass [vitrification].
[0024]
(3) Annealing is performed at a temperature of about 550 ° C. to 700 ° C. to form crystal nuclei of dielectric oxide in the glass, and the annealing conditions are controlled to grow to a predetermined particle size [crystallization].
[0025]
(4) A glass base material component (for example, boron oxide or barium borate) is removed by acid, water, or a mixture thereof to obtain dielectric particles (for example, BaTi 4 O 9 ) [Leaching].
[0026]
According to the above series of methods, since crystallization is performed using glass having a very high viscosity in the annealing temperature region as a base material, control of the particle diameter and particle shape is easy, and microcrystals with high crystallinity are obtained. There is a feature that it is obtained.
[0027]
Next, in the dielectric-resin composite of the present invention, the resin component is a constituent material that functions as a binder and a flexibility imparting agent for the dielectric fine particles. The kind of the resin component is not particularly limited, but an epoxy resin and / or a polyimide resin are preferably used in consideration of moldability when producing a composite, dielectric properties of the composite, and the like.
[0028]
In the dielectric-resin composite of the present invention, the content ratio of the crystalline dielectric fine particles / resin component is preferably 10/90 to 99/1 by mass ratio. If there are more resin components than this range, the addition effect of the dielectric fine particles is difficult to develop and the desired dielectric properties may not be obtained. On the other hand, if the resin components are less than this range, the moldability as a composite is below this range. Both are unfavorable because of lowering the flexibility and flexibility. The content ratio is particularly preferably 50/50 to 99/1.
[0029]
The dielectric-resin composite of the present invention may contain a dispersant for dispersing the dielectric fine particles, a catalyst, a crosslinking agent, a plasticizer, a stabilizer, and the like that contribute to the curing of the resin component. Among these, a coupling agent is preferably contained for the purpose of obtaining a composite having high affinity between the crystalline dielectric fine particles as the inorganic component and the resin component as the organic component. As coupling agents, silane, titanate, and aluminate coupling agents are known, and silane coupling agents are particularly preferably used.
[0030]
When a silane coupling agent is added, an organic silane compound represented by the general formula R 1 a R 2 b Si (OR 3 ) 4-ab is used (where R 1 has a substituent containing a hetero atom). An aliphatic or aromatic hydrocarbon group having a total carbon number of 8 or less, R 2 is a methyl group, an ethyl group, a phenyl group or a hydrogen atom, and R 3 contains ether oxygen in the chain. A hydrocarbon group having a carbon number of 8 or less, wherein a = 1 and b = 0 or 1.), selected from the group consisting of a hydrolyzate or polycondensate of the organosilane compound It is preferable to use one or more selected from the above.
[0031]
Here, if the R 1 group is appropriately selected according to the kind of the resin component, the affinity between the dielectric fine particles and the resin component can be enhanced to a high degree, and the mechanical strength and denseness of the resulting composite can be increased. Helps improve. For example, when the aforementioned polyimide resin or epoxy resin is used as the resin component, a hydrocarbon group having at least one functional group selected from an amino group, a ureido group, an epoxy group, and an isocyanato group in the chain as the R 1 group Is particularly preferred.
[0032]
The content of the silane coupling agent is preferably 0.1 to 20% by mass with respect to the dielectric fine particles. If it is less than 0.1% by mass, it is difficult to obtain the addition effect of the silane coupling agent. On the other hand, the addition effect does not improve even if it is added in a proportion exceeding 20% by mass, and the unreacted coupling agent remains and is lost This is not preferable because it may lead to an increase in the amount of heat.
[0033]
The crystalline dielectric fine particles and the resin component are used in a dielectric-resin composite forming step as a dispersion liquid in which the dielectric fine particles are dispersed in a liquid containing a solid component mainly composed of a resin component. At this time, it is preferable to contain 0.1 to 95% by mass of a liquid diluent in the dispersion because the viscosity of the dispersion can be adjusted and the operability in molding the composite is excellent. Further, since the dispersibility of the dielectric fine particles in the dispersion liquid can be enhanced, there is an advantage that the anisotropic dielectric fine particles can be easily aligned, that is, orientated after coating, and the orientation of the composite can be improved. Furthermore, since the orientation of the dielectric fine particles can be improved, it is considered that the fatigue characteristics of the film composite are also improved.
[0034]
In the case of a dispersion containing a liquid diluent, the dielectric fine particles and the resin component may be dispersed or dissolved in the same liquid medium, or each of them dispersed or dissolved in the same or different liquid medium may be mixed. May be. The type of the liquid medium is not particularly limited, and water, alcohol (ethanol, 2-propanol, etc.), ether (dibutyl ether, dioxane, etc.), fatty acid hydrocarbon (cyclohexane, decane, etc.), aromatic hydrocarbon (toluene, xylene, etc.) ), Nitrogen-containing organic solvents (N-methylpyrrolidone, dimethylacetamide, dimethylformamide, etc.), ketones (acetone, methyl isobutyl ketone, etc.), esters (butyl acetate, ethyl lactate, etc.), or a mixture of two or more of these be able to. Specifically, a liquid medium may be appropriately selected and mixed according to the surface state of the dielectric fine particles, the type of resin component, the coating method, and the like.
[0035]
In addition, when the dielectric fine particles and the resin component are dissolved or dispersed in a liquid medium, for example, a media mill such as a ball mill and a bead mill, various homogenizers such as an ultrasonic type and a stirring type, a jet mill, a roll mill, etc. Known methods and devices can be used.
[0036]
Next, conventionally known resin molding methods (injection, roll press, etc.) can be used in the step of molding the dispersion obtained above. Moreover, when producing a film-like composite with a comparatively thin film thickness, it is preferable to use a method of applying a dispersion on a substrate. As a coating method, a known method such as a spin coating method, a dip coating method, a spray coating method, a printing method, a roll coating method, a bar coating method, a doctor blade method, a die coating method, or a curtain flow coating method is preferably used. At this time, it is preferable to form the film-like composite so that the film thickness is 1 to 500 μm because a composite excellent in mechanical strength and flexibility can be easily obtained and the electronic component can be miniaturized.
[0037]
As a substrate used when applying the dispersion, a substrate having a certain degree of heat resistance at the heating temperature in the subsequent curing step or resistance to ultraviolet irradiation may be used, and an appropriate substrate can be used according to the purpose and purpose. is there. Specific examples include a resin substrate, a glass epoxy substrate, a ceramic substrate, a glass substrate, a semiconductor wafer, a metal foil, and a substrate on which another coating layer is already formed. In addition, if it is assumed that these substrates are not required after the composite is made, use a resin substrate with a surface-treated release so that the composite can be peeled off the substrate after the subsequent curing process. It is preferable.
[0038]
The dielectric-resin composite of the present invention is obtained through a process of heating the molded body obtained above at 400 ° C. or lower or curing it by irradiating with ultraviolet rays. The heating temperature is preferably 350 ° C. or lower. When the heating temperature exceeds 400 ° C., it is not preferable because components such as wiring and circuits formed on the substrate may be deteriorated.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
[0040]
[Example 1 Preparation of BaTi 4 O 9 fine particles]
Barium carbonate, titanium oxide (rutile) and boron oxide in a mixture weighed to contain 20.0%, 26.6% and 53.4%, respectively, in terms of mole percent on a BaO, TiO 2 and B 2 O 3 basis A small amount of ethanol was added and mixed and ground in an automatic mortar. Then, it was made to dry and the raw material powder was obtained. The obtained raw material powder was charged into a platinum container equipped with a nozzle (containing 10% rhodium) and heated at 1350 ° C. for 2 hours in an electric furnace using molybdenum silicide as a heating element to be completely melted.
[0041]
Next, the melt was dripped while heating the nozzle part with an electric furnace, and the liquid droplet was rapidly cooled by passing through a twin roll having a diameter of 15 cm rotating at 50 rpm to obtain a flaky solid. The obtained flaky solid was transparent, and as a result of powder X-ray diffraction, it was confirmed to be an amorphous substance. Moreover, it was 80-150 micrometers when the thickness of the flaky solid substance was measured with the micrometer.
[0042]
The flaky solid was heated at 590 ° C. for 12 hours to precipitate barium titanate crystals. The crystallized flakes were allowed to stand in a 1 mol / L acetic acid solution at 70 ° C. for 12 hours to dissolve out boron oxide and barium borate as matrix components, and then washed with water repeatedly to obtain a white powder.
[0043]
When the obtained white powder was identified by powder X-ray diffraction, all of the obtained powders were particles with high crystallinity, and were powders composed only of BaTi 4 O 9 crystals. Further, as a result of observation with a transmission electron microscope, this crystal had a plate shape, a major axis (average primary particle size) of 30 nm, a thickness of 11 nm, and an aspect ratio of 2.72.
[0044]
[Example 2 Production of dielectric-resin composite]
The BaTi 4 O 9 fine particles obtained in Example 1 were dispersed in an aqueous nitric acid solution adjusted to pH = 3 using a wet jet mill, and then aggregated particles were removed by high-speed centrifugation to obtain 20% by mass of BaTi 4. A dispersion containing O 9 fine particles was prepared. The obtained dispersion was subjected to solvent substitution with dimethylacetamide while concentrating to 30% by mass using an evaporator, and then 3-isocyanatopropyltrimethoxysilane was adjusted to 3% by mass with respect to the dielectric fine particles. After adding, the mixture was stirred well. Then, the polyimide resin was mixed so that the content ratio of BaTi 4 O 9 particles and polyimide was 80/20 by mass ratio to obtain a dispersion A. The dimethylacetamide concentration in the dispersion A was 31% by mass.
[0045]
Dispersion A was applied onto a Si wafer substrate by spin coating, dried on a hot plate at 100 ° C. for 5 minutes, and then heated to 300 ° C. at a rate of 10 ° C./min in an electric furnace. After holding at 15 ° C. for 15 minutes and baking to cure, it was gradually cooled, and the substrate was peeled off to obtain a film-like dielectric-resin composite having a thickness of 25 μm. The obtained film-like dielectric-resin composite was flexible, and no cracks or elongation occurred in the 90 ° bending test.
[0046]
In order to measure the dielectric properties of the film-like dielectric-resin composite obtained in this example, a dispersion A was applied on a non-alkali glass substrate having a thickness of 0.55 mm under the same conditions as described above, and dried. A copper microstrip line having a line width of 1.1 mm, a thickness of 1 μm, and a line length of 25 mm was formed by DC sputtering on the laminate obtained by performing each curing operation, and dielectric characteristics were measured by a resonator method. .
[0047]
[Example 3 Production of dielectric-resin composite]
The BaTi 4 O 9 fine particles obtained in Example 1 were dispersed in ethanol containing 100 ppm nitric acid using a wet jet mill, and then coarse particles were removed by high-speed centrifugation to obtain 20% by mass of BaTi 4 O 9 fine particles. A dispersion containing was prepared. The resulting dispersion was subjected to solvent substitution with decalin while concentrating to 30% by mass using an evaporator, and then 3-glycidyloxypropylmethyldimethoxysilane was added to 3% by mass with respect to the dielectric fine particles. And stirred well. Thereafter, the epoxy resin was mixed so that the content ratio of the BaTi 4 O 9 particles and the epoxy resin was 70/30 by mass ratio, and further 8 phr of 2-ethyl 4-methylimidazole was added as an epoxy resin curing agent, and the dispersion was added. B was obtained. The decalin concentration in the dispersion B was 25% by mass.
[0048]
Dispersion B was coated on a 25 μm thick PET film whose surface was treated with silicone using a doctor blade having a width of 150 μm, dried at room temperature for 15 minutes, and then heated at 110 ° C. in a hot air circulating oven. After baking for 30 minutes and slow cooling, the substrate was peeled off to obtain a film-like dielectric-resin composite having a thickness of 30 μm. The obtained film-like dielectric-resin composite was flexible, and no cracks or elongation occurred in the 90 ° bending test.
[0049]
A dispersion B was applied on a non-alkali glass substrate having a thickness of 0.55 mm under the same conditions as described above, and after performing a drying and curing operation to obtain a laminate, the dielectric properties were obtained in the same manner as in Example 2. It was measured.
[0050]
[Example 4 Production of dielectric-resin composite]
Dispersion A was applied onto a polyimide film having a thickness of 50 μm using a doctor blade having a width of 150 μm, and then dried and cured in the same manner as in Example 2 to form a film dielectric having a thickness of 35 μm on the polyimide film. -A laminate on which a resin composite was formed was obtained. The obtained laminate was flexible, and no cracks or elongation occurred in the 90 ° bending test.
[0051]
The dielectric properties of the laminate were measured in the same manner as in Example 2 without peeling off the film-like dielectric-resin composite from the laminate.
[0052]
[Example 5 Production of dielectric-resin composite]
Dispersion C was obtained by replacing 10% of BaTi 4 O 9 fine particles in dispersion A with spherical crystalline BaTi 4 O 9 particles having an average primary particle diameter of 550 nm (aspect ratio 1) prepared by a solid phase reaction method. Was prepared. A film-like dielectric-resin composite having a thickness of 40 μm was obtained in the same manner as in Example 2 except that this dispersion C was used. The obtained film-like dielectric-resin composite was flexible, and no cracks or elongation occurred in the 90 ° bending test.
[0053]
Dispersion C was applied on a non-alkali glass substrate having a thickness of 0.55 mm under the same conditions as described above, and each of the drying and curing operations was performed to obtain a laminate. evaluated.
[0054]
Example 6 Comparative Example
Dispersion D was prepared by replacing BaTi 4 O 9 fine particles in dispersion A with spherical crystalline BaTi 4 O 9 particles having an average primary particle diameter of 550 nm (aspect ratio 1) prepared by a solid phase reaction method. A film-like dielectric-resin composite having a thickness of 45 μm was obtained in the same manner as in Example 2 except that this dispersion D was used. The obtained film-like dielectric-resin composite was very brittle, and cracks were easily generated in the 90 ° bending test.
[0055]
The dispersion D was applied on a non-alkali glass substrate having a thickness of 0.55 mm under the same conditions as described above, and after performing a drying and curing operation to obtain a laminate, the dielectric properties were obtained in the same manner as in Example 2. evaluated.
[0056]
The production conditions for the film-like dielectric-resin composites in Examples 2 to 6 are shown in Table 1, and the dielectric properties of the dielectric-resin composites obtained in Examples 2 to 6 are shown in Table 2. In Table 2, relative permittivity εr and dielectric loss tangent tan δ are measured values at 2.45 GHz.
[0057]
[Table 1]
[0058]
[Table 2]
[0059]
【The invention's effect】
Since the crystalline dielectric-resin composite of the present invention has excellent dielectric properties in the microwave band and has an appropriate flexibility that is easy to handle, it can be used as a constituent material for various electronic components. The electronic component can be used in high density, light weight, and small size. In particular, the crystalline dielectric-resin composite of the present invention is highly effective when used as a constituent material of an electronic component for microwave communication. Specifically, (1) a planar antenna such as an IC tag or an IC card; It can be suitably used for flexible printed circuit boards, (3) capacitors, (4) semiconductor packages, and the like.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003184719A JP4474851B2 (en) | 2003-06-27 | 2003-06-27 | Dielectric-resin composite and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003184719A JP4474851B2 (en) | 2003-06-27 | 2003-06-27 | Dielectric-resin composite and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005015694A JP2005015694A (en) | 2005-01-20 |
JP2005015694A5 JP2005015694A5 (en) | 2006-06-08 |
JP4474851B2 true JP4474851B2 (en) | 2010-06-09 |
Family
ID=34184393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003184719A Expired - Lifetime JP4474851B2 (en) | 2003-06-27 | 2003-06-27 | Dielectric-resin composite and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4474851B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5211695B2 (en) | 2006-02-01 | 2013-06-12 | ダイキン工業株式会社 | High dielectric film |
EP3237527B1 (en) | 2014-12-22 | 2019-08-14 | Bridgestone Americas Tire Operations, LLC | Rubber compositions for radio devices in tires |
US10486477B2 (en) | 2015-11-09 | 2019-11-26 | Bridgestone Americas Tire Operations, Llc | Rubber coating for electronic communication module, electronic module containing same, and related methods |
CN116457417A (en) * | 2021-02-10 | 2023-07-18 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414114A (en) * | 1987-07-06 | 1989-01-18 | Toshiba Glass Kk | Titanate powder and its production |
JP3785235B2 (en) * | 1996-11-01 | 2006-06-14 | 株式会社Neomax | Microwave dielectric ceramic composition |
JP5250923B2 (en) * | 2001-07-13 | 2013-07-31 | Jsr株式会社 | Ultrafine composite resin particles, composition for forming a dielectric, and electronic component |
JP2003055039A (en) * | 2001-08-09 | 2003-02-26 | Hitoshi Osato | Microwave dielectric composition and production method therefor |
JP2003160379A (en) * | 2001-11-20 | 2003-06-03 | Fujitsu Ltd | Microwave dielectric composition |
JP2004335364A (en) * | 2003-05-09 | 2004-11-25 | Fujikura Ltd | Highly dielectric powder, highly dielectric resin composite, and electronic component |
JP2005015652A (en) * | 2003-06-26 | 2005-01-20 | Fujikura Ltd | Resin composition having high dielectric constant and electronic component |
-
2003
- 2003-06-27 JP JP2003184719A patent/JP4474851B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005015694A (en) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102005542B1 (en) | Conductive composition and conductive molded body using same | |
KR100634915B1 (en) | Method for producing composite dielectric material | |
TWI291936B (en) | ||
KR20120083707A (en) | Glass powder and method for preparing the same | |
WO2010008041A1 (en) | Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material | |
CN103796956B (en) | The manufacture method of barium titanium oxalate and the manufacture method of barium titanate | |
JP4474851B2 (en) | Dielectric-resin composite and manufacturing method thereof | |
WO2022254960A1 (en) | Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device | |
JP6739669B2 (en) | Glass-coated aluminum nitride particles, method for producing the same, and heat-releasing resin composition containing the same | |
CN102040837A (en) | Method for preparing nanocomposite materials comprising surface-modified nanofiller for substrates | |
JP2007145675A (en) | Composite fine particle and its manufacturing method | |
JP5283996B2 (en) | Modified perovskite complex oxide, method for producing the same, and complex dielectric material | |
WO2020145342A1 (en) | Spinel particles, method for producing same, resin composition, molded article, composition, green sheet, fired article, and glass-ceramic substrate | |
WO2004065489A1 (en) | Composite deelectric material and substrate | |
CN114479191B (en) | Inorganic filler for PTFE-based copper-clad plate and preparation method thereof | |
JP5362280B2 (en) | Modified perovskite complex oxide, method for producing the same, and complex dielectric material | |
JP5341417B2 (en) | Modified perovskite complex oxide, method for producing the same, and complex dielectric material | |
JP4752194B2 (en) | Method for producing barium titanate fine particles | |
KR102282500B1 (en) | Nanocomposite insulation materials with enhanced thermal conductivity by dispersion of inorganic nanoparticles and their manufacturing method | |
JPWO2020145341A1 (en) | Resin composition, molded product, composition, green sheet, fired product and glass ceramic substrate | |
JP7557633B2 (en) | Spherical crystalline silica powder and its manufacturing method | |
WO2005044773A1 (en) | Rare earth metal compound in aqueous solvent, method for producing same, and method for producing ceramic powder using same | |
KR101881282B1 (en) | Halloysite nanotube coated with zirconia, synthesis method and polymer composite containing it | |
WO2021251451A1 (en) | Barium titanyl oxalate, method for producing same, and method for producing barium titanate | |
KR101156508B1 (en) | A polymer composite resin incouding composite powder having Titanium dioxide an internal carbon nano tube and Method for fabricating thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100301 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |