JP4474308B2 - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP4474308B2
JP4474308B2 JP2005078379A JP2005078379A JP4474308B2 JP 4474308 B2 JP4474308 B2 JP 4474308B2 JP 2005078379 A JP2005078379 A JP 2005078379A JP 2005078379 A JP2005078379 A JP 2005078379A JP 4474308 B2 JP4474308 B2 JP 4474308B2
Authority
JP
Japan
Prior art keywords
flow
measuring element
flow rate
rate measuring
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005078379A
Other languages
Japanese (ja)
Other versions
JP2006258675A (en
Inventor
圭一 中田
聖智 井手
毅 森野
亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2005078379A priority Critical patent/JP4474308B2/en
Publication of JP2006258675A publication Critical patent/JP2006258675A/en
Application granted granted Critical
Publication of JP4474308B2 publication Critical patent/JP4474308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、発熱抵抗体を利用して流量を計測する流量センサに係り、例えば、内燃機関の吸入空気流量を測定するために好適な流量センサに関する。   The present invention relates to a flow rate sensor that measures a flow rate by using a heating resistor, for example, a flow rate sensor suitable for measuring an intake air flow rate of an internal combustion engine.

従来、自動車などの内燃機関の吸入空気通路に設置され、吸入空気流量を計測する流量センサとしては、熱式のものが質量流量を直接検知できることから主流となってきている。このような熱式の流量センサにおいて、流量を計測する流量計測素子をシリコン(Si)などの半導体基板上に、半導体微細加工技術を用いて製造するものが比較的容易に、大量生産方式で生産できることから経済性があり、また、小型で低電力駆動できることから近年注目されている。   2. Description of the Related Art Conventionally, a thermal sensor that is installed in an intake air passage of an internal combustion engine such as an automobile and measures an intake air flow rate has become mainstream because it can directly detect a mass flow rate. In such a thermal flow sensor, it is relatively easy to produce a flow measuring element for measuring a flow rate on a semiconductor substrate such as silicon (Si) using a semiconductor microfabrication technology, in a mass production method. It has been attracting attention in recent years because it is economical because it can be performed, and it can be driven at low power with a small size.

排気規制強化,燃費向上の点から、エンジンにおいて吸気脈動が発生する状態および脈動が大きくなりエンジンからエアクリーナの方向に向かう空気流(逆流)が発生する状態においても、高精度に流量を計測する流量計測装置が必要となってきている。上述のエンジン状態においても高精度に空気流量を計測するためには、脈動に追従可能な応答速度及び方向検知機能を有する流量計測装置が必要である。   A flow rate that measures the flow rate with high accuracy even in a state where intake pulsation occurs in the engine and air flow (back flow) from the engine toward the air cleaner occurs due to stricter exhaust regulations and improved fuel efficiency. Measuring devices are becoming necessary. In order to measure the air flow rate with high accuracy even in the engine state described above, a flow rate measuring device having a response speed and direction detection function capable of following the pulsation is necessary.

これを達成する手段の一例として、上述のシリコン(Si)等の半導体基板上に半導体微細加工技術を用いて製造するセンサでは、薄膜状の計測領域を形成し、その薄膜領域に流量計測用抵抗体を形成することにより熱応答を高速化することが可能である。方向検知機能については流量計測用抵抗体のパターンにより達成することが可能である。方向検知手段を有することにより、エンジンからエアクリーナの方向に向かう空気流(逆流)が発生する運転状態において、方向検知手段を有していない流量センサよりも正確に空気流量を計測することが可能となる。   As an example of means for achieving this, in a sensor manufactured by using a semiconductor microfabrication technique on a semiconductor substrate such as silicon (Si) described above, a thin film measurement region is formed, and a flow rate measuring resistor is formed in the thin film region. It is possible to speed up the thermal response by forming a body. The direction detection function can be achieved by a flow rate measuring resistor pattern. By having the direction detection means, it is possible to measure the air flow rate more accurately than the flow rate sensor that does not have the direction detection means in an operating state where an air flow (reverse flow) from the engine toward the air cleaner is generated. Become.

従来は、4気筒エンジンの低回転数において吸気脈動が大きくなり、スロットル全開付近において逆流を発生する場合が多かったが、近年の排出ガス規制,低燃費化等に対応したバルブの開閉時間を変化させるなどの複雑な制御を行うエンジンでは、高い回転数において、脈動,逆流が発生し、逆流量も拡大する傾向にある。また、4気筒以上の多気筒エンジンにおいても逆流を含む脈動流が発生する。従って、方向検知機能は非常に有効な手段である。また、このように流量を検出する抵抗体を薄膜上に形成することにより流量変化に対して高速な熱応答が得られる。このように、高速に応答する流量センサを自動車制御に適用すると流量が急激に変化する場合でも、その流量変化に応答することが可能であり、従って上記の運転状態においても、熱容量が大きく応答速度の遅い流量センサよりも正確に空気流量を計測することが可能となる。   In the past, intake pulsation increased at low engine speeds of four-cylinder engines, and backflow was often generated near the throttle fully open, but the valve opening / closing time corresponding to recent exhaust gas regulations, fuel efficiency reduction, etc. changed In an engine that performs complicated control such as generating pulsation and backflow at a high speed, the backflow tends to increase. Also, a pulsating flow including a reverse flow is generated even in a multi-cylinder engine having four or more cylinders. Therefore, the direction detection function is a very effective means. Further, by forming the resistor for detecting the flow rate on the thin film in this way, a high-speed thermal response can be obtained with respect to the flow rate change. In this way, when a flow sensor that responds at high speed is applied to automobile control, even if the flow rate changes suddenly, it is possible to respond to the change in the flow rate. It is possible to measure the air flow rate more accurately than a slow flow rate sensor.

しかし、流量センサが搭載される自動車の吸気管を流れる空気には、雰囲気中に含まれるダスト,オイル等の汚損物質が含まれている。エアクリーナにより汚損物質の大部分は取除かれるが、例えば15μm以下の微小粒子はエアクリーナを通過して流量センサに到達する。また、エアクリーナの経年変化により、エアクリーナに堆積した汚損物質が流量センサに到達する可能性もある。本発明に使用している流量計測素子は上述したように薄膜部を有していることから、これらの汚損物質が衝突し難い構成が信頼性の面から有効である。これを実現する手段として、流量センサでは汚損物質が流量計測素子に衝突しないように慣性分離を行う副通路が有効である。慣性により汚損物質を除去する副通路としては、例えば流量計測素子の順流に対して上流に除々に径が小さくなるような曲部を有する副通路が有効である。   However, air flowing through the intake pipe of an automobile on which the flow sensor is mounted contains pollutants such as dust and oil contained in the atmosphere. Although most of the fouling substances are removed by the air cleaner, for example, fine particles of 15 μm or less pass through the air cleaner and reach the flow sensor. In addition, due to aging of the air cleaner, there is a possibility that the pollutant accumulated in the air cleaner reaches the flow sensor. Since the flow rate measuring element used in the present invention has the thin film portion as described above, a configuration in which these fouling substances do not easily collide is effective from the viewpoint of reliability. As a means for realizing this, in the flow sensor, a sub-passage that performs inertia separation so that the pollutant does not collide with the flow measuring element is effective. For example, a sub-passage that has a curved portion whose diameter gradually decreases upstream from the forward flow of the flow rate measuring element is effective as the sub-passage that removes the pollutant due to inertia.

特開2003−83788号公報JP 2003-83788 A

上述のように、流量計測素子の上流に除々に径が小さくなるような曲部を有する副通路の信頼性は非常に高いが、この副通路は流路の半径方向に対して流速が変化し、中心の流速が速くなる。従って、大量生産を行う場合に、流量特性のばらつきが十分なものではなかった。   As described above, the reliability of the secondary passage having a curved portion whose diameter gradually decreases upstream of the flow measuring element is very high, but the flow velocity of the secondary passage changes in the radial direction of the flow path. , The central flow rate will be faster. Therefore, when mass production is performed, variation in flow characteristics is not sufficient.

また、上述の流量計測素子は平板構造をしているため、流量計測素子表面の流れが乱れると流量が安定しない。流量計測素子は何らかの支持体に接着などにより実装され、流量計測素子の表面位置と支持体の表面位置の関係が、流れが乱れない構成とすることが望ましい。しかし、製造上のばらつきのため、流量計測素子の厚みばらつき、支持体の厚みばらつき、接着する場合には接着剤の厚みばらつきにより、流量計測素子の表面位置と支持体の表面位置がばらつく。このばらつきに起因して、流量特性,温度特性等のばらつきが発生する。   In addition, since the flow rate measuring element described above has a flat plate structure, the flow rate is not stable if the flow on the surface of the flow rate measuring element is disturbed. It is desirable that the flow rate measuring element is mounted on some support by bonding or the like, and the relationship between the surface position of the flow rate measuring element and the surface position of the support is such that the flow is not disturbed. However, due to manufacturing variations, the surface position of the flow measuring element and the surface position of the support vary due to the thickness variation of the flow measuring element, the thickness variation of the support, and the thickness variation of the adhesive when bonded. Due to this variation, variations such as flow rate characteristics and temperature characteristics occur.

以上の2つの問題に起因し、従来の構成では、大量生産時に流量センサの製造ばらつきが大きくなるという課題がある。   Due to the above two problems, the conventional configuration has a problem that the manufacturing variation of the flow sensor becomes large at the time of mass production.

上記課題を達成するために、本発明の流量センサは、上流及び下流に曲部を有する副通路に流入した空気の流れ方向を流量計測素子の方向に向かわせるように、副通路の流量計測素子付近の、流量計測素子と向かい合う面に絞り部を形成し、この絞り形状は流量計素子と向かい合う面を略扇形に盛り上げ、流量計測素子と向い合う面の距離が最も小さくなる位置までの傾斜を副通路の外周よりも内周側を急にして構成する。


In order to achieve the above object, the flow sensor of the present invention has a flow measuring element in the sub-passage so that the flow direction of the air flowing into the sub-passage having the curved portions upstream and downstream is directed toward the flow measuring element. A constricted part is formed on the surface facing the flow measuring element in the vicinity, and this constricted shape swells the surface facing the flow meter element into a substantially fan shape, and tilts to the position where the distance of the surface facing the flow measuring element is the smallest. The inner circumference side is configured to be steeper than the outer circumference of the auxiliary passage.


本発明により、信頼性が高く大量生産時の製造ばらつきが小さい流量センサを提供することが可能となる。   According to the present invention, it is possible to provide a flow sensor with high reliability and small manufacturing variation during mass production.

上流に除々に径が小さくなるような曲部を有する副通路に流入した順流および逆流を流量計測素子の方向に向かわせるように、副通路の流量計測素子付近の絞り形状を構成し、絞り部の頂点は順流に対して流量計測素子の下流側に位置する構成とする。   A throttle shape is formed in the vicinity of the flow measuring element in the sub-passage so that the forward flow and the reverse flow flowing into the sub-passage having a curved portion whose diameter gradually decreases in the upstream direction toward the flow measuring element. The apex of is located downstream of the flow rate measuring element with respect to the forward flow.

以下、本発明の実施例について図面を基に説明する。まず、本発明に使用される各構成部品について説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, each component used in the present invention will be described.

図3は流量計測素子1の平面パターン図、図4は流量計測素子1の断面図を示す。流量計測素子1は半導体製造技術により作製される。以下にその説明をする。単結晶シリコン基板2上に絶縁層3として二酸化シリコン層を熱酸化あるいはCVD(Chemical Vapor
Deposition)等の方法で形成、窒化シリコン層をCVD等の方法で形成する。次に多結晶シリコン層をCVD等の方法で形成し、所望の抵抗値とするために不純物としてリン(P)を熱拡散またはイオン注入によりドーピングする。その後、多結晶シリコン層をパターニングすることにより発熱抵抗体4,吸気温度検出抵抗体5,上流側感温抵抗体6,7,下流側感温抵抗体8,9,引出抵抗12を形成する。次に、保護層13として窒化シリコン層,二酸化シリコン層をCVD等の方法で形成する。その後、保護層13をパターニングして、電極14を形成する部分の保護層13を取除く。次に、電極材料であるアルミニウム層を形成後、エッチングによりパターニングを行い電極14を形成する。最後に、空洞部15を形成するために、単結晶シリコン基板2の発熱抵抗体4を形成していない面にパターニングを行う。その後、異方性エッチングにより空洞部15を形成する。このように空洞化することにより発熱抵抗体4,上流側感温抵抗体6,7,下流側感温抵抗体8,9が配置されている領域は熱的に絶縁された薄膜部16となる。上述の二酸化シリコン,多結晶シリコンは圧縮応力を有し、窒化シリコンは引張り応力を有しているため、これらの材料を適切な膜厚で積層することにより、たわみのない薄膜部16を形成することが可能となる。最後にダイシングによりチップに分割する。また、表面を酸化させた単結晶シリコン基板を2枚貼り合わせた基板を用いることにより、抵抗体を単結晶シリコンにより形成することも可能である。その他、密着性が適切であれば、抵抗体として白金等の金属材料を用いることも可能である。
FIG. 3 is a plan pattern diagram of the flow rate measuring element 1, and FIG. 4 is a cross-sectional view of the flow rate measuring element 1. The flow rate measuring element 1 is manufactured by a semiconductor manufacturing technique. This will be described below. A silicon dioxide layer is thermally oxidized or CVD (Chemical Vapor) as an insulating layer 3 on a single crystal silicon substrate 2.
A silicon nitride layer is formed by a method such as CVD. Next, a polycrystalline silicon layer is formed by a method such as CVD, and phosphorus (P) is doped as an impurity by thermal diffusion or ion implantation in order to obtain a desired resistance value. Thereafter, the polycrystalline silicon layer is patterned to form the heating resistor 4, the intake air temperature detecting resistor 5, the upstream temperature sensitive resistors 6, 7, the downstream temperature sensitive resistors 8, 9, and the lead resistor 12. Next, a silicon nitride layer and a silicon dioxide layer are formed as the protective layer 13 by a method such as CVD. Thereafter, the protective layer 13 is patterned to remove the portion of the protective layer 13 where the electrode 14 is to be formed. Next, after forming an aluminum layer as an electrode material, patterning is performed by etching to form an electrode 14. Finally, in order to form the cavity 15, patterning is performed on the surface of the single crystal silicon substrate 2 where the heating resistor 4 is not formed. Thereafter, the cavity 15 is formed by anisotropic etching. By hollowing out in this way, the regions where the heating resistors 4, the upstream temperature sensitive resistors 6, 7 and the downstream temperature sensitive resistors 8, 9 are arranged become a thermally insulated thin film portion 16. . Since the above-mentioned silicon dioxide and polycrystalline silicon have compressive stress and silicon nitride has tensile stress, the thin film portion 16 having no deflection is formed by laminating these materials with an appropriate film thickness. It becomes possible. Finally, it is divided into chips by dicing. Further, the resistor can be formed of single crystal silicon by using a substrate in which two single crystal silicon substrates whose surfaces are oxidized are bonded to each other. In addition, if the adhesion is appropriate, a metal material such as platinum can be used as the resistor.

図5は本発明の流量計測素子1を実装した流量センサモジュール100を吸気管に取付けた部分断面図である。図6は本発明の流量センサモジュール100の断面図である。流量計測素子1を実装する支持体20はガラスセラミック製積層基板により形成される。支持体20としては、他には高温焼成セラミック,金属板,プラスチック材等を採用することも可能となる。しかし、流量計測素子1は熱的に周囲の部材から熱絶縁されることが望ましいため、熱伝導率の小さいガラスセラミック製積層基板を採用することが有効である。また、積層基板を採用することによって、流量計測素子1への電力供給および、流量計測素子1からの信号処理を行うための回路21を支持体20に一体化して形成することが可能となる。このように支持体20と回路21を一体化することにより部品点数削減,接着個所の削減ができることからコスト,信頼性の面で優位である。また、積層基板の内層導体を使用して流量計測素子1を制御するための回路21を構成することにより回路21の小型化を図ることができるため、流量センサモジュール100の小型化を図ることができる。支持体20には流量計測素子1を収めるための窪み22が形成されており、流量計測素子1は窪み22内にエポキシまたはシリコーン系接着剤で接着される。流量計測素子1の電極14と支持体20の電極は、例えば金線等の接続線23により電気的に接続される。この接続部は吸入空気に含まれる汚染物質や水分による電食を防止するためにエポキシ系またはシリコーン系の樹脂で覆われる。この流量計測素子1が実装された支持体20はシリコーン系の接着剤23によりハウジングケース24に実装される。さらにハウジングケース24は主通路25に挿入される。   FIG. 5 is a partial cross-sectional view of the flow rate sensor module 100 mounted with the flow rate measuring element 1 of the present invention attached to the intake pipe. FIG. 6 is a cross-sectional view of the flow sensor module 100 of the present invention. The support 20 on which the flow rate measuring element 1 is mounted is formed of a laminated substrate made of glass ceramic. As the support 20, it is also possible to employ a high-temperature fired ceramic, a metal plate, a plastic material, or the like. However, since it is desirable that the flow rate measuring element 1 be thermally insulated from surrounding members, it is effective to employ a glass ceramic laminated substrate having a low thermal conductivity. Further, by adopting the laminated substrate, it is possible to integrally form the circuit 21 for supplying power to the flow measuring element 1 and performing signal processing from the flow measuring element 1 on the support 20. Since the support 20 and the circuit 21 are integrated in this way, the number of parts and the number of bonding points can be reduced, which is advantageous in terms of cost and reliability. In addition, since the circuit 21 for controlling the flow rate measuring element 1 using the inner layer conductor of the multilayer substrate can be configured, the circuit 21 can be reduced in size, so that the flow sensor module 100 can be reduced in size. it can. The support 20 is formed with a recess 22 for accommodating the flow rate measuring element 1, and the flow rate measuring element 1 is bonded to the recess 22 with an epoxy or silicone adhesive. The electrode 14 of the flow rate measuring element 1 and the electrode of the support 20 are electrically connected by a connection line 23 such as a gold wire. This connecting portion is covered with an epoxy-based or silicone-based resin in order to prevent electrolytic corrosion due to contaminants and moisture contained in the intake air. The support 20 on which the flow rate measuring element 1 is mounted is mounted on the housing case 24 with a silicone-based adhesive 23. Further, the housing case 24 is inserted into the main passage 25.

図5において、主通路25でエアクリーナからエンジンの方向に流れる空気(順流26)は副通路40の入口41から出口42に向かう。逆流の検出にも対応するためには、本発明に示すように、入口41はエアクリーナ側、出口42はエンジン側に開口している構成が有効である。この場合、副通路の流路は一周する必要があるため、主通路断面積に占める副通路の断面積が大きくなり、圧力損失が大きくなる。これを低減するためには、支持体20を副通路40の壁面に埋め込み、副通路40の壁面の一部とする構成が有効である。   In FIG. 5, the air (forward flow 26) flowing from the air cleaner toward the engine in the main passage 25 travels from the inlet 41 to the outlet 42 of the sub-passage 40. In order to cope with the detection of the reverse flow, as shown in the present invention, it is effective that the inlet 41 is opened on the air cleaner side and the outlet 42 is opened on the engine side. In this case, since the flow path of the sub-passage needs to go around, the cross-sectional area of the sub-passage occupying the cross-sectional area of the main passage becomes large, and the pressure loss increases. In order to reduce this, a configuration in which the support 20 is embedded in the wall surface of the sub-passage 40 and is used as a part of the wall surface of the sub-passage 40 is effective.

次に、流量センサモジュール100の動作原理を図3及び図7により説明する。発熱抵抗体4は吸気温度検出抵抗体5,抵抗体10,抵抗体11と共にブリッジ回路30を構成する。抵抗体10と抵抗体11は、支持体20上の回路21または、流量計測素子1上に形成される。ブリッジ回路30は、発熱抵抗体4が吸気温度検出抵抗体5に対して一定温度高くなるようにフィードバック制御される。上流側感温抵抗体6,7及び下流側感温抵抗体8,9の4個の感温抵抗体はブリッジ回路31を構成している。ブリッジ回路31には電圧Vrefが印加されている。上流側感温抵抗体6,7及び下流側感温抵抗体8,9は、発熱抵抗体4からの熱伝導および熱伝達により加熱されて所定の温度になる。無風状態では、理想的には上流側感温抵抗体6,7及び下流側感温抵抗体8,9は等しく加熱されるため温度差はほぼゼロとなる。従って、接点32と接点33はほぼ等しい電位となる。   Next, the operation principle of the flow sensor module 100 will be described with reference to FIGS. The heating resistor 4 constitutes a bridge circuit 30 together with the intake air temperature detection resistor 5, the resistor 10, and the resistor 11. The resistor 10 and the resistor 11 are formed on the circuit 21 on the support 20 or the flow rate measuring element 1. The bridge circuit 30 is feedback-controlled so that the heating resistor 4 is higher than the intake air temperature detection resistor 5 by a certain temperature. Four temperature sensing resistors, upstream temperature sensing resistors 6 and 7 and downstream temperature sensing resistors 8 and 9, constitute a bridge circuit 31. A voltage Vref is applied to the bridge circuit 31. The upstream temperature sensitive resistors 6, 7 and the downstream temperature sensitive resistors 8, 9 are heated to a predetermined temperature by heat conduction and heat transfer from the heating resistor 4. In the windless state, ideally, the upstream side temperature sensitive resistors 6 and 7 and the downstream side temperature sensitive resistors 8 and 9 are heated equally, so that the temperature difference is substantially zero. Therefore, the contact 32 and the contact 33 have substantially the same potential.

ここで、順流26が発生すると上流側感温抵抗体6,7は冷却されて平均温度が下がるため抵抗値が小さくなる。従って、接点32,接点33の間に電位差が発生する。一方、図3の逆流27の場合には、上述とは反対に、下流側感温抵抗体7が上流側感温抵抗体6よりも冷却されることにより、やはり接点32,接点33の間に電位差が発生する。この電位差は流量に従い大きくなるため、この電位差を元に流量計測が可能となる。また、接点32と接点33の何れの電位が大きいかで、方向を判定することが可能となる。この電位差は演算装置34に入力され、演算装置34により空気流量に対して所定の電圧が出力される。   Here, when the forward flow 26 is generated, the upstream side temperature sensitive resistors 6 and 7 are cooled and the average temperature is lowered, so that the resistance value becomes small. Accordingly, a potential difference is generated between the contact 32 and the contact 33. On the other hand, in the case of the backflow 27 in FIG. 3, contrary to the above, the downstream side temperature sensitive resistor 7 is cooled more than the upstream side temperature sensitive resistor 6, so that again between the contacts 32 and 33. A potential difference occurs. Since this potential difference increases with the flow rate, the flow rate can be measured based on this potential difference. In addition, the direction can be determined depending on which potential of the contact 32 and the contact 33 is high. This potential difference is input to the arithmetic unit 34, and the arithmetic unit 34 outputs a predetermined voltage with respect to the air flow rate.

図3,図8を用いて、副通路40について説明する。副通路40は入口41から流入した空気が渦を巻くように一周した後に、出口42から流出する。慣性効果を得るために入口41から流量計測素子1に到達するまでの流路は、除々に径が小さくなるような曲部で構成されている。この構成により、図8に示すように、空気流が渦状の流路を通過して流量計測素子1に到達するまでの間に、ダスト,水分などの汚損物質は慣性効果により外周面に押付けられ、そのまま出口32から排出される。よって、流量計測素子1の表面に汚損物質が到達することができない構造となっている。例えば、5〜200μm程度の粒子を、主通路25に連続投入した場合でも、流量計測素子が破壊することはない。また、水分においても、主通路25に連続投入した場合でも、流量計測素子が破壊することはない。   The auxiliary passage 40 will be described with reference to FIGS. The sub passage 40 flows out from the outlet 42 after making a round so that the air flowing in from the inlet 41 vortexes. In order to obtain an inertial effect, the flow path from the inlet 41 to the flow rate measuring element 1 is composed of a curved portion that gradually decreases in diameter. With this configuration, as shown in FIG. 8, before the air flow passes through the spiral flow path and reaches the flow rate measuring element 1, fouling substances such as dust and moisture are pressed against the outer peripheral surface by the inertia effect. Then, it is discharged from the outlet 32 as it is. Therefore, the fouling substance cannot reach the surface of the flow measuring element 1. For example, even when particles of about 5 to 200 μm are continuously charged into the main passage 25, the flow rate measuring element is not destroyed. Even in the case of moisture, even if the main passage 25 is continuously charged, the flow rate measuring element is not destroyed.

ここで、流量計測素子1は支持体20に実装されるが、単結晶シリコン基板2の板厚ばらつき、支持体20の窪み22の深さのばらつき、流量計測素子1を支持体20に接着する接着剤の厚みばらつきにより流量計測素子1の表面位置と支持体20の表面位置がばらつくことになる。図9は標準位置の表面位置関係、図10は表面位置関係がばらついた例を示す。図10のように表面位置関係がばらつくと、流量計測素子表面の流れが流量計測素子1の端部で乱れるため、図9の流量特性と比較すると図13に示すように大きく変化する。板形状の表面に計測素子を有し、その計測素子の表面と平行に空気が流れる場合、計測素子のごく表面では流速が非常に小さくなる。従って、図10に示すように、流量計測素子1の表面位置と支持体20の表面位置の関係が変化すると、流量計測素子表面の流れ方に大きな変化が生じる。この変化により、図13に示すように標準実装位置での流量特性に比較して大きな特性変化が発生する。   Here, the flow measuring element 1 is mounted on the support 20, but the thickness variation of the single crystal silicon substrate 2, the variation in the depth of the recess 22 of the support 20, and the flow measuring element 1 is bonded to the support 20. The surface position of the flow rate measuring element 1 and the surface position of the support 20 vary due to variations in the thickness of the adhesive. FIG. 9 shows the surface position relationship of the standard position, and FIG. 10 shows an example in which the surface position relationship varies. If the surface positional relationship varies as shown in FIG. 10, the flow on the surface of the flow rate measuring element is disturbed at the end of the flow rate measuring element 1, so that it greatly changes as shown in FIG. When a measuring element is provided on a plate-shaped surface and air flows parallel to the surface of the measuring element, the flow velocity is very small on the very surface of the measuring element. Therefore, as shown in FIG. 10, when the relationship between the surface position of the flow rate measuring element 1 and the surface position of the support 20 changes, a great change occurs in the flow direction of the flow rate measuring element surface. Due to this change, as shown in FIG. 13, a large characteristic change occurs compared to the flow rate characteristic at the standard mounting position.

図1に本発明の副通路40内の絞り43形状を示す。図2の断面に示すように、流量計測素子1の上流は除々に流路断面が小さくなる形状となっている。この構成により、図
11に示すように、流れが斜め方向から流量計測素子1に当たる。この構成において図
12に示すように流量計測素子1の表面位置と、支持体20の表面位置がばらついても、その影響を受け難くなるため、図13に示すように特性変化はほとんど発生しない。しかし、図11に示すように流れを流量計測素子1に向かうようにする構成は、本発明に示すように慣性効果を有する副通路40に適用することにより有効となる。慣性分離を行わない通路において、空気を流量計測素子1に向うような構成をとると、汚損物質を含んだ状態の空気が流量計測素子表面に衝突することになる。よって、図9の構成よりも流量計測素子1の薄膜部16を破壊してしまう可能性が高くなる。従って、本発明に示すように慣性分離の効果がある副通路40に適用することによって、信頼性があり、量産時の特性ばらつきが小さい流量センサモジュール100を提供することが可能となる。
FIG. 1 shows the shape of the throttle 43 in the auxiliary passage 40 of the present invention. As shown in the cross section of FIG. 2, the upstream of the flow rate measuring element 1 has a shape in which the flow path cross section gradually becomes smaller. With this configuration, as shown in FIG. 11, the flow strikes the flow rate measuring element 1 from an oblique direction. In this configuration, even if the surface position of the flow rate measuring element 1 and the surface position of the support 20 vary as shown in FIG. 12, they are hardly affected by this, so that the characteristic change hardly occurs as shown in FIG. 13. However, the configuration in which the flow is directed toward the flow rate measuring element 1 as shown in FIG. 11 is effective when applied to the auxiliary passage 40 having the inertia effect as shown in the present invention. If the air flow is directed toward the flow rate measuring element 1 in the passage where inertia separation is not performed, the air containing the pollutant collides with the surface of the flow rate measuring element. Therefore, the possibility of destroying the thin film portion 16 of the flow rate measuring element 1 is higher than that in the configuration of FIG. Therefore, by applying to the sub-passage 40 having the effect of inertia separation as shown in the present invention, it is possible to provide the flow sensor module 100 that is reliable and has a small variation in characteristics during mass production.

また、流量センサモジュール100としては、流量計測素子1の薄膜部16を副通路
40内の流速の大きい位置に配置することが、主通路25に発生する偏流の影響を低減することができる。本発明に採用している副通路40では、汚損物質は副通路外周部に分離されるため、流量計測素子1は副通路内側に配置する方が有効である。
Further, in the flow sensor module 100, the influence of the drift generated in the main passage 25 can be reduced by arranging the thin film portion 16 of the flow measurement element 1 at a position where the flow velocity in the sub passage 40 is large. In the sub-passage 40 employed in the present invention, the pollutant is separated into the outer periphery of the sub-passage, so it is more effective to arrange the flow rate measuring element 1 inside the sub-passage.

ここで、副通路では、外周部よりも内周部の流速が大きくなる。また、本発明の絞り
43形状においては、図14に示すように、内周と外周では絞り43の高さが同じであっても、絞り部頂点44までの傾斜が内周の方が急になる。流量計測素子1は内周付近に配置するため、さらに内周の流速を高める効果があり、従って、偏流の影響を低減することができる。また、内周部の方が、より流れが流量計測素子1の方向に向かうため、ばらつきが低減できる。
Here, in the sub-passage, the flow velocity in the inner peripheral portion is larger than that in the outer peripheral portion. Further, in the shape of the diaphragm 43 of the present invention, as shown in FIG. 14, even when the height of the diaphragm 43 is the same on the inner periphery and the outer periphery, the inclination to the throttle portion apex 44 is steeper on the inner periphery. Become. Since the flow rate measuring element 1 is disposed in the vicinity of the inner periphery, there is an effect of further increasing the flow velocity of the inner periphery, and therefore, the influence of drift can be reduced. Further, since the flow is more directed toward the flow rate measuring element 1 in the inner peripheral portion, variation can be reduced.

一方、図1,図2に示すように逆流27が発生した場合にも、流れを流量計測素子1に向かうようにする構成が有効である。逆流27が発生する場合には、流量がゼロの状態を通過して流れが順逆入れ替わる。従って、図10に示すように、流量計測素子1付近の実装ばらつきがあると流量誤差を発生し易い。特に、逆流27が発生し始める状態では、脈動時の最低流量がゼロ付近になるが、ばらつきにより流れが不安定になるため流量計測素子1が流れに追従できなくなり、流量誤差が発生し易くなる。   On the other hand, as shown in FIGS. 1 and 2, the configuration in which the flow is directed toward the flow rate measuring element 1 is effective even when the backflow 27 is generated. When the backflow 27 is generated, the flow passes through a state where the flow rate is zero, and the flow is reversed. Therefore, as shown in FIG. 10, if there is a mounting variation near the flow rate measuring element 1, a flow rate error is likely to occur. In particular, in the state in which the reverse flow 27 starts to occur, the minimum flow rate at the time of pulsation is close to zero, but the flow becomes unstable due to variations, so that the flow rate measuring element 1 cannot follow the flow and a flow rate error is likely to occur. .

しかし、本発明の構成では、ばらつきに対して安定性が向上するため、逆流を含む脈動時にも流量誤差を低減することができる。ここで、絞り部頂点44は、流量計測素子上に存在するとばらつきの要因となる。逆流27の発生頻度は順流26の発生頻度よりも低いため、流量計測素子1の下流側に絞りの頂点が存在する構成が有効である。   However, in the configuration of the present invention, stability against variations is improved, so that the flow rate error can be reduced even during pulsation including backflow. Here, if the throttle portion apex 44 exists on the flow rate measuring element, it causes variation. Since the occurrence frequency of the backflow 27 is lower than the occurrence frequency of the forward flow 26, a configuration in which the apex of the restriction exists on the downstream side of the flow rate measuring element 1 is effective.

また、図17はガソリンエンジン等の内燃機関のシステム図を示す。エンジンへの吸入空気はエアクリーナ102,吸気通路12,スロットル角度センサ103,アイドルスピードコントロールバルブ104,スロットルボディ105が吸気マニホールド106と一体で構成する吸気通路12を流れる途中に、本発明を施した流量計測装置100で流量及び流れ方向が検出され、検出された信号は電圧または周波数により車両コントロールユニット107に取込まれる。   FIG. 17 shows a system diagram of an internal combustion engine such as a gasoline engine. The intake air flow into the engine is applied to the air cleaner 102, the intake passage 12, the throttle angle sensor 103, the idle speed control valve 104, and the throttle body 105 in the course of flowing through the intake passage 12 formed integrally with the intake manifold 106. The flow rate and the flow direction are detected by the measuring device 100, and the detected signal is taken into the vehicle control unit 107 by voltage or frequency.

流量信号はインジェクタ108,回転速度計109,エンジンシリンダ110,排気マニホールド111,酸素濃度計112から構成される燃焼部構造およびサブシステムの制御に用いられる。   The flow rate signal is used for control of the combustion section structure and subsystem composed of the injector 108, the rotation speed meter 109, the engine cylinder 110, the exhaust manifold 111, and the oxygen concentration meter 112.

尚、図示はしないが、ディーゼルエンジンシステムの場合も基本構成はガソリンシステムとほぼ同じであり、本発明の流量計測装置を適用することが可能である。   Although not shown, the basic configuration of a diesel engine system is almost the same as that of a gasoline system, and the flow rate measuring device of the present invention can be applied.

本発明による流量計測装置の副通路絞り部形状を示す図。The figure which shows the subchannel | throttle restrictor shape of the flow measuring device by this invention. 本発明による流量計測装置の副通路絞り部の断面図。Sectional drawing of the subchannel | throttle restricting part of the flow measuring device by this invention. 本発明の流量計測素子の平面図。The top view of the flow measuring element of this invention. 本発明の流量計測素子の断面図。Sectional drawing of the flow volume measuring element of this invention. 本発明の流量センサモジュールを吸気管に配置した図。The figure which has arrange | positioned the flow sensor module of this invention in the intake pipe. 本発明の流量センサモジュールの断面図。Sectional drawing of the flow sensor module of this invention. 本発明の流量センサの駆動回路図。The drive circuit diagram of the flow sensor of this invention. 本発明の副通路の慣性効果を示す模式図。The schematic diagram which shows the inertia effect of the subchannel | path of this invention. 本発明の流量計測素子の支持体への実装例を示す図。The figure which shows the example of mounting to the support body of the flow volume measuring element of this invention. 本発明の流量計測素子の支持体への実装例を示す図。The figure which shows the example of mounting to the support body of the flow volume measuring element of this invention. 本発明の流量計測素子の支持体への実装例を示す図。The figure which shows the example of mounting to the support body of the flow volume measuring element of this invention. 本発明の流量計測素子の支持体への実装例を示す図。The figure which shows the example of mounting to the support body of the flow volume measuring element of this invention. 流量特性図。Flow characteristic diagram. 本発明の絞り形状を示す図。The figure which shows the aperture shape of this invention. 本発明の絞り形状を示す断面図。Sectional drawing which shows the aperture shape of this invention. 本発明の絞り形状を示す断面図。Sectional drawing which shows the aperture shape of this invention. 本発明の流量計測装置を用いた内燃機関の制御システム図。The control system figure of an internal-combustion engine using the flow measuring device of the present invention.

符号の説明Explanation of symbols

1…流量計測素子、2…単結晶シリコン基板、3…絶縁層、4…発熱抵抗体、5…吸気温度検出抵抗体、6,7…上流側感温抵抗体、8,9…下流側感温抵抗体、10,11…抵抗体、13…保護層、14a〜14k…電極、15…空洞部、44…絞り部頂点。
DESCRIPTION OF SYMBOLS 1 ... Flow measuring element, 2 ... Single crystal silicon substrate, 3 ... Insulating layer, 4 ... Heating resistor, 5 ... Intake temperature detection resistor, 6, 7 ... Upstream temperature sensing resistor, 8, 9 ... Downstream feeling Thermal resistor, 10, 11 ... resistor, 13 ... protective layer, 14a to 14k ... electrode, 15 ... hollow portion, 44 ... vertical portion apex.

Claims (2)

流体の流れ方向を検出するための手段を備えた流量計測素子と、前記流量計測素子を実装する支持体と、前記流量計測素子が配置される副通路を有し、前記副通路は前記流量計測素子の上流及び下流に曲り部を有し、前記支持体が前記副通路の壁の一部を構成している流量センサにおいて、
前記副通路内にエアクリーナからエンジンに流れる方向(順流)の空気の流れを、前記流量計測素子表面に向かう方向に偏向させ、また、前記副通路内にエンジンからエアクリーナに流れる方向(逆流)の空気の流れを、前記流量計測素子表面に向かう方向に偏向させるように、前記副通路の、前記流量計測素子と向い合う面に絞り部が形成され、
前記支持体と前記流量計測素子と向い合う面の距離が最も小さくなる位置が前記流量計測素子の前記副通路内にエアクリーナからエンジンに流れる方向(順流)の前記流量計測素子の中心位置よりも下流側にあり、
前記絞り部は、前記流量計素子と向かい合う面を略扇形に盛り上げ、前記流量計測素子と向い合う面の距離が最も小さくなる位置までの傾斜を前記副通路の外周よりも内周側を急にしたことを特徴とする流量センサ。
A flow rate measuring element having means for detecting a fluid flow direction; a support for mounting the flow rate measuring element; and a sub-passage in which the flow rate measuring element is arranged, wherein the sub-passage is the flow rate measuring device. In the flow sensor having a bent portion upstream and downstream of the element, and the support constitutes a part of the wall of the sub passage,
The flow of air flowing from the air cleaner to the engine in the sub-passage (forward flow) is deflected in the direction toward the surface of the flow rate measuring element, and the flow of air from the engine to the air cleaner in the sub-passage (reverse flow) In order to deflect the flow of air in the direction toward the surface of the flow rate measuring element, a throttle portion is formed on the surface of the sub-passage that faces the flow rate measuring element,
The position where the distance between the surface facing the support and the flow rate measuring element is the smallest is downstream from the center position of the flow rate measuring element in the direction (forward flow) from the air cleaner to the engine in the sub-passage of the flow rate measuring element. On the side,
The constriction part swells the surface facing the flow meter element in a substantially fan shape, and the slope to the position where the distance of the surface facing the flow measuring element is the smallest is steeply inclined on the inner peripheral side than the outer periphery of the sub-passage. A flow sensor characterized by that.
請求項1において、前記絞り部は順流側の流量計測素子への偏向角度よりも、逆流側の流量計測素子への偏向角度の方が大きいことを特徴とする流量センサ。2. The flow sensor according to claim 1, wherein the throttle part has a deflection angle to the flow measuring element on the reverse flow side larger than a deflection angle to the flow measuring element on the forward flow side.
JP2005078379A 2005-03-18 2005-03-18 Flow sensor Expired - Fee Related JP4474308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078379A JP4474308B2 (en) 2005-03-18 2005-03-18 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078379A JP4474308B2 (en) 2005-03-18 2005-03-18 Flow sensor

Publications (2)

Publication Number Publication Date
JP2006258675A JP2006258675A (en) 2006-09-28
JP4474308B2 true JP4474308B2 (en) 2010-06-02

Family

ID=37098098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078379A Expired - Fee Related JP4474308B2 (en) 2005-03-18 2005-03-18 Flow sensor

Country Status (1)

Country Link
JP (1) JP4474308B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293278B2 (en) * 2009-03-05 2013-09-18 株式会社デンソー Thermal flow meter
JP5287456B2 (en) * 2009-04-15 2013-09-11 株式会社デンソー Air flow measurement device
JP5152292B2 (en) 2010-10-06 2013-02-27 株式会社デンソー Flow measuring device
JP5758850B2 (en) 2012-06-15 2015-08-05 日立オートモティブシステムズ株式会社 Thermal flow meter
JP5729365B2 (en) * 2012-09-25 2015-06-03 株式会社デンソー Flow measuring device
JP6723075B2 (en) * 2016-05-31 2020-07-15 日立オートモティブシステムズ株式会社 Thermal flow meter
US10900820B2 (en) * 2016-11-30 2021-01-26 Hitachi Automotive Systems, Ltd. Air flow rate measurement device having a segmented board portion at an upstream side to suppress flow disturbances

Also Published As

Publication number Publication date
JP2006258675A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP3709373B2 (en) Flow measuring device
JP3718198B2 (en) Flow sensor
JP4881554B2 (en) Flow sensor
JP4474308B2 (en) Flow sensor
JP3764860B2 (en) Flow measuring device
EP1319929A1 (en) Thermal type air flowmeter
CN1072798C (en) Device for measuring mass of flowing medium
JP4850105B2 (en) Thermal flow meter
JP2008058131A (en) Thermal type gas flowmeter
EP2233896A1 (en) Thermal-type flowmeter
US6675644B2 (en) Thermo-sensitive flow rate sensor
WO2004106863A1 (en) Thermal flow sensor
KR20010013464A (en) Measuring device for measuring the mass of a flowing medium
US6298720B1 (en) Measurement device for measuring the mass of a medium flowing in a line
JP2001004420A (en) Measuring apparatus of flow rate and flow velocity
JP2012242298A (en) Flow rate detection device
JP3709339B2 (en) Flow measuring device
JP2008026206A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same
JP4906422B2 (en) Thermal gas flow sensor and internal combustion engine controller using the same
JP2008026278A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same
JP2008026279A (en) Thermal gas flow sensor and apparatus for controlling internal combustion engine using the same
JPH10197308A (en) Heating resistor-type air-flow-rate measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4474308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees