JP4473324B2 - Adsorbent for removing blood cells - Google Patents

Adsorbent for removing blood cells Download PDF

Info

Publication number
JP4473324B2
JP4473324B2 JP2008109381A JP2008109381A JP4473324B2 JP 4473324 B2 JP4473324 B2 JP 4473324B2 JP 2008109381 A JP2008109381 A JP 2008109381A JP 2008109381 A JP2008109381 A JP 2008109381A JP 4473324 B2 JP4473324 B2 JP 4473324B2
Authority
JP
Japan
Prior art keywords
blood cells
adsorbent
removing blood
chemical formula
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008109381A
Other languages
Japanese (ja)
Other versions
JP2009254695A (en
Inventor
通治 中尾
清秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008109381A priority Critical patent/JP4473324B2/en
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to CN200980113657.6A priority patent/CN102006899B/en
Priority to KR1020107025775A priority patent/KR101179638B1/en
Priority to EP09731790A priority patent/EP2266642B1/en
Priority to ES09731790T priority patent/ES2383647T3/en
Priority to AT09731790T priority patent/ATE551083T1/en
Priority to US12/937,163 priority patent/US8541538B2/en
Priority to PCT/JP2009/058112 priority patent/WO2009128564A1/en
Priority to CA2720665A priority patent/CA2720665C/en
Publication of JP2009254695A publication Critical patent/JP2009254695A/en
Application granted granted Critical
Publication of JP4473324B2 publication Critical patent/JP4473324B2/en
Priority to US13/924,300 priority patent/US8748560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、血液に含まれる白血球および血小板を除去するための血球除去用吸着体に関する。   The present invention relates to a blood cell removing adsorbent for removing white blood cells and platelets contained in blood.

近年、白血球吸着器は、炎症性腸疾患(IBD)や関節リウマチ(RA)の治療デバイスとして普及し始めている。この治療デバイスでは、吸着・ろ過の原理を用いて、炎症の原因となる白血球を直接血液中から取り除くことにより治療を行うのであるが、薬物による治療と異なり、副作用が少ないことが最大の特徴となっている。   In recent years, leukocyte adsorbers have begun to spread as therapeutic devices for inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). In this treatment device, the principle of adsorption and filtration is used to remove the white blood cells that cause inflammation directly from the blood, but unlike the treatment with drugs, the biggest feature is that there are few side effects. It has become.

実用化されている白血球吸着器には、ある一定の表面粗さを持った担体を用いた方法や極細高分子繊維のフィルターを用いた方法が提案されている。   For a leukocyte adsorber that has been put into practical use, a method using a carrier having a certain surface roughness and a method using a filter of ultrafine polymer fibers have been proposed.

たとえば、特許文献1では、中心線平均粗さRa値が0.2μm〜100μmであり、でこぼこ平均間隔Sm値が5μm〜200μmの範囲にある凹凸表面を有する顆粒球吸着用担体が開示されている。   For example, Patent Literature 1 discloses a granulocyte-adsorbing carrier having a concavo-convex surface having a center line average roughness Ra value of 0.2 μm to 100 μm and a bumpy average interval Sm value of 5 μm to 200 μm. .

また、特開昭62−243561(特許文献2)では、平均直径が0.3μm以上、3.0μm未満の繊維からなる不織布フィルターからなる白血球除去フィルター装置が提案されている。   Japanese Patent Laid-Open No. Sho 62-243561 (Patent Document 2) proposes a leukocyte removal filter device comprising a nonwoven fabric filter comprising fibers having an average diameter of 0.3 μm or more and less than 3.0 μm.

これらの方法は、がん患者や、免疫系に異常をきたした上述の疾患患者の血液から主に顆粒球、リンパ球などの白血球を除去するために考案されたものである。   These methods are devised to remove mainly white blood cells such as granulocytes and lymphocytes from the blood of cancer patients and the above-mentioned disease patients who have an abnormality in the immune system.

ところが、最近の研究では、特に自己免疫疾患などの炎症性疾患においては、白血球だけではなく、血液中の血小板が炎症性細胞として関与していることが明らかになってきている。   However, recent studies have revealed that not only leukocytes but also blood platelets are involved as inflammatory cells, particularly in inflammatory diseases such as autoimmune diseases.

たとえば、潰瘍性大腸炎やクローン病といったIBDでは、患者の血液中の血小板が炎症性細胞として関与していること(非特許文献1)、また、その他の自己免疫疾患である、喘息やアトピー、間接リウマチなどにも血小板の関与が見られることが報告されている(非特許文献2)。   For example, in IBD such as ulcerative colitis and Crohn's disease, platelets in the patient's blood are involved as inflammatory cells (Non-patent Document 1), and other autoimmune diseases such as asthma and atopy, It has been reported that platelets are also involved in indirect rheumatism (Non-patent Document 2).

また、クローン病患者より、遠心分離法により血小板のみを除去することにより治療効果が得られる、との報告もある(非特許文献3)。   There is also a report that a therapeutic effect can be obtained by removing only platelets from patients with Crohn's disease by centrifugation (Non-patent Document 3).

このように自己免疫疾患の患者より炎症性細胞である血小板を除去することは、炎症状態の軽減への効果が期待できる。   Thus, removing platelets that are inflammatory cells from patients with autoimmune disease can be expected to have an effect on reducing the inflammatory state.

血小板を遠心分離法以外の方法で、血液から直接除去する方法については、特許文献3や特許文献4に開示されている。これらはいずれも繊維や三次元網目状連続多孔体からなるフィルターを用いて血小板を除去する方法である。
特開平5−168706号公報 特開昭62−243561号公報 特開平1−121061号公報 特開平7−124255号公報 Silvio Danese, et al Platelet in Inflammatory Bowel Disease: Clinical, Pathogenic, and Therapeutic Implications Am J Gastroenterol 2004;938-45 SC Pitchford, Novel uses for anti-platelet agents as anti-inflammatory drugs, British Journal of Pharmacology (2007) 152, 987-1002 K. Fukunaga, et al Selective Platelet Removal as a Novel Therapy for Refractory Crohn’s Disease Jpn J Apheresis 2007;26(2):266-271
Methods for removing platelets directly from blood by methods other than centrifugation are disclosed in Patent Document 3 and Patent Document 4. These are all methods for removing platelets using a filter made of a fiber or a three-dimensional mesh-like continuous porous body.
JP-A-5-168706 Japanese Patent Laid-Open No. 62-243561 Japanese Patent Laid-Open No. 1-121061 JP 7-124255 A Silvio Danese, et al Platelet in Inflammatory Bowel Disease: Clinical, Pathogenic, and Therapeutic Implications Am J Gastroenterol 2004; 938-45 SC Pitchford, Novel uses for anti-platelet agents as anti-inflammatory drugs, British Journal of Pharmacology (2007) 152, 987-1002 K. Fukunaga, et al Selective Platelet Removal as a Novel Therapy for Refractory Crohn's Disease Jpn J Apheresis 2007; 26 (2): 266-271

遠心分離法により血小板のみを除去する場合には、装置が複雑で、操作が煩雑であるとの問題点がある。特許文献3や特許文献4に記載のフィルターを用いて血小板を除去する場合には、血小板の除去はある程度効率良く行えるものの、同時に凝固系を活性化してしまう、と言う問題点をはらんでいる。このため、実際には血液を通過させている途中で凝固が起こってしまい、治療を中断せざるを得なくなることが多い。   When only the platelets are removed by the centrifugal separation method, there is a problem that the apparatus is complicated and the operation is complicated. When platelets are removed using the filters described in Patent Document 3 and Patent Document 4, platelet removal can be performed to some extent efficiently, but at the same time, the coagulation system is activated. . For this reason, in actuality, coagulation occurs during the passage of blood, and treatment is often interrupted.

特許文献1に記載の方法では、粒子やビーズ状の担体を用いるため、フィルター状の吸着材を用いるよりは凝固の問題は起こらないものの、血小板の吸着量が低く、上述のような、血小板除去による抗炎症効果を得ることは出来ない。   In the method described in Patent Document 1, since particles and beads are used, the problem of coagulation does not occur as compared with the case of using a filter-like adsorbent, but the amount of adsorbed platelets is low, and platelet removal as described above is performed. The anti-inflammatory effect by cannot be obtained.

また、特許文献2に記載の方法では、特許文献3、4と同様の繊維不織布フィルターを用いるので、血液凝固の問題が解決できていない。   Further, in the method described in Patent Document 2, since the fiber nonwoven fabric filter similar to Patent Documents 3 and 4 is used, the problem of blood coagulation cannot be solved.

本発明はこうした課題に鑑みてなされたものであり、その目的は、血液流通時に回路内凝固などの問題が少なく、かつ白血球および血小板を効率よく除去できる血球除去用吸着体の提供にある。   The present invention has been made in view of these problems, and an object of the present invention is to provide an adsorbent for removing blood cells that has few problems such as in-circuit coagulation during blood circulation and can efficiently remove white blood cells and platelets.

本発明のある態様は、血球除去用吸着体である。当該血球除去用吸着体は、疎水性高分子樹脂で形成され、表面の中心線平均粗さ(Ra)が5〜100nmであることを特徴とする。   One embodiment of the present invention is an adsorbent for removing blood cells. The adsorbent for removing blood cells is formed of a hydrophobic polymer resin and has a surface centerline average roughness (Ra) of 5 to 100 nm.

この態様の血球除去用吸着体を用いることにより、血液流通時にカラムや回路内に血液凝固が発生することを抑制しつつ、白血球および血小板を効率よく除去することができる。   By using the adsorbent for removing blood cells of this embodiment, it is possible to efficiently remove leukocytes and platelets while suppressing the occurrence of blood coagulation in the column or circuit during blood circulation.

上記態様において、疎水性高分子樹脂が下記化学式(1)で表わされる繰り返し単位を有するポリアリレート樹脂であってもよい。   In the above embodiment, the hydrophobic polymer resin may be a polyarylate resin having a repeating unit represented by the following chemical formula (1).

化学式(1)において、R1およびR2は炭素数が1〜5の低級アルキル基であり、R1およびR2はそれぞれ同一であっても相違していてもよい。   In the chemical formula (1), R1 and R2 are lower alkyl groups having 1 to 5 carbon atoms, and R1 and R2 may be the same or different.

上記態様において、疎水性高分子樹脂が下記化学式(2)または化学式(3)で表わされる繰り返し単位を有するポリエーテルスルホン樹脂を含んでもよい。   In the above aspect, the hydrophobic polymer resin may include a polyethersulfone resin having a repeating unit represented by the following chemical formula (2) or chemical formula (3).

化学式(2)において、R3およびR4は炭素数が1〜5の低級アルキル基であり、R3およびR4はそれぞれ同一であっても相違していてもよい。   In the chemical formula (2), R3 and R4 are lower alkyl groups having 1 to 5 carbon atoms, and R3 and R4 may be the same or different.

上記態様において、疎水性高分子樹脂が上記化学式(1)で表わされる繰り返し単位を有するポリアリレート樹脂と、上記化学式(2)または化学式(3)で表わされる繰り返し単位を有するポリエーテルスルホン樹脂とを含んでいてもよい。   In the above aspect, a polyarylate resin in which the hydrophobic polymer resin has a repeating unit represented by the chemical formula (1), and a polyethersulfone resin having a repeating unit represented by the chemical formula (2) or the chemical formula (3). May be included.

上記態様の血球除去用吸着体は、ビーズ形状であってもよい。また、上記態様の血球除去用吸着体は中空糸状または中実糸状の繊維であってもよい。また、上記態様の血球除去用吸着体は、血液中の白血球および血小板の除去に用いられうる。   The adsorbent for removing blood cells of the above aspect may be in the form of beads. In addition, the adsorbent for removing blood cells according to the above aspect may be a hollow fiber or solid fiber. Moreover, the adsorbent for removing blood cells of the above embodiment can be used for removing white blood cells and platelets in blood.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、血液に含まれる白血球および血小板を効率よく除去することができる。   According to the present invention, leukocytes and platelets contained in blood can be efficiently removed.

実施の形態に係る血球除去用吸着体は、疎水性高分子樹脂で形成され、表面の中心線平均粗さ(Ra)が5〜100nmであることを特徴とする。   The adsorbent for removing blood cells according to the embodiment is formed of a hydrophobic polymer resin, and has a surface centerline average roughness (Ra) of 5 to 100 nm.

表面の材質を疎水性高分子樹脂とすることにより、疎水性相互作用によって顆粒球、リンパ球などの白血球および血小板の吸着性を向上させることができる。   By making the surface material a hydrophobic polymer resin, the adsorptivity of leukocytes such as granulocytes and lymphocytes and platelets can be improved by hydrophobic interaction.

疎水性高分子樹脂として、ポリアリレート樹脂(PAR)、ポリエーテルスルホン樹脂(PES)、ポリスルホン酸樹脂(PES)またはこれらの樹脂のポリマーアロイが好適である。   As the hydrophobic polymer resin, polyarylate resin (PAR), polyethersulfone resin (PES), polysulfonic acid resin (PES), or a polymer alloy of these resins is suitable.

ポリアリレート樹脂は、下記化学式(4)で表わされる繰り返し単位を有する樹脂である。ポリアリレート樹脂の数平均分子量は、20,000〜30,000であることが好ましい。ポリアリレート樹脂の数平均分子量が30,000より大きいと、表面凹凸が大きくなり過ぎるため、適正な表面凹凸を形成することが困難になる。一方、ポリアリレート樹脂の数平均分子量が20,000より小さいと、血球除去用吸着体の強度が低くなり、血球除去用吸着体の製造歩留まりが悪くなる。   The polyarylate resin is a resin having a repeating unit represented by the following chemical formula (4). The number average molecular weight of the polyarylate resin is preferably 20,000 to 30,000. When the number average molecular weight of the polyarylate resin is larger than 30,000, the surface unevenness becomes too large, and it becomes difficult to form appropriate surface unevenness. On the other hand, when the number average molecular weight of the polyarylate resin is less than 20,000, the strength of the adsorbent for removing blood cells is lowered, and the production yield of the adsorbent for removing blood cells is deteriorated.

化学式(4)において、R1およびR2は炭素数が1〜5の低級アルキル基であり、R1およびR2はそれぞれ同一であっても相違していてもよい。R1およびR2としては、たとえばメチル基、エチル基、プロピル基、ブチル基、ペンチル基などが挙げられる。好ましいR1およびR2は、メチル基である。 In the chemical formula (4), R1 and R2 are lower alkyl groups having 1 to 5 carbon atoms, and R1 and R2 may be the same or different. Examples of R1 and R2 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Preferred R1 and R2 are methyl groups.

なお、ポリアリレート樹脂は、化学式(4)で表わされる繰り返し単位を主たる繰り返し単位とする限り特に制限がなく、本発明の目的を阻害しない限り他の繰り返し単位を含有していてもよい。   The polyarylate resin is not particularly limited as long as the repeating unit represented by the chemical formula (4) is a main repeating unit, and may contain other repeating units as long as the object of the present invention is not impaired.

ポリエーテルスルホン樹脂は、下記化学式(5)または化学式(6)で表わされる繰り返し単位を有する樹脂である。ポリエーテルスルホン樹脂の数平均分子量は、15,000〜30,000であることが好ましい。ポリエーテルスルホン樹脂の数平均分子量が30,000より大きいと、表面凹凸が大きくなり過ぎるため、適正な表面凹凸を形成することが困難になる。一方、ポリエーテルスルホン樹脂の数平均分子量が15,000より小さいと、血球除去用吸着体の強度が低くなり、血球除去用吸着体の製造歩留まりが悪くなる。   The polyethersulfone resin is a resin having a repeating unit represented by the following chemical formula (5) or chemical formula (6). The number average molecular weight of the polyethersulfone resin is preferably 15,000 to 30,000. If the number average molecular weight of the polyethersulfone resin is larger than 30,000, the surface unevenness becomes too large, and it becomes difficult to form appropriate surface unevenness. On the other hand, when the number average molecular weight of the polyethersulfone resin is less than 15,000, the strength of the adsorbent for removing blood cells is lowered, and the production yield of the adsorbent for removing blood cells is deteriorated.

化学式(5)において、R3およびR4は炭素数が1〜5の低級アルキル基であり、R3およびR4はそれぞれ同一であっても相違していてもよい。R3およびR4としては、たとえばメチル基、エチル基、プロピル基、ブチル基、ペンチル基などが挙げられる。好ましいR1およびR2は、メチル基である。   In the chemical formula (5), R3 and R4 are lower alkyl groups having 1 to 5 carbon atoms, and R3 and R4 may be the same or different. Examples of R3 and R4 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Preferred R1 and R2 are methyl groups.

血球除去用吸着体の表面のRaを5〜100nmとすることにより、白血球および血小板の吸着性をより向上させることができる。なお、血球除去用吸着体の表面のRaを5より小さくすることは製造上困難である。一方、血球除去用吸着体の表面のRaが100nmより大きいと、血小板(大きさ2〜4μm)の吸着への寄与が減少するとともに、凝固法による製造が困難になる。血球除去用吸着体の表面のRaは、AFM(原子間力顕微鏡)により測定することができる。AFMによる測定領域は、10μm×10μmである。   By setting the Ra on the surface of the adsorbent for removing blood cells to 5 to 100 nm, the adsorptivity of leukocytes and platelets can be further improved. In addition, it is difficult in manufacturing to make Ra of the surface of the adsorbent for removing blood cells smaller than 5. On the other hand, if Ra on the surface of the adsorbent for removing blood cells is larger than 100 nm, contribution to the adsorption of platelets (size 2 to 4 μm) is reduced, and production by the coagulation method becomes difficult. Ra of the surface of the adsorbent for removing blood cells can be measured by an AFM (atomic force microscope). The measurement area by AFM is 10 μm × 10 μm.

実施の形態に係る血球除去用吸着体は、白血球および血小板の除去療法に用いることが好適である。具体的には、実施の形態に係る血球除去用吸着体をカラム内に充填し、カラム内に血液を流すことにより血液から白血球および血小板を除去することができる。この場合、カラム内に血球除去用吸着体を充填することにより、隣接する血球除去用吸着体の間に流路が形成され、血流の確保が容易になるため、血液凝固の発生が抑制される。さらに、複雑な装置を用いることなく、血液から白血球および血小板を簡便かつ効率よく除去することができる。   The adsorbent for removing blood cells according to the embodiment is preferably used for the removal therapy for leukocytes and platelets. Specifically, it is possible to remove white blood cells and platelets from blood by filling the column with the adsorbent for removing blood cells according to the embodiment and flowing blood into the column. In this case, by filling the column with the adsorbent for removing blood cells, a flow path is formed between the adsorbents for removing blood cells adjacent to each other, and it becomes easy to secure the blood flow. The Furthermore, leukocytes and platelets can be easily and efficiently removed from blood without using a complicated device.

血球除去用吸着体の形態は、ビーズ形状、中空糸状または中実糸状などの繊維が好適である。   The form of the adsorbent for removing blood cells is preferably a fiber such as a bead shape, a hollow fiber shape or a solid thread shape.

血球除去用吸着体の形態がビーズ形状の場合(以下、血球除去用ビーズという)には、ビーズの直径が0.5〜5mmであることが望ましい。血球除去用吸着体をビーズ形状とすることにより以下の効果を得ることができる。
(1)極細繊維不織布を用いたLCAP(リンパ球除去療法)と比べて、患者の血液の粘性が高く、カラム内凝固などのリスクが高い場合であっても、カラム内での圧損が少なく、比較的凝固等の問題が少なく使用することができる。
(2)LCAPと異なり、リンパ球が除去されないため、免疫に関するメモリーセルを除去してしまう危険性が低減する。
(3)同じビーズ形状の吸着材を用いるGCAP(顆粒球除去療法)と比較して、より多くの血小板を除去することができるため、血小板由来の炎症症状を効果的に抑制することができる。
(4)ディスポーザブルのカラムに全血を通過させるだけで治療ができるため、簡便かつ安全性の高い治療を提供することができる。
(5)遠心分離機などの高価な装置を必要としないため、治療を安価に行うことができる。
When the adsorbent for removing blood cells is in the form of beads (hereinafter referred to as “beads for removing blood cells”), the bead diameter is desirably 0.5 to 5 mm. The following effects can be obtained by forming the adsorbent for removing blood cells into a bead shape.
(1) Compared with LCAP (Lymphocyte Depletion Therapy) using ultrafine fiber nonwoven fabric, even if the patient's blood viscosity is high and the risk of coagulation in the column is high, there is less pressure loss in the column, It can be used with relatively few problems such as solidification.
(2) Unlike LCAP, since lymphocytes are not removed, the risk of removing memory cells related to immunity is reduced.
(3) Since more platelets can be removed compared to GCAP (granulocyte removal therapy) using the same bead-shaped adsorbent, it is possible to effectively suppress platelet-derived inflammatory symptoms.
(4) Since treatment can be performed simply by passing whole blood through a disposable column, a simple and highly safe treatment can be provided.
(5) Since an expensive device such as a centrifuge is not required, treatment can be performed at low cost.

また、血球除去用吸着体の形態が中空糸状および中実糸状の場合(以下、それぞれ血球除去用中空糸、血球除去用中実糸という)には、外径が0.1〜1mmであることが望ましい。血球除去用吸着体を中空糸状または中実糸状とすることにより、上述した効果の他に以下の効果を得ることができる。
(1)血球除去用吸着体を中空糸状または中実糸状とすることにより、極細繊維不織布を用いたLCAPと比べて、患者の血液の粘性が高く、カラム内凝固などのリスクが高い場合であっても比較的問題なく使用することができる。
(2)中空糸、中実糸という形態を用いることにより、血球除去用吸着体の生産効率を高め、製造コストを低減することができる。
Further, when the adsorbent for removing blood cells is in the form of a hollow fiber and a solid thread (hereinafter referred to as the hollow cell for removing blood cells and the solid thread for removing blood cells, respectively), the outer diameter is 0.1 to 1 mm. Is desirable. In addition to the effects described above, the following effects can be obtained by making the adsorbent for removing blood cells into a hollow fiber shape or a solid thread shape.
(1) When the adsorbent for removing blood cells is in the form of a hollow fiber or solid thread, the patient's blood viscosity is higher and the risk of coagulation in the column is higher than that of LCAP using an ultrafine fiber nonwoven fabric. However, it can be used without any problems.
(2) By using the form of hollow fiber and solid yarn, the production efficiency of the adsorbent for removing blood cells can be increased, and the manufacturing cost can be reduced.

(血球除去用ビーズの製造方法)
実施の形態に係る血球除去用ビーズの製造方法について説明する。まず、疎水性高分子樹脂をN−メチル−2−ピロリドン(以下NMPとよぶ)に溶解してポリマー溶液(原液)を調整する。水にNMPを混合したものを凝固液とする。内径0.25mmのノズルより凝固液槽の液面から約10cmの高さより、該ポリマー溶液を滴下する(図1参照)。凝固液内で十分に凝固を行った後、蒸留水で洗浄することにより血球除去用ビーズを得ることができる。
(Method for producing beads for removing blood cells)
A method for producing the blood cell removing bead according to the embodiment will be described. First, a hydrophobic polymer resin is dissolved in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to prepare a polymer solution (stock solution). A mixture of water and NMP is used as a coagulation liquid. The polymer solution is dropped from a nozzle having an inner diameter of 0.25 mm from a height of about 10 cm from the liquid surface of the coagulation bath (see FIG. 1). After sufficiently coagulating in the coagulation solution, the cells for removing blood cells can be obtained by washing with distilled water.

図1は、血球除去用ビーズの製造に用いた血球除去用ビーズ製造装置100の概略図である。原液タンク110に貯蔵された原液はポンプ120によりノズル130に供給される。ノズル130に供給された原液は、ノズル130から滴下される。ノズル130の下方には、凝固液が貯留された凝固液浴槽140が設けられている。なお、凝固液浴槽140には、凝固液に渦巻き状の流れを起こさせる回転体(図示せず)が設けられていてもよい。   FIG. 1 is a schematic view of a blood cell removing bead manufacturing apparatus 100 used for manufacturing a blood cell removing bead. The stock solution stored in the stock solution tank 110 is supplied to the nozzle 130 by the pump 120. The stock solution supplied to the nozzle 130 is dropped from the nozzle 130. Below the nozzle 130, a coagulating liquid bath 140 in which the coagulating liquid is stored is provided. The coagulating liquid bath 140 may be provided with a rotating body (not shown) that causes the coagulating liquid to generate a spiral flow.

凝固液浴槽140の上部に、オーバーフロー管142が取り付けられている。凝固液浴槽140に貯留された凝固液の液面がオーバーフロー管142の取り付け口に達すると、オーバーフローした凝固液がオーバーフロー管142を流れ、凝固液回収タンク144に回収される。なお、オーバーフロー管142の取り付け口には、凝固液浴槽140で生成される血球除去用ビーズ150の径より開き目が小さいメッシュ143を設けることが好ましい。これによれば、凝固液回収タンク144に血球除去用ビーズ150が異物として混入することが抑制される。   An overflow pipe 142 is attached to the upper part of the coagulating liquid bath 140. When the liquid level of the coagulating liquid stored in the coagulating liquid bath 140 reaches the attachment port of the overflow pipe 142, the overflowed coagulating liquid flows through the overflow pipe 142 and is collected in the coagulating liquid collection tank 144. In addition, it is preferable to provide a mesh 143 having a smaller opening than the diameter of the blood cell removing bead 150 generated in the coagulation liquid bath 140 at the attachment port of the overflow pipe 142. According to this, it is possible to prevent the blood cell removing beads 150 from entering the coagulation liquid recovery tank 144 as a foreign substance.

凝固液回収タンク144に回収された凝固液は、凝固液循環ポンプ146を用いて汲み上げられ、凝固液浴槽140に再度貯留される。凝固液回収タンク144から凝固液浴槽140に供給される凝固液の量は流量計147で検知され、凝固液供給量調整弁148を用いて適量が凝固液浴槽140に供給される。このように、オーバーフローした凝固液を循環させることにより凝固液の有効利用が可能となるので、血球除去用ビーズ150の製造コストを抑制することができる。   The coagulation liquid collected in the coagulation liquid recovery tank 144 is pumped up using the coagulation liquid circulation pump 146 and stored again in the coagulation liquid bathtub 140. The amount of coagulating liquid supplied from the coagulating liquid recovery tank 144 to the coagulating liquid bathtub 140 is detected by the flow meter 147, and an appropriate amount is supplied to the coagulating liquid bathtub 140 using the coagulating liquid supply amount adjusting valve 148. Thus, since the coagulating liquid can be effectively used by circulating the overflowed coagulating liquid, the manufacturing cost of the blood cell removing beads 150 can be suppressed.

ノズル130から凝固液浴槽140に向けて滴下された原液は、凝固液の中で球状に固形化され、血球除去用ビーズ150が形成される。凝固液の中に原液を滴下することにより、より安定的かつ歩留まりよく球状の血球除去用ビーズ150を得ることができる。   The stock solution dropped from the nozzle 130 toward the coagulation liquid bath 140 is solidified into a spherical shape in the coagulation liquid, and the blood cell removing beads 150 are formed. By dropping the stock solution into the coagulation solution, the spherical blood cell removal beads 150 can be obtained more stably and with good yield.

固形化した血球除去用ビーズ150は、凝固液浴槽140の下部から排出され、血球除去用ビーズ150の径より開き目が小さいフルイ160に保持される。凝固液浴槽140から排出される血球除去用ビーズ150を含む凝固液の量は、凝固液排出量調節弁170により適宜調節される。血球除去用ビーズ150とともに凝固液浴槽140から排出された凝固液は凝固液回収タンク144に回収され、再利用される。   The solidified blood cell removing bead 150 is discharged from the lower part of the coagulation liquid bath 140 and is held by the sieve 160 having a smaller opening than the diameter of the blood cell removing bead 150. The amount of the coagulating liquid including the blood cell removing beads 150 discharged from the coagulating liquid bath 140 is appropriately adjusted by the coagulating liquid discharge amount adjusting valve 170. The coagulation liquid discharged from the coagulation liquid bath 140 together with the blood cell removing beads 150 is recovered in the coagulation liquid recovery tank 144 and reused.

(血球除去用中空糸の製造方法)
実施の形態に係る血球除去用中空糸の製造方法について説明する。まず、疎水性高分子樹脂を有機溶媒に溶解させ、紡糸原液を調製する。有機溶剤としては、疎水性高分子樹脂に対して良溶剤であれば特に制限がなく、たとえばテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、NMPなどを挙げることができる。これらの中でもNMPが有機溶剤として好ましい。
(Method for producing hollow fiber for removing blood cells)
A method for producing a blood cell removing hollow fiber according to an embodiment will be described. First, a hydrophobic polymer resin is dissolved in an organic solvent to prepare a spinning dope. The organic solvent is not particularly limited as long as it is a good solvent for the hydrophobic polymer resin, and examples thereof include tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, and NMP. Among these, NMP is preferable as the organic solvent.

二重ノズルを用い、紡糸原液を内部凝固液(水を含んだ有機溶剤)とともに押し出し、外部凝固液(水を含んだ有機溶剤)に落とし込むことにより、血球除去用中空糸を製造することができる。血球除去用中空糸を紡糸する際の温度は、5〜15℃程度が好ましい。紡糸温度をこの範囲とすることにより、紡糸原液の安定性が向上し、相分離等が生じにくくなる。内部凝固液(芯液)と外部凝固液の濃度差の比率は0.6〜1.6であることが好ましい。   Using a double nozzle, the spinning solution is extruded together with the internal coagulation liquid (water-containing organic solvent) and dropped into the external coagulation liquid (water-containing organic solvent) to produce a hollow fiber for removing blood cells. . The temperature when spinning the blood cell removing hollow fiber is preferably about 5 to 15 ° C. By setting the spinning temperature within this range, the stability of the spinning solution is improved and phase separation or the like is less likely to occur. The ratio of the concentration difference between the internal coagulating liquid (core liquid) and the external coagulating liquid is preferably 0.6 to 1.6.

(血球除去用中実糸の製造方法)
実施の形態に係る血球除去用中実糸の製造方法について説明する。まず、疎水性高分子樹脂を有機溶媒に溶解させ、紡糸原液を調製する。有機溶剤としては、疎水性高分子樹脂に対して良溶剤であれば特に制限がなく、たとえばテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、NMPなどを挙げることができる。これらの中でもNMPが有機溶剤として好ましい。
(Method for producing solid yarn for removing blood cells)
A method for producing a solid cell for removing blood cells according to an embodiment will be described. First, a hydrophobic polymer resin is dissolved in an organic solvent to prepare a spinning dope. The organic solvent is not particularly limited as long as it is a good solvent for the hydrophobic polymer resin, and examples thereof include tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, and NMP. Among these, NMP is preferable as the organic solvent.

通常のノズル(一重ノズル)を用い、紡糸原液を凝固液(水を含んだ有機溶剤)とともに落とし込むことにより、血球除去用中実糸を製造することができる。血球除去用中実糸を紡糸する際の温度は、5〜15℃程度が好ましい。紡糸温度をこの範囲とすることにより、紡糸原液の安定性が向上し、相分離等が生じにくくなる。   By using a normal nozzle (single nozzle) and dropping the spinning solution together with a coagulation liquid (an organic solvent containing water), a solid cell for removing blood cells can be produced. The temperature for spinning the blood cell removing solid yarn is preferably about 5 to 15 ° C. By setting the spinning temperature within this range, the stability of the spinning solution is improved and phase separation or the like is less likely to occur.

(実施例1)
ポリアリレート樹脂(以下PAR、数平均分子量25,000)をNMPに溶解してポリマー溶液を調整した。PARとNMPの質量混合比は15.0:85.0に設定した。水にNMPを60%混合したものを凝固液とした。当該ポリマー溶液を内径0.25mmのノズルより凝固液槽の液面から約10cmの高さより、滴下した。凝固液内で十分に凝固を行った後、蒸留水で洗浄し、直径約1.5mmの血球除去用ビーズを得た。実施例1の血球除去用ビーズはほぼ真円であり、吸着材として使用可能な形状である率(収率)は99.6%(1000粒計数)であった。
Example 1
A polymer solution was prepared by dissolving polyarylate resin (hereinafter, PAR, number average molecular weight 25,000) in NMP. The mass mixing ratio of PAR and NMP was set to 15.0: 85.0. A mixture of 60% NMP in water was used as the coagulation liquid. The said polymer solution was dripped from the height of about 10 cm from the liquid level of the coagulation liquid tank from the nozzle with an internal diameter of 0.25 mm. After sufficiently coagulating in the coagulation solution, the cells were washed with distilled water to obtain beads for removing blood cells having a diameter of about 1.5 mm. The beads for removing blood cells of Example 1 were almost perfect circles, and the rate (yield) that was a shape usable as an adsorbent was 99.6% (1000 counts).

さらに、図2に示すように、得られた血球除去用ビーズ190を円筒状のポリカーボネート製のケーシング210内に装填した後、ポリエステル製の一対のメッシュ220で血球除去用ビーズ190が外部に漏れないようにした状態で、血液の導入出口のポートのついたヘッダー230を取り付け、モジュール化した。なお、メッシュ220として、血球除去用ビーズ190の径より小さい目を有するものを用いた。   Further, as shown in FIG. 2, after the obtained blood cell removing beads 190 are loaded into a cylindrical polycarbonate casing 210, the blood cell removing beads 190 do not leak to the outside through a pair of polyester meshes 220. In this state, a header 230 with a blood inlet / outlet port was attached and modularized. A mesh 220 having an eye smaller than the diameter of the blood cell removing bead 190 was used.

AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、実施例1の血球除去用ビーズの表面のRaが15nmであることが確認された。   By AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)), it was confirmed that the Ra of the surface of the blood cell removing bead of Example 1 was 15 nm.

(実施例2)
ポリエーテルスルホン樹脂(以下PES、グレード4800P、数平均分子量21,000)とN−メチル−2−ピロリドン(以下NMP)に溶解してポリマー溶液を調整した。PESとNMPの質量混合比は15.0:85.0に設定した。水にNMPを36%混合したものを凝固液とした。当該ポリマー溶液を内径0.25mmのノズルより凝固液槽の液面から約10cmの高さより、滴下した。凝固液内で十分に凝固を行った後、蒸留水で洗浄し、直径約1.5mmの血球除去用ビーズを得た。実施例2の血球除去用ビーズはほぼ真円であり、吸着材として使用可能な形状である率は99.8%(1000粒計数)であった。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、実施例2の血球除去用ビーズの表面のRaが21nmであることが確認された。
(Example 2)
A polymer solution was prepared by dissolving in polyethersulfone resin (hereinafter PES, grade 4800P, number average molecular weight 21,000) and N-methyl-2-pyrrolidone (hereinafter NMP). The mass mixing ratio of PES and NMP was set to 15.0: 85.0. A mixture of 36% NMP in water was used as the coagulation liquid. The said polymer solution was dripped from the height of about 10 cm from the liquid level of the coagulation liquid tank from the nozzle with an internal diameter of 0.25 mm. After sufficiently coagulating in the coagulation solution, the cells were washed with distilled water to obtain beads for removing blood cells having a diameter of about 1.5 mm. The blood cell removing bead of Example 2 was almost a perfect circle, and the ratio of the shape that can be used as an adsorbent was 99.8% (1000 counts). By AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)), it was confirmed that the Ra of the surface of the bead for removing blood cells of Example 2 was 21 nm.

(実施例3)
PES(グレード4800P、数平均分子量21,000)とPAR(数平均分子量25,000)とをN−メチル−2−ピロリドン(以下NMP)に溶解してポリマー溶液を調整した。PESとPARとNMPの質量混合比は10.0:5.0:85.0に設定した。水にNMPを36%混合したものを凝固液とした。当該ポリマー溶液を内径0.25mmのノズルより凝固液槽の液面から約10cmの高さより、滴下した。凝固液内で十分に凝固を行った後、蒸留水で洗浄し、直径約1.5mmの血球除去用ビーズを得た。実施例3の血球除去用ビーズはほぼ真円であり、吸着材として使用可能な形状である率は99.1%(1000粒計数)であった。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、実施例3の血球除去用ビーズの表面のRaが34nmであることが確認された。図3に、実施例3の血球除去用ビーズのAFM像(10μm×10μm)を示す。図3からわかるように、実施例3の血球除去用ビーズの表面には大きな凹凸がなく平滑である。
(Example 3)
PES (grade 4800P, number average molecular weight 21,000) and PAR (number average molecular weight 25,000) were dissolved in N-methyl-2-pyrrolidone (hereinafter NMP) to prepare a polymer solution. The mass mixing ratio of PES, PAR, and NMP was set to 10.0: 5.0: 85.0. A mixture of 36% NMP in water was used as the coagulation liquid. The said polymer solution was dripped from the height of about 10 cm from the liquid level of the coagulation liquid tank from the nozzle with an internal diameter of 0.25 mm. After sufficiently coagulating in the coagulation solution, the cells were washed with distilled water to obtain beads for removing blood cells having a diameter of about 1.5 mm. The blood cell removing bead of Example 3 was almost a perfect circle, and the rate of the shape that can be used as an adsorbent was 99.1% (1000 counts). AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)) confirmed that the Ra of the surface of the bead for blood cell removal in Example 3 was 34 nm. FIG. 3 shows an AFM image (10 μm × 10 μm) of the bead for removing blood cells of Example 3. As can be seen from FIG. 3, the surface of the bead for removing blood cells of Example 3 is smooth without any large irregularities.

(比較例1)
実施例3と同様にポリマー溶液を調整した。水にNMPを70%混合したものを凝固液とした。当該ポリマー溶液を内径0.25mmのノズルより凝固液槽の液面から約10cmの高さより、滴下した。凝固液内で十分に凝固を行った後、蒸留水で洗浄し、直径約1.5mmの血球除去用ビーズを得た。比較例1の血球除去用ビーズはほぼ真円であり、吸着材として使用可能な形状である率は72.3%(1000粒計数)であった。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、比較例1の血球除去用ビーズの表面のRaが104nmであることが確認された。
(Comparative Example 1)
A polymer solution was prepared in the same manner as in Example 3. A mixture of 70% NMP in water was used as a coagulation liquid. The said polymer solution was dripped from the height of about 10 cm from the liquid level of the coagulation liquid tank from the nozzle with an internal diameter of 0.25 mm. After sufficiently coagulating in the coagulation solution, the cells were washed with distilled water to obtain beads for removing blood cells having a diameter of about 1.5 mm. The bead for removing blood cells of Comparative Example 1 was almost a perfect circle, and the rate of the shape that can be used as an adsorbent was 72.3% (count of 1000 particles). By AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)), it was confirmed that the Ra of the surface of the bead for removing blood cells of Comparative Example 1 was 104 nm.

(比較例2)
比較例2の血球除去用ビーズとして、直径2mmのアルミナボール(アズワン製)を用いた。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製)により、比較例2の血球除去用ビーズの表面のRaが124nmであることが確認された。
(Comparative Example 2)
As beads for removing blood cells of Comparative Example 2, an alumina ball having a diameter of 2 mm (manufactured by ASONE) was used. An AFM measurement (10 μm × 10 μm, SPA400 manufactured by Seiko Instruments Inc.), probe: DFM SZDF20AL (manufactured by Seiko Instruments Inc.) confirmed that Ra on the surface of the blood cell removal bead of Comparative Example 2 was 124 nm.

(比較例3)
比較例3の血球除去用ビーズとして直径2mmのセルロースアセテートビーズ(JIMRO社製アダカラムから取り出したもの)を用いた。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、比較例3の血球除去用ビーズの表面のRaが134nmであることが確認された。図4に、比較例3の血球除去用ビーズのAFM像(10μm×10μm)を示す。図4からわかるように、比較例3の血球除去用ビーズの表面には大きな凹凸が存在している。
(Comparative Example 3)
Cellulose acetate beads having a diameter of 2 mm (taken from Adacolumn manufactured by JIMRO) were used as beads for removing blood cells of Comparative Example 3. By AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)), it was confirmed that the Ra of the surface of the bead for removing blood cells of Comparative Example 3 was 134 nm. FIG. 4 shows an AFM image (10 μm × 10 μm) of the bead for removing blood cells of Comparative Example 3. As can be seen from FIG. 4, large irregularities exist on the surface of the blood cell removing bead of Comparative Example 3.

(白血球・血小板吸着試験)
上記実施例1〜3、比較例1〜3の血球除去用ビーズ(38mL)を、それぞれ直径27mm、長さ70mmのカラム(内容量40mL)に充填した。健常者より250mLの血液を血液バックに採血し、ヘパリン化後、7mL/minで30分循環した際の、顆粒球(好中球)数、血小板数、リンパ球数の変化より、各血球除去用ビーズへの吸着率を算出した。この結果を表1に示す。なお、実施例2、3および比較例1乃至3についても実施例1と同様にモジュール化した。
(Leukocyte / platelet adsorption test)
The bead for blood cell removal (38 mL) of Examples 1 to 3 and Comparative Examples 1 to 3 was packed in a column (inner volume 40 mL) having a diameter of 27 mm and a length of 70 mm, respectively. Remove blood cells from changes in the number of granulocytes (neutrophils), platelets, and lymphocytes when 250 ml of blood is collected from a healthy person and heparinized and then circulated at 7 mL / min for 30 minutes. The adsorption rate to the beads was calculated. The results are shown in Table 1. In addition, Examples 2 and 3 and Comparative Examples 1 to 3 were modularized as in Example 1.

比較例1の血球除去用ビーズ(RA=104nm)では、吸着材として使用できる形状になる収率が大幅に低減するため、製造コストの増加を招いてしまう。比較例2の血球除去用ビーズ(RA=124nm)では、白血球および血小板の吸着は確認されたが、カラム循環中に血液が凝固するという問題が発生した。比較例3の血球除去用ビーズ(RA=133nm)では、血小板の吸着量が低いことが確認された。 With the bead for removing blood cells (RA = 104 nm) of Comparative Example 1, the yield of a shape that can be used as an adsorbent is significantly reduced, resulting in an increase in manufacturing cost. In the bead for removing blood cells (RA = 124 nm) of Comparative Example 2, adsorption of leukocytes and platelets was confirmed, but there was a problem that blood coagulated during column circulation. It was confirmed that the amount of adsorbed platelets was low in the blood cell removing beads (RA = 133 nm) of Comparative Example 3.

実施例1〜3の血球除去用ビーズでは、カラム循環中、循環後に血液の凝固が発生したり、残血が生じたりすることなく、白血球および血小板を効率的に吸着できることが確認された。   In the beads for removing blood cells of Examples 1 to 3, it was confirmed that leukocytes and platelets can be adsorbed efficiently during the circulation of the column without causing blood coagulation or residual blood.

(実施例4)
PARとPESとNMPとを用いてポリマー溶液を調整した。PARとPESの重量混合比は1:1とした。NMP水溶液を凝固液および芯液とした。ポリマー溶液を、二重菅紡糸口金を用いて芯液とともに、上記凝固液中へ吐き出して血球除去用中空糸を作製し、この血球除去用中空糸を1万本束ねることにより、中空糸束を得た。さらに、図5に示すように、この中空糸束200を円筒状のポリカーボネート製のケーシング210内に装填した後、ポリエステル製の一対のメッシュ220で中空糸束を押さえた状態で、血液の導入出口のポートのついたヘッダー230を取り付け、モジュール化した。なお、メッシュ220として、中空糸の径より小さい目を有するものを用いた。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、実施例4の血球除去用中空糸の表面のRaが5.2nmであることが確認された。
Example 4
A polymer solution was prepared using PAR, PES, and NMP. The weight mixing ratio of PAR and PES was 1: 1. An NMP aqueous solution was used as a coagulation liquid and a core liquid. The polymer solution is discharged into the coagulation liquid together with the core liquid using a double spinneret to produce a blood cell removing hollow fiber, and the hollow fiber bundle is formed by bundling 10,000 blood cell removing hollow fibers. Obtained. Further, as shown in FIG. 5, after the hollow fiber bundle 200 is loaded into a cylindrical polycarbonate casing 210, the hollow fiber bundle is pressed by a pair of polyester meshes 220, and the blood inlet / outlet is then discharged. The header 230 with the port of was attached and modularized. A mesh 220 having an eye smaller than the diameter of the hollow fiber was used. AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)) confirmed that the Ra of the surface of the hollow fiber for removing blood cells of Example 4 is 5.2 nm. It was.

(比較例4)
比較例4として、顆粒球吸着カラムであるアダカラムの充填材(直径約2mmのセルローストリアセテートビーズ)を用いた。AFM測定(10μm×10μm、セイコーインスツルメンツ社製SPA400、探針:DFM SZDF20AL(セイコーインスツルメンツ社製))により、比較例4のビーズの表面のRaが133nmであることが確認された。
(Comparative Example 4)
As Comparative Example 4, Ada column packing material (cellulose triacetate beads having a diameter of about 2 mm) which is a granulocyte adsorption column was used. AFM measurement (10 μm × 10 μm, Seiko Instruments SPA400, probe: DFM SZDF20AL (Seiko Instruments)) confirmed that the Ra of the surface of Comparative Example 4 was 133 nm.

(白血球・血小板吸着試験)
直径27mm、長さ70mmのカラム(内容量40mL)に、3260cm相当の実施例4の血球除去用中空糸および比較例4のビーズをそれぞれを充填した。健常者より250mLの血液を血液バックに採血し、ヘパリン化後、7mL/minで30分循環した際の、顆粒球(好中球)数、血小板数、リンパ球数の変化より、各モジュールへの吸着率を算出した。この結果を表2に示す。
(Leukocyte / platelet adsorption test)
A column of 27 mm in diameter and 70 mm in length (with an internal volume of 40 mL) was packed with the hollow fiber for removing blood cells of Example 4 and the beads of Comparative Example 4 corresponding to 3260 cm 2 , respectively. 250 ml of blood was collected from a healthy person into a blood bag, heparinized, and then circulated at 7 mL / min for 30 minutes. Changes in the number of granulocytes (neutrophils), platelets, and lymphocytes led to each module. The adsorption rate of was calculated. The results are shown in Table 2.

表2に示すように、実施例4の血球除去用中空糸を用いた場合には、顆粒球および血小板がともに効率よく除去されることが確認された。一方、比較例4のビーズを用いた場合には、血小板の除去が不十分であった。   As shown in Table 2, it was confirmed that when the blood cell removing hollow fiber of Example 4 was used, both granulocytes and platelets were efficiently removed. On the other hand, when the beads of Comparative Example 4 were used, platelet removal was insufficient.

本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

血球除去用ビーズの製造に用いた多孔質ビーズ製造装置の概略図である。It is the schematic of the porous bead manufacturing apparatus used for manufacture of the bead for blood cell removal. 実施例1に係る血球除去用ビーズを用いた血球除去モジュールの概要を示す分解斜視図である。It is a disassembled perspective view which shows the outline | summary of the blood cell removal module using the bead for blood cell removal which concerns on Example 1. FIG. 実施例3の血球除去用ビーズのAFM像(10μm×10μm)である。4 is an AFM image (10 μm × 10 μm) of a bead for removing blood cells of Example 3. FIG. 比較例3の血球除去用ビーズのAFM像(10μm×10μm)である。6 is an AFM image (10 μm × 10 μm) of a blood cell removing bead of Comparative Example 3. FIG. 実施例4に係る中空糸を用いた血球除去モジュールの概要を示す分解斜視図である。It is a disassembled perspective view which shows the outline | summary of the blood cell removal module using the hollow fiber which concerns on Example 4. FIG.

符号の説明Explanation of symbols

100 血球除去用ビーズ製造装置、110 原液タンク、120 ポンプ、130 ノズル、140 凝固液浴槽、144 凝固液回収タンク、150 血球除去用ビーズ。 100 Blood cell removal bead manufacturing apparatus, 110 Stock solution tank, 120 pump, 130 nozzle, 140 Coagulation bath, 144 Coagulation recovery tank, 150 Blood cell removal beads

Claims (6)

血液中の白血球および血小板の除去に用いられる血球除去用吸着体であって、
疎水性高分子樹脂で形成され、表面の中心線平均粗さ(Ra)が5〜100nmであり、
前記疎水性高分子樹脂が下記化学式(1)で表わされる繰り返し単位を有するポリアリレート樹脂であり、前記ポリアリレート樹脂の数平均分子量が20000〜30000であることを特徴とする血球除去用吸着体。
化学式(1)において、R1およびR2は炭素数が1〜5の低級アルキル基であり、R1およびR2はそれぞれ同一であっても相違していてもよい。
An adsorbent for removing blood cells used for removing white blood cells and platelets in blood,
Formed of a hydrophobic polymer resin, the surface center line average roughness (Ra) is 5 to 100 nm,
Wherein the hydrophobic polymer resin Ri polyarylate resins der having a repeating unit represented by the following chemical formula (1), the polyarylate blood cells removal adsorbent having a number average molecular weight is characterized in that the 20,000 to 30,000 of the resin .
In the chemical formula (1), R1 and R2 are lower alkyl groups having 1 to 5 carbon atoms, and R1 and R2 may be the same or different.
前記疎水性高分子樹脂が下記化学式(2)または化学式(3)で表わされる繰り返し単位を有するポリエーテルスルホン樹脂をさらに含む請求項1に記載の血球除去用吸着体。
化学式(2)において、R3およびR4は炭素数が1〜5の低級アルキル基であり、R3およびR4はそれぞれ同一であっても相違していてもよい。
The adsorbent for removing blood cells according to claim 1, wherein the hydrophobic polymer resin further comprises a polyethersulfone resin having a repeating unit represented by the following chemical formula (2) or chemical formula (3).
In the chemical formula (2), R3 and R4 are lower alkyl groups having 1 to 5 carbon atoms, and R3 and R4 may be the same or different.
前記ポリエーテルスルホン樹脂の数平均分子量が15000〜30000である請求項またはに記載の血球除去用吸着体。 The adsorbent for removing blood cells according to claim 1 or 2 , wherein the polyethersulfone resin has a number average molecular weight of 15,000 to 30,000. 表面の中心線平均粗さ(Ra)が5〜34nmである請求項1乃至のいずれか1項に記載の血球除去用吸着体。 The adsorbent for removing blood cells according to any one of claims 1 to 3 , wherein the surface has a center line average roughness (Ra) of 5 to 34 nm. ビーズ形状であることを特徴とする請求項1乃至のいずれか1項に記載の血球除去用吸着体。 The adsorbent for removing blood cells according to any one of claims 1 to 4 , wherein the adsorbent is in a bead shape. 中空糸状または中実糸状の繊維であることを特徴とする請求項1乃至のいずれか1項に記載の血球除去用吸着体。 The adsorbent for removing blood cells according to any one of claims 1 to 4 , wherein the adsorbent is a hollow fiber-like or solid fiber-like fiber.
JP2008109381A 2008-04-18 2008-04-18 Adsorbent for removing blood cells Active JP4473324B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008109381A JP4473324B2 (en) 2008-04-18 2008-04-18 Adsorbent for removing blood cells
CA2720665A CA2720665C (en) 2008-04-18 2009-04-17 Adsorbent formed from polyarylate for the removal of blood cells
EP09731790A EP2266642B1 (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
ES09731790T ES2383647T3 (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
AT09731790T ATE551083T1 (en) 2008-04-18 2009-04-17 ADSORBENS FOR REMOVAL OF BLOOD CELLS
US12/937,163 US8541538B2 (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
CN200980113657.6A CN102006899B (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
KR1020107025775A KR101179638B1 (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
PCT/JP2009/058112 WO2009128564A1 (en) 2008-04-18 2009-04-17 Adsorbent for the removal of blood cells
US13/924,300 US8748560B2 (en) 2008-04-18 2013-06-21 Adsorbent for the removal of blood cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109381A JP4473324B2 (en) 2008-04-18 2008-04-18 Adsorbent for removing blood cells

Publications (2)

Publication Number Publication Date
JP2009254695A JP2009254695A (en) 2009-11-05
JP4473324B2 true JP4473324B2 (en) 2010-06-02

Family

ID=41382898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109381A Active JP4473324B2 (en) 2008-04-18 2008-04-18 Adsorbent for removing blood cells

Country Status (1)

Country Link
JP (1) JP4473324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066152A1 (en) 2019-10-04 2021-04-08 東レ株式会社 Blood treatment material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275401A (en) * 2009-05-27 2010-12-09 Nikkiso Co Ltd Porous bead
JP2011224142A (en) * 2010-04-20 2011-11-10 Nikkiso Co Ltd Bead-like adsorbent, and blood purifier using the same
EP2762180A4 (en) 2011-09-30 2015-05-13 Toray Industries Purification column and method for manufacturing purification column
JP6414049B2 (en) 2013-02-12 2018-10-31 東レ株式会社 Blood purification column
JP6375668B2 (en) * 2013-04-04 2018-08-22 東レ株式会社 Purification column and purification column manufacturing method
JP6728743B2 (en) * 2015-03-31 2020-07-22 東レ株式会社 Purification column
EP3513821B1 (en) 2016-09-09 2020-08-19 Toray Industries, Inc. Material for blood purification
BR112019020220A2 (en) 2017-06-06 2020-04-22 Toray Industries material for removal of an activated leukocyte-activated platelet complex, and, column for blood purification.
CN114531853B (en) * 2019-10-08 2024-03-19 东丽株式会社 Fiber bundle, method for producing same, and purifying column

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066152A1 (en) 2019-10-04 2021-04-08 東レ株式会社 Blood treatment material
KR20220074852A (en) 2019-10-04 2022-06-03 도레이 카부시키가이샤 blood processing material

Also Published As

Publication number Publication date
JP2009254695A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4473324B2 (en) Adsorbent for removing blood cells
US8748560B2 (en) Adsorbent for the removal of blood cells
CA2664770C (en) Cell adsorption column
KR100804542B1 (en) Body fluid processor enabling direct hemoperfusion
JP5271781B2 (en) Blood cell removal module and method for manufacturing blood cell removal module
TW201446289A (en) Blood purification column
WO2017094478A1 (en) Phosphorus adsorbent, porous fiber and phosphorus adsorption columns
US11135566B2 (en) Porous fiber and adsorption column
JP5188280B2 (en) Blood cell removal module
JP5332230B2 (en) Blood processing column
TWI712414B (en) Toxin separation device
JP2011224142A (en) Bead-like adsorbent, and blood purifier using the same
JP2017104852A (en) Porous fiber and phosphorus adsorption column
JP4707810B2 (en) Endogenous cannabinoid adsorbent, adsorption removal method and adsorber
JP5695856B2 (en) Adsorbent filling method and filling apparatus
JP2011000145A (en) Hollow fiber blood purification membrane and method of manufacturing the same
JP5420341B2 (en) Adsorbent for removing blood cells and method for producing the same
JP2017029712A (en) Adsorption fiber bundle and body liquid purification column
CN208770990U (en) Rotational flow microbubble dirt separator
JP2010275401A (en) Porous bead
JP7125892B2 (en) AMYLOID β REMOVAL DEVICE, BIOLOGICAL FLUID PURIFICATION SYSTEM, AMYLOID β REMOVAL METHOD AND ADSORBENT FOR AMYLOID β REMOVAL
CN106166311A (en) A kind of novel plasma purification system and application thereof
JP2005319064A (en) Method for collecting blood from leukocyte filter for extracorporeal circulation
JP2024030472A (en) Fiber aggregate for blood purification therapy and purifier for blood purification therapy
JP4582081B2 (en) Selective separation membrane for blood treatment, manufacturing method and module thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4473324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250