JP5420341B2 - Adsorbent for removing blood cells and method for producing the same - Google Patents

Adsorbent for removing blood cells and method for producing the same Download PDF

Info

Publication number
JP5420341B2
JP5420341B2 JP2009181953A JP2009181953A JP5420341B2 JP 5420341 B2 JP5420341 B2 JP 5420341B2 JP 2009181953 A JP2009181953 A JP 2009181953A JP 2009181953 A JP2009181953 A JP 2009181953A JP 5420341 B2 JP5420341 B2 JP 5420341B2
Authority
JP
Japan
Prior art keywords
polymer resin
adsorbent
resin
blood cells
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009181953A
Other languages
Japanese (ja)
Other versions
JP2011030903A (en
Inventor
康子 原
通治 中尾
清秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2009181953A priority Critical patent/JP5420341B2/en
Publication of JP2011030903A publication Critical patent/JP2011030903A/en
Application granted granted Critical
Publication of JP5420341B2 publication Critical patent/JP5420341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、血球除去用吸着体及びその製造方法に関する。   The present invention relates to an adsorbent for removing blood cells and a method for producing the same.

自己免疫疾患は、何らかの原因で免疫系機能が異常をきたし、自己の正常な細胞や組織を攻撃してしまう疾患である。薬物療法だけでは効果が望めないことから、血液を体外循環させ原因因子を除去する体外循環血液浄化療法が有効的に用いられる。   Autoimmune diseases are diseases in which the immune system functions abnormally for some reason and attacks the normal cells and tissues of the self. Since drug therapy alone cannot be effective, extracorporeal circulation blood purification therapy that removes causative factors by circulating blood extracorporeally is effectively used.

近年、例えば、潰瘍性大腸炎やクローン病などの炎症性腸疾患(IBD)や関節リウマチ(RA)に代表される自己免疫疾患の発症が増加してきており、これらの疾患には、血液中に異常に活性化した白血球が関与していることが分かっている。   In recent years, for example, the occurrence of inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease and autoimmune diseases represented by rheumatoid arthritis (RA) has increased. It is known that abnormally activated leukocytes are involved.

また、最近の研究では、特に自己免疫疾患などの炎症性疾患において、白血球だけでなく、異常に活性化した血液中の血小板も、炎症性細胞として関与していることが明らかになってきている(非特許文献1を参照)。血小板は、それ自身もサイトカイン、ケモカインの放出能をもっているばかりでなく、白血球の凝集を形成することにより、活性酸素を放出するといわれており、血小板も炎症反応に関与しているものと考えられている。 Recent research has revealed that not only leukocytes but also abnormally activated blood platelets are involved as inflammatory cells, especially in inflammatory diseases such as autoimmune diseases. (See Non-Patent Document 1). It is said that platelets not only have the ability to release cytokines and chemokines themselves, but also release active oxygen by forming leukocyte aggregates, and platelets are also considered to be involved in inflammatory reactions. Yes.

そのため、白血球だけでなく、血小板を含む活性化した血球成分の除去は自己免疫疾患の治療に効果的であると考えられ、活性化した血球成分を除去するために、体外循環血液浄化療法に関する技術の要求が高まっている。   Therefore, removal of activated blood cell components including not only leukocytes but also platelets is considered to be effective in the treatment of autoimmune diseases, and technology related to extracorporeal circulation blood purification therapy to remove activated blood cell components The demand is growing.

現在、例えば、白血球除去フィルター及び血小板分離フィルターとして、ポリエチレンテレフタレート(PET)等からなる不織布を平板状又は円筒状に巻いたものが提案されている(例えば、特許文献1,2参照)。   At present, for example, as a leukocyte removal filter and a platelet separation filter, a nonwoven fabric made of polyethylene terephthalate (PET) or the like wound in a flat plate shape or a cylindrical shape has been proposed (see, for example, Patent Documents 1 and 2).

しかしながら、不織布の場合、フィルター部の圧力損失が大きく、白血球吸着器内の血液流路に偏りが生じて、血液処理能力が低くなるという問題がある。また、不織布フィルターは、血液循環中に吸着器内で凝固を生じ易いという欠点もある。   However, in the case of the nonwoven fabric, there is a problem that the pressure loss of the filter portion is large, the blood flow path in the leukocyte adsorber is biased, and the blood processing capacity is lowered. In addition, the nonwoven fabric filter has a drawback that coagulation easily occurs in the adsorber during blood circulation.

一方、不織布以外の血球成分の吸着体として、ビーズ状のものが挙げられる。このビーズ状の吸着体の場合、白血球吸着器内の圧力損失は、不織布に比べ少ないので、吸着器内の血液流路の偏りが少なくなり凝固が抑制されることで、吸着器の血液処理能力が高くなる。   On the other hand, the adsorbent for blood cell components other than the nonwoven fabric includes beads. In the case of this bead-shaped adsorbent, the pressure loss in the leukocyte adsorber is less than that of the nonwoven fabric, so the blood flow in the adsorber is less biased and coagulation is suppressed. Becomes higher.

現在、例えば顆粒球を効果的に吸着する吸着体として、酢酸セルロースなどからなるビーズが考案されている(例えば、特許文献3参照)。しかし、酢酸セルロースは、主に顆粒球を吸着するが、活性化血小板の吸着除去に関しては効果的ではない。なお、特許文献3では、ある一定の接触角を有する表面を持つ材質は、顆粒球を選択的に除去できることが記載されている。また、血球の吸着体として、疎水性樹脂のみを用いた場合、血球吸着には有効であるが、疎水性表面は一般に蛋白質の吸着が起こりやすく、凝固系を活性化しやすい性質をもっており、そのため、体外循環中の吸着器内に凝固が生じ、圧力上昇を引き起こすおそれがある。吸着器内血液凝固及び圧力上昇を抑えるためには、吸着材表面を親水性にすることが有効であるが、血球吸着除去の点では疎水性表面を持つことが有効である。   Currently, beads made of cellulose acetate or the like have been devised as an adsorbent that effectively adsorbs granulocytes (see, for example, Patent Document 3). However, although cellulose acetate mainly adsorbs granulocytes, it is not effective for adsorption removal of activated platelets. Patent Document 3 describes that a material having a surface having a certain contact angle can selectively remove granulocytes. In addition, when only a hydrophobic resin is used as an adsorbent for blood cells, it is effective for adsorbing blood cells, but hydrophobic surfaces generally tend to cause protein adsorption and easily activate the coagulation system. Solidification may occur in the adsorber during extracorporeal circulation, which may cause an increase in pressure. In order to suppress blood coagulation and pressure increase in the adsorber, it is effective to make the surface of the adsorbent hydrophilic, but it is effective to have a hydrophobic surface in terms of blood cell adsorption and removal.

しかし、従来、親水性と疎水性のバランスが考慮され、血球成分(血小板を含む)の吸着性能を有し、且つ血液循環中の圧力損失を小さくするとともに吸着器内の凝固を抑制するという両機能を満足する吸着体は、存在しなかった。   Conventionally, however, the balance between hydrophilicity and hydrophobicity has been taken into consideration, and it has the ability to adsorb blood cell components (including platelets), reduces pressure loss during blood circulation, and suppresses coagulation in the adsorber. There was no adsorbent satisfying the function.

一方、血液透析用の中空糸では、血液透析時の血液凝固を抑え且つ血液透析器における残血を低減するために、中空糸の表面を親水性にすることが有効であることが提案されている(例えば、特許文献4,5参照)。例えば、特許文献4の中空糸は、ポリスルホン系樹脂と親水性高分子樹脂及びこれらを共通に溶解する溶媒とからなる製膜原液を用いて乾湿式紡糸により製造されている。また、特許文献5には、セルロース系中空糸の内表面に親水性高分子樹脂物質を接触させ、その後、放射線架橋法、紫外線架橋法、熱架橋法などにより、中空糸の内表面にて親水性高分子樹脂物質を架橋し、水に対して不溶性の親水性高分子樹脂物質を中空糸の内表面に物理的に保持させる中空糸の製造方法が提案されている。   On the other hand, for hollow fibers for hemodialysis, it has been proposed that it is effective to make the surface of the hollow fibers hydrophilic in order to suppress blood coagulation during hemodialysis and reduce residual blood in the hemodialyzer. (For example, see Patent Documents 4 and 5). For example, the hollow fiber of Patent Document 4 is produced by dry and wet spinning using a membrane forming stock solution composed of a polysulfone resin, a hydrophilic polymer resin, and a solvent that commonly dissolves them. Further, in Patent Document 5, a hydrophilic polymer resin substance is brought into contact with the inner surface of a cellulosic hollow fiber, and then hydrophilicity is formed on the inner surface of the hollow fiber by a radiation crosslinking method, an ultraviolet crosslinking method, a thermal crosslinking method, or the like. A method for producing a hollow fiber has been proposed in which a hydrophilic polymer resin material that is insoluble in water is physically held on the inner surface of the hollow fiber by crosslinking the functional polymer resin material.

特開昭62−243561号公報Japanese Patent Laid-Open No. 62-243561 特開平1−121061号公報Japanese Patent Laid-Open No. 1-121061 特開平2−193069号公報Japanese Patent Laid-Open No. 2-193069 特開平7−289863号公報JP-A-7-289863 特開平6−228887号公報Japanese Patent Laid-Open No. 6-228887

Novel uses for anti-platelet agents as anti-inflammatory drugs. Pitchford SC, Br J Pharmacol. 2007 Dec:152(7):987-1002Novel uses for anti-platelet agents as anti-inflammatory drugs. Pitchford SC, Br J Pharmacol. 2007 Dec: 152 (7): 987-1002

しかしながら、例えば、上述した特許文献4の親水性高分子樹脂により処理された血液透析用中空糸は、その製造方法に基づき、作製された中空糸の内表面及び外表面並びに厚み方向全域に亘って親水性が付与されてしまい、ポリスルホン系樹脂の疎水性の効果が発揮されず、その結果、透析以外の機能として、例えば活性化した血小板などの血球成分の除去効果は望めない。   However, for example, the hollow fiber for hemodialysis treated with the hydrophilic polymer resin of Patent Document 4 described above is based on the production method, and covers the inner and outer surfaces of the produced hollow fiber and the entire thickness direction. Hydrophilicity is imparted, and the hydrophobic effect of the polysulfone resin is not exhibited. As a result, for example, the effect of removing blood cell components such as activated platelets cannot be expected as a function other than dialysis.

また、特許文献5の血液透析用中空糸は、その内表面に親水性高分子樹脂物質を塗布した後、放射線架橋法又は熱架橋法により親水性高分子樹脂物質を架橋して、水に対して不溶性の親水性高分子樹脂物質を内表面に保持させていることから、製造工程が煩雑であり、製造コストも嵩むという問題がある。また、特許文献5のセルロース系中空糸として酢酸セルロース系中空糸が例示されており、上述したように、酢酸セルロースは、主に顆粒球を吸着するが、活性化血小板の吸着除去に関しては効果的ではないことから、特許文献5のセルロース系中空糸は、血小板を含めた血球除去用の血球吸着体として転用することは難しい。   Further, the hollow fiber for hemodialysis of Patent Document 5 is obtained by applying a hydrophilic polymer resin substance to the inner surface of the hollow fiber and then crosslinking the hydrophilic polymer resin substance by a radiation crosslinking method or a thermal crosslinking method. Since the insoluble hydrophilic polymer resin substance is held on the inner surface, the manufacturing process is complicated and the manufacturing cost increases. Further, as the cellulose-based hollow fiber of Patent Document 5, a cellulose acetate-based hollow fiber is exemplified, and as described above, cellulose acetate mainly adsorbs granulocytes, but is effective for adsorption removal of activated platelets. Therefore, it is difficult to divert the cellulosic hollow fiber of Patent Document 5 as a blood cell adsorbent for removing blood cells including platelets.

本発明は、疎水性高分子樹脂からなる吸着基材に対して、ある程度の疎水性を残しつつ適度に吸着基材に親水性を付与し、血球吸着器中の圧力損失を少なくし、血液流路の偏りを抑制して、血液通液時に吸着器内凝固などの問題を少なくするとともに、白血球および血小板を効率よく除去する血球除去用吸着体及びその製造方法を提供することを目的とする。   The present invention appropriately imparts hydrophilicity to an adsorbing substrate while retaining a certain degree of hydrophobicity to an adsorbing substrate made of a hydrophobic polymer resin, reduces pressure loss in the blood cell adsorber, and reduces blood flow. An object of the present invention is to provide an adsorbent for removing blood cells and a method for producing the same, which can suppress the bias of the path and reduce problems such as coagulation in the adsorber during blood flow, and efficiently remove leukocytes and platelets.

本発明者らは、上記課題を解決するために鋭意検討した結果、以下に示す本発明を完成するに至った。本願発明は、以下の特徴を有する。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention shown below. The present invention has the following features.

(I)疎水性高分子樹脂からなる多孔質の吸着基材と、前記吸着基材のミクロサイズの表面孔に少なくとも一部が取り込まれアンカー効果により固定された親水性高分子樹脂と、を有し、前記疎水性高分子樹脂は、ポリアリレート樹脂(PAR)、ポリエーテルスルホン樹脂(PES)、ポリスルホン樹脂(PSF)、ポリスチレン樹脂、ポリメチルメタクリレート樹脂からなる群から選択された少なくとも1種であり、前記親水性高分子樹脂は、ポリビニルピロリドン、ポリエチレングリコール、ポリグリコールモノエステル、ポリプロピレングリコール共重合体、ポリアクリルアミドからなる群から選択された少なくとも1種である血球除去用吸着体である。 (I) a porous adsorption base material made of a hydrophobic polymer resin, and a hydrophilic polymer resin that is at least partially taken into the micro-sized surface pores of the adsorption base material and fixed by an anchor effect. The hydrophobic polymer resin is at least one selected from the group consisting of polyarylate resin (PAR), polyethersulfone resin (PES), polysulfone resin (PSF), polystyrene resin, and polymethylmethacrylate resin. , the hydrophilic polymer resin, polyvinyl pyrrolidone, polyethylene glycol, polyglycol monoester, polypropylene glycol copolymer, at least 1 Tanedea Ru blood cells removal adsorbent selected from the group consisting of polyacrylamide.

(II)前記親水性高分子樹脂が窒素を含む親水性高分子樹脂であるとき、X線光電子分光分析法により測定された血球吸着体の表面の炭素元素に対する親水性高分子樹脂由来の窒素元素スペクトル強度N/C%は、0.3%以上、1.5%以下である上記(I)に記載の血球除去用吸着体である。   (II) When the hydrophilic polymer resin is a hydrophilic polymer resin containing nitrogen, the nitrogen element derived from the hydrophilic polymer resin with respect to the carbon element on the surface of the blood cell adsorbent measured by X-ray photoelectron spectroscopy Spectral intensity N / C% is an adsorbent for blood cell removal as described in said (I) which is 0.3% or more and 1.5% or less.

III)疎水性高分子樹脂を含むポリマー原液を前記疎水性高分子樹脂に対し貧溶媒からなる凝固液中に落下させ、疎水性高分子樹脂からなる多孔質の吸着基材を生成する工程と、親水性高分子樹脂を含む親水性処理液に前記吸着基材を浸漬し、前記疎水性高分子樹脂のガラス転移温度未満の温度で加温する工程と、親水性処理が施された吸着基材を冷却する工程と、を有する血球除去用吸着体の製造方法である。 ( III ) A step of dropping a polymer stock solution containing a hydrophobic polymer resin into a coagulating solution made of a poor solvent with respect to the hydrophobic polymer resin to produce a porous adsorption substrate made of the hydrophobic polymer resin; A step of immersing the adsorption base material in a hydrophilic treatment liquid containing a hydrophilic polymer resin, and heating at a temperature lower than the glass transition temperature of the hydrophobic polymer resin; and a hydrophilic treatment-treated adsorption group And a step of cooling the material. A method for producing an adsorbent for removing blood cells.

IV)冷却する工程の後、親水性処理が施された吸着基材の表面を洗浄する工程を有する上記(III)に記載の血球除去用吸着体の製造方法である。 ( IV ) It is a manufacturing method of the adsorbent for blood cell removal as described in said ( III ) which has the process of wash | cleaning the surface of the adsorption base material in which the hydrophilic treatment was performed after the cooling process.

)洗浄する工程は、予備水洗工程と、アルコール類による本洗浄工程とからなる上記(IV)に記載の血球除去用吸着体の製造方法である。 ( V ) The washing step is the method for producing an adsorbent for removing blood cells according to (IV ) above, which comprises a preliminary water washing step and a main washing step with alcohols.

VI)加温する温度は、100℃以上、前記疎水性高分子樹脂のガラス転移温度未満である上記(III)から()のいずれか1つに記載の血球除去用吸着体の製造方法である。 ( VI ) The method for producing an adsorbent for removing blood cells according to any one of ( III ) to ( V ), wherein the heating temperature is 100 ° C. or higher and lower than the glass transition temperature of the hydrophobic polymer resin. It is.

VII)前記親水性処理液中の親水性高分子樹脂の濃度は、0.1質量%以上、0.5質量%以下である上記(III)から(VI)のいずれか1つに記載の血球除去用吸着体の製造方法である。 ( VII ) The concentration of the hydrophilic polymer resin in the hydrophilic treatment liquid is 0.1% by mass or more and 0.5% by mass or less according to any one of ( III ) to ( VI ) above. This is a method for producing an adsorbent for removing blood cells.

VIII)冷却する温度は、10℃以上、30℃以下である上記(III)から(VII)のいずれか1つに記載の血球除去用吸着体の製造方法である。
( VIII ) The method for producing an adsorbent for removing blood cells according to any one of ( III ) to ( VII ), wherein the cooling temperature is 10 ° C. or higher and 30 ° C. or lower.

本発明の血球除去用吸着体によれば、血球成分の吸着に必要な疎水性部分を残しながら、治療中の吸着器内での凝固及び圧力上昇を抑制する親水性が付与されるので、血球吸着器中の圧力損失が少なく、血液流路の偏りが抑制され、血液通液時に吸着器内の凝固などの問題が少なく、白血球および血小板などの血球成分が効率よく除去される。   According to the adsorbent for removing blood cells of the present invention, hydrophilicity is imparted to suppress coagulation and pressure increase in the adsorber during treatment while leaving a hydrophobic portion necessary for adsorption of blood cell components. The pressure loss in the adsorber is small, the bias of the blood flow path is suppressed, there are few problems such as coagulation in the adsorber when blood is passed, and blood cell components such as leukocytes and platelets are efficiently removed.

本発明の血球除去用吸着体の製造方法によれば、疎水性高分子樹脂からなる多孔質の吸着基材が疎水性高分子樹脂のガラス転移温度未満で加温されることにより、その疎水性高分子樹脂の構造に緩みが生じ、吸着基材のミクロサイズの表面孔が開き、この表面孔内に親水性高分子樹脂の少なくとも一部が取り込まれ、次いで冷却されることにより、表面孔が収縮して閉じ、親水性高分子樹脂の少なくとも一部が表面孔にいわゆるアンカー効果により強固に固定されるので、治療中に吸着体から親水性高分子樹脂が血液中に経時的に溶出するおそれがない。また、親水性処理が施された吸着基材を冷却後に洗浄しても、アンカー効果により吸着基材の表面孔に固定された親水性高分子樹脂はその高分子鎖を血球吸着体の表面に残して留まり、一方、血球吸着体の表面に余分に付着している親水性高分子樹脂は除去されるので、血球成分(血小板を含む)の吸着性能を有し、且つ血液循環中の圧力損失を小さくして、吸着器内の凝固が抑制できる好適な疎水性と親水性とのバランスを有する血球吸着体が得られる。   According to the method for producing an adsorbent for removing blood cells of the present invention, a porous adsorption base material made of a hydrophobic polymer resin is heated at a temperature lower than the glass transition temperature of the hydrophobic polymer resin, whereby the hydrophobic adsorbent is made hydrophobic. Looseness occurs in the structure of the polymer resin, a micro-sized surface hole of the adsorbing substrate is opened, and at least a part of the hydrophilic polymer resin is taken into the surface hole and then cooled, so that the surface hole is formed. Shrink and close, and at least part of the hydrophilic polymer resin is firmly fixed to the surface pores by the so-called anchor effect, so the hydrophilic polymer resin may elute into the blood over time from the adsorbent during treatment There is no. In addition, even when the adsorbing substrate subjected to the hydrophilic treatment is washed after cooling, the hydrophilic polymer resin fixed to the surface hole of the adsorbing substrate by the anchor effect causes the polymer chain to adhere to the surface of the blood cell adsorbent. On the other hand, since the hydrophilic polymer resin that is excessively attached to the surface of the blood cell adsorbent is removed, it has the ability to adsorb blood cell components (including platelets), and pressure loss during blood circulation A blood cell adsorbent having a suitable balance between hydrophobicity and hydrophilicity that can suppress coagulation in the adsorber can be obtained.

本発明の実施の形態における血球除去用吸着体及びその製造方法について、以下説明する。   The adsorbent for removing blood cells and the production method thereof according to the embodiment of the present invention will be described below.

本発明の実施の形態における血球除去用吸着体は、疎水性高分子樹脂からなる多孔質の吸着基材と、前記吸着基材のミクロサイズの表面孔に少なくとも一部が取り込まれアンカー効果により固定された親水性高分子樹脂とを有する。   The adsorbent for removing blood cells according to the embodiment of the present invention includes a porous adsorbent base material made of a hydrophobic polymer resin, and at least a part of the adsorbent base material is incorporated into a micro-sized surface hole and fixed by an anchor effect. And a hydrophilic polymer resin.

血球除去用吸着体が疎水性高分子樹脂を含有し、血球除去用吸着体の表面が疎水性であることにより、血液中の白血球や血小板等の血球成分の吸着も起こりやすくなる。一方、疎水性高分子樹脂からなる多孔質の吸着基材の表面孔に親水性高分子樹脂の少なくとも一部が取り込まれアンカー効果により固定されることにより、治療中の吸着器内での凝固及び圧力上昇が抑制される。   Since the adsorbent for removing blood cells contains a hydrophobic polymer resin and the surface of the adsorbent for removing blood cells is hydrophobic, adsorption of blood cell components such as leukocytes and platelets in blood is likely to occur. On the other hand, at least a part of the hydrophilic polymer resin is taken into the surface pores of the porous adsorption base material made of the hydrophobic polymer resin and fixed by the anchor effect, so that the coagulation in the adsorber during treatment and The pressure rise is suppressed.

上記疎水性高分子樹脂は、疎水性を有する高分子であれば特に限定されないが、例えば、ポリアリレート樹脂(PAR)、ポリエーテルスルホン樹脂(PES)、ポリスルホン樹脂(PSF)、ポリスチレン樹脂、ポリメチルメタクリレート樹脂からなる群から選択された少なくとも1種が用いられる。   The hydrophobic polymer resin is not particularly limited as long as it is a hydrophobic polymer. For example, polyarylate resin (PAR), polyethersulfone resin (PES), polysulfone resin (PSF), polystyrene resin, polymethyl At least one selected from the group consisting of methacrylate resins is used.

さらに、上記疎水性高分子樹脂は、そのガラス転移温度(Tg)が100℃以上である。疎水性高分子樹脂のガラス転移温度が100℃未満の場合には、多孔質の吸着基材のミクロサイズの表面孔に所定量の親水性高分子樹脂をアンカー効果で固定することが難しい。   Furthermore, the hydrophobic polymer resin has a glass transition temperature (Tg) of 100 ° C. or higher. When the glass transition temperature of the hydrophobic polymer resin is less than 100 ° C., it is difficult to fix a predetermined amount of the hydrophilic polymer resin to the micro-sized surface holes of the porous adsorption base material by the anchor effect.

ポリアリレート樹脂は、下記化学式(1)で表わされる繰り返し単位を有する樹脂である。ポリアリレート樹脂の数平均分子量は、20,000〜30,000であることが好ましい。ポリアリレート樹脂の数平均分子量が30,000より大きいと、表面凹凸が大きくなり過ぎるため、適正な表面凹凸を形成することが困難になる。一方、ポリアリレート樹脂の数平均分子量が20,000より小さいと、血球除去用吸着体の強度が低くなり、血球除去用吸着体の製造歩留まりが悪くなる。   The polyarylate resin is a resin having a repeating unit represented by the following chemical formula (1). The number average molecular weight of the polyarylate resin is preferably 20,000 to 30,000. When the number average molecular weight of the polyarylate resin is larger than 30,000, the surface unevenness becomes too large, and it becomes difficult to form appropriate surface unevenness. On the other hand, when the number average molecular weight of the polyarylate resin is less than 20,000, the strength of the adsorbent for removing blood cells is lowered, and the production yield of the adsorbent for removing blood cells is deteriorated.

化学式(1)において、R1およびR2は炭素数が1〜5の低級アルキル基であり、R1およびR2はそれぞれ同一であっても相違していてもよい。R1およびR2としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基などが挙げられる。好ましいR1およびR2は、メチル基である。   In the chemical formula (1), R1 and R2 are lower alkyl groups having 1 to 5 carbon atoms, and R1 and R2 may be the same or different. Examples of R1 and R2 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Preferred R1 and R2 are methyl groups.

なお、ポリアリレート樹脂は、化学式(1)で表わされる繰り返し単位を主たる繰り返し単位とする限り特に制限がなく、本発明の目的を阻害しない限り他の繰り返し単位を含有していてもよい。   The polyarylate resin is not particularly limited as long as the repeating unit represented by the chemical formula (1) is a main repeating unit, and may contain other repeating units as long as the object of the present invention is not impaired.

ポリエーテルスルホン樹脂は、下記化学式(2)または化学式(3)で表わされる繰り返し単位を有する樹脂である。ポリエーテルスルホン樹脂の数平均分子量は、15,000〜30,000であることが好ましい。ポリエーテルスルホン樹脂の数平均分子量が30,000より大きいと、表面凹凸が大きくなり過ぎるため、適正な表面凹凸を形成することが困難になる。一方、ポリエーテルスルホン樹脂の数平均分子量が15,000より小さいと、血球除去用吸着体の強度が低くなり、血球除去用吸着体の製造歩留まりが悪くなる。   The polyethersulfone resin is a resin having a repeating unit represented by the following chemical formula (2) or chemical formula (3). The number average molecular weight of the polyethersulfone resin is preferably 15,000 to 30,000. If the number average molecular weight of the polyethersulfone resin is larger than 30,000, the surface unevenness becomes too large, and it becomes difficult to form appropriate surface unevenness. On the other hand, when the number average molecular weight of the polyethersulfone resin is less than 15,000, the strength of the adsorbent for removing blood cells is lowered, and the production yield of the adsorbent for removing blood cells is deteriorated.

化学式(2)において、R3およびR4は炭素数が1〜5の低級アルキル基であり、R3およびR4はそれぞれ同一であっても相違していてもよい。R3およびR4としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基などが挙げられる。好ましいR1およびR2は、メチル基である。   In the chemical formula (2), R3 and R4 are lower alkyl groups having 1 to 5 carbon atoms, and R3 and R4 may be the same or different. Examples of R3 and R4 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Preferred R1 and R2 are methyl groups.

また、上記親水性高分子樹脂は、親水性を有する高分子であれば特に限定されないが、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリグリコールモノエステル、ポリプロピレングリコール共重合体、ポリアクリルアミドからなる群から選択された少なくとも1種が用いられる。上記親水性高分子樹脂として、好ましくはポリビニルピロリドン(以下「PVP」と略記する場合がある)であり、好ましいPVPの重量平均分子量は、100万から120万である。   The hydrophilic polymer resin is not particularly limited as long as it is a polymer having hydrophilicity. For example, the hydrophilic polymer resin is selected from the group consisting of polyvinylpyrrolidone, polyethylene glycol, polyglycol monoester, polypropylene glycol copolymer, and polyacrylamide. At least one selected from the above is used. The hydrophilic polymer resin is preferably polyvinyl pyrrolidone (hereinafter sometimes abbreviated as “PVP”), and the weight average molecular weight of PVP is preferably 1,000,000 to 1,200,000.

また、本実施の形態における血球除去用吸着体は、前記親水性高分子樹脂が窒素を含む親水性高分子樹脂であるとき、X線光電子分光分析法により測定された血球吸着体の表面の炭素元素に対する親水性高分子樹脂由来の窒素元素スペクトル強度N/C%は、0.3%以上、1.5%以下であり、好ましくは、0.7%以上、1.1%以下である。なお、窒素を含む親水性高分子樹脂としては、例えば上述したポリビニルピロリドン(以下「PVP」と略記する場合がある)が用いられ、好ましいPVPの重量平均分子量は、100万から120万である。   Further, the adsorbent for removing blood cells in the present embodiment is such that when the hydrophilic polymer resin is a hydrophilic polymer resin containing nitrogen, carbon on the surface of the blood cell adsorbent measured by X-ray photoelectron spectroscopy is used. The nitrogen element spectral intensity N / C% derived from the hydrophilic polymer resin with respect to the element is 0.3% or more and 1.5% or less, preferably 0.7% or more and 1.1% or less. As the hydrophilic polymer resin containing nitrogen, for example, the above-mentioned polyvinyl pyrrolidone (hereinafter sometimes abbreviated as “PVP”) is used, and the preferred weight average molecular weight of PVP is 1 million to 1.2 million.

X線光電子分光分析法により測定された血球吸着体の表面の炭素元素に対する親水性高分子樹脂由来の窒素元素スペクトル強度N/C%が0.3%未満の場合、血球成分の吸着性能は高いものの、治療中の吸着器内での凝固及び圧力上昇が引き起こされる可能性がある。一方、N/C%が1.5%を超える場合、治療中の吸着器内での凝固及び圧力上昇は抑制されるものの、血球の吸着性能が低下してしまう。   Adsorption performance of blood cell components is high when the nitrogen element spectral intensity N / C% derived from the hydrophilic polymer resin with respect to the carbon element on the surface of the blood cell adsorbent measured by X-ray photoelectron spectroscopy is less than 0.3% However, it can cause clotting and pressure buildup in the adsorber during treatment. On the other hand, when N / C% exceeds 1.5%, coagulation and pressure increase in the adsorber during treatment are suppressed, but the blood cell adsorption performance deteriorates.

本実施の形態並びに後述する実施例におけるX線光電子分光分析(XPS :X-ray Photoelectron Spectroscopy)法による血球吸着体の表面の炭素元素に対する親水性高分子樹脂由来の窒素元素スペクトル強度N/C%は、「Sigma Probe」(Thermo VG Scientific(株)社製)を用いて測定した。   N / C% of nitrogen element spectrum intensity derived from hydrophilic polymer resin with respect to carbon element on the surface of blood cell adsorbent by X-ray photoelectron spectroscopy (XPS) method in this embodiment and examples described later Was measured using “Sigma Probe” (manufactured by Thermo VG Scientific).

血球除去用吸着体の表面のRaを5〜100nmとすることにより、白血球および血小板の吸着性をより向上させることができる。なお、血球除去用吸着体の表面のRaを5nmより小さくすることは製造上困難である。一方、血球除去用吸着体の表面のRaが100nmより大きいと、血小板(大きさ2〜4μm)の吸着への寄与が減少する。血球除去用吸着体の表面のRaは、AFM(原子間力顕微鏡)により測定することができる。本実施の形態における血球除去用吸着体の表面のRaの測定は、AFMとして、セイコーインスツルメンツ社製「SPA400」を用い、探針として「DMF SZDF20AL」(セイコーインスツルメンツ社製)を用い、AFMによる測定領域は10μm×10μmである。   By setting the Ra on the surface of the adsorbent for removing blood cells to 5 to 100 nm, the adsorptivity of leukocytes and platelets can be further improved. In addition, it is difficult in manufacturing to make the Ra of the surface of the adsorbent for removing blood cells smaller than 5 nm. On the other hand, if Ra on the surface of the adsorbent for removing blood cells is larger than 100 nm, contribution to the adsorption of platelets (size 2 to 4 μm) decreases. Ra of the surface of the adsorbent for removing blood cells can be measured by an AFM (atomic force microscope). In the present embodiment, Ra on the surface of the adsorbent for removing blood cells is measured by AFM using “SPA400” manufactured by Seiko Instruments Inc. as an AFM and “DMF SZDF20AL” (manufactured by Seiko Instruments Inc.) as a probe. The area is 10 μm × 10 μm.

本実施の形態における血球除去用吸着体の形状は、ビーズ状、繊維状のいずれであってもよく、繊維状の断面は中空、中実のいずれであってもよい。また、繊維の長さは数mm〜数cmにカットされていてもよい。吸着器内での圧力損失を少なくすることを考慮すると、血球除去用吸着体の形状はビーズ状が好ましい。   The shape of the adsorbent for removing blood cells in this embodiment may be either beaded or fibrous, and the fibrous cross section may be either hollow or solid. The length of the fiber may be cut to several mm to several cm. In consideration of reducing pressure loss in the adsorber, the shape of the adsorbent for removing blood cells is preferably a bead.

次に、本発明の実施の形態における血球除去用吸着体の製造方法について、以下に説明する。   Next, the manufacturing method of the adsorbent for removing blood cells in the embodiment of the present invention will be described below.

本実施の形態における血球除去用吸着体の製造方法は、疎水性高分子樹脂を含むポリマー原液を前記疎水性高分子樹脂に対し貧溶媒からなる凝固液中に落下させ、疎水性高分子樹脂からなる多孔質の吸着基材を生成する工程と、親水性高分子樹脂を含む親水性処理液に前記吸着基材を浸漬し、前記疎水性高分子樹脂のガラス転移温度未満の温度で加温する工程と、親水性処理が施された吸着基材を冷却する工程と、を有する。   In the method for producing an adsorbent for removing blood cells in the present embodiment, a polymer stock solution containing a hydrophobic polymer resin is dropped into a coagulating liquid composed of a poor solvent with respect to the hydrophobic polymer resin, and the hydrophobic polymer resin is used. Forming a porous adsorption base material, and immersing the adsorption base material in a hydrophilic treatment liquid containing a hydrophilic polymer resin, and heating at a temperature lower than the glass transition temperature of the hydrophobic polymer resin. And a step of cooling the adsorption base material that has been subjected to the hydrophilic treatment.

本実施の形態における血球除去用吸着体の製造方法の各工程に関し、以下に説明する。   Each step of the method for producing a blood cell removing adsorbent in the present embodiment will be described below.

まず、疎水性高分子樹脂からなる多孔質の吸着基材を生成する工程では、相転換法(「凝固法」ともいう)を用い、上述した疎水性高分子樹脂をこの疎水性高分子樹脂に対して相溶性を有する良溶剤となる有機溶媒に溶解させて調製されたポリマー原液を調製し、疎水性高分子樹脂に対し貧溶媒からなる凝固液中に落下させ、疎水性高分子樹脂からなる多孔質の吸着基材を生成する。   First, in the step of producing a porous adsorption substrate made of a hydrophobic polymer resin, a phase change method (also referred to as “coagulation method”) is used, and the hydrophobic polymer resin described above is used as the hydrophobic polymer resin. A polymer stock solution prepared by dissolving in an organic solvent that is a compatible good solvent is prepared, dropped into a coagulating liquid consisting of a poor solvent with respect to the hydrophobic polymer resin, and made of a hydrophobic polymer resin. A porous adsorption substrate is produced.

上記疎水性高分子樹脂は、上述同様であるため、ここでの説明は省略する。一方、上記有機溶媒としては、疎水性高分子樹脂に対して良溶剤であれば特に制限がなく、例えば、N−メチル−2−ピロリドン(NMP)、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフランなどを挙げることができる。これらの中でもNMPが有機溶媒として好ましい。   Since the hydrophobic polymer resin is the same as described above, description thereof is omitted here. On the other hand, the organic solvent is not particularly limited as long as it is a good solvent for the hydrophobic polymer resin. For example, N-methyl-2-pyrrolidone (NMP), dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, Tetrahydrofuran and the like can be mentioned. Among these, NMP is preferable as the organic solvent.

ここで、「相溶性」とは、二種またはそれ以上の物質が相互に親和性を有し、溶液または混和物を形成する性質、すなわち物質同士の混ざりやすさをいう。本願では、二種類の疎水性高分子樹脂を有機溶媒に溶解した際、溶液が澄明な状態を相溶性があると表現し、白濁したり分離したりする場合には相溶性がないと表現する。   Here, the term “compatible” refers to the property that two or more substances have an affinity for each other and form a solution or a mixture, that is, ease of mixing of the substances. In this application, when two types of hydrophobic polymer resins are dissolved in an organic solvent, the clear state of the solution is expressed as compatible, and when the solution becomes cloudy or separated, it is expressed as incompatible. .

また、凝固液は、水を含んだ有機溶媒であり、ポリマー原液に用いた有機溶媒と水とを予め定められた比率で混合した溶液であることが好ましい。   The coagulating liquid is an organic solvent containing water, and is preferably a solution in which the organic solvent used in the polymer stock solution and water are mixed at a predetermined ratio.

本実施の形態における疎水性高分子樹脂からなる多孔質の吸着基材は、上述したように、ビーズ状、中空糸状、中実糸状のいずれであってもよく、好ましくはビーズ状である。上述したポリマー原液及び凝固液を用いて、これらの形状の製造方法の一例を以下に説明する。   As described above, the porous adsorption base material made of the hydrophobic polymer resin in the present embodiment may be in the form of beads, hollow fibers, or solid threads, and is preferably in the form of beads. An example of a manufacturing method of these shapes will be described below using the polymer stock solution and the coagulating solution described above.

(ビーズ状の疎水性高分子からなる吸着基材の製造方法)
一重のノズル(オリフィス)からポリマー原液の液滴を凝固液(水を含んだ有機溶媒)に落下させ、凝固液内で疎水性高分子樹脂からなるポリマーを凝固させ、ビーズ状の多孔質の吸着基材を形成する。ビーズ生成の際の温度は、5〜15℃程度が好ましい。ビーズ生成温度をこの範囲とすることにより、ポリマー原液の安定性が向上し、相分離等が生じにくくなる。
(Method for producing an adsorbent substrate made of a bead-like hydrophobic polymer)
Drops of a polymer stock solution from a single nozzle (orifice) drop into a coagulation liquid (an organic solvent containing water), coagulates a polymer made of a hydrophobic polymer resin in the coagulation liquid, and adsorbs porous beads. A substrate is formed. The temperature for producing beads is preferably about 5 to 15 ° C. By setting the bead generation temperature within this range, the stability of the polymer stock solution is improved and phase separation or the like is less likely to occur.

(中空糸状の疎水性高分子からなる吸着基材の製造方法)
二重ノズルを用い、ポリマー原液(以下、中空糸及び中実糸の場合「紡糸原液」ともいう)を内部凝固液(水を含んだ有機溶媒)とともに押し出し、外部凝固液(水を含んだ有機溶媒)に落とし込むことにより、血球除去用中空糸を製造することができる。血球除去用中空糸を紡糸する際の温度は、5〜15℃程度が好ましい。紡糸温度をこの範囲とすることにより、ポリマー原液の安定性が向上し、相分離等が生じにくくなる。内部凝固液(芯液)と外部凝固液の濃度差の比率は0.6〜1.6であることが好ましい。
(Method for producing an adsorbent base material comprising a hollow fiber-like hydrophobic polymer)
Using a double nozzle, the polymer stock solution (hereinafter also referred to as “spinning stock solution” for hollow fibers and solid yarn) is extruded together with the internal coagulation liquid (organic solvent containing water), and the external coagulation liquid (organic containing water) The hollow fiber for removing blood cells can be produced by dropping into the solvent. The temperature when spinning the blood cell removing hollow fiber is preferably about 5 to 15 ° C. By setting the spinning temperature within this range, the stability of the polymer stock solution is improved, and phase separation or the like hardly occurs. The ratio of the concentration difference between the internal coagulating liquid (core liquid) and the external coagulating liquid is preferably 0.6 to 1.6.

(中実糸の疎水性高分子からなる吸着基材の製造方法)
一重のノズル(オリフィス)を用い、ポリマー原液を凝固液(水を含んだ有機溶媒)に落とし込むことにより、血球除去用中実糸を製造することができる。血球除去用中実糸を紡糸する際の温度は、5〜15℃程度が好ましい。紡糸温度をこの範囲とすることにより、ポリマー原液の安定性が向上し、相分離等が生じにくくなる。
(Manufacturing method of adsorbing substrate made of solid yarn hydrophobic polymer)
By using a single nozzle (orifice) and dropping the polymer stock solution into a coagulation solution (an organic solvent containing water), a solid yarn for removing blood cells can be produced. The temperature for spinning the blood cell removing solid yarn is preferably about 5 to 15 ° C. By setting the spinning temperature within this range, the stability of the polymer stock solution is improved, and phase separation or the like hardly occurs.

また、本実施の形態における疎水性高分子からなるビーズ状吸着基材の直径は0.5mmから5mm、繊維状吸着基材(中空糸または中実糸)の外径は0.1mm〜1mmである。   Further, the diameter of the bead-shaped adsorption substrate made of the hydrophobic polymer in the present embodiment is 0.5 mm to 5 mm, and the outer diameter of the fibrous adsorption substrate (hollow fiber or solid yarn) is 0.1 mm to 1 mm. is there.

次に、親水性処理を行う加温工程について説明する。上述した加温する温度は、100℃以上、前記疎水性高分子樹脂のガラス転移温度(Tg)未満であり、疎水性高分子樹脂としてポリアリレート樹脂(Tg:193℃)を用いる場合、100℃以上190℃未満が好ましい。加温温度が100℃未満では、疎水性高分子樹脂からなる吸着基材に所望の親水性高分子樹脂をアンカー効果により固定することができず、一方、加温温度が疎水性高分子樹脂のガラス転移温度以上であると、疎水性高分子樹脂からなる吸着基材の構造が変化を起こすおそれがある。   Next, the heating process which performs a hydrophilic process is demonstrated. The above-mentioned heating temperature is 100 ° C. or higher and lower than the glass transition temperature (Tg) of the hydrophobic polymer resin. When a polyarylate resin (Tg: 193 ° C.) is used as the hydrophobic polymer resin, the temperature is 100 ° C. More than 190 degreeC is preferable. If the heating temperature is less than 100 ° C., the desired hydrophilic polymer resin cannot be fixed to the adsorption base material made of the hydrophobic polymer resin by the anchor effect, while the heating temperature is lower than that of the hydrophobic polymer resin. If the temperature is higher than the glass transition temperature, the structure of the adsorbing substrate made of the hydrophobic polymer resin may change.

疎水性高分子樹脂からなる多孔質の吸着基材が疎水性高分子樹脂のガラス転移温度未満で加温されることにより、その疎水性高分子樹脂の構造に緩みが生じ、吸着基材のミクロサイズの表面孔が開き、この表面孔内に親水性高分子樹脂の少なくとも一部が取り込まれる。次いで冷却されることにより、表面孔が収縮して閉じ親水性高分子樹脂の少なくとも一部が表面孔に、いわゆるアンカー効果により強固に固定される。したがって、治療中に吸着体から親水性高分子樹脂が血液中に経時的に溶出するおそれがない。また、後述するように、親水性処理が施された吸着基材を冷却後に洗浄しても、アンカー効果により吸着基材の表面孔に固定された親水性高分子樹脂は、その高分子鎖を血球吸着体の表面に残して留まり、一方、血球吸着体の表面に固着されず、表面に余分に付着している親水性高分子樹脂は除去されるので、血球成分(血小板を含む)の吸着性能を有し、且つ血液循環中の圧力損失を小さくして、吸着器内の凝固が抑制できる好適な疎水性と親水性とのバランスを有する血球吸着体が得られる。   When a porous adsorption substrate made of a hydrophobic polymer resin is heated below the glass transition temperature of the hydrophobic polymer resin, the structure of the hydrophobic polymer resin is loosened, and the adsorption substrate micro- A size surface hole is opened, and at least a part of the hydrophilic polymer resin is taken into the surface hole. Then, by cooling, the surface hole contracts and closes, and at least a part of the hydrophilic polymer resin is firmly fixed to the surface hole by a so-called anchor effect. Therefore, there is no possibility that the hydrophilic polymer resin elutes into the blood over time from the adsorbent during treatment. In addition, as will be described later, even when the adsorbing substrate subjected to hydrophilic treatment is washed after cooling, the hydrophilic polymer resin fixed to the surface pores of the adsorbing substrate by the anchor effect does not have its polymer chain. Adsorption of blood cell components (including platelets) remains on the surface of the blood cell adsorbent, while the hydrophilic polymer resin that does not adhere to the surface of the blood cell adsorbent and is excessively attached to the surface is removed. A blood cell adsorbent having a balance between hydrophobicity and hydrophilicity which has performance and can reduce coagulation in the adsorber by reducing the pressure loss during blood circulation is obtained.

加温時間は、加温温度にもよるが、例えば30分から1時間である。加温時間が30分未満の場合には、親水性高分子樹脂が吸着基材の表面孔内に取り込まれず、一方、加温時間が1時間を超える場合、製造効率が低下する。   Although the heating time depends on the heating temperature, it is, for example, 30 minutes to 1 hour. When the heating time is less than 30 minutes, the hydrophilic polymer resin is not taken into the surface pores of the adsorption base material. On the other hand, when the heating time exceeds 1 hour, the production efficiency is lowered.

また、加温工程において、吸着基材が浸漬された親水性高分子を含む親水性処理液は、親水性高分子樹脂を、この親水性高分子樹脂に対し相溶性を有する良溶剤に溶解させて調製される。なお、親水性高分子樹脂は、上述同様であるため、ここでの説明は省略する。一方、親水性高分子樹脂に対し相溶性を有する良溶剤としては、例えば精製水が好ましい。   Further, in the heating step, the hydrophilic treatment liquid containing the hydrophilic polymer in which the adsorption substrate is immersed is obtained by dissolving the hydrophilic polymer resin in a good solvent compatible with the hydrophilic polymer resin. Prepared. In addition, since hydrophilic polymer resin is the same as that of the above-mentioned, description here is abbreviate | omitted. On the other hand, as a good solvent having compatibility with the hydrophilic polymer resin, for example, purified water is preferable.

また、上述した親水性処理液中の親水性高分子樹脂の濃度は、0.1質量%以上、0.5質量%以下である。親水性処理液中の親水性高分子樹脂の濃度が0.1質量%未満の場合、疎水性高分子樹脂からなる多孔質の吸着基材に所定量の親水性高分子樹脂が十分に固着されず、血球成分の吸着性能は高いものの、親水性が低いために、治療中の吸着器内での凝固及び圧力上昇が引き起こされる可能性がある。一方、親水性処理液中の親水性高分子樹脂の濃度が0.5質量%を超える場合、治療中の吸着器内での凝固及び圧力上昇は抑制されるものの、疎水性が低いために、血球の吸着性能が低下してしまう。   Moreover, the density | concentration of hydrophilic polymer resin in the hydrophilic processing liquid mentioned above is 0.1 to 0.5 mass%. When the concentration of the hydrophilic polymer resin in the hydrophilic treatment liquid is less than 0.1% by mass, a predetermined amount of the hydrophilic polymer resin is sufficiently fixed to the porous adsorption substrate made of the hydrophobic polymer resin. However, although the adsorption performance of blood cell components is high, the hydrophilicity is low, which may cause coagulation and pressure increase in the adsorber during treatment. On the other hand, when the concentration of the hydrophilic polymer resin in the hydrophilic treatment liquid exceeds 0.5% by mass, coagulation and pressure increase in the adsorber during treatment are suppressed, but the hydrophobicity is low. Blood cell adsorption performance is reduced.

次に、冷却工程において、冷却する温度は、10℃以上、30℃以下である。10℃未満に冷却しても、疎水性高分子樹脂からなる多孔質の吸着基材の表面孔の更なる収縮は望めず、また10℃未満に冷却するために大規模な冷却装置が必要となり、製造コストが嵩む。一方、30℃を超える温度での冷却では、加温工程で親水性高分子樹脂の少なくとも一部が表面孔に取り込まれても、疎水性高分子樹脂からなる多孔質の吸着基材の表面孔の収縮が不十分なため、表面孔にアンカー効果で親水性高分子樹脂が固着されず、次工程の洗浄で脱離してしまい、その結果、親水性処理が不十分なため、治療中の吸着器内での凝固及び圧力上昇を引き起こす可能性がある。   Next, in the cooling step, the cooling temperature is 10 ° C. or higher and 30 ° C. or lower. Even if it is cooled below 10 ° C, further shrinkage of the surface pores of the porous adsorption substrate made of a hydrophobic polymer resin cannot be expected, and a large-scale cooling device is required for cooling to below 10 ° C. , Manufacturing costs increase. On the other hand, in cooling at a temperature exceeding 30 ° C., even if at least a part of the hydrophilic polymer resin is taken into the surface pores in the heating step, the surface pores of the porous adsorption base material made of the hydrophobic polymer resin Since the hydrophilic polymer resin does not adhere to the surface hole due to the anchor effect and is detached by washing in the next step, as a result of insufficient hydrophilic treatment, adsorption during treatment May cause solidification and pressure increase in the vessel.

また、本実施の形態における血球除去用吸着体の製造方法は、さらに、上述した冷却する工程の後、親水性処理が施された吸着基材の表面を洗浄する工程を有する。洗浄工程により、上述したように、血球吸着体の表面に固着されず、表面に余分に付着している親水性高分子樹脂を除去することができる。   In addition, the method for producing an adsorbent for removing blood cells according to the present embodiment further includes a step of washing the surface of the adsorption base material that has been subjected to the hydrophilic treatment after the cooling step described above. As described above, the washing step can remove the hydrophilic polymer resin that is not adhered to the surface of the blood cell adsorbent and is excessively attached to the surface.

さらに、上述した洗浄する工程は、好ましくは、予備水洗工程と、アルコール類による本洗浄工程とからなり、予備水洗工程では、例えば精製水が用いられ、本洗浄工程に用いるアルコール類としては、例えばメタノールまたはエタノールなどが用いられる。アルコール類を用いて洗浄することにより、より確実に、血球吸着体の表面に余分に付着した親水性高分子樹脂を洗い流すことができ、血球除去の治療時の充填水や血液中への親水性高分子樹脂の溶出が防止される。また、本実施の形態において、エタノール洗浄後の吸着基材に放射線照射を行い、血球吸着体を製造することもできる。放射線照射により、吸着基材に固着された親水性高分子樹脂をより強固に固定でき、親水性高分子樹脂の血液中への溶出をより防止することができる。   Furthermore, the above-described washing step preferably includes a preliminary water washing step and a main washing step with alcohols. In the preliminary water washing step, for example, purified water is used, and alcohols used in the main washing step include, for example, Methanol or ethanol is used. By washing with alcohol, the hydrophilic polymer resin that has adhered to the surface of the blood cell adsorbent can be washed away more reliably, and hydrophilicity in the filling water and blood during the treatment of blood cell removal Elution of the polymer resin is prevented. In the present embodiment, a blood cell adsorbent can also be produced by irradiating the adsorbent substrate after ethanol washing with radiation. By irradiation with radiation, the hydrophilic polymer resin fixed to the adsorption substrate can be more firmly fixed, and the elution of the hydrophilic polymer resin into the blood can be further prevented.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

実施例1:
ポリアリレート樹脂(以下「PAR」ともいう、数平均分子量;25,000、ユニチカ株式会社製、商品名「Uポリマー」、ガラス転移温度;193℃)15質量部と、有機溶媒としてN−メチル−2−ピロリドン85質量部とを加熱溶解、撹拌、混合してポリマー原液を調製した。このポリマー原液を一重のノズル(オリフィス)から、有機溶媒としてN−メチル−2−ピロリドンを含有し水を40容量%の割合で含有する凝固液の浴中に吐出して滴下し、直径1.0mmの疎水性多孔質のPARビーズ状吸着基材を製造した。
Example 1:
15 parts by mass of polyarylate resin (hereinafter also referred to as “PAR”, number average molecular weight: 25,000, manufactured by Unitika Ltd., trade name “U polymer”, glass transition temperature: 193 ° C.) and N-methyl- as an organic solvent A polymer stock solution was prepared by dissolving, stirring, and mixing 85 parts by mass of 2-pyrrolidone. This polymer stock solution was discharged and dropped from a single nozzle (orifice) into a coagulating liquid bath containing N-methyl-2-pyrrolidone as an organic solvent and water in a proportion of 40% by volume. A 0 mm hydrophobic porous PAR bead-shaped adsorption substrate was produced.

疎水性多孔質のPARビーズ状吸着基材を、直径55mm、長さ150mmのポリカーボネート製のカラムに沈降体積で270mL充填した。このカラム内に、ポリビニルピロリドン(以下「PVP」ともいう、BASF社製、商品名「コリドンK−90」)の0.1質量%水溶液を170mL充填した。次いで、カラムを121℃で1時間加温し、親水化処理を行った。   A hydrophobic porous PAR bead-like adsorption base material was packed in a column made of polycarbonate having a diameter of 55 mm and a length of 150 mm in a sedimentation volume of 270 mL. In this column, 170 mL of 0.1 mass% aqueous solution of polyvinylpyrrolidone (hereinafter also referred to as “PVP”, manufactured by BASF, trade name “Collidon K-90”) was packed. Next, the column was heated at 121 ° C. for 1 hour to perform a hydrophilic treatment.

その後、カラム内の親水化処理されたビーズ状吸着基材を、1Lの水を100mL/minで通液して洗浄処理を実施した。次に、「Sigma Probe」(Thermo VG Scientific(株)社製)を用いて、X線光電子分光分析(XPS)法による血球吸着体の表面の炭素元素に対するPVP由来の窒素元素スペクトル強度N/C%を測定した。結果を表1に示す。   Thereafter, the hydrophilic treatment-treated bead-like adsorption base material was washed by passing 1 L of water at 100 mL / min. Next, using “Sigma Probe” (manufactured by Thermo VG Scientific Co., Ltd.), nitrogen element spectral intensity N / C derived from PVP with respect to carbon elements on the surface of the blood cell adsorbent by X-ray photoelectron spectroscopy (XPS) method % Was measured. The results are shown in Table 1.

次いで、水洗浄後の親水化処理されたビーズ状吸着基材3gをエタノール原液30mL中に浸漬し洗浄を行った後、上記同様、X線光電子分光分析(XPS)を行った。結果を表1に示す。   Next, 3 g of the beaded adsorption base material subjected to hydrophilization treatment after water washing was immersed in 30 mL of an ethanol stock solution for washing, and X-ray photoelectron spectroscopic analysis (XPS) was performed as described above. The results are shown in Table 1.

水洗浄後ならびに水洗浄及びエタノール洗浄後の血球除去用吸着体は、ともに、窒素元素スペクトル強度のピークが検出され、親水性高分子樹脂であるPVPが吸着体の表面に付与されたことが確認された。なお、水洗浄に比べ、水洗浄及びエタノール洗浄を行った吸着体の表面は、PVP由来の窒素元素スペクトル強度における検出ピークは低いことから、さらにエタノール洗浄を行うことにより、吸着体の表面に固着せず付着していた余分なPVPは除去されたものと考えられる。   Both adsorbents for blood cell removal after water washing and after water washing and ethanol washing detected a peak of the nitrogen element spectral intensity and confirmed that PVP, a hydrophilic polymer resin, was applied to the surface of the adsorbent. It was done. Since the surface of the adsorbent subjected to water washing and ethanol washing has a lower detection peak in the nitrogen element spectrum intensity derived from PVP than water washing, the surface of the adsorbent is further fixed by performing ethanol washing. It is considered that the excess PVP that did not adhere and adhered was removed.

実施例2:
親水化処理を行うポリビニルピロリドン水溶液として、ポリビニルピロリドン(BASF社製、商品名「コリドンK−90」)の0.3質量%水溶液を用いた以外は、実施例1と同一条件で吸着基材の親水化処理及び洗浄処理を行い、実施例1と同様に、X線光電子分光分析(XPS)を行った。結果を表1に示す。XPSの測定結果により、水洗浄後ならびに水洗浄及びエタノール洗浄後の血球除去用吸着体は、ともに、窒素元素スペクトル強度のピークが検出され、親水性高分子樹脂であるPVPが吸着体の表面に付与されたことが確認された。なお、エタノール洗浄をさらに実施することにより、吸着体の表面に固着せず付着していた余分なPVPが除去されたものと考えられる。
Example 2:
As an aqueous polyvinyl pyrrolidone solution to be hydrophilized, an adsorbent substrate was prepared under the same conditions as in Example 1 except that a 0.3% by mass aqueous solution of polyvinyl pyrrolidone (trade name “Collidon K-90” manufactured by BASF Corporation) was used. Hydrophilic treatment and washing treatment were performed, and X-ray photoelectron spectroscopy (XPS) was performed in the same manner as in Example 1. The results are shown in Table 1. From the XPS measurement results, the adsorbent for blood cell removal after water washing and after water washing and ethanol washing both detected a peak of the nitrogen element spectrum intensity, and the hydrophilic polymer resin PVP was found on the surface of the adsorbent. It was confirmed that it was granted. In addition, it is thought that the excess PVP which adhered without adhering to the surface of an adsorbent was removed by performing ethanol washing further.

実施例3:
親水化処理を行うポリビニルピロリドン水溶液として、ポリビニルピロリドン(BASF社製、商品名「コリドンK−90」)の0.5質量%水溶液を用いた以外は、実施例1と同一条件で吸着基材の親水化処理を行い、X線光電子分光分析(XPS)を行った。結果を表1に示す。XPSの測定結果により、水洗浄後ならびに水洗浄及びエタノール洗浄後の血球除去用吸着体は、ともに、窒素元素スペクトル強度のピークが検出され、親水性高分子樹脂であるPVPが吸着体の表面に付与されたことが確認された。なお、実施例1と同様に、エタノール洗浄をさらに実施することにより、吸着体の表面に固着せず付着していた余分なPVPが除去されたものと考えられる。
Example 3:
As an aqueous polyvinyl pyrrolidone solution to be hydrophilized, an adsorbent substrate was prepared under the same conditions as in Example 1 except that a 0.5% by mass aqueous solution of polyvinyl pyrrolidone (trade name “Collidon K-90” manufactured by BASF Corporation) was used. Hydrophilic treatment was performed, and X-ray photoelectron spectroscopy (XPS) was performed. The results are shown in Table 1. From the XPS measurement results, the adsorbent for blood cell removal after water washing and after water washing and ethanol washing both detected a peak of the nitrogen element spectrum intensity, and the hydrophilic polymer resin PVP was found on the surface of the adsorbent. It was confirmed that it was granted. In addition, it is thought that the excess PVP which adhered without adhering to the surface of an adsorbent was removed by performing ethanol washing | cleaning further similarly to Example 1. FIG.

実施例4:
親水化処理を行う際に、カラムを180℃で0.5時間加温し、親水化処理を行った以外は、実施例1と同一条件で吸着基材の親水化処理及び洗浄処理を行い、実施例1と同様に、X線光電子分光分析(XPS)を行った。結果を表1に示す。XPSの測定結果により、水洗浄後ならびに水洗浄及びエタノール洗浄後の血球除去用吸着体は、ともに、窒素元素スペクトル強度のピークが検出され、親水性高分子樹脂であるPVPが吸着体の表面に付与されたことが確認された。なお、エタノール洗浄をさらに実施することにより、吸着体の表面に固着せず付着していた余分なPVPが除去されたものと考えられる。
Example 4:
When performing the hydrophilization treatment, the column was heated at 180 ° C. for 0.5 hours, and the hydrophilization treatment was performed under the same conditions as in Example 1 except that the hydrophilization treatment was performed. In the same manner as in Example 1, X-ray photoelectron spectroscopy (XPS) was performed. The results are shown in Table 1. From the XPS measurement results, the adsorbent for blood cell removal after water washing and after water washing and ethanol washing both detected a peak of the nitrogen element spectrum intensity, and the hydrophilic polymer resin PVP was found on the surface of the adsorbent. It was confirmed that it was granted. In addition, it is thought that the excess PVP which adhered without adhering to the surface of an adsorbent was removed by performing ethanol washing further.

比較例1:
親水化処理を行う際に、カラムを121℃に上げる加温工程を行わず、室温(25℃)のままにて行った以外は、実施例3と同一条件で吸着基材の親水化処理及び洗浄処理を行い、実施例1と同様に、X線光電子分光分析(XPS)を行った。結果を表1に示す。XPSの測定結果により、水洗浄後ならびに水洗浄及びエタノール洗浄後の血球除去用吸着体は、ともに、窒素元素スペクトル強度のピークは検出されたものの、実施例1〜4に比べて少なく、得られた血球除去用吸着体に付与された親水性高分子樹脂であるPVP量は少ないと考えられた。また、エタノール洗浄による検出ピークの低下は顕著であった。
Comparative Example 1:
When performing the hydrophilization treatment, the adsorbing substrate was hydrophilized under the same conditions as in Example 3 except that the heating step of raising the column to 121 ° C was not performed and the column was kept at room temperature (25 ° C). Cleaning treatment was performed, and X-ray photoelectron spectroscopy (XPS) was performed in the same manner as in Example 1. The results are shown in Table 1. According to the XPS measurement results, the adsorbents for removing blood cells after washing with water and after washing with water and ethanol were both obtained with less peak of nitrogen element spectrum intensity than those of Examples 1 to 4, although the peak of nitrogen element spectrum intensity was detected. The amount of PVP that is a hydrophilic polymer resin imparted to the adsorbent for removing blood cells was considered to be small. In addition, the decrease in detection peak due to ethanol washing was remarkable.

実施例1〜4と比較例1のエタノール洗浄の後の結果から、親水化処理において加温することによって、より多くの親水性高分子樹脂が疎水性高分子樹脂からなる多孔質吸着基材に、より強固に固着し、またエタノール洗浄により、吸着基材の表面に固着せず付着していた余分な親水性高分子樹脂をより確実に除去することが判明した。   From the results after the ethanol washing in Examples 1 to 4 and Comparative Example 1, by heating in the hydrophilization treatment, a larger amount of the hydrophilic polymer resin becomes a porous adsorption substrate made of a hydrophobic polymer resin. It has been found that the extra hydrophilic polymer resin that adheres more firmly and adheres to the surface of the adsorbing substrate without being adhered to the surface of the adsorbing substrate can be more reliably removed by washing with ethanol.

実施例5:
実施例3で得られたエタノール洗浄後の血球除去用吸着体を直径27mm、長さ70mmのポリカーボネート製のカラムに外表面積で約0.14mm充填し、白血球、血小板吸着試験を行った。
Example 5:
The adsorbent for removing blood cells after washing with ethanol obtained in Example 3 was packed in a column made of polycarbonate having a diameter of 27 mm and a length of 70 mm with an outer surface area of about 0.14 mm 2 to conduct a leukocyte and platelet adsorption test.

[白血球、血小板吸着試験] 健常者より250mLの血液を血液バックに採血し、ヘパリン化後、上記カラムを用い、7mL/minで30分間血液を循環させた後の、循環前後の顆粒球(好中球)数、血小板数、リンパ球数の変化を観察し、各血球成分の吸着率を算出した。 [Leukocyte and platelet adsorption test] 250 mL of blood was collected from a healthy subject in a blood bag, heparinized, and after circulating blood at 7 mL / min for 30 minutes using the above column, granulocytes before and after circulation (preferably The changes in the number of neutrophils, platelets, and lymphocytes were observed, and the adsorption rate of each blood cell component was calculated.

上記試験の結果を表2に示す。なお、実施例5において血液循環終了後、血球除去用吸着体への残血は見られなかった。   The results of the above test are shown in Table 2. In Example 5, no residual blood was observed in the blood cell removing adsorbent after the blood circulation.

比較例2:
実施例1の親水化処理前の疎水性多孔質のPARビーズ状吸着基材を、血球除去用吸着体として用いた以外は、実施例5と同様に試験を行い評価した。結果を表2に示す。顆粒球(好中球)、血小板に対する十分な吸着能を示し、メモリー細胞として体内に残しておきたいリンパ球の吸着能は低く保たれたが、血液循環後の血球除去用吸着体として用いたPARビーズ状吸着基材には残血が見られた。
Comparative Example 2:
A test was conducted and evaluated in the same manner as in Example 5 except that the hydrophobic porous PAR bead-shaped adsorption base material before hydrophilic treatment of Example 1 was used as an adsorbent for removing blood cells. The results are shown in Table 2. Adhesive capacity for granulocytes (neutrophils) and platelets was shown, and the ability of lymphocytes to remain in the body as memory cells was kept low, but it was used as an adsorbent for removing blood cells after blood circulation. Residual blood was observed on the PAR bead-shaped adsorption substrate.

本発明は、血球除去用途に好適である。   The present invention is suitable for blood cell removal applications.

Claims (8)

疎水性高分子樹脂からなる多孔質の吸着基材と、
前記吸着基材のミクロサイズの表面孔に少なくとも一部が取り込まれアンカー効果により固定された親水性高分子樹脂と、を有し、
前記疎水性高分子樹脂は、ポリアリレート樹脂(PAR)、ポリエーテルスルホン樹脂(PES)、ポリスルホン樹脂(PSF)、ポリスチレン樹脂、ポリメチルメタクリレート樹脂からなる群から選択された少なくとも1種であり、
前記親水性高分子樹脂は、ポリビニルピロリドン、ポリエチレングリコール、ポリグリコールモノエステル、ポリプロピレングリコール共重合体、ポリアクリルアミドからなる群から選択された少なくとも1種であることを特徴とする血球除去用吸着体。
A porous adsorption substrate made of a hydrophobic polymer resin;
Have a, a fixed hydrophilic polymer resin at least partially incorporated anchoring effect on the surface pores of microscopic size of the adsorbent substrate,
The hydrophobic polymer resin is at least one selected from the group consisting of polyarylate resin (PAR), polyethersulfone resin (PES), polysulfone resin (PSF), polystyrene resin, and polymethylmethacrylate resin.
The hydrophilic polymer resin, polyvinyl pyrrolidone, polyethylene glycol, polyglycol monoester, polypropylene glycol copolymers, blood cells removal adsorbent for at least 1 Tanedea characterized Rukoto selected from the group consisting of polyacrylamide .
前記親水性高分子樹脂が窒素を含む親水性高分子樹脂であるとき、X線光電子分光分析法により測定された血球吸着体の表面の炭素元素に対する親水性高分子樹脂由来の窒素元素スペクトル強度N/C%は、0.3%以上、1.5%以下であることを特徴とする請求項1に記載の血球除去用吸着体。   When the hydrophilic polymer resin is a hydrophilic polymer resin containing nitrogen, the nitrogen element spectrum intensity N derived from the hydrophilic polymer resin with respect to the carbon element on the surface of the blood cell adsorbent measured by X-ray photoelectron spectroscopy The adsorbent for removing blood cells according to claim 1, wherein / C% is 0.3% or more and 1.5% or less. 疎水性高分子樹脂を含むポリマー原液を前記疎水性高分子樹脂に対し貧溶媒からなる凝固液中に落下させ、疎水性高分子樹脂からなる多孔質の吸着基材を生成する工程と、
親水性高分子樹脂を含む親水性処理液に前記吸着基材を浸漬し、前記疎水性高分子樹脂のガラス転移温度未満の温度で加温する工程と、
親水性処理が施された吸着基材を冷却する工程と、を有することを特徴とする血球除去用吸着体の製造方法。
Dropping a polymer stock solution containing a hydrophobic polymer resin into a coagulation solution made of a poor solvent with respect to the hydrophobic polymer resin to produce a porous adsorption substrate made of the hydrophobic polymer resin;
Immersing the adsorption substrate in a hydrophilic treatment liquid containing a hydrophilic polymer resin, and heating at a temperature lower than the glass transition temperature of the hydrophobic polymer resin;
And a step of cooling the adsorbent substrate that has been subjected to hydrophilic treatment.
冷却する工程の後、親水性処理が施された吸着基材の表面を洗浄する工程を有することを特徴とする請求項に記載の血球除去用吸着体の製造方法。 4. The method for producing an adsorbent for removing blood cells according to claim 3 , further comprising a step of washing the surface of the adsorption base material that has been subjected to the hydrophilic treatment after the cooling step. 洗浄する工程は、予備水洗工程と、アルコール類による本洗浄工程とからなることを特徴とする請求項4に記載の血球除去用吸着体の製造方法。 The method for producing an adsorbent for removing blood cells according to claim 4, wherein the washing step comprises a preliminary water washing step and a main washing step with alcohols. 加温する温度は、100℃以上、前記疎水性高分子樹脂のガラス転移温度未満であることを特徴とする請求項から請求項のいずれか1項に記載の血球除去用吸着体の製造方法。 The temperature for heating is 100 ° C or higher and lower than the glass transition temperature of the hydrophobic polymer resin, The production of the adsorbent for removing blood cells according to any one of claims 3 to 5 , Method. 前記親水性処理液中の親水性高分子樹脂の濃度は、0.1質量%以上、0.5質量%以下であることを特徴とする請求項から請求項のいずれか1項に記載の血球除去用吸着体の製造方法。 The density | concentration of hydrophilic polymer resin in the said hydrophilic treatment liquid is 0.1 mass% or more and 0.5 mass% or less, The any one of Claim 3 to 6 characterized by the above-mentioned. Of manufacturing an adsorbent for removing blood cells. 冷却する温度は、10℃以上、30℃以下であることを特徴とする請求項から請求項のいずれか1項に記載の血球除去用吸着体の製造方法。 The method for producing an adsorbent for removing blood cells according to any one of claims 3 to 7 , wherein the cooling temperature is 10 ° C or higher and 30 ° C or lower.
JP2009181953A 2009-08-04 2009-08-04 Adsorbent for removing blood cells and method for producing the same Active JP5420341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181953A JP5420341B2 (en) 2009-08-04 2009-08-04 Adsorbent for removing blood cells and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181953A JP5420341B2 (en) 2009-08-04 2009-08-04 Adsorbent for removing blood cells and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011030903A JP2011030903A (en) 2011-02-17
JP5420341B2 true JP5420341B2 (en) 2014-02-19

Family

ID=43760559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181953A Active JP5420341B2 (en) 2009-08-04 2009-08-04 Adsorbent for removing blood cells and method for producing the same

Country Status (1)

Country Link
JP (1) JP5420341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202603A1 (en) 2021-03-26 2022-09-29 東レ株式会社 Porous adsorbent material, separation column using same for purifying biopharmaceutical, and method for manufacturing biopharmaceutical

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924357B2 (en) * 2015-07-31 2021-08-25 東レ株式会社 Adsorbed fiber bundle and body fluid purification column
CN109843347B (en) * 2016-11-29 2021-06-15 富士胶片株式会社 Blood component selective adsorption filter material and blood filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365225A (en) * 1989-08-01 1991-03-20 Mitsubishi Rayon Co Ltd Hydrophilic, porous membrane and its manufacturing method
JP4728473B2 (en) * 2000-10-24 2011-07-20 日機装株式会社 Modified porous membrane and method for producing the same
JP2005065711A (en) * 2003-08-21 2005-03-17 Toray Ind Inc Absorption material and manufacturing method of the same
JP4997770B2 (en) * 2006-01-31 2012-08-08 東レ株式会社 Adsorber
JP2009125265A (en) * 2007-11-22 2009-06-11 Kaneka Corp Cytokine absorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202603A1 (en) 2021-03-26 2022-09-29 東レ株式会社 Porous adsorbent material, separation column using same for purifying biopharmaceutical, and method for manufacturing biopharmaceutical

Also Published As

Publication number Publication date
JP2011030903A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP6118831B2 (en) Surface treatment agent, filter medium, and blood treatment filter
JP5407713B2 (en) Polysulfone-based hollow fiber membrane module and manufacturing method
JP4888559B2 (en) Separation membrane for blood purification, separation membrane module for blood purification, hollow fiber membrane for blood purification, and hollow fiber membrane module for blood purification
EP1306121B1 (en) Modified hollow-fiber membrane
AU660425B2 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
JP6036882B2 (en) Separation membrane, separation membrane module, method for producing separation membrane, and method for producing separation membrane module
JPH0647262A (en) Method for highly efficient removal of low-density lipoprotein from whole blood
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPWO2007018284A1 (en) Liquid treatment separation membrane composed of aromatic ether polymer hydrophilized by hydrophilizing agent
TW200938239A (en) Microporous hollow fiber membrane for blood treatment
CN101068958A (en) Functional porous multilayer fibre and its preparation
JP5857407B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
TW200932813A (en) Cellulose porous membrane
JP5338431B2 (en) Polysulfone separation membrane and method for producing polysulfone separation membrane module
WO2002034374A1 (en) Hydrophilized membrane and method of hydrophilization therefor
KR20160065047A (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
AU2017305070A1 (en) Copolymer, and separation membrane, medical device, and blood purifier using the copolymer
JP5420341B2 (en) Adsorbent for removing blood cells and method for producing the same
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
JP2011092928A (en) Separation membrane and separation membrane module
JP5696527B2 (en) Plasma separation method using plasma separation membrane module
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP2011000145A (en) Hollow fiber blood purification membrane and method of manufacturing the same
JP2006077136A (en) Method for producing biocompatible polymer
WO2016043223A1 (en) Fiber for protein adsorption and column for protein adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250