JP4471048B2 - Simultaneous prevention method of scale failure and slime failure of circulating cooling water system - Google Patents

Simultaneous prevention method of scale failure and slime failure of circulating cooling water system Download PDF

Info

Publication number
JP4471048B2
JP4471048B2 JP2000072142A JP2000072142A JP4471048B2 JP 4471048 B2 JP4471048 B2 JP 4471048B2 JP 2000072142 A JP2000072142 A JP 2000072142A JP 2000072142 A JP2000072142 A JP 2000072142A JP 4471048 B2 JP4471048 B2 JP 4471048B2
Authority
JP
Japan
Prior art keywords
cooling water
water system
electrode
slime
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000072142A
Other languages
Japanese (ja)
Other versions
JP2001259650A (en
Inventor
賢二 木幡
晶 飯村
真司 佐々木
正典 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000072142A priority Critical patent/JP4471048B2/en
Publication of JP2001259650A publication Critical patent/JP2001259650A/en
Application granted granted Critical
Publication of JP4471048B2 publication Critical patent/JP4471048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スケール及びスライムの防止方法に関する。さらに詳しくは、本発明は、冷却水系において、薬品を使用することなく、硬度成分の除去と酸化剤の供給を同時に行い、スケール障害及びスライム障害を同時に防止することができるスケール及びスライムの防止方法に関する。
【0002】
【従来の技術】
冷却水系の水処理では、スケール障害やスライム障害を防止するために、多くの薬品が使用されている。例えば、スケール防止には、水溶性ポリマー、ホスホン酸、ポリリン酸塩などが広く使用されており、スライム防止には、次亜塩素酸ナトリウムや過酸化水素水などの酸化剤が使用されている。
しかし、スケール障害やスライム障害の防止のために、このような薬品を用いると、在庫量をチェックして発注するなどの事務処理の手間がかかり、薬品のタンクローリによる運搬、薬品コンテナの移動などの運搬の労力がかかり、薬品の漏洩などによる人体への被害などの取り扱いの危険性がともない、さらに、水系の薬品濃度を所定の値に維持管理するために、分析を行い、薬注速度を調整するという作業が必要になる。
また、薬品による処理は、スケールを防止し得る水質に限界があり、その上限を超えないようにブローを行うために、排水が発生する。この排水にはCOD成分やリン成分などが含まれるので、一般水系に放流するためには、排水処理が必要になり、その量に応じてコスト的な負担を負わなければならない。
このために、薬品による処理にともなう環境負荷への影響や、さまざまな煩雑性、取り扱い上の危険性などの問題を解消するために、薬品を使用することなく、高濃縮運転にも対応でき、スケール防止とスライム防止を同時に行い得る方法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、冷却水系において、薬品を使用することなく、硬度成分の除去と酸化剤の供給を同時に行い、スケール障害及びスライム障害を同時に防止することができるスケール及びスライムの防止方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、陽極として表面に白金族元素の単体又は酸化物を有する電極を用い、陽極表面で水中の塩化物イオンを酸化剤に変換させて水系内に供給し、陰極表面で水中の硬度成分を固体として付着させて除去することにより、薬品を使用することなく、スケール障害とスライム障害を同時に防止し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)循環冷却水系中に浸漬した、陽極及び陰極の表面に白金族元素の単体又は酸化物を有する電極に電圧を印加して、一方の陰極表面において、冷却水系中の硬度成分を固体として付着させて冷却水系から硬度成分を除去するとともに、他方の陽極表面において、塩化物イオンを酸化剤に変換させて冷却水系内に供給する方法において、1時間以上の間隔毎に電極の陰極と陽極を交互に反転させて、陽極に反転した電極において、塩化物イオンを酸化剤に変換させて水系内に供給すると同時に反転前の陰極時に付着した硬度成分を電極から剥離させるとともに、陰極に反転した電極においては、水中の硬度成分を固体として付着させて冷却水系から硬度成分を除去し、陽極に反転した電極から剥離した硬度成分を後段の回収除去手段で回収することによって、薬品を使用することなく、循環冷却水系からの硬度成分の除去と循環冷却水系への酸化剤の供給を同時に行うことを特徴とする循環冷却水系のスケール障害及びスライム障害の同時防止方法、
)白金族元素が、白金、ルテニウム又はイリジウムである第1項記載の循環冷却水系のスケール障害及びスライム障害の同時防止方法、及び、
)冷却水中の酸化剤濃度を測定し、該測定結果を基に冷却水中の酸化剤濃度を所定値に調整するように、電極間の電流を制御することを特徴とする第1項又は第2項記載の循環冷却水系のスケール障害及びスライム障害の同時防止方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明のスケール及びスライムの防止方法は、冷却水中に浸漬した電極に電圧を印加して陰極表面に水中の硬度成分を固体として付着させて除去するとともに、陽極表面で塩化物イオンを酸化剤に変換させて水系内に供給するスケール及びスライムの防止方法であって、電極のうち少なくとも陽極に、表面に白金族元素の単体又は酸化物を有する電極を用いる方法である。
本発明方法においては、冷却水中に陽極及び陰極からなる一組の電極を浸漬し、これらの電極の端子間に外部電源を用いて電圧を印加する。このとき、陰極の表面において水が電気分解され、水酸化物イオンが生成する。これにより、電極表面のpHが局部的に上昇し、その表面において炭酸カルシウムやケイ酸マグネシウムなどの硬度成分が析出し、付着する。その結果、水中の硬度成分の濃度が低下し、熱交換器などの伝熱面でのスケールの発生を防止することができる。
一方、陽極の表面においては、冷却水中の塩化物イオンが酸化され、次亜塩素酸イオンなどの酸化力を有する化学種が発生し、水系内に供給される。発生した酸化剤を水系内に維持することにより、スライム障害を防止することができる。次亜塩素酸イオンの発生効率及び腐食性の点から、冷却水中の塩化物イオン濃度は10〜200mgCl/Lであることが好ましい。
【0006】
本発明方法に用いる陽極は、表面に白金族元素の単体又は酸化物を有する電極である。表面に白金族元素の単体又は酸化物を有する電極としては、全体が白金族元素の単体又は酸化物からなる電極を用いることができ、あるいは、白金族元素の単体又は酸化物で全面を、あるいは、適当な割合で表面を被覆した電極を用いることもできる。電極表面を白金族元素の単体又は酸化物で被覆する場合、電極本体の材料に特に制限はないが、耐食性材料であることが好ましい。耐食性材料としては、例えば、チタン、ステンレス鋼、銀、炭素、アルミニウムなどを挙げることができる。陽極と陰極の材料は同一の材料とすることができ、あるいは、異なる材料とすることもできる。白金族元素としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができるが、これらの中で、白金、ルテニウム及びイリジウムを特に好適に用いることができる。表面に白金族元素の単体又は酸化物を有する電極を用いることにより、その触媒作用によって酸化剤の発生効率を向上することができる。電極表面に白金族元素の単体又は酸化物を組み込む方法に特に制限はなく、また、電極表面を被覆する白金族元素の単体又は酸化物の割合は、必要とする酸化剤の発生量に応じて適宜選択することができる。
【0007】
本発明方法において、電極に印加する電圧に特に制限はないが、人体に対する安全性を考慮すると、40V以下であることが好ましい。また、スケール防止とスライム防止を安定して行うために、電圧を自動制御して電極間に流れる電流を一定に保つことができる。あるいは、電流は、酸化剤の濃度を測定しながら、これが所定の値になるように制御することもできる。例えば、冷却水の水質の変動が激しい場合などは、酸化剤濃度の測定値から自動的に電流を制御するシステムを付加することにより、冷却水系の維持管理を安定して行うことができる。
一方、硬度成分除去のために必要な電流は、目標の硬度成分の除去速度に対応させて、必要な水酸化物イオンの発生速度から計算することができる。このとき、酸化剤発生に必要な電流が、硬度成分除去のための電流を上回っていれば、最適な状態で運転することができる。すなわち、系内で酸化剤の濃度が所定の値に維持されながら、硬度成分も十分に除去されることになる。一般的には、電流は0.1〜5Aであることが好ましく、1〜3Aであることがより好ましい。ただし、硬度成分を除去するために必要な電流は、実際には、計算値より低い場合が多い。これは、電極表面に付着した硬度成分が種結晶となり、結晶成長すなわち硬度成分の除去を補助することによるものと考えられる。
本発明方法においては、陰極に付着した硬度成分を、電極の極性を反転させて剥離させ、剥離した硬度成分を後段の回収除去手段で処理することが好ましい。陰極表面に硬度成分が析出、付着すると、一定の電圧を印加していても電流が低下する。電極の極性を反転させ、硬度成分が付着した陰極を陽極とすることにより、電極の表面から水素イオンを発生させ、付着した硬度成分の電極表面との接着部を局部的に溶解させて剥離することができる。陰極と陽極の極性を反転させる場合は、両極がともに白金族元素の単体又は酸化物を表面に有し、材料及び構造が同一であることが好ましい。
【0008】
本発明方法において、電極の極性の反転の間隔に特に制限はないが、剥離した硬度成分の回収除去を容易に行うために、陰極に付着した硬度成分の厚さが0.5mm以上に成長したのち反転することが好ましい。また、電極の寿命を長くするために、電極の極性の反転の間隔は1時間以上とすることが好ましい。
本発明方法において、電極の構造に特に制限はないが、電極を容器に組み込んで通水する電解セルとすることが好ましい。また、電解セルの設置場所にも特に制限はないが、冷却水系に分岐ラインを設けて電解セルを設置し、電解セルを通過した水を冷却塔に返送することが好ましい。
本発明方法においては、陰極から剥離した硬度成分を、後段に設けた回収手段で除去することが好ましい。陰極から剥離した硬度成分を回収手段で除去することにより、硬度成分がストレーナなどに詰まったり、ポンプなどにより破砕されて微粒子となり、熱交換器や配管内に堆積することを防ぐことができる。本発明方法において、硬度成分の回収手段に特に制限はないが、陰極から剥離した硬度成分は沈降しやすいので、電解セルの後段に沈降槽を設置することにより、そのほとんどを回収することができる。沈降物の排出に際して、細い配管などに沈降物が詰まりやすい場合は、破砕機などを取り付けて、沈降物を破砕しながら排出することができる。また、沈降槽の後段にろ過器を設けることにより、沈降槽で回収されなかった硬度成分の微粒子を回収することができる。
【0009】
図1は、本発明方法の実施の一態様の工程系統図である。冷却塔1のピット2に貯留された冷水は、循環ポンプ3により熱交換器4へ送られる。冷水の一部は分岐ライン5に分水され、バルブ6を経由して一対の電極を備えた電解セル7に通水され、陰極の表面に水中の硬度成分が付着析出し、陽極の表面で水中の塩化物イオンが酸化剤に変換されて水系内に供給される。電極の極性の反転により、電極の表面から剥離した硬度成分は、沈降槽8において沈降分離される。沈降槽の上澄水は、ろ過器9に送られ、水中に残存する硬度成分の微粒子が除去されたのち、冷却塔に返送される。
本発明方法は、使用する装置がコンパクトであり、簡易かつ安全な上に、排水量を大幅に削減することができる。また、本発明方法においては、薬品を使用しないので、環境へ負荷を与えることがなく、また、薬品の取り扱いにともなう様々な煩雑性や、取り扱い上の危険性などの問題を解消することができる。さらに、従来の薬品処理法に比べて、高濃縮の運転にも対応することができる。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例は、図1に示す工程からろ過器を除いたパイロット規模の熱交換器を有する冷却水系において、スケール防止能力及びスライム防止能力の評価を行った。
この冷却水系は、保有水量が300Lであり、外径が19mm、肉厚1mmのSUS304のチューブ2本を備えた内面伝熱面積が0.32m2の熱交換器を備えている。冷却水の流量は1,680L/hであり、そのうちの300L/hを、分岐ラインから、イリジウムを被覆したチタン電極2個を備えた電解セルに引き込み、残留塩素濃度が所定値となるように電圧を制御し、6時間ごとに陽極と陰極を反転させた。電極から剥離した硬度成分は、沈降槽において沈降分離した。補給水は、塩化物イオン濃度約10mg/L、カルシウム硬度約40mgCaCO3/Lの市水を用い、濃縮倍率5倍又は10倍で運転を行った。また、冷却水の熱交換器入口温度は30℃、熱交換器出口温度は50℃に保った。
30日間の運転を行ったのち、冷却水のカルシウム硬度を測定し、熱交換器のチューブの重量増加分からスケールの付着量を求め、沈降槽において回収された硬度成分の総量から、1日当たりの硬度成分回収速度を算出した。また、冷却水の塩化物イオン濃度と残留塩素濃度を測定した。さらに、運転開始後20日目から23日目までの3日間、冷水ピットに、75mm×25mm×1.5mmのゴム板3枚を浸漬して、付着成長したスライムを採取し、105℃において恒量になるまで乾燥し、測定された重量の算術平均値からスライム付着速度を求めた。
実施例1
冷却水の濃縮倍率5倍、残留塩素濃度0.15mgCl/Lの条件で30日間の運転を行った。
冷却水のカルシウム硬度は152mgCaCO3/L、スケール付着速度は9mg/cm2/month、硬度成分の回収速度は17g/dayであった。冷却水の塩化物イオン濃度は45mg/L、スライム付着速度は10mg/dm2/3dayであった。
実施例2
冷却水の濃縮倍率5倍、残留塩素濃度0.60mgCl/Lの条件で30日間の運転を行った。
冷却水のカルシウム硬度は138mgCaCO3/L、スケール付着速度は7mg/cm2/month、硬度成分の回収速度は23g/dayであった。冷却水の塩化物イオン濃度は39mg/L、スライムの付着は認められなかった。
比較例1
冷却水の分岐ラインへの通水を止め、分子量3,500のポリマレイン酸を濃度が20mg/Lになるよう、次亜塩素酸ナトリウムを残留塩素濃度が0.6mgCl/Lになるよう添加し、冷却水の濃縮倍率5倍で、30日間の運転を行った。
冷却水のカルシウム硬度は201mgCaCO3/L、スケール付着速度は13mg/cm2/monthであった。冷却水の塩化物イオン濃度は69mg/L、冷却水の残留塩素濃度は0.62mgCl/Lであり、スライムの付着は認められなかった。
比較例2
冷却水の分岐ラインへの通水を止め、薬品を添加することなく、冷却水の濃縮倍率5倍で、30日間の運転を行った。
冷却水のカルシウム硬度は153mgCaCO3/L、スケール付着速度は118mg/cm2/monthであった。冷却水の塩化物イオン濃度は52mg/L、冷却水の残留塩素濃度は0.04mgCl/Lであり、スライムの付着速度は30mg/dm2/3dayであった。
実施例3
冷却水の濃縮倍率10倍、残留塩素濃度0.20mgCl/Lの条件で30日間の運転を行った。
冷却水のカルシウム硬度は138mgCaCO3/L、スケール付着速度は13mg/cm2/month、硬度成分の回収速度は20g/dayであった。冷却水の塩化物イオン濃度は92mg/L、スライム付着速度は8mg/dm2/3dayであった。
実施例4
冷却水の濃縮倍率10倍、残留塩素濃度0.80mgCl/Lの条件で30日間の運転を行った。
冷却水のカルシウム硬度は132mgCaCO3/L、スケール付着速度は11mg/cm2/month、硬度成分の回収速度は24g/dayであった。冷却水の塩化物イオン濃度は87mg/L、スライム付着速度は1mg/dm2/3dayであった。
比較例3
冷却水の分岐ラインへの通水を止め、分子量3,500のポリマレイン酸を濃度が20mg/Lになるよう、次亜塩素酸ナトリウムを残留塩素濃度が0.8mgCl/Lになるよう添加し、冷却水の濃縮倍率10倍で、30日間の運転を行った。冷却水のカルシウム硬度は315mgCaCO3/L、スケール付着速度は52mg/cm2/monthであった。冷却水の塩化物イオン濃度は124mg/L、冷却水の残留塩素濃度は0.81mgCl/Lであり、スライム付着速度は1mg/dm2/3dayであった。
比較例4
冷却水の分岐ラインへの通水を止め、薬品を添加することなく、冷却水の濃縮倍率10倍で、30日間の運転を行った。
冷却水のカルシウム硬度は158mgCaCO3/L、スケール付着速度は186mg/cm2/monthであった。冷却水の塩化物イオン濃度は104mg/L、冷却水の残留塩素濃度は0.02mgCl/Lであり、スライムの付着速度は58mg/dm2/3dayであった。
実施例1〜4及び比較例1〜4の処理条件と結果を、第1表に示す。
【0011】
【表1】

Figure 0004471048
【0012】
第1表に見られるように、冷却水を分岐ラインに設けた電解セルに通水し、電極に電圧を印加した実施例1〜4においては、沈降槽において硬度成分が回収され、熱交換器のチューブへのスケールの付着が防止されるとともに、冷却水中の残留塩素濃度が高くなり、スライムの付着も防止されている。特に、濃縮倍率10倍の場合は、比較例3のようにポリマレイン酸と次亜塩素酸ナトリウムを添加した従来法では、十分なスケール付着の防止は困難であるが、本発明方法によれば、実施例3〜4のように、スケール付着を防止することができる。なお、濃縮倍率10倍の場合、ブロー排水量は濃縮倍率5倍の場合の1/2以下に減少した。
【0013】
【発明の効果】
本発明方法によれば、一個の電解セルにより冷却水中の硬度成分を除去しつつ、酸化剤を発生させることができ、冷却水系のスケール防止及びスライム防止を同時に実現することができる。また、従来の薬品処理では不可能な高濃縮条件においても、効果的にスケール付着を防止することができる。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の一態様の工程系統図である。
【符号の説明】
1 冷却塔
2 ピット
3 循環ポンプ
4 熱交換器
5 分岐ライン
6 バルブ
7 電解セル
8 沈降槽
9 ろ過器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing scale and slime. More specifically, the present invention relates to a scale and slime prevention method capable of simultaneously preventing removal of a hardness component and supply of an oxidizing agent in a cooling water system without using chemicals, thereby simultaneously preventing scale failure and slime failure. About.
[0002]
[Prior art]
Many chemicals are used in cooling water system water treatment to prevent scale failure and slime failure. For example, water-soluble polymers, phosphonic acids, polyphosphates and the like are widely used for scale prevention, and oxidizing agents such as sodium hypochlorite and hydrogen peroxide are used for slime prevention.
However, using such chemicals to prevent scale failures and slime failures requires time-consuming administrative work such as checking stock quantities and placing orders, and transporting chemicals with tank trucks, moving chemical containers, etc. In order to maintain handling and management of aqueous chemical concentration at a specified value, it is necessary to carry out labor for transportation, and there is a risk of handling such as damage to the human body due to leakage of chemicals. The work of doing is necessary.
Further, the treatment with chemicals has a limit in water quality that can prevent scale, and waste water is generated to blow so as not to exceed the upper limit. Since this wastewater contains COD components, phosphorus components and the like, wastewater treatment is required to discharge it into a general water system, and a cost burden must be borne according to the amount.
For this reason, in order to solve the problems such as the impact on the environmental load caused by the treatment with chemicals, various complications, dangers in handling, etc., it can cope with high concentration operation without using chemicals, There has been a demand for a method capable of simultaneously performing scale prevention and slime prevention.
[0003]
[Problems to be solved by the invention]
The present invention provides a scale and slime prevention method capable of simultaneously preventing the removal of hardness components and the supply of an oxidant without using chemicals in the cooling water system, thereby simultaneously preventing scale failure and slime failure. It was made for the purpose.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have used an electrode having a platinum group element or an oxide on the surface as an anode, and used chloride ions in water as an oxidant on the anode surface. We found that it was possible to prevent scale failure and slime failure at the same time without using chemicals by converting and supplying it into the water system, and removing the hardness component in the water as a solid on the cathode surface. Based on this, the present invention has been completed.
That is, the present invention
(1) A voltage is applied to an electrode having a simple substance or an oxide of a platinum group element on the surfaces of the anode and the cathode immersed in the circulating cooling water system, and the hardness component in the cooling water system is made solid on one cathode surface. In the method of adhering to remove hardness components from the cooling water system and converting chloride ions to the oxidant on the other anode surface and supplying it into the cooling water system, the cathode and anode of the electrode are separated at intervals of 1 hour or more. In the electrode inverted to the anode, the chloride ion is converted into an oxidant and supplied into the aqueous system, and at the same time, the hardness component adhering to the cathode before the inversion is peeled off from the electrode and also inverted to the cathode. In the electrode, the hardness component in the water is attached as a solid to remove the hardness component from the cooling water system, and the hardness component peeled off from the electrode inverted to the anode is recovered by the subsequent recovery and removal means By Rukoto, without the use of chemicals, simultaneous prevention of scale disorders and slime disorders circulating cooling water system, characterized in that to supply the removal and oxidizer into the circulating cooling water system of the hardness components from the circulating cooling water system at the same time Method,
( 2 ) The simultaneous prevention method of scale failure and slime failure of the circulating cooling water system according to item 1, wherein the platinum group element is platinum, ruthenium or iridium, and
( 3 ) The first term or the item characterized in that the oxidant concentration in the cooling water is measured, and the current between the electrodes is controlled so as to adjust the oxidant concentration in the cooling water to a predetermined value based on the measurement result. The simultaneous prevention method of scale failure and slime failure of the circulating cooling water system according to item 2,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The scale and slime prevention method of the present invention applies a voltage to an electrode immersed in cooling water to remove the hardness component in the water as a solid on the cathode surface and removes chloride ions as an oxidizing agent on the anode surface. This is a method for preventing scale and slime that is converted and supplied into an aqueous system, and uses an electrode having a simple substance or an oxide of a platinum group element on the surface of at least the anode among the electrodes.
In the method of the present invention, a set of electrodes consisting of an anode and a cathode is immersed in cooling water, and a voltage is applied between the terminals of these electrodes using an external power source. At this time, water is electrolyzed on the surface of the cathode to generate hydroxide ions. As a result, the pH of the electrode surface rises locally, and hardness components such as calcium carbonate and magnesium silicate are deposited and adhered on the surface. As a result, the density | concentration of the hardness component in water falls and generation | occurrence | production of the scale in heat transfer surfaces, such as a heat exchanger, can be prevented.
On the other hand, on the surface of the anode, chloride ions in the cooling water are oxidized, and chemical species having oxidizing power such as hypochlorite ions are generated and supplied into the aqueous system. By maintaining the generated oxidizing agent in the aqueous system, slime failure can be prevented. From the viewpoint of generation efficiency and corrosivity of hypochlorite ions, the chloride ion concentration in the cooling water is preferably 10 to 200 mgCl / L.
[0006]
The anode used in the method of the present invention is an electrode having a platinum group element alone or an oxide on the surface. As an electrode having a platinum group element simple substance or oxide on the surface, an electrode composed entirely of a platinum group element simple substance or oxide can be used, or the entire surface of the platinum group element simple substance or oxide, or An electrode having a surface coated at an appropriate ratio can also be used. When the electrode surface is covered with a platinum group element or an oxide, the material of the electrode body is not particularly limited, but is preferably a corrosion-resistant material. Examples of the corrosion resistant material include titanium, stainless steel, silver, carbon, and aluminum. The material of the anode and the cathode can be the same material, or can be different materials. Examples of the platinum group element include ruthenium, rhodium, palladium, osmium, iridium and platinum. Of these, platinum, ruthenium and iridium can be particularly preferably used. By using an electrode having a simple substance or an oxide of a platinum group element on the surface, the generation efficiency of the oxidant can be improved by its catalytic action. There is no particular limitation on the method of incorporating a platinum group element or oxide on the electrode surface, and the ratio of the platinum group element or oxide covering the electrode surface depends on the amount of oxidizing agent required. It can be selected appropriately.
[0007]
In the method of the present invention, the voltage applied to the electrode is not particularly limited, but is preferably 40 V or less in consideration of safety to the human body. In addition, in order to stably prevent scale and slime, the voltage can be automatically controlled to keep the current flowing between the electrodes constant. Alternatively, the current can be controlled to be a predetermined value while measuring the concentration of the oxidant. For example, when the water quality of the cooling water fluctuates significantly, the cooling water system can be maintained and managed stably by adding a system that automatically controls the current from the measured value of the oxidant concentration.
On the other hand, the current required for removing the hardness component can be calculated from the generation rate of the required hydroxide ions in correspondence with the removal rate of the target hardness component. At this time, if the current required for the generation of the oxidant exceeds the current for removing the hardness component, it is possible to operate in an optimum state. That is, the hardness component is sufficiently removed while the concentration of the oxidizing agent is maintained at a predetermined value in the system. Generally, the current is preferably 0.1 to 5A, and more preferably 1 to 3A. However, the current required to remove the hardness component is actually often lower than the calculated value. This is presumably because the hardness component adhering to the electrode surface becomes a seed crystal and assists crystal growth, that is, removal of the hardness component.
In the method of the present invention, it is preferable that the hardness component adhering to the cathode is peeled off by reversing the polarity of the electrode, and the peeled hardness component is treated by a recovery / removal means in the subsequent stage. When a hardness component is deposited and adhered to the cathode surface, the current decreases even when a constant voltage is applied. By reversing the polarity of the electrode and using the cathode to which the hardness component is attached as the anode, hydrogen ions are generated from the surface of the electrode, and the adhesion portion of the attached hardness component to the electrode surface is locally dissolved and peeled off. be able to. In the case of reversing the polarity of the cathode and the anode, it is preferable that both electrodes have a single element or oxide of a platinum group element on the surface, and the materials and structures are the same.
[0008]
In the method of the present invention, there is no particular limitation on the interval of polarity reversal of the electrode, but the thickness of the hardness component attached to the cathode has grown to 0.5 mm or more in order to easily recover and remove the peeled hardness component. It is preferable to invert afterwards. Further, in order to prolong the life of the electrode, it is preferable that the polarity reversal interval of the electrode is 1 hour or more.
In the method of the present invention, the structure of the electrode is not particularly limited, but it is preferable to provide an electrolytic cell in which the electrode is incorporated in a container and allows water to flow. Moreover, although there is no restriction | limiting in particular in the installation place of an electrolysis cell, It is preferable to provide a branch line in a cooling water system, to install an electrolysis cell, and to return the water which passed the electrolysis cell to a cooling tower.
In the method of the present invention, it is preferable that the hardness component peeled off from the cathode is removed by a collecting means provided at a later stage. By removing the hardness component peeled from the cathode by the recovery means, it is possible to prevent the hardness component from being clogged by a strainer or the like, or crushed by a pump or the like to become fine particles, and deposited in the heat exchanger or piping. In the method of the present invention, there is no particular limitation on the means for collecting the hardness component, but since the hardness component peeled off from the cathode tends to settle, most of it can be collected by installing a settling tank after the electrolysis cell. . When the sediment is likely to be clogged in a thin pipe or the like, it can be discharged while crushing the sediment by attaching a crusher or the like. Further, by providing a filter after the settling tank, it is possible to collect the fine particles of the hardness component that have not been collected in the settling tank.
[0009]
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention. The cold water stored in the pit 2 of the cooling tower 1 is sent to the heat exchanger 4 by the circulation pump 3. A portion of the cold water is diverted to the branch line 5 and passed through the valve 6 to the electrolysis cell 7 having a pair of electrodes, and the hardness components in water adhere to and deposit on the surface of the cathode. Chloride ions in water are converted into an oxidant and supplied into the water system. The hardness component peeled off from the surface of the electrode due to the reversal of the polarity of the electrode is settled and separated in the sedimentation tank 8. The supernatant water of the sedimentation tank is sent to the filter 9, and after the fine particles of the hardness component remaining in the water are removed, it is returned to the cooling tower.
The method of the present invention uses a compact device, is simple and safe, and can greatly reduce the amount of drainage. In the method of the present invention, since no chemical is used, there is no load on the environment, and various problems associated with handling chemicals and problems such as handling danger can be solved. . Furthermore, compared with the conventional chemical treatment method, it can cope with highly concentrated operation.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, the Example and the comparative example evaluated the scale prevention capability and the slime prevention capability in the cooling water system which has the pilot scale heat exchanger which remove | excluded the filter from the process shown in FIG.
This cooling water system is equipped with a heat exchanger having an internal heat transfer area of 0.32 m 2 having two SUS304 tubes having a water volume of 300 L, an outer diameter of 19 mm, and a wall thickness of 1 mm. The flow rate of the cooling water is 1,680 L / h, and 300 L / h is drawn from the branch line into an electrolytic cell including two titanium electrodes coated with iridium so that the residual chlorine concentration becomes a predetermined value. The voltage was controlled and the anode and cathode were inverted every 6 hours. The hardness component peeled from the electrode was settled and separated in a sedimentation tank. The makeup water used was city water having a chloride ion concentration of about 10 mg / L and a calcium hardness of about 40 mg CaCO 3 / L, and was operated at a concentration factor of 5 or 10. Moreover, the heat exchanger inlet temperature of the cooling water was kept at 30 ° C., and the heat exchanger outlet temperature was kept at 50 ° C.
After operating for 30 days, measure the calcium hardness of the cooling water, determine the amount of scale attached from the increase in the weight of the heat exchanger tube, and determine the hardness per day from the total amount of hardness components recovered in the settling tank. The component recovery rate was calculated. In addition, the chloride ion concentration and residual chlorine concentration of the cooling water were measured. Furthermore, three 75mm x 25mm x 1.5mm rubber plates were immersed in the cold water pit for 3 days from the 20th day to the 23rd day after the start of operation. The slime deposition rate was determined from the arithmetic average value of the measured weights.
Example 1
The operation was performed for 30 days under the conditions of a cooling water concentration ratio of 5 times and a residual chlorine concentration of 0.15 mgCl / L.
The calcium hardness of the cooling water was 152 mgCaCO 3 / L, the scale deposition rate was 9 mg / cm 2 / month, and the recovery rate of the hardness component was 17 g / day. Chloride ion concentration of the cooling water is 45 mg / L, slime deposition rate was 10mg / dm 2 / 3day.
Example 2
The operation was performed for 30 days under the conditions of a cooling water concentration ratio of 5 times and a residual chlorine concentration of 0.60 mgCl / L.
The calcium hardness of the cooling water was 138 mg CaCO 3 / L, the scale deposition rate was 7 mg / cm 2 / month, and the recovery rate of the hardness component was 23 g / day. The chloride ion concentration of the cooling water was 39 mg / L, and no slime was observed.
Comparative Example 1
Stop water flow to the branch line of cooling water, add polymaleic acid with a molecular weight of 3,500 to a concentration of 20 mg / L, and add sodium hypochlorite to a residual chlorine concentration of 0.6 mgCl / L, The operation was performed for 30 days at a cooling water concentration ratio of 5 times.
The calcium hardness of the cooling water was 201 mg CaCO 3 / L, and the scale deposition rate was 13 mg / cm 2 / month. The chloride ion concentration in the cooling water was 69 mg / L and the residual chlorine concentration in the cooling water was 0.62 mg Cl / L, and no slime was observed.
Comparative Example 2
Water flow to the branch line of the cooling water was stopped, and operation was performed for 30 days at a cooling water concentration ratio of 5 times without adding chemicals.
The calcium hardness of the cooling water was 153 mg CaCO 3 / L, and the scale deposition rate was 118 mg / cm 2 / month. Chloride ion concentration of the cooling water is 52 mg / L, the residual chlorine concentration of the cooling water is 0.04mgCl / L, the deposition rate of the slime was 30mg / dm 2 / 3day.
Example 3
The operation was performed for 30 days under the conditions of a cooling water concentration factor of 10 and a residual chlorine concentration of 0.20 mg Cl / L.
The calcium hardness of the cooling water was 138 mg CaCO 3 / L, the scale deposition rate was 13 mg / cm 2 / month, and the recovery rate of the hardness component was 20 g / day. Chloride ion concentration of the cooling water is 92 mg / L, slime deposition rate was 8mg / dm 2 / 3day.
Example 4
The operation was performed for 30 days under the conditions of a cooling water concentration ratio of 10 times and a residual chlorine concentration of 0.80 mg Cl / L.
The calcium hardness of the cooling water was 132 mg CaCO 3 / L, the scale deposition rate was 11 mg / cm 2 / month, and the recovery rate of the hardness component was 24 g / day. Chloride ion concentration of the cooling water is 87 mg / L, slime deposition rate was 1mg / dm 2 / 3day.
Comparative Example 3
Stop water flow to the branch line of cooling water, add polymaleic acid with a molecular weight of 3,500 so that the concentration becomes 20 mg / L, and add sodium hypochlorite so that the residual chlorine concentration becomes 0.8 mgCl / L, The operation was performed for 30 days at a cooling water concentration ratio of 10 times. The calcium hardness of the cooling water was 315 mg CaCO 3 / L, and the scale deposition rate was 52 mg / cm 2 / month. Chloride ion concentration of the cooling water is 124 mg / L, the residual chlorine concentration of the cooling water is 0.81mgCl / L, slime deposition rate was 1mg / dm 2 / 3day.
Comparative Example 4
Water supply to the branch line of the cooling water was stopped, and the operation was performed for 30 days at a cooling water concentration ratio of 10 times without adding chemicals.
The calcium hardness of the cooling water was 158 mgCaCO 3 / L, and the scale deposition rate was 186 mg / cm 2 / month. Chloride ion concentration of the cooling water is 104 mg / L, the residual chlorine concentration of the cooling water is 0.02mgCl / L, the deposition rate of the slime was 58mg / dm 2 / 3day.
The processing conditions and results of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in Table 1.
[0011]
[Table 1]
Figure 0004471048
[0012]
As seen in Table 1, in Examples 1 to 4 in which cooling water was passed through electrolytic cells provided in the branch line and a voltage was applied to the electrodes, the hardness component was recovered in the settling tank, and the heat exchanger In addition to preventing the scale from adhering to the tube, the residual chlorine concentration in the cooling water is increased, and the slime is also prevented from adhering. In particular, when the concentration factor is 10 times, it is difficult to prevent sufficient scale adhesion in the conventional method in which polymaleic acid and sodium hypochlorite are added as in Comparative Example 3, but according to the method of the present invention, Scale adhesion can be prevented as in Examples 3-4. When the concentration rate was 10 times, the blow drainage amount was reduced to ½ or less of that when the concentration rate was 5 times.
[0013]
【The invention's effect】
According to the method of the present invention, it is possible to generate an oxidizing agent while removing hardness components in cooling water by one electrolytic cell, and to simultaneously realize scale prevention and slime prevention of the cooling water system. In addition, scale adhesion can be effectively prevented even under high concentration conditions that are impossible with conventional chemical treatment.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention.
[Explanation of symbols]
1 Cooling tower 2 Pit 3 Circulation pump 4 Heat exchanger 5 Branch line 6 Valve 7 Electrolysis cell 8 Sedimentation tank 9 Filter

Claims (3)

循環冷却水系中に浸漬した、陽極及び陰極の表面に白金族元素の単体又は酸化物を有する電極に電圧を印加して、一方の陰極表面において、冷却水系中の硬度成分を固体として付着させて冷却水系から硬度成分を除去するとともに、他方の陽極表面において、塩化物イオンを酸化剤に変換させて冷却水系内に供給する方法において、1時間以上の間隔毎に電極の陰極と陽極を交互に反転させて、陽極に反転した電極において、塩化物イオンを酸化剤に変換させて水系内に供給すると同時に反転前の陰極時に付着した硬度成分を電極から剥離させるとともに、陰極に反転した電極においては、水中の硬度成分を固体として付着させて冷却水系から硬度成分を除去し、陽極に反転した電極から剥離した硬度成分を後段の回収除去手段で回収することによって、薬品を使用することなく、循環冷却水系からの硬度成分の除去と循環冷却水系への酸化剤の供給を同時に行うことを特徴とする循環冷却水系のスケール障害及びスライム障害の同時防止方法。 A voltage is applied to an electrode having a simple substance or an oxide of a platinum group element on the surfaces of the anode and the cathode immersed in the circulating cooling water system, and the hardness component in the cooling water system is adhered as a solid on one cathode surface. In the method of removing hardness components from the cooling water system and supplying chloride ions to the cooling water system by converting chloride ions into the cooling water system on the other anode surface, the cathode and anode of the electrode are alternately arranged at intervals of 1 hour or more. In the electrode that is inverted and inverted to the anode, the chloride ion is converted into an oxidant and supplied into the aqueous system, and at the same time, the hardness component adhering to the cathode before inversion is peeled off from the electrode, and in the electrode inverted to the cathode Then, the hardness component in the water is adhered as a solid to remove the hardness component from the cooling water system, and the hardness component peeled off from the electrode inverted to the anode is recovered by a subsequent recovery and removal means. By, without the use of chemicals, simultaneous method for preventing scale disorders and slime disorders circulating cooling water system, characterized in that to supply the removal and oxidizer into the circulating cooling water system of the hardness components from the circulating cooling water system at the same time. 白金族元素が、白金、ルテニウム又はイリジウムである請求項1記載の循環冷却水系のスケール障害及びスライム障害の同時防止方法。The method for simultaneously preventing scale failure and slime failure in a circulating cooling water system according to claim 1, wherein the platinum group element is platinum, ruthenium or iridium. 冷却水中の酸化剤濃度を測定し、該測定結果を基に冷却水中の酸化剤濃度を所定値に調整するように、電極間の電流を制御することを特徴とする請求項1又は請求項2記載の循環冷却水系のスケール障害及びスライム障害の同時防止方法。The oxidizing agent concentration in the cooling water is measured, so as to adjust the oxidizing agent concentration in the cooling water based on the measurement results to a predetermined value, claim and controls the current between the electrodes 1 or claim 2 The simultaneous prevention method of scale failure and slime failure of the circulating cooling water system as described.
JP2000072142A 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system Expired - Fee Related JP4471048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072142A JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072142A JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Publications (2)

Publication Number Publication Date
JP2001259650A JP2001259650A (en) 2001-09-25
JP4471048B2 true JP4471048B2 (en) 2010-06-02

Family

ID=18590610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072142A Expired - Fee Related JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Country Status (1)

Country Link
JP (1) JP4471048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010556B (en) * 2004-09-06 2011-08-31 创新设计技术株式会社 Cooling water circulation device and its scale removing method
KR100935880B1 (en) 2008-03-04 2010-01-13 박재권 Elimination method of scale attached on outer surface of copper pipe for evaporaior

Also Published As

Publication number Publication date
JP2001259650A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JPH10500614A (en) Water treatment by electrolysis
KR101430678B1 (en) Method of purifying water and apparatus therefor
US7622025B2 (en) Method and apparatus for decontamination of fluid
WO2006098041A1 (en) Method and apparatus for cleaning circulation water
CN113371903B (en) Device and method for electrochemically treating water
JP2007144258A (en) Method for electrolyzing water and electrolytic apparatus
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2004121969A (en) Cooling water treatment method
JP2006255653A (en) Electrolytic treatment method of water system
JP3523864B1 (en) Water treatment method and water treatment device
JP4471048B2 (en) Simultaneous prevention method of scale failure and slime failure of circulating cooling water system
JP2001259690A (en) Method for preventing scaling in water system
JP2003190988A (en) Water treatment method for cooling water system
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP4171440B2 (en) Waste water treatment apparatus and waste water treatment method using the same
JP2006095426A (en) Electrolyzing method and electrolyzation apparatus in circulation type cooling water system
JP4237582B2 (en) Surplus sludge reduction device and method
CN111302549A (en) Electrochemical pretreatment system and method for circulating water sewage
JP2007075738A (en) Scale prevention apparatus and method
CN215798952U (en) Device for electrochemically treating water
JP3988480B2 (en) Waste water treatment apparatus and method
WO2008018317A1 (en) Water cleaning method and water cleaner
JP2008114209A (en) Method for treating sludge
JP3796032B2 (en) Sewage treatment equipment
JPH0550070A (en) Water treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees