JP2001259650A - Method for preventing scale and slime - Google Patents

Method for preventing scale and slime

Info

Publication number
JP2001259650A
JP2001259650A JP2000072142A JP2000072142A JP2001259650A JP 2001259650 A JP2001259650 A JP 2001259650A JP 2000072142 A JP2000072142 A JP 2000072142A JP 2000072142 A JP2000072142 A JP 2000072142A JP 2001259650 A JP2001259650 A JP 2001259650A
Authority
JP
Japan
Prior art keywords
cooling water
slime
scale
electrode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000072142A
Other languages
Japanese (ja)
Other versions
JP4471048B2 (en
Inventor
Kenji Kobata
賢二 木幡
Akira Iimura
晶 飯村
Shinji Sasaki
真司 佐々木
Masanori Oishi
正典 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Engineering Co Ltd
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Asahi Glass Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Asahi Glass Engineering Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000072142A priority Critical patent/JP4471048B2/en
Publication of JP2001259650A publication Critical patent/JP2001259650A/en
Application granted granted Critical
Publication of JP4471048B2 publication Critical patent/JP4471048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing scale and slime capable of simultaneously preventing scale trouble and slime trouble by simultaneously performing the removal of a hardness component and the supply of an oxidizing agent without using chemicals in a cooling water system. SOLUTION: In the preventing method of the scale and the slime in which the hardness component in water is stuck and removed as solid on the surface of a cathode by applying voltage to an electrode immersed in the cooling water and also chloride ion is converted into an oxidizing agent on the surface of an anode, at least anode out of electrodes is the electrode having the element or oxide of a platinum group element on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スケール及びスラ
イムの防止方法に関する。さらに詳しくは、本発明は、
冷却水系において、薬品を使用することなく、硬度成分
の除去と酸化剤の供給を同時に行い、スケール障害及び
スライム障害を同時に防止することができるスケール及
びスライムの防止方法に関する。
TECHNICAL FIELD The present invention relates to a method for preventing scale and slime. More specifically, the present invention provides
The present invention relates to a scale and slime prevention method capable of simultaneously removing a hardness component and supplying an oxidizing agent without using a chemical in a cooling water system, thereby simultaneously preventing scale damage and slime damage.

【0002】[0002]

【従来の技術】冷却水系の水処理では、スケール障害や
スライム障害を防止するために、多くの薬品が使用され
ている。例えば、スケール防止には、水溶性ポリマー、
ホスホン酸、ポリリン酸塩などが広く使用されており、
スライム防止には、次亜塩素酸ナトリウムや過酸化水素
水などの酸化剤が使用されている。しかし、スケール障
害やスライム障害の防止のために、このような薬品を用
いると、在庫量をチェックして発注するなどの事務処理
の手間がかかり、薬品のタンクローリによる運搬、薬品
コンテナの移動などの運搬の労力がかかり、薬品の漏洩
などによる人体への被害などの取り扱いの危険性がとも
ない、さらに、水系の薬品濃度を所定の値に維持管理す
るために、分析を行い、薬注速度を調整するという作業
が必要になる。また、薬品による処理は、スケールを防
止し得る水質に限界があり、その上限を超えないように
ブローを行うために、排水が発生する。この排水にはC
OD成分やリン成分などが含まれるので、一般水系に放
流するためには、排水処理が必要になり、その量に応じ
てコスト的な負担を負わなければならない。このため
に、薬品による処理にともなう環境負荷への影響や、さ
まざまな煩雑性、取り扱い上の危険性などの問題を解消
するために、薬品を使用することなく、高濃縮運転にも
対応でき、スケール防止とスライム防止を同時に行い得
る方法が求められていた。
2. Description of the Related Art Many chemicals are used in water treatment of a cooling water system in order to prevent scale disturbance and slime disturbance. For example, to prevent scale, water-soluble polymers,
Phosphonic acid, polyphosphate and the like are widely used,
Oxidizing agents such as sodium hypochlorite and aqueous hydrogen peroxide are used to prevent slime. However, if such chemicals are used to prevent scale and slime problems, it takes time and labor to check the stock and place an order, and the transportation of the chemicals by tank lorry, the movement of chemical containers, etc. Carrying effort is required, there is a risk of handling such as damage to the human body due to leakage of chemicals, etc.In addition, analysis is performed and chemical injection speed is adjusted to maintain and control the concentration of water-based chemicals at a predetermined value Work is required. In addition, in the treatment with chemicals, there is a limit in water quality that can prevent scale, and wastewater is generated because blowing is performed so as not to exceed the upper limit. This drainage contains C
Since it contains an OD component, a phosphorus component, etc., it is necessary to perform a wastewater treatment in order to be discharged into a general water system, and a cost burden must be borne according to the amount. For this reason, in order to eliminate the effects on the environmental load caused by the treatment by chemicals and various complications, dangers in handling, etc., it is possible to respond to high concentration operation without using chemicals, There has been a demand for a method capable of simultaneously preventing scale and slime.

【0003】[0003]

【発明が解決しようとする課題】本発明は、冷却水系に
おいて、薬品を使用することなく、硬度成分の除去と酸
化剤の供給を同時に行い、スケール障害及びスライム障
害を同時に防止することができるスケール及びスライム
の防止方法を提供することを目的としてなされたもので
ある。
SUMMARY OF THE INVENTION The present invention relates to a scale capable of simultaneously removing a hardness component and supplying an oxidizing agent in a cooling water system without using a chemical, thereby simultaneously preventing scale obstacles and slime obstacles. And a method for preventing slime.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、陽極として表面
に白金族元素の単体又は酸化物を有する電極を用い、陽
極表面で水中の塩化物イオンを酸化剤に変換させて水系
内に供給し、陰極表面で水中の硬度成分を固体として付
着させて除去することにより、薬品を使用することな
く、スケール障害とスライム障害を同時に防止し得るこ
とを見いだし、この知見に基づいて本発明を完成するに
至った。すなわち、本発明は、(1)冷却水中に浸漬し
た電極に電圧を印加して陰極表面に水中の硬度成分を固
体として付着させて除去するとともに、陽極表面で塩化
物イオンを酸化剤に変換させて水系内に供給するスケー
ル及びスライムの防止方法であって、電極のうち少なく
とも陽極が、表面に白金族元素の単体又は酸化物を有す
る電極であることを特徴とするスケール及びスライムの
防止方法、(2)陽極と陰極が、ともに表面に白金族元
素の単体又は酸化物を有する電極であり、かつ、陰極と
陽極を反転させる第1項記載のスケール及びスライムの
防止方法、(3)白金族元素が、白金、ルテニウム又は
イリジウムである第1項又は第2項記載のスケール及び
スライムの防止方法、及び、(4)冷却水中の酸化剤濃
度を測定し、該測定結果を基に冷却水中の酸化剤濃度を
所定値に調整するように、電極間の電流を制御すること
を特徴とする第1項、第2項又は第3項記載のスケール
及びスライムの防止方法、を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, using an electrode having a simple substance or an oxide of a platinum group element on the surface as an anode, By converting chloride ions in water to oxidizing agent and supplying it to the water system, the hardness component in water is attached as a solid on the cathode surface and removed, thereby simultaneously preventing scale and slime problems without using chemicals. They have found that they can be prevented, and have completed the present invention based on this finding. That is, according to the present invention, (1) a voltage is applied to the electrode immersed in the cooling water to remove the hardness component in the water as a solid on the cathode surface and convert chloride ions to an oxidizing agent on the anode surface. A method for preventing scale and slime to be supplied into an aqueous system, wherein at least the anode among the electrodes is a method for preventing scale and slime, which is an electrode having a simple substance or an oxide of a platinum group element on the surface, (2) The method for preventing scale and slime according to (1), wherein both the anode and the cathode are electrodes having a simple substance or oxide of a platinum group element on the surface, and the cathode and the anode are inverted. 3. The method for preventing scale and slime according to item 1 or 2, wherein the element is platinum, ruthenium or iridium, and (4) measuring the oxidizing agent concentration in the cooling water, and determining the measurement result. 4. The method for preventing scale and slime according to claim 1, wherein the current between the electrodes is controlled so that the oxidant concentration in the cooling water is adjusted to a predetermined value. Is what you do.

【0005】[0005]

【発明の実施の形態】本発明のスケール及びスライムの
防止方法は、冷却水中に浸漬した電極に電圧を印加して
陰極表面に水中の硬度成分を固体として付着させて除去
するとともに、陽極表面で塩化物イオンを酸化剤に変換
させて水系内に供給するスケール及びスライムの防止方
法であって、電極のうち少なくとも陽極に、表面に白金
族元素の単体又は酸化物を有する電極を用いる方法であ
る。本発明方法においては、冷却水中に陽極及び陰極か
らなる一組の電極を浸漬し、これらの電極の端子間に外
部電源を用いて電圧を印加する。このとき、陰極の表面
において水が電気分解され、水酸化物イオンが生成す
る。これにより、電極表面のpHが局部的に上昇し、その
表面において炭酸カルシウムやケイ酸マグネシウムなど
の硬度成分が析出し、付着する。その結果、水中の硬度
成分の濃度が低下し、熱交換器などの伝熱面でのスケー
ルの発生を防止することができる。一方、陽極の表面に
おいては、冷却水中の塩化物イオンが酸化され、次亜塩
素酸イオンなどの酸化力を有する化学種が発生し、水系
内に供給される。発生した酸化剤を水系内に維持するこ
とにより、スライム障害を防止することができる。次亜
塩素酸イオンの発生効率及び腐食性の点から、冷却水中
の塩化物イオン濃度は10〜200mgCl/Lであること
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The scale and slime prevention method of the present invention is to apply a voltage to an electrode immersed in cooling water to remove a hardness component in water as a solid on a cathode surface and to remove the hardness component from the anode surface. This is a method for preventing scale and slime that converts chloride ions into an oxidizing agent and supplies the oxidizing agent into an aqueous system, wherein at least the anode among the electrodes uses an electrode having a simple substance or oxide of a platinum group element on the surface. . In the method of the present invention, a set of electrodes consisting of an anode and a cathode is immersed in cooling water, and a voltage is applied between the terminals of these electrodes using an external power supply. At this time, water is electrolyzed on the surface of the cathode to generate hydroxide ions. As a result, the pH of the electrode surface locally increases, and hardness components such as calcium carbonate and magnesium silicate precipitate and adhere to the surface. As a result, the concentration of the hardness component in the water decreases, and it is possible to prevent scale from being generated on the heat transfer surface such as a heat exchanger. On the other hand, on the surface of the anode, chloride ions in the cooling water are oxidized, and oxidizing chemical species such as hypochlorite ions are generated and supplied into the aqueous system. By maintaining the generated oxidant in the aqueous system, slime damage can be prevented. From the viewpoint of hypochlorite ion generation efficiency and corrosiveness, the chloride ion concentration in the cooling water is preferably from 10 to 200 mgCl / L.

【0006】本発明方法に用いる陽極は、表面に白金族
元素の単体又は酸化物を有する電極である。表面に白金
族元素の単体又は酸化物を有する電極としては、全体が
白金族元素の単体又は酸化物からなる電極を用いること
ができ、あるいは、白金族元素の単体又は酸化物で全面
を、あるいは、適当な割合で表面を被覆した電極を用い
ることもできる。電極表面を白金族元素の単体又は酸化
物で被覆する場合、電極本体の材料に特に制限はない
が、耐食性材料であることが好ましい。耐食性材料とし
ては、例えば、チタン、ステンレス鋼、銀、炭素、アル
ミニウムなどを挙げることができる。陽極と陰極の材料
は同一の材料とすることができ、あるいは、異なる材料
とすることもできる。白金族元素としては、ルテニウ
ム、ロジウム、パラジウム、オスミウム、イリジウム及
び白金を挙げることができるが、これらの中で、白金、
ルテニウム及びイリジウムを特に好適に用いることがで
きる。表面に白金族元素の単体又は酸化物を有する電極
を用いることにより、その触媒作用によって酸化剤の発
生効率を向上することができる。電極表面に白金族元素
の単体又は酸化物を組み込む方法に特に制限はなく、ま
た、電極表面を被覆する白金族元素の単体又は酸化物の
割合は、必要とする酸化剤の発生量に応じて適宜選択す
ることができる。
The anode used in the method of the present invention is an electrode having on its surface a simple substance or an oxide of a platinum group element. As the electrode having a simple substance or oxide of a platinum group element on the surface, an electrode composed entirely of a simple substance or oxide of a platinum group element can be used, or an entire surface of a simple substance or oxide of a platinum group element, or Alternatively, an electrode whose surface is coated at an appropriate ratio may be used. When the electrode surface is coated with a platinum group element element or an oxide, the material of the electrode body is not particularly limited, but is preferably a corrosion-resistant material. Examples of the corrosion-resistant material include titanium, stainless steel, silver, carbon, and aluminum. The materials for the anode and the cathode can be the same material or different materials. Examples of the platinum group element include ruthenium, rhodium, palladium, osmium, iridium, and platinum. Among these, platinum,
Ruthenium and iridium can be particularly preferably used. By using an electrode having a simple substance or an oxide of a platinum group element on the surface, the efficiency of generation of the oxidizing agent can be improved by its catalytic action. There is no particular limitation on the method of incorporating a simple substance or oxide of a platinum group element on the electrode surface, and the ratio of the simple substance or oxide of the platinum group element covering the electrode surface depends on the amount of oxidizing agent required. It can be selected as appropriate.

【0007】本発明方法において、電極に印加する電圧
に特に制限はないが、人体に対する安全性を考慮する
と、40V以下であることが好ましい。また、スケール
防止とスライム防止を安定して行うために、電圧を自動
制御して電極間に流れる電流を一定に保つことができ
る。あるいは、電流は、酸化剤の濃度を測定しながら、
これが所定の値になるように制御することもできる。例
えば、冷却水の水質の変動が激しい場合などは、酸化剤
濃度の測定値から自動的に電流を制御するシステムを付
加することにより、冷却水系の維持管理を安定して行う
ことができる。一方、硬度成分除去のために必要な電流
は、目標の硬度成分の除去速度に対応させて、必要な水
酸化物イオンの発生速度から計算することができる。こ
のとき、酸化剤発生に必要な電流が、硬度成分除去のた
めの電流を上回っていれば、最適な状態で運転すること
ができる。すなわち、系内で酸化剤の濃度が所定の値に
維持されながら、硬度成分も十分に除去されることにな
る。一般的には、電流は0.1〜5Aであることが好ま
しく、1〜3Aであることがより好ましい。ただし、硬
度成分を除去するために必要な電流は、実際には、計算
値より低い場合が多い。これは、電極表面に付着した硬
度成分が種結晶となり、結晶成長すなわち硬度成分の除
去を補助することによるものと考えられる。本発明方法
においては、陰極に付着した硬度成分を、電極の極性を
反転させて剥離させ、剥離した硬度成分を後段の回収除
去手段で処理することが好ましい。陰極表面に硬度成分
が析出、付着すると、一定の電圧を印加していても電流
が低下する。電極の極性を反転させ、硬度成分が付着し
た陰極を陽極とすることにより、電極の表面から水素イ
オンを発生させ、付着した硬度成分の電極表面との接着
部を局部的に溶解させて剥離することができる。陰極と
陽極の極性を反転させる場合は、両極がともに白金族元
素の単体又は酸化物を表面に有し、材料及び構造が同一
であることが好ましい。
In the method of the present invention, the voltage applied to the electrode is not particularly limited, but is preferably 40 V or less in consideration of safety for the human body. Also, in order to stably prevent scale and slime, the voltage can be automatically controlled to keep the current flowing between the electrodes constant. Alternatively, the current is measured while measuring the oxidant concentration.
It can be controlled so that this becomes a predetermined value. For example, when the water quality of the cooling water fluctuates greatly, maintenance of the cooling water system can be stably performed by adding a system that automatically controls the current based on the measured value of the oxidant concentration. On the other hand, the current required for removing the hardness component can be calculated from the required hydroxide ion generation rate in accordance with the target removal rate of the hardness component. At this time, if the current required for generating the oxidant exceeds the current for removing the hardness component, the operation can be performed in an optimal state. That is, the hardness component is sufficiently removed while the concentration of the oxidizing agent is maintained at a predetermined value in the system. Generally, the current is preferably between 0.1 and 5 A, more preferably between 1 and 3 A. However, the current required to remove the hardness component is often lower than the calculated value. This is considered to be due to the fact that the hardness component attached to the electrode surface becomes a seed crystal and assists in crystal growth, that is, removal of the hardness component. In the method of the present invention, it is preferable that the hardness component adhering to the cathode is peeled off by reversing the polarity of the electrode, and the peeled-off hardness component is treated by a later-stage recovery and removal means. When the hardness component is deposited and adheres to the cathode surface, the current decreases even when a constant voltage is applied. By inverting the polarity of the electrode and using the cathode on which the hardness component is attached as the anode, hydrogen ions are generated from the surface of the electrode, and the adhesive portion of the attached hardness component with the electrode surface is locally dissolved and peeled off. be able to. When reversing the polarity of the cathode and the anode, it is preferable that both poles have a simple substance or oxide of a platinum group element on the surface, and have the same material and structure.

【0008】本発明方法において、電極の極性の反転の
間隔に特に制限はないが、剥離した硬度成分の回収除去
を容易に行うために、陰極に付着した硬度成分の厚さが
0.5mm以上に成長したのち反転することが好ましい。
また、電極の寿命を長くするために、電極の極性の反転
の間隔は1時間以上とすることが好ましい。本発明方法
において、電極の構造に特に制限はないが、電極を容器
に組み込んで通水する電解セルとすることが好ましい。
また、電解セルの設置場所にも特に制限はないが、冷却
水系に分岐ラインを設けて電解セルを設置し、電解セル
を通過した水を冷却塔に返送することが好ましい。本発
明方法においては、陰極から剥離した硬度成分を、後段
に設けた回収手段で除去することが好ましい。陰極から
剥離した硬度成分を回収手段で除去することにより、硬
度成分がストレーナなどに詰まったり、ポンプなどによ
り破砕されて微粒子となり、熱交換器や配管内に堆積す
ることを防ぐことができる。本発明方法において、硬度
成分の回収手段に特に制限はないが、陰極から剥離した
硬度成分は沈降しやすいので、電解セルの後段に沈降槽
を設置することにより、そのほとんどを回収することが
できる。沈降物の排出に際して、細い配管などに沈降物
が詰まりやすい場合は、破砕機などを取り付けて、沈降
物を破砕しながら排出することができる。また、沈降槽
の後段にろ過器を設けることにより、沈降槽で回収され
なかった硬度成分の微粒子を回収することができる。
In the method of the present invention, there is no particular limitation on the interval of the reversal of the polarity of the electrode. However, in order to easily collect and remove the peeled hardness component, the thickness of the hardness component adhering to the cathode is 0.5 mm or more. It is preferable to invert after growing.
Further, in order to prolong the life of the electrode, it is preferable that the interval between the reversal of the polarity of the electrode is one hour or more. In the method of the present invention, the structure of the electrode is not particularly limited, but it is preferable to incorporate the electrode into a container to form an electrolytic cell through which water flows.
Although there is no particular limitation on the location of the electrolytic cell, it is preferable to provide a branch line in the cooling water system, install the electrolytic cell, and return water passing through the electrolytic cell to the cooling tower. In the method of the present invention, it is preferable that the hardness component peeled off from the cathode is removed by a collecting means provided at a later stage. By removing the hardness component separated from the cathode by the recovery means, it is possible to prevent the hardness component from being clogged in a strainer or the like and crushed by a pump or the like to become fine particles and deposited in a heat exchanger or a pipe. In the method of the present invention, there is no particular limitation on the means for recovering the hardness component, but since the hardness component peeled from the cathode is liable to settle, most of the hardness component can be recovered by installing a settling tank at the latter stage of the electrolytic cell. . When the sediment is liable to be clogged in a thin pipe at the time of discharging the sediment, a crusher or the like can be attached to discharge the sediment while crushing the sediment. In addition, by providing a filter at the subsequent stage of the sedimentation tank, fine particles of the hardness component that have not been collected in the sedimentation tank can be collected.

【0009】図1は、本発明方法の実施の一態様の工程
系統図である。冷却塔1のピット2に貯留された冷水
は、循環ポンプ3により熱交換器4へ送られる。冷水の
一部は分岐ライン5に分水され、バルブ6を経由して一
対の電極を備えた電解セル7に通水され、陰極の表面に
水中の硬度成分が付着析出し、陽極の表面で水中の塩化
物イオンが酸化剤に変換されて水系内に供給される。電
極の極性の反転により、電極の表面から剥離した硬度成
分は、沈降槽8において沈降分離される。沈降槽の上澄
水は、ろ過器9に送られ、水中に残存する硬度成分の微
粒子が除去されたのち、冷却塔に返送される。本発明方
法は、使用する装置がコンパクトであり、簡易かつ安全
な上に、排水量を大幅に削減することができる。また、
本発明方法においては、薬品を使用しないので、環境へ
負荷を与えることがなく、また、薬品の取り扱いにとも
なう様々な煩雑性や、取り扱い上の危険性などの問題を
解消することができる。さらに、従来の薬品処理法に比
べて、高濃縮の運転にも対応することができる。
FIG. 1 is a process flow chart of an embodiment of the method of the present invention. The cold water stored in the pit 2 of the cooling tower 1 is sent to the heat exchanger 4 by the circulation pump 3. A part of the cold water is divided into a branch line 5 and passed through a valve 6 to an electrolytic cell 7 having a pair of electrodes. The chloride ions in the water are converted into oxidizing agents and supplied into the aqueous system. Due to the reversal of the polarity of the electrode, the hardness component separated from the surface of the electrode is settled and separated in the settling tank 8. The supernatant water of the sedimentation tank is sent to the filter 9 to remove fine particles of the hardness component remaining in the water, and then returned to the cooling tower. The method of the present invention uses a compact apparatus, is simple and safe, and can greatly reduce the amount of wastewater. Also,
In the method of the present invention, since no chemical is used, no burden is imposed on the environment, and problems such as various complications and dangers in handling the chemical can be solved. Furthermore, it is possible to cope with a high concentration operation as compared with the conventional chemical treatment method.

【0010】[0010]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例及び比較例は、図
1に示す工程からろ過器を除いたパイロット規模の熱交
換器を有する冷却水系において、スケール防止能力及び
スライム防止能力の評価を行った。この冷却水系は、保
有水量が300Lであり、外径が19mm、肉厚1mmのS
US304のチューブ2本を備えた内面伝熱面積が0.
32m2の熱交換器を備えている。冷却水の流量は1,6
80L/hであり、そのうちの300L/hを、分岐ラ
インから、イリジウムを被覆したチタン電極2個を備え
た電解セルに引き込み、残留塩素濃度が所定値となるよ
うに電圧を制御し、6時間ごとに陽極と陰極を反転させ
た。電極から剥離した硬度成分は、沈降槽において沈降
分離した。補給水は、塩化物イオン濃度約10mg/L、
カルシウム硬度約40mgCaCO3/Lの市水を用い、濃縮
倍率5倍又は10倍で運転を行った。また、冷却水の熱
交換器入口温度は30℃、熱交換器出口温度は50℃に
保った。30日間の運転を行ったのち、冷却水のカルシ
ウム硬度を測定し、熱交換器のチューブの重量増加分か
らスケールの付着量を求め、沈降槽において回収された
硬度成分の総量から、1日当たりの硬度成分回収速度を
算出した。また、冷却水の塩化物イオン濃度と残留塩素
濃度を測定した。さらに、運転開始後20日目から23
日目までの3日間、冷水ピットに、75mm×25mm×
1.5mmのゴム板3枚を浸漬して、付着成長したスライ
ムを採取し、105℃において恒量になるまで乾燥し、
測定された重量の算術平均値からスライム付着速度を求
めた。 実施例1 冷却水の濃縮倍率5倍、残留塩素濃度0.15mgCl/L
の条件で30日間の運転を行った。冷却水のカルシウム
硬度は152mgCaCO3/L、スケール付着速度は9mg/c
m2/month、硬度成分の回収速度は17g/dayであっ
た。冷却水の塩化物イオン濃度は45mg/L、スライム
付着速度は10mg/dm2/3dayであった。 実施例2 冷却水の濃縮倍率5倍、残留塩素濃度0.60mgCl/L
の条件で30日間の運転を行った。冷却水のカルシウム
硬度は138mgCaCO3/L、スケール付着速度は7mg/c
m2/month、硬度成分の回収速度は23g/dayであっ
た。冷却水の塩化物イオン濃度は39mg/L、スライム
の付着は認められなかった。 比較例1 冷却水の分岐ラインへの通水を止め、分子量3,500
のポリマレイン酸を濃度が20mg/Lになるよう、次亜
塩素酸ナトリウムを残留塩素濃度が0.6mgCl/Lにな
るよう添加し、冷却水の濃縮倍率5倍で、30日間の運
転を行った。冷却水のカルシウム硬度は201mgCaCO3
L、スケール付着速度は13mg/cm2/monthであった。
冷却水の塩化物イオン濃度は69mg/L、冷却水の残留
塩素濃度は0.62mgCl/Lであり、スライムの付着は
認められなかった。 比較例2 冷却水の分岐ラインへの通水を止め、薬品を添加するこ
となく、冷却水の濃縮倍率5倍で、30日間の運転を行
った。冷却水のカルシウム硬度は153mgCaCO3/L、
スケール付着速度は118mg/cm2/monthであった。冷
却水の塩化物イオン濃度は52mg/L、冷却水の残留塩
素濃度は0.04mgCl/Lであり、スライムの付着速度
は30mg/dm2/3dayであった。 実施例3 冷却水の濃縮倍率10倍、残留塩素濃度0.20mgCl/
Lの条件で30日間の運転を行った。冷却水のカルシウ
ム硬度は138mgCaCO3/L、スケール付着速度は13m
g/cm2/month、硬度成分の回収速度は20g/dayであ
った。冷却水の塩化物イオン濃度は92mg/L、スライ
ム付着速度は8mg/dm2/3dayであった。 実施例4 冷却水の濃縮倍率10倍、残留塩素濃度0.80mgCl/
Lの条件で30日間の運転を行った。冷却水のカルシウ
ム硬度は132mgCaCO3/L、スケール付着速度は11m
g/cm2/month、硬度成分の回収速度は24g/dayであ
った。冷却水の塩化物イオン濃度は87mg/L、スライ
ム付着速度は1mg/dm2/3dayであった。 比較例3 冷却水の分岐ラインへの通水を止め、分子量3,500
のポリマレイン酸を濃度が20mg/Lになるよう、次亜
塩素酸ナトリウムを残留塩素濃度が0.8mgCl/Lにな
るよう添加し、冷却水の濃縮倍率10倍で、30日間の
運転を行った。冷却水のカルシウム硬度は315mgCaCO3
/L、スケール付着速度は52mg/cm2/monthであっ
た。冷却水の塩化物イオン濃度は124mg/L、冷却水
の残留塩素濃度は0.81mgCl/Lであり、スライム付
着速度は1mg/dm2/3dayであった。 比較例4 冷却水の分岐ラインへの通水を止め、薬品を添加するこ
となく、冷却水の濃縮倍率10倍で、30日間の運転を
行った。冷却水のカルシウム硬度は158mgCaCO3
L、スケール付着速度は186mg/cm2/monthであっ
た。冷却水の塩化物イオン濃度は104mg/L、冷却水
の残留塩素濃度は0.02mgCl/Lであり、スライムの
付着速度は58mg/dm2/3dayであった。実施例1〜4
及び比較例1〜4の処理条件と結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In the Examples and Comparative Examples, the scale prevention ability and the slime prevention ability were evaluated in a cooling water system having a pilot-scale heat exchanger excluding the filter from the process shown in FIG. This cooling water system has a water volume of 300 L, an outer diameter of 19 mm, and a wall thickness of 1 mm.
Internal heat transfer area with two US304 tubes is 0.
It has a heat exchanger of 32 m 2 . Cooling water flow is 1,6
80 L / h, of which 300 L / h was drawn from the branch line into an electrolytic cell provided with two iridium-coated titanium electrodes, and the voltage was controlled so that the residual chlorine concentration became a predetermined value. The anode and cathode were inverted each time. The hardness component separated from the electrode settled and separated in the settling tank. The makeup water has a chloride ion concentration of about 10 mg / L,
The operation was performed using city water having a calcium hardness of about 40 mg CaCO 3 / L at a concentration ratio of 5 or 10 times. Further, the cooling water inlet temperature at the heat exchanger was maintained at 30 ° C., and the heat exchanger outlet temperature at 50 ° C. After 30 days of operation, the calcium hardness of the cooling water was measured, the amount of scale attached was determined from the increase in the weight of the tubes of the heat exchanger, and the hardness per day was determined from the total amount of the hardness components recovered in the settling tank. The component recovery rate was calculated. Further, the chloride ion concentration and the residual chlorine concentration of the cooling water were measured. Furthermore, from the 20th day after the start of operation, 23
75mm x 25mm x in cold water pit for 3 days until day
Three 1.5 mm rubber plates were immersed, and the slime adhered and grown was collected and dried at 105 ° C. until a constant weight was obtained.
The slime deposition rate was determined from the arithmetic mean of the measured weights. Example 1 Cooling water concentration ratio 5 times, residual chlorine concentration 0.15 mgCl / L
Was operated for 30 days. Cooling water has a calcium hardness of 152 mg CaCO 3 / L and a scale adhesion rate of 9 mg / c.
m 2 / month and the recovery rate of the hardness component were 17 g / day. The chloride ion concentration of the cooling water was 45 mg / L, and the slime deposition rate was 10 mg / dm 2 / 3day. Example 2 Cooling water concentration ratio 5 times, residual chlorine concentration 0.60 mgCl / L
Was operated for 30 days. Calcium hardness of cooling water is 138mgCaCO 3 / L, scale adhesion rate is 7mg / c
m 2 / month, and the recovery rate of the hardness component was 23 g / day. The chloride ion concentration of the cooling water was 39 mg / L, and no slime was attached. Comparative Example 1 The flow of cooling water to the branch line was stopped, and the molecular weight was 3,500.
Was added so that the concentration of polymaleic acid became 20 mg / L, and the concentration of residual chlorine became 0.6 mgCl / L, and operation was carried out for 30 days at a cooling water concentration ratio of 5 times. . The calcium hardness of the cooling water is 201mgCaCO 3 /
L, the scale deposition rate was 13 mg / cm 2 / month.
The chloride ion concentration of the cooling water was 69 mg / L, the residual chlorine concentration of the cooling water was 0.62 mgCl / L, and no slime was observed. Comparative Example 2 The cooling water was stopped flowing through the branch line, and the operation was performed for 30 days at a concentration ratio of cooling water of 5 times without adding a chemical. The calcium hardness of the cooling water is 153mgCaCO 3 / L,
The scale deposition rate was 118 mg / cm 2 / month. Chloride ion concentration of the cooling water is 52 mg / L, the residual chlorine concentration of the cooling water is 0.04mgCl / L, the deposition rate of the slime was 30mg / dm 2 / 3day. Example 3 Concentration ratio of cooling water 10 times, residual chlorine concentration 0.20 mgCl /
The operation was performed for 30 days under the condition of L. Calcium hardness of cooling water is 138mgCaCO 3 / L, scale adhesion speed is 13m
g / cm 2 / month, and the recovery rate of the hardness component was 20 g / day. The chloride ion concentration of the cooling water was 92 mg / L, and the slime deposition rate was 8 mg / dm 2 / 3day. Example 4 Concentration ratio of cooling water 10 times, residual chlorine concentration 0.80 mgCl /
The operation was performed for 30 days under the condition of L. The calcium hardness of the cooling water is 132mgCaCO 3 / L, the scale adhesion speed is 11m
g / cm 2 / month, and the recovery rate of the hardness component was 24 g / day. The chloride ion concentration of the cooling water was 87 mg / L, and the slime deposition rate was 1 mg / dm 2 / 3day. Comparative Example 3 The flow of cooling water to the branch line was stopped, and the molecular weight was 3,500.
Was added so that the concentration of polymaleic acid became 20 mg / L, and the concentration of residual chlorine became 0.8 mgCl / L, and operation was performed for 30 days at a cooling water concentration ratio of 10 times. . Calcium hardness of cooling water is 315mgCaCO 3
/ L, the scale deposition rate was 52 mg / cm 2 / month. Chloride ion concentration of the cooling water is 124 mg / L, the residual chlorine concentration of the cooling water is 0.81mgCl / L, slime deposition rate was 1mg / dm 2 / 3day. Comparative Example 4 The cooling water was stopped flowing through the branch line, and the operation was performed for 30 days at a concentration ratio of cooling water of 10 times without adding a chemical. The calcium hardness of the cooling water is 158mgCaCO 3 /
L, the scale deposition rate was 186 mg / cm 2 / month. Chloride ion concentration of the cooling water is 104 mg / L, the residual chlorine concentration of the cooling water is 0.02mgCl / L, the deposition rate of the slime was 58mg / dm 2 / 3day. Examples 1-4
Table 1 shows the processing conditions and results of Comparative Examples 1 to 4.

【0011】[0011]

【表1】 [Table 1]

【0012】第1表に見られるように、冷却水を分岐ラ
インに設けた電解セルに通水し、電極に電圧を印加した
実施例1〜4においては、沈降槽において硬度成分が回
収され、熱交換器のチューブへのスケールの付着が防止
されるとともに、冷却水中の残留塩素濃度が高くなり、
スライムの付着も防止されている。特に、濃縮倍率10
倍の場合は、比較例3のようにポリマレイン酸と次亜塩
素酸ナトリウムを添加した従来法では、十分なスケール
付着の防止は困難であるが、本発明方法によれば、実施
例3〜4のように、スケール付着を防止することができ
る。なお、濃縮倍率10倍の場合、ブロー排水量は濃縮
倍率5倍の場合の1/2以下に減少した。
As shown in Table 1, in Examples 1 to 4 in which cooling water was passed through an electrolytic cell provided in a branch line and a voltage was applied to an electrode, a hardness component was recovered in a settling tank. Scale is prevented from adhering to the tubes of the heat exchanger, and the residual chlorine concentration in the cooling water increases,
Slime adhesion is also prevented. In particular, a concentration ratio of 10
In the case of twice, it is difficult to sufficiently prevent the adhesion of scale by the conventional method in which polymaleic acid and sodium hypochlorite are added as in Comparative Example 3, but according to the method of the present invention, Examples 3 to 4 are used. As described above, scale adhesion can be prevented. In addition, when the concentration magnification was 10 times, the amount of blow water decreased to に or less of that when the concentration magnification was 5 times.

【0013】[0013]

【発明の効果】本発明方法によれば、一個の電解セルに
より冷却水中の硬度成分を除去しつつ、酸化剤を発生さ
せることができ、冷却水系のスケール防止及びスライム
防止を同時に実現することができる。また、従来の薬品
処理では不可能な高濃縮条件においても、効果的にスケ
ール付着を防止することができる。
According to the method of the present invention, an oxidizing agent can be generated while removing the hardness component in the cooling water by one electrolytic cell, thereby simultaneously preventing scale and slime of the cooling water system. it can. In addition, scale adhesion can be effectively prevented even under high concentration conditions which cannot be achieved by conventional chemical treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明方法の実施の一態様の工程系統
図である。
FIG. 1 is a process flow chart of an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 冷却塔 2 ピット 3 循環ポンプ 4 熱交換器 5 分岐ライン 6 バルブ 7 電解セル 8 沈降槽 9 ろ過器 DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Pit 3 Circulation pump 4 Heat exchanger 5 Branch line 6 Valve 7 Electrolysis cell 8 Sedimentation tank 9 Filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 19/01 F28G 13/00 A F28G 13/00 F28F 19/00 501D (72)発明者 飯村 晶 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 佐々木 真司 千葉県千葉市美浜区中瀬二丁目6番地 W BGマリブウエスト19階 旭硝子エンジニ アリング株式会社内 (72)発明者 大石 正典 千葉県千葉市美浜区中瀬二丁目6番地 W BGマリブウエスト19階 旭硝子エンジニ アリング株式会社内 Fターム(参考) 3L044 DB02 HA05 JA06 KA01 KA05 4D061 DA05 DB02 DB05 EA02 EB01 EB05 EB14 EB30 EB37 EB39 GA05 GC12 GC16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F28F 19/01 F28G 13/00 A F28G 13/00 F28F 19/00 501D (72) Inventor Akira Iimura Tokyo 3-7-7 Nishi-Shinjuku, Shinjuku-ku, Kurita Kogyo Co., Ltd. (72) Inventor Shinji Sasaki 2-6-1, Nakase, Mihama-ku, Chiba-shi, Chiba WBG Malibu West 19th Floor Asahi Glass Engineering Co., Ltd. (72) Inventor Masanori Oishi 2nd floor, 6-6 Nakase, Mihama-ku, Chiba-shi, Chiba WBG Malibu West 19th floor Asahi Glass Engineering Co., Ltd. F term (reference) 3L044 DB02 HA05 JA06 KA01 KA05 4D061 DA05 DB02 DB05 EA02 EB01 EB05 EB12 GC05 EB37 GC39

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】冷却水中に浸漬した電極に電圧を印加して
陰極表面に水中の硬度成分を固体として付着させて除去
するとともに、陽極表面で塩化物イオンを酸化剤に変換
させて水系内に供給するスケール及びスライムの防止方
法であって、電極のうち少なくとも陽極が、表面に白金
族元素の単体又は酸化物を有する電極であることを特徴
とするスケール及びスライムの防止方法。
1. A voltage is applied to an electrode immersed in cooling water to remove a hard component in water as a solid on a cathode surface and convert chloride ions into an oxidant on an anode surface to form an aqueous agent. A method for preventing scale and slime to be supplied, wherein at least the anode among the electrodes is an electrode having a simple substance or oxide of a platinum group element on the surface.
【請求項2】陽極と陰極が、ともに表面に白金族元素の
単体又は酸化物を有する電極であり、かつ、陰極と陽極
を反転させる請求項1記載のスケール及びスライムの防
止方法。
2. The method for preventing scale and slime according to claim 1, wherein the anode and the cathode are both electrodes having a simple substance or an oxide of a platinum group element on the surface, and the cathode and the anode are inverted.
【請求項3】白金族元素が、白金、ルテニウム又はイリ
ジウムである請求項1又は請求項2記載のスケール及び
スライムの防止方法。
3. The method for preventing scale and slime according to claim 1, wherein the platinum group element is platinum, ruthenium or iridium.
【請求項4】冷却水中の酸化剤濃度を測定し、該測定結
果を基に冷却水中の酸化剤濃度を所定値に調整するよう
に、電極間の電流を制御することを特徴とする請求項
1、請求項2又は請求項3記載のスケール及びスライム
の防止方法。
4. The method according to claim 1, further comprising measuring an oxidant concentration in the cooling water and controlling a current between the electrodes so as to adjust the oxidant concentration in the cooling water to a predetermined value based on the measurement result. The method for preventing scale and slime according to claim 1, 2, or 3.
JP2000072142A 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system Expired - Fee Related JP4471048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072142A JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072142A JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Publications (2)

Publication Number Publication Date
JP2001259650A true JP2001259650A (en) 2001-09-25
JP4471048B2 JP4471048B2 (en) 2010-06-02

Family

ID=18590610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072142A Expired - Fee Related JP4471048B2 (en) 2000-03-15 2000-03-15 Simultaneous prevention method of scale failure and slime failure of circulating cooling water system

Country Status (1)

Country Link
JP (1) JP4471048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027825A1 (en) * 2004-09-06 2006-03-16 Innovative Design & Technology Inc. Cooling water circulation system and method for removing scale from cooling water circulation system
KR100935880B1 (en) 2008-03-04 2010-01-13 박재권 Elimination method of scale attached on outer surface of copper pipe for evaporaior

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027825A1 (en) * 2004-09-06 2006-03-16 Innovative Design & Technology Inc. Cooling water circulation system and method for removing scale from cooling water circulation system
JPWO2006027825A1 (en) * 2004-09-06 2008-05-08 イノベーティブ・デザイン&テクノロジー株式会社 Cooling water circulation device and scale removal method
JP4644677B2 (en) * 2004-09-06 2011-03-02 イノベーティブ・デザイン&テクノロジー株式会社 Cooling water circulation device
CN101010556B (en) * 2004-09-06 2011-08-31 创新设计技术株式会社 Cooling water circulation device and its scale removing method
US8475645B2 (en) 2004-09-06 2013-07-02 Innovative Design & Technology Inc. Cooling water circulation apparatus and method of removing scale from cooling water circulation apparatus
KR100935880B1 (en) 2008-03-04 2010-01-13 박재권 Elimination method of scale attached on outer surface of copper pipe for evaporaior

Also Published As

Publication number Publication date
JP4471048B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP3364518B2 (en) Wastewater treatment method
EP2010456B1 (en) Process and apparatus for sewage water purification
JPH09512861A (en) Electrolytic cell producing mixed oxidant gas
WO2006098041A1 (en) Method and apparatus for cleaning circulation water
DE60218257T2 (en) METHOD OF WATER TREATMENT AND DEVICE THEREFOR
JP2007144258A (en) Method for electrolyzing water and electrolytic apparatus
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
JP2004121969A (en) Cooling water treatment method
JP2006255653A (en) Electrolytic treatment method of water system
JP4126904B2 (en) Water treatment method and apparatus for cooling water system
JP2001259650A (en) Method for preventing scale and slime
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
JP2001259690A (en) Method for preventing scaling in water system
JP2007253114A (en) Electrolysis method of water and electrolytic apparatus
KR101869088B1 (en) Apparatus for treating cooling water
JP2006198547A (en) Electrolytic treatment method and apparatus for water system
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP2007075738A (en) Scale prevention apparatus and method
JP2006095426A (en) Electrolyzing method and electrolyzation apparatus in circulation type cooling water system
JP4171440B2 (en) Waste water treatment apparatus and waste water treatment method using the same
JP3521896B2 (en) Water treatment method for cooling water system
JP2006218353A (en) Electrolytic treatment method
RU2139956C1 (en) Plant for production of hypochlorites solutions by electrolysis
JP3422366B2 (en) Cooling water slime prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees