JP4470907B2 - Shearing method - Google Patents

Shearing method Download PDF

Info

Publication number
JP4470907B2
JP4470907B2 JP2006144887A JP2006144887A JP4470907B2 JP 4470907 B2 JP4470907 B2 JP 4470907B2 JP 2006144887 A JP2006144887 A JP 2006144887A JP 2006144887 A JP2006144887 A JP 2006144887A JP 4470907 B2 JP4470907 B2 JP 4470907B2
Authority
JP
Japan
Prior art keywords
shear
passage
back pressure
shearing
bite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006144887A
Other languages
Japanese (ja)
Other versions
JP2006332672A (en
Inventor
林  高廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2006144887A priority Critical patent/JP4470907B2/en
Publication of JP2006332672A publication Critical patent/JP2006332672A/en
Application granted granted Critical
Publication of JP4470907B2 publication Critical patent/JP4470907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、成形用材料を、せん断変形させながら押出し加工することによりせん断付与成形体を成形するせん断付与方法に関する。   The present invention relates to a shearing method for forming a shearing molded product by extruding a molding material while shearing and deforming the molding material.

従来から、金型に屈曲した材料通路を設け、この材料通路に金属材料を供給するとともに、材料供給口側から圧力を付与して金属材料を材料押出口に移動させる押出加工が行われている(例えば、特許文献1参照)。これによると、金属材料が加圧状態で材料通路の屈曲部を通過するときにせん断付与され、このせん断付与によってせん断変形することにより、金属材料の密度等に関する特性が向上する。   Conventionally, an extrusion process has been performed in which a bent material passage is provided in a mold, a metal material is supplied to the material passage, and pressure is applied from the material supply port side to move the metal material to the material extrusion port. (For example, refer to Patent Document 1). According to this, when the metal material passes through the bent portion of the material passage in a pressurized state, shearing is applied, and the shearing deformation is caused by the shearing, thereby improving the properties relating to the density of the metal material.

このような押出加工において使用する金型では、材料通路の断面形状が円形や正方形に形成されており、また、その材料通路は、屈曲部を挟んで、材料供給口側の材料供給通路と、材料押出口側の材料押出通路で構成されている。そして、金属材料は、材料供給通路内に充填されたのちに、プランジャー等の加圧部材によって加圧され、材料押出通路を通過して材料押出口から出て行く。   In the mold used in such an extrusion process, the cross-sectional shape of the material passage is formed in a circle or a square, and the material passage is sandwiched between the material supply passage on the material supply port side, It is composed of a material extrusion passage on the material extrusion port side. Then, after the metal material is filled into the material supply passage, the metal material is pressurized by a pressure member such as a plunger, passes through the material extrusion passage, and exits from the material extrusion port.

この場合、押出加工されたせん断付与成形体の先端部は、金属材料が材料供給通路に充填された際に、屈曲部に位置していた部分となる。したがって、加圧状態で屈曲部を通過していないためせん断付与がされてない。また、せん断付与成形体の後端部も、押出加工の終了時に、屈曲部に位置していた部分でせん断付与がされてない。このため、せん断付与成形体の先端部と後端部を除いた部分が製品として使用されている。
特開2001−316789号公報
In this case, the distal end portion of the extruded shear imparting molded body is a portion located at the bent portion when the metal material is filled in the material supply passage. Therefore, since the pressure does not pass through the bent portion, no shearing is applied. In addition, the rear end portion of the shear imparting molded body is not subjected to shearing at the portion located at the bent portion at the end of the extrusion process. For this reason, the part except the front-end | tip part and rear-end part of a shear provision molded object is used as a product.
JP 2001-316789 A

しかしながら、前述した従来の方法によって成形されたせん断付与成形体では、先端部と後端部の除去される部分が多いため、せん断付与成形体の歩留まりが悪くなるという問題がある。また、金属材料が屈曲部を通過する際に、屈曲部の内角側部分を通過する金属材料と屈曲部の外角側部分を通過する金属材料との間で付与されるせん断に差が生じ、均一な状態のせん断付与成形体の成形が難しいという問題もある。   However, in the shear-imparting molded body molded by the above-described conventional method, there are many portions where the front end portion and the rear end portion are removed, so that the yield of the shear-imparting molded body is deteriorated. Further, when the metal material passes through the bent portion, a difference occurs in the shear applied between the metal material that passes through the inner corner side portion of the bent portion and the metal material that passes through the outer corner side portion of the bent portion. There is also a problem that it is difficult to form a shear-imparted molded article in a simple state.

発明の概要Summary of the Invention

本発明は、上記問題に対処するためになされたもので、その目的は、成形用材料を用いて、歩留まりが良く、かつ全体が略均一な状態になるせん断付与成形体を得ることのできるせん断付与方法を提供することである。   The present invention has been made in order to address the above-described problems. The purpose of the present invention is to provide a shear-applying molded body having a good yield and a substantially uniform overall shape using a molding material. It is to provide a grant method.

上記の目的を達成するため、本発明に係るせん断付与方法の構成上の特徴は、屈曲した角部を備えた材料通路の材料供給口側から材料押出口側に向けて、箔片状のBiTe系熱電素子用材料を加圧して移動させることにより、せん断付与成形体を成形するせん断付与方法であって、材料通路の材料供給口側および材料押出口側の両方におけるBiTe系熱電素子用材料の移動方向に直交する通路断面を、角部の稜線に沿う方向の長さが、稜線に直交する方向の長さよりも長い長方形に形成したせん断付与装置に、材料通路の材料供給口からBiTe系熱電素子用材料を、積層させて供給する材料供給工程と、材料通路に供給されたBiTe系熱電素子用材料を、材料供給口側から加圧して移動させるとともに背圧を付与して、BiTe系熱電素子用材料が角部を通過するときにせん断変形させるせん断付与工程とを備え、せん断付与工程における背圧の付与を、材料通路の角部よりも材料押出口側部分で移動可能な背圧パンチによって行うとともに、背圧パンチが材料通路の角部に進入することを防止するためのストッパーを背圧パンチに設けたことにある。 In order to achieve the above-described object, the structural feature of the shearing application method according to the present invention is that the BiTe is in the form of a foil piece from the material supply port side to the material extrusion port side of the material passage having a bent corner. A shear application method for forming a shear application molded body by pressurizing and moving a system thermoelectric element material, wherein the BiTe thermoelectric element material is formed on both the material supply port side and the material extrusion port side of the material passage. A BiTe-based thermoelectric device is connected from the material supply port of the material passage to the shearing device in which the length of the direction along the ridgeline of the corner is longer than the length of the direction perpendicular to the ridgeline. The material supply step of supplying the element material in a stacked manner, and the BiTe thermoelectric element material supplied to the material passage are pressurized and moved from the material supply port side, and back pressure is applied to the BiTe thermoelectric element. E Bei the shear applying step of shear deformation when a child material passes a corner, the application of back pressure in the shear applying step, moveable material extrusion port side portion than the corner portions of the material path back pressure The back pressure punch is provided with a stopper for preventing the back pressure punch from entering the corner portion of the material passage .

このように構成した本発明のせん断付与方法では、材料通路の断面を、角部の稜線に沿う方向の長さが、稜線に直交する方向の長さよりも長い長方形に形成し、成形されたせん断付与成形体が、長方形の断面形状を有する板状体になるようにしている。このため、通路断面を円形に形成した場合や正方形に形成した場合と比較して、先後端部の除去する部分が大幅に減少し、歩留まりが向上する。すなわち、成形されたせん断付与成形体のなかで、せん断付与されずに除去される先端部と後端部の体積は、材料通路の断面積と、角部における成形用材料の移動方向の長さとの積で求められる。   In the shearing application method of the present invention configured as described above, the cross section of the material passage is formed into a rectangular shape in which the length in the direction along the ridgeline of the corner is longer than the length in the direction perpendicular to the ridgeline, and the formed shear The imparted molded body is a plate-shaped body having a rectangular cross-sectional shape. For this reason, compared with the case where the passage section is formed in a circle or a square, the portion to be removed from the front and rear ends is greatly reduced, and the yield is improved. That is, the volume of the front end portion and the rear end portion that are removed without being subjected to shearing in the formed shear imparting molded body is the cross-sectional area of the material passage and the length of the molding material in the corner in the moving direction. It is calculated by the product of

そして、この角部における成形用材料の移動方向の長さは、角部における内角側の稜線上の点と外角側の谷線上の点とを結ぶ線を対角線とする面の一辺の長さと略等しくなる。したがって、せん断付与成形体の歩留まりを向上させるためには、前述した移動方向の長さを短くすること、言い換えると、角部における稜線に直交する部分の面積を小さくしたり、稜線上の点と谷線上の点を結ぶ線を短くしたりすることが有効となる。このため、材料通路の断面形状を、材料供給口側部分と材料押出口側部分との角部の稜線に沿う方向の長さが稜線に直交する方向の長さよりも長くなった長方形に形成することによって歩留まりの向上が可能になる。   The length in the direction of movement of the molding material at this corner is approximately equal to the length of one side of the plane that is a diagonal line connecting the point on the inner corner side ridge line and the point on the outer corner side valley line. Will be equal. Therefore, in order to improve the yield of the shear-imparting molded body, the length in the moving direction described above is shortened, in other words, the area of the portion orthogonal to the ridge line at the corner is reduced, or the point on the ridge line is It is effective to shorten the line connecting the points on the valley line. For this reason, the cross-sectional shape of the material passage is formed in a rectangle in which the length in the direction along the ridgeline at the corner of the material supply port side portion and the material extrusion port side portion is longer than the length in the direction perpendicular to the ridgeline. Thus, the yield can be improved.

また、材料通路の断面における角部の稜線に直交する方向の長さが短くなるため、角部の内側部分(稜線側部分)を通過する成形用材料と、角部の外側部分(谷線側部分)を通過する成形用材料とに付与されるせん断に生じる差が小さくなり略均一な状態のせん断付与成形体が得られる。また、材料通路における材料供給口側部分に対する材料押出口側部分の所定角度としては、180度未満であればよいが、好ましくは、60度〜120度の範囲の角度である。   Moreover, since the length in the direction orthogonal to the ridgeline at the corner in the cross section of the material passage is shortened, the molding material passing through the inner portion (ridgeline side portion) of the corner and the outer portion of the corner (valley line side) The difference generated in the shear applied to the molding material passing through the part) is reduced, and a shear-applied molded body in a substantially uniform state is obtained. Further, the predetermined angle of the material extrusion port side portion with respect to the material supply port side portion in the material passage may be less than 180 degrees, but is preferably an angle in the range of 60 degrees to 120 degrees.

また、本発明に係るせん断付与装置では、せん断付与工程における背圧の付与を、材料通路の角部よりも材料押出口側部分で移動可能な背圧パンチによって行うとともに、背圧パンチが材料通路の角部に進入することを防止するためのストッパーを背圧パンチに設けている。これによると、背圧で低密度時の成形用材料が押し潰されることを防止できる。 Further, a shear imparting equipment according to the present invention, the application of back pressure in the shear applying step, performs by the backpressure punch moveable material extrusion port side portion than the corner portions of the material passage, back pressure punch The back pressure punch is provided with a stopper for preventing entry into the corner portion of the material passage. According to this, it can prevent that the molding material at the time of low density by back pressure is crushed.

また、本発明に係るせん断付与装置の他の構成上の特徴は、材料供給工程において、材料通路内にBiTe系熱電素子用材料を供給した後に、材料通路内を排気してアルゴンガスを充満させることにある。
Another feature of the configuration of the shear imparting device according to the present invention is a material supply step, after subjected supercharges BiTe-based thermoelectric device material into the material path, filled with argon gas was evacuated through the material passage There is to make it.

以下、本発明の一実施形態を図面を用いて説明する。図1は、本発明に係るせん断付与方法で用いられるせん断付与装置Aを示している。このせん断付与装置Aは、金型10と、金型10に組み付けられた加圧装置20とで構成されている。金型10は、チタン、鉄を含む合金からなる下部型11と上部型12とで構成されており、内部に、材料供給通路13と材料押出通路14とからなるL字状に屈曲した材料通路15が形成されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a shearing device A used in the shearing method according to the present invention. This shearing device A is composed of a mold 10 and a pressurizing apparatus 20 assembled to the mold 10. The mold 10 includes a lower mold 11 and an upper mold 12 made of an alloy containing titanium and iron, and a material path bent into an L shape including a material supply path 13 and a material extrusion path 14 therein. 15 is formed.

材料供給通路13と材料押出通路14とが交差する角度は90度に設定されており、その直方体になった交差部が本発明の角部16になっている。また、図2に、上部型12に形成された材料供給通路13および材料押出通路14を示すように、材料供給通路13および材料押出通路14の断面形状(材料供給通路13の材料供給口13aおよび材料押出通路14の材料押出口14aと同じ形状)は、長方形に設定され、その長辺17の長さは4cmに設定され、短辺18の長さは1cmに設定されている。   The angle at which the material supply passage 13 and the material extrusion passage 14 intersect is set to 90 degrees, and the intersecting portion that is a rectangular parallelepiped is the corner portion 16 of the present invention. 2 shows the material supply passage 13 and the material extrusion passage 14 formed in the upper mold 12, and the cross-sectional shapes of the material supply passage 13 and the material extrusion passage 14 (the material supply port 13a of the material supply passage 13 and the material supply passage 13). The material extruding passage 14 has the same shape as the material extruding port 14a), the length of the long side 17 is set to 4 cm, and the length of the short side 18 is set to 1 cm.

加圧装置20は、駆動部21と、ロッド22を介して駆動部21に連結された本発明の加圧部材としての加圧パンチ23とで構成されており、加圧パンチ23は、駆動部21の駆動によって材料供給通路13内を上下に進退移動する。すなわち、この加圧パンチ23の下端面23aは、駆動部21の駆動により、材料供給通路13の上端部である材料供給口13aよりもさらに上方に上昇して材料供給口13aを開口することができる。また、加圧パンチ23の下端面23aは、材料供給通路13と材料押出通路14とが交わる角部16における内角側の稜線部16aの位置まで下降することができる。   The pressure device 20 includes a drive unit 21 and a pressure punch 23 as a pressure member of the present invention connected to the drive unit 21 via a rod 22. The pressure punch 23 is a drive unit. The drive of 21 moves the material supply passage 13 up and down. That is, the lower end surface 23a of the pressure punch 23 is further raised above the material supply port 13a which is the upper end portion of the material supply passage 13 by the drive of the drive unit 21 to open the material supply port 13a. it can. Further, the lower end surface 23 a of the pressure punch 23 can be lowered to the position of the ridge line portion 16 a on the inner corner side at the corner portion 16 where the material supply passage 13 and the material extrusion passage 14 intersect.

また、加圧装置20は、材料押出通路14内を、駆動部(図示せず)の駆動によって図示の左右に進退移動する背圧パンチ24も備えている。この背圧パンチ24は、材料押出通路14に押し出されてくる成形用材料(図3参照)25に対して小さな圧力を負荷するもので、これによって、成形用材料25に、より良好なせん断付与が行える。特に、成形用材料25が粉体や粒状体である場合には、最初に供給された成形用材料25を角部16からはみ出させずその形状を維持させるために大きな効果を奏する。この背圧パンチ24は、材料押出通路14の材料押出口14aよりもさらに後退して、材料押出口14aを開口することができ、また、角部16の稜線部16aの位置まで進入することができる。   The pressurizing device 20 is also provided with a back pressure punch 24 that moves back and forth in the left and right directions in the material extruding passage 14 by driving of a driving unit (not shown). The back pressure punch 24 applies a small pressure to the molding material 25 (see FIG. 3) extruded into the material extruding passage 14, thereby imparting better shear to the molding material 25. Can be done. In particular, when the molding material 25 is a powder or a granular material, there is a great effect in maintaining the shape of the molding material 25 supplied first without protruding from the corner portion 16. The back pressure punch 24 can further recede from the material extrusion port 14a of the material extrusion passage 14 to open the material extrusion port 14a, and can enter the position of the ridge line portion 16a of the corner portion 16. it can.

また、このせん断付与装置Aは、減圧可能になった真空チャンバ内に設置されており、前述した各装置の外、真空チャンバ内にアルゴンガスを供給するためのアルゴンガス供給装置、金型10等を加熱するための加熱装置および制御装置(図示せず)等も備えている。そして、制御装置の制御によって、加圧装置20等の各装置が予め制御装置に入力された設定に従って自動的に駆動制御される。   The shearing device A is installed in a vacuum chamber that can be depressurized. In addition to the devices described above, an argon gas supply device for supplying argon gas into the vacuum chamber, a mold 10 and the like. A heating device and a control device (not shown) are also provided. Then, under the control of the control device, each device such as the pressurizing device 20 is automatically driven and controlled according to the setting input in advance to the control device.

つぎに、以上のように構成したせん断付与装置Aを用いて、粉末材料からなるせん断付与成形体を成形する方法についてのべる。ここでは、熱電モジュールに使用する熱電素子の例をとって説明する。せん断付与成形体の成形に際しては、まず、熱電素子用の粉末材料を製造する。この場合、例えば、N型熱電素子を成形するための原料を秤量して、Bi2Te2.7Se0.3の割合からなる材料を準備する。ついで、この材料を石英管に真空封止し、その石英管に封止した材料を650℃の温度で加熱しながら揺動して溶解し、凝固する。   Next, a method for forming a shearing formed body made of a powder material using the shearing apparatus A configured as described above will be described. Here, an example of a thermoelectric element used for the thermoelectric module will be described. When forming the shearing imparted molded body, first, a powder material for a thermoelectric element is manufactured. In this case, for example, a raw material for forming an N-type thermoelectric element is weighed to prepare a material having a ratio of Bi2Te2.7Se0.3. Next, this material is vacuum-sealed in a quartz tube, and the material sealed in the quartz tube is rocked and melted while being heated at a temperature of 650 ° C. to solidify.

そして、この凝固された材料を、アルゴン雰囲気中で800℃に加熱して、単ロール液体急冷装置を用いて箔化する。この箔化は、高速回転する冷却ロールの周面に、溶解された材料を落下させることにより、急冷して箔化するものである。これによって得られた箔片材料を水素雰囲気中で400℃に加熱することによって脱酸素処理を行い、粉末材料からなる熱電素子用の成形用材料25が得られる。この場合の成形用材料としては、双ロール急冷装置、アトマイズ法によって得られる粉末材料や凝固砕粉を用いてもよい。また、これらを冷間プレス、常圧焼結、ホットプレス、CIP、HIP等で仮成形したものを用いてもよい。   Then, the solidified material is heated to 800 ° C. in an argon atmosphere and formed into a foil using a single roll liquid quenching apparatus. In this foil formation, the melted material is dropped on the peripheral surface of a cooling roll that rotates at high speed, whereby the foil is rapidly cooled to form a foil. The foil piece material thus obtained is deoxygenated by heating to 400 ° C. in a hydrogen atmosphere to obtain a molding material 25 for a thermoelectric element made of a powder material. As a molding material in this case, a powder material obtained by a twin roll quenching apparatus or an atomizing method or a coagulated crushed powder may be used. Moreover, you may use what these formed temporarily with cold press, normal pressure sintering, hot press, CIP, HIP, etc.

つぎに、加圧装置20の駆動部21を駆動させて加圧パンチ23を材料供給口13aの上方に上昇させ、材料供給口13aを開口するとともに、背圧パンチ24を角部16の稜線部16aの位置まで進入させる。そして、材料供給口13aから、材料供給通路13内に、成形用材料25を入れる。この場合、成形用材料25を構成する各箔片が、傾倒した状態で積層するように成形用材料25を材料供給通路13内に充填する。つぎに、真空チャンバ内を排気して減圧したのち、アルゴンガス供給装置を作動させ、真空チャンバ内にアルゴンガスを充満させる。そして、加熱装置をオンにして真空チャンバ内の温度を450℃に昇温したのちに、加圧装置20を駆動させる。   Next, the drive unit 21 of the pressurizing device 20 is driven to raise the pressurizing punch 23 above the material supply port 13 a, open the material supply port 13 a, and connect the back pressure punch 24 to the ridge line portion of the corner portion 16. Enter the position 16a. Then, the molding material 25 is put into the material supply passage 13 from the material supply port 13a. In this case, the molding material 25 is filled in the material supply passage 13 so that the foil pieces constituting the molding material 25 are stacked in a tilted state. Next, after evacuating and depressurizing the inside of the vacuum chamber, the argon gas supply device is activated to fill the vacuum chamber with argon gas. Then, after the heating device is turned on and the temperature in the vacuum chamber is raised to 450 ° C., the pressurizing device 20 is driven.

この場合、背圧パンチ24には、角部16の方向に、50kgf/cm2の背圧を付与し、その状態で、加圧装置20の加圧パンチ23を、図3の矢印aの方向に、0.3mm/分の速度で下降させる。これによって、成形用材料25は、背圧パンチ24の背圧を受けて圧縮されながら、矢印bの方向に移動していく。この成形用材料25が、角部16を通過するときに、せん断力が加わって、成形用材料25は、より配向性を高められるとともに、高密度化される。これによって、成形用材料25の硬度も増加する。 In this case, a back pressure of 50 kgf / cm 2 is applied to the back pressure punch 24 in the direction of the corner 16, and in this state, the pressure punch 23 of the pressure device 20 is moved in the direction of arrow a in FIG. And descend at a speed of 0.3 mm / min. As a result, the molding material 25 moves in the direction of the arrow b while being compressed by receiving the back pressure of the back pressure punch 24. When the molding material 25 passes through the corner portion 16, a shearing force is applied, so that the molding material 25 is further enhanced in orientation and densified. This also increases the hardness of the molding material 25.

そして、加圧パンチ23は、その下端面23aが、角部16の稜線部16aに到達するまで下降し、その間、成形用材料25は、断面形状が長方形の板状のせん断付与成形体に成形されて、材料押出通路14の材料押出口14a側に移動していく。この押出加工の際、背圧パンチ24の先端面24aは、角部16の稜線部16aの位置から徐々に材料押出口14a側に後退していく。ここでは、加圧パンチ23を角部16の稜線部16aの位置よりも下方に進出させないようにしている。   Then, the pressure punch 23 is lowered until the lower end surface 23a reaches the ridge line portion 16a of the corner portion 16, while the molding material 25 is molded into a plate-like shear imparting molded body having a rectangular cross section. As a result, the material extruding passage 14 moves toward the material extruding port 14a. During this extrusion process, the front end surface 24a of the back pressure punch 24 gradually recedes from the position of the ridge line portion 16a of the corner portion 16 toward the material extrusion port 14a. Here, the pressure punch 23 is prevented from advancing below the position of the ridge line portion 16 a of the corner portion 16.

これにより、成形されるせん断付与成形体の断面形状が、先端から後端まで一定になる。また、背圧パンチ24を角部16の稜線部16aの位置よりも前方には進出させない。これにより、背圧パンチ24の背圧で、低密度時の成形用材料25が押し潰されることを防止している。これは、例えば、背圧パンチ24にストッパーを設けるようにすればよい。   As a result, the cross-sectional shape of the formed shear-imparting molded body is constant from the front end to the rear end. Further, the back pressure punch 24 is not advanced forward from the position of the ridge line portion 16 a of the corner portion 16. Thereby, the back pressure of the back pressure punch 24 prevents the molding material 25 at the time of low density from being crushed. For example, a stopper may be provided on the back pressure punch 24.

つぎに、図4に示したように成形されたせん断付与成形体27を、金型10から取り出して、図4に示した先端部27aと後端部27bをそれぞれ端面から1cm分切断して除去する。そして、残りのせん断付与成形体27cを、長手方向(押出し方向)と直交する方向に切断して所定の厚みの複数の板状体にする。ついで、切断された板状体の両切断面にニッケルメッキを施し、これをさらに、ニッケルメッキ面が両端面となるように切断して直方体のN型熱電素子に形成する。同様にして得られたBi0.4Sb1.0Te3のようなP型熱電素子と組み合わせて、この熱電素子の両メッキ面を、一対の上下基板に設けた電極にそれぞれ接合することにより熱電モジュールが得られる。   Next, the shear-imparting molded body 27 formed as shown in FIG. 4 is taken out from the mold 10, and the front end portion 27a and the rear end portion 27b shown in FIG. To do. Then, the remaining shearing molded body 27c is cut in a direction orthogonal to the longitudinal direction (extrusion direction) to form a plurality of plate-like bodies having a predetermined thickness. Next, nickel plating is applied to both cut surfaces of the cut plate-like body, and this is further cut so that the nickel-plated surfaces become both end surfaces to form a rectangular parallelepiped N-type thermoelectric element. In combination with a P-type thermoelectric element such as Bi0.4Sb1.0Te3 obtained in the same manner, a thermoelectric module is obtained by bonding both plated surfaces of this thermoelectric element to electrodes provided on a pair of upper and lower substrates. .

つぎに、せん断付与処理によって得られたせん断付与成形体27における歩留まりを、図5に示した断面形状が円形のせん断付与成形体28および図6に示した断面形状が正方形のせん断付与成形体29の歩留まりと比較した。この場合、せん断付与成形体28は、半径を1.128cmに設定して断面積を4cm2にし、長さを10cmとした。また、せん断付与成形体29は、縦横の長さを2cmに設定して断面積を4cm2にし、長さを10cmとした。これによって、各せん断付与成形体27,28,29は、すべて断面積が4cm2で、長さが10cmとなり、体積が40cm3の成形体となる。 Next, with respect to the yield in the shear imparting molded body 27 obtained by the shear imparting treatment, the shear imparting molded body 28 having a circular sectional shape shown in FIG. 5 and the shear imparting molded body 29 having a square sectional shape shown in FIG. Compared with the yield. In this case, the shear-imparting molded body 28 was set to have a radius of 1.128 cm, a cross-sectional area of 4 cm 2 and a length of 10 cm. In addition, the shear-imparting molded body 29 was set to 2 cm in length and width, a cross-sectional area of 4 cm 2 , and a length of 10 cm. As a result, each of the shear-imparted molded bodies 27, 28, 29 is a molded body having a cross-sectional area of 4 cm 2 , a length of 10 cm, and a volume of 40 cm 3 .

この場合、せん断付与成形体27では、除去される先端部27aと後端部27bとの体積がそれぞれ、断面積4cm2と、長さ1cmとの積である4cm3となり、除去される部分の体積は8cm3となる。したがって、全体の体積歩留まりは、80%となる。また、せん断付与成形体28では、除去される先端部28aと後端部28bとの体積がそれぞれ、断面積4cm2と、長さ(直径と略等しくなる)2.256cmの積である9.024cm3となり、除去される部分の体積は18.048cm3となる。したがって、全体の体積歩留まりは、55%となる。 In this case, in the shear imparting molded body 27, the volume of the front end portion 27a and the rear end portion 27b to be removed is 4 cm 3 which is the product of the cross-sectional area of 4 cm 2 and the length of 1 cm, respectively. The volume is 8 cm 3 . Therefore, the overall volume yield is 80%. Further, in the shearing imparted molded body 28, the volume of the front end portion 28a and the rear end portion 28b to be removed is a product of a cross-sectional area of 4 cm 2 and a length (substantially equal to the diameter) of 2.256 cm, respectively. 024Cm 3, and the volume of the portion removed is the 18.048cm 3. Therefore, the overall volume yield is 55%.

また、せん断付与成形体29では、除去される先端部29aと後端部29bとの体積がそれぞれ、断面積4cm2と、長さ2cmとの積である8cm3となり、除去される部分の体積は16cm3となる。したがって、全体の体積歩留まりは、60%となる。この結果から、せん断付与成形体27の歩留まりが最もよく、つぎに、せん断付与成形体29の歩留まりがよく、最も歩留まりが悪かったのは、断面形状を円形にしたせん断付与成形体28であることがわかる。 Further, in the shearing imparted molded body 29, the volume of the front end portion 29a and the rear end portion 29b to be removed is 8 cm 3 , which is the product of the cross-sectional area of 4 cm 2 and the length of 2 cm, respectively. Is 16 cm 3 . Therefore, the overall volume yield is 60%. From this result, the yield of the shear imparting molded body 27 was the best, the yield of the shear imparting molded body 29 was the best, and the worst yield was the shear imparting molded body 28 having a circular cross-sectional shape. I understand.

つぎに、各辺の長さが2cmの正方形の断面形状を有するせん断付与成形体を比較例として成形し、この比較例のせん断付与成形体とせん断付与成形体27とにおける金型のL字形の屈曲部の内周側を通過した部分から外周側を通過した部分にかけての各部分の電気抵抗率を比較した。この結果を図7に示している。すなわち、図では、黒丸が比較例のせん断付与成形体の測定位置と電気抵抗率を示しており、白丸がせん断付与成形体27の測定位置と電気抵抗率を示している。この結果から、電気抵抗率は、L字形の屈曲部の内周側を通過した部分が最も小さく、外周側を通過した部分が最も大きいことが分かる。   Next, a shear imparting molded body having a square cross-sectional shape with a side length of 2 cm is molded as a comparative example, and the L-shaped molds in the shear imparting molded body and the shear imparting molded body 27 of this comparative example are formed. The electrical resistivity of each part from the part which passed the inner peripheral side of the bending part to the part which passed the outer peripheral side was compared. The result is shown in FIG. That is, in the figure, the black circles indicate the measurement position and electrical resistivity of the shear-applying molded body of the comparative example, and the white circles indicate the measurement position and electrical resistivity of the shear-applying molded body 27. From this result, it can be seen that the electrical resistivity is the smallest at the portion passing through the inner peripheral side of the L-shaped bent portion and the largest at the portion passing through the outer peripheral side.

そして、内周側と外周側との間を通過した部分については、内周側から外周側にかけての部分の電気抵抗率が徐々に大きくなるように変化している。したがって、せん断付与成形体27のように、幅に対して厚みが小さいせん断付与成形体ほど、全体の電気抵抗率を小さく、かつ差が少なくなるようにすることができる。図7に示した結果によると、比較例のせん断付与成形体では、内周と外周では、電気抵抗率に差が0.9×10-5Ωmであるのに対し、せん断付与成形体27では、0.3×10-5Ωmであった。この結果から、幅に対して厚みを小さくするほど良好なせん断付与成形体が得られることが分かる。 And about the part which passed between the inner peripheral side and the outer peripheral side, it has changed so that the electrical resistivity of the part from an inner peripheral side to an outer peripheral side may become large gradually. Therefore, as the shear-imparted molded body 27 has a smaller thickness with respect to the width, the overall electrical resistivity can be reduced and the difference can be reduced. According to the result shown in FIG. 7, in the shear imparted molded body of the comparative example, the difference in electrical resistivity between the inner periphery and the outer periphery is 0.9 × 10 −5 Ωm, whereas in the shear imparted molded body 27 0.3 × 10 −5 Ωm. From this result, it can be seen that as the thickness is reduced with respect to the width, a better shear-imparting molded body is obtained.

このように、本実施形態に係るせん断付与装置Aによれば、材料供給通路13と材料押出通路14とからなる材料通路15の断面を、角部16の稜線部16aに沿う方向の長さが、稜線部16aに直交する方向の長さよりも長い長方形に形成している。このため、成形されたせん断付与成形体27等の歩留まりが、断面形状を円形や正方形にしたせん断付与成形体28,29の歩留まりと比べて、大幅に向上する。   Thus, according to the shearing device A according to the present embodiment, the length of the cross section of the material passage 15 including the material supply passage 13 and the material extrusion passage 14 in the direction along the ridge line portion 16a of the corner portion 16 is the same. The rectangular shape is longer than the length in the direction orthogonal to the ridge line portion 16a. For this reason, the yield of the molded shear imparting molded body 27 and the like is greatly improved as compared with the yield of the shear imparting molded bodies 28 and 29 having a circular or square cross-sectional shape.

また、この場合、角部16の稜線部16aと谷線部16bとの間の長さが短くなるため、角部16の稜線部16a側部分を通過する成形用材料25(または、せん断付与成形体の部分)と、角部16の谷線部16b側部分を通過する成形用材料25(または、せん断付与成形体の部分)とに付与されるせん断変形の差が小さくなる。これによって、略均一な状態のせん断付与成形体27が得られる。また、せん断付与処理を行うことによって、得られるせん断付与成形体27は、配向性を高められるとともに、高密度化され、これによって硬度が上昇する。この結果、せん断付与成形体27から、高強度の材料が得られる。   In this case, since the length between the ridge line portion 16a and the valley line portion 16b of the corner portion 16 is shortened, the molding material 25 (or shearing molding) passing through the ridge line portion 16a side portion of the corner portion 16 is performed. The difference in shear deformation imparted to the body portion) and the molding material 25 (or the shear imparting molded body portion) passing through the valley line 16b side portion of the corner portion 16 is reduced. As a result, the shear-imparted molded body 27 in a substantially uniform state is obtained. Further, by performing the shearing treatment, the obtained shearing molding 27 can be improved in orientation and densified, thereby increasing the hardness. As a result, a high-strength material can be obtained from the shear imparting molded body 27.

図8は、本発明の他の実施形態によるせん断付与装置Bを示している。このせん断付与装置Bにおいては、金型30内に形成された材料供給通路31と材料押出通路32の断面形状が、せん断付与装置Aの材料通路15の断面形状と同じ長方形に形成され、材料供給通路31と材料押出通路32とが交わる角部36の角度が略120度に設定されている。そして、加圧装置40の加圧パンチ43は、材料供給通路31と材料押出通路32とが交わる角部36の稜線部36aまで材料供給通路31に進入することができ、背圧パンチ44も、角部36の稜線部36aまで材料押出通路32に進入することができる。このせん断付与装置Bにおけるそれ以外の部分の構成については、前述したせん断付与装置Aと同一である。   FIG. 8 shows a shearing device B according to another embodiment of the present invention. In the shearing device B, the material supply passage 31 and the material extrusion passage 32 formed in the mold 30 are formed in the same rectangular shape as the cross-sectional shape of the material passage 15 of the shearing device A, and the material supply The angle of the corner 36 where the passage 31 and the material extrusion passage 32 intersect is set to approximately 120 degrees. The pressure punch 43 of the pressure device 40 can enter the material supply passage 31 up to the ridge 36a of the corner 36 where the material supply passage 31 and the material extrusion passage 32 intersect. It is possible to enter the material extrusion passage 32 up to the ridge line portion 36 a of the corner portion 36. About the structure of the other part in this shear provision apparatus B, it is the same as the shear provision apparatus A mentioned above.

このように構成したため、このせん断付与装置Bを用いたせん断処理によって成形用材料25に付与されるせん断力は、せん断付与装置Aを用いたせん断処理によって成形用材料25に付与されるせん断力と比較して小さなものとなる。したがって、予め配向性よく積層された成形用材料25をせん断処理する場合や、比較的密度の高い成形体に形成された成形用材料をせん断処理する場合には、適度なせん断処理を行える。また、加圧パンチ43の移動速度を速くして処理を短時間で行うこともできる。それ以外の作用効果については、前述したせん断付与装置Aと同様である   Since it comprised in this way, the shearing force given to the molding material 25 by the shearing process using this shearing application apparatus B is the shearing force given to the molding material 25 by the shearing process using the shearing application apparatus A. It becomes small compared. Therefore, when the molding material 25 laminated in advance with good orientation is subjected to a shearing process, or when the molding material formed on a molded body having a relatively high density is subjected to a shearing process, an appropriate shearing process can be performed. Moreover, the moving speed of the pressure punch 43 can be increased to perform the processing in a short time. About the other effect, it is the same as that of the shear provision apparatus A mentioned above.

前述した各実施形態では、成形用材料として粉体、粒状体および板体を用いているが、この成形用材料としては、粉体や粒状体を仮焼結した成形体を材料として用いてもよい。また、成形用材料としては、熱電素子を形成するための成形用材料だけでなく、磁性体を形成するための成形用材料やセラミック材料を用いることもできる。   In each of the embodiments described above, powder, granules, and plates are used as the molding material. However, as the molding material, a molded body obtained by temporarily sintering the powder or granules may be used as the material. Good. Further, as the molding material, not only a molding material for forming a thermoelectric element but also a molding material or a ceramic material for forming a magnetic body can be used.

また、材料供給工程とせん断付与工程とによる処理を行う毎に、成形用材料に付与されるせん断の方向が変わるように向きを変えて成形用材料を材料通路に供給することによっても良好な結果が得られる。このせん断付与方法では、最初のせん断付与処理において、角部の内角側を通過した成形用材料と角部の外角側を通過した成形用材料との間に性能上、差が生じても、つぎのせん断付与処理の際に、その差が逆に生じるため互いに相殺され、処理回数を重ねるたびに全体として、均一なせん断付与成形体となる。これによって、さらに配向性が良く密度の大きなせん断付与成形体が得られる。   Good results can also be obtained by changing the orientation so that the direction of shear applied to the molding material changes each time the material supply process and shearing process are performed, and supplying the molding material to the material passage. Is obtained. In this shearing application method, even if there is a difference in performance between the molding material that has passed the inner corner side of the corner and the molding material that has passed the outer corner side of the corner, When the shearing treatment is performed, the difference is reversed, so that they are canceled out each other, and as a whole, the uniform shearing shaped product is obtained each time the treatment is repeated. As a result, a shear-imparted molded article having better orientation and higher density can be obtained.

本発明の一実施形態で用いるせん断付与装置の概略を示す断面図である。It is sectional drawing which shows the outline of the shear provision apparatus used by one Embodiment of this invention. 図1のせん断付与装置が備える上部型に設けられた材料通路を示す一部断面斜視図である。It is a partial cross section perspective view which shows the material channel | path provided in the upper mold | type with which the shear provision apparatus of FIG. 1 is provided. 金型に設けられた材料通路で成形用材料が移動する方向を示す断面図である。It is sectional drawing which shows the direction to which a molding material moves in the material channel | path provided in the metal mold | die. 本発明の実施形態によって得られたせん断付与成形体を示す斜視図である。It is a perspective view which shows the shear provision molded object obtained by embodiment of this invention. 断面形状が円形に形成されたせん断付与成形体を示す斜視図である。It is a perspective view which shows the shear provision molded object by which the cross-sectional shape was formed circularly. 断面形状が正方形に形成されたせん断付与成形体を示す斜視図である。It is a perspective view which shows the shear provision molded object by which the cross-sectional shape was formed in the square. 実施形態のせん断付与成形体と比較例のせん断付与成形体との電気抵抗率を比較したグラフである。It is the graph which compared the electrical resistivity of the shear provision molded object of embodiment, and the shear provision molded object of a comparative example. 本発明の他の実施形態で用いるせん断付与装置を示す断面図である。It is sectional drawing which shows the shear provision apparatus used in other embodiment of this invention.

符号の説明Explanation of symbols

10…金型、13…材料供給通路、14…材料押出通路、15…材料通路、16…角部、16a,36a…稜線部、17…長辺、18…短辺、20…加圧装置、21…駆動部、23,43…加圧パンチ、25…成形用材料、27…せん断付与成形体、A,B…せん断付与装置。
DESCRIPTION OF SYMBOLS 10 ... Mold, 13 ... Material supply path, 14 ... Material extrusion path, 15 ... Material path, 16 ... Corner | angular part, 16a, 36a ... Ridge line part, 17 ... Long side, 18 ... Short side, 20 ... Pressurization apparatus, DESCRIPTION OF SYMBOLS 21 ... Drive part, 23, 43 ... Pressure punch, 25 ... Molding material, 27 ... Shear provision molded object, A, B ... Shear provision apparatus.

Claims (2)

屈曲した角部を備えた材料通路の材料供給口側から材料押出口側に向けて、箔片状のBiTe系熱電素子用材料を加圧して移動させることにより、せん断付与成形体を成形するせん断付与方法であって、
前記材料通路の前記材料供給口側および前記材料押出口側の両方における前記BiTe系熱電素子用材料の移動方向に直交する通路断面を、前記角部の稜線に沿う方向の長さが、前記稜線に直交する方向の長さよりも長い長方形に形成したせん断付与装置に、前記材料通路の前記材料供給口から前記BiTe系熱電素子用材料を、積層させて供給する材料供給工程と、
前記材料通路に供給されたBiTe系熱電素子用材料を、前記材料供給口側から加圧して移動させるとともに背圧を付与して、前記BiTe系熱電素子用材料が前記角部を通過するときにせん断変形させるせん断付与工程と
を備え、
前記せん断付与工程における背圧の付与を、前記材料通路の角部よりも材料押出口側部分で移動可能な背圧パンチによって行うとともに、前記背圧パンチが前記材料通路の角部に進入することを防止するためのストッパーを前記背圧パンチに設けたことを特徴とするせん断付与方法。
Shear for forming a shear-giving molded body by pressing and moving a foil-like BiTe-based thermoelectric material from the material supply port side to the material extrusion port side of the material passage having a bent corner. A grant method,
The length of the passage cross section perpendicular to the moving direction of the BiTe-based thermoelectric element material on both the material supply port side and the material extrusion port side of the material passage is in the direction along the ridge line of the corner portion. A material supply step of supplying the BiTe-based thermoelectric element material in a stacked manner from the material supply port of the material passage to a shearing device formed into a rectangle longer than the length in the direction orthogonal to
When the BiTe thermoelectric element material supplied to the material passage is pressurized and moved from the material supply port side and a back pressure is applied, and the BiTe thermoelectric element material passes through the corner portion. for example Bei and the shear applying step to shear deformation,
The application of back pressure in the shearing application step is performed by a back pressure punch movable at a material extrusion port side portion with respect to a corner portion of the material passage, and the back pressure punch enters the corner portion of the material passage. A shearing application method comprising a stopper for preventing the back pressure punch provided on the back pressure punch .
前記材料供給工程において、前記材料通路内に前記BiTe系熱電素子用材料を供給した後に、前記材料通路内を排気してアルゴンガスを充満させる請求項1に記載のせん断付与方法。 In the material supply step, after supplying the BiTe-based thermoelectric device material into the material passage, shear imparting method according to Motomeko 1 is filled with argon gas and exhausting the material passage.
JP2006144887A 2006-05-25 2006-05-25 Shearing method Expired - Fee Related JP4470907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144887A JP4470907B2 (en) 2006-05-25 2006-05-25 Shearing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144887A JP4470907B2 (en) 2006-05-25 2006-05-25 Shearing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002333783A Division JP2004167507A (en) 2002-11-18 2002-11-18 Shearing device and shearing method

Publications (2)

Publication Number Publication Date
JP2006332672A JP2006332672A (en) 2006-12-07
JP4470907B2 true JP4470907B2 (en) 2010-06-02

Family

ID=37553955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144887A Expired - Fee Related JP4470907B2 (en) 2006-05-25 2006-05-25 Shearing method

Country Status (1)

Country Link
JP (1) JP4470907B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765940B2 (en) * 2007-01-09 2011-09-07 ヤマハ株式会社 Extrusion mold
JP2009274126A (en) * 2008-05-16 2009-11-26 Rinascimetalli:Kk Method of and equipment for forming metal
KR101240452B1 (en) 2011-02-28 2013-03-11 김용수 Manufacturing method of battery terminal plate

Also Published As

Publication number Publication date
JP2006332672A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
KR102465220B1 (en) Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
JP4849609B2 (en) Plant material molding method and molded body thereof
JP4470907B2 (en) Shearing method
JP6213561B2 (en) Metal separator molding apparatus and molding method
CN105228764B (en) The method and apparatus for manufacturing metallic plate
CN109317528A (en) A kind of metal alloy compositions extrusion molding dies
CN209502590U (en) A kind of metal alloy compositions extrusion molding dies
JP2005311384A (en) Shear imparting method
CN104046863A (en) Preparation method of large width-to-thickness ratio and ultrahigh strength and toughness aluminum alloy sheet
JP2004167507A (en) Shearing device and shearing method
CN104446507A (en) Manufacturing method of ceramic heating element and ceramic heating element
JP4161681B2 (en) Method for manufacturing thermoelectric conversion element
JP5680706B2 (en) Multi-action extrusion molding apparatus, multi-action extrusion molding machine and extrusion molding method
CN107671225A (en) A kind of moulding process of special-shaped bent axle
JP2006269870A (en) Method of manufacturing thermoelectric material
JP2010274293A (en) Method for forging golf club head, and die therefor
KR20190058876A (en) Manufacturing method of automobile parts using press molding
JP3956919B2 (en) Peltier module manufacturing method
JP2006249462A (en) Method for producing electrode, and electrode
JP2006269871A (en) Method of manufacturing thermoelectric material
JP6022414B2 (en) Method for producing fiber reinforced resin intermediate
JP2003046149A (en) Manufacturing apparatus for thermoelectric conversion material
JP5750945B2 (en) Thermoelectric element
JP2004216423A (en) Hot forging method of flake lamination material, and die used for the same
JP6005581B2 (en) Press mold

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees