JP4470902B2 - Non-aqueous electrolyte and lithium secondary battery - Google Patents

Non-aqueous electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP4470902B2
JP4470902B2 JP2006111531A JP2006111531A JP4470902B2 JP 4470902 B2 JP4470902 B2 JP 4470902B2 JP 2006111531 A JP2006111531 A JP 2006111531A JP 2006111531 A JP2006111531 A JP 2006111531A JP 4470902 B2 JP4470902 B2 JP 4470902B2
Authority
JP
Japan
Prior art keywords
carbonate
vinylene carbonate
secondary battery
electrolyte
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006111531A
Other languages
Japanese (ja)
Other versions
JP2006237015A (en
Inventor
俊一 浜本
明 植木
浩司 安部
勉 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006111531A priority Critical patent/JP4470902B2/en
Publication of JP2006237015A publication Critical patent/JP2006237015A/en
Application granted granted Critical
Publication of JP4470902B2 publication Critical patent/JP4470902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解液、そして該非水電解液を用いたリチウム二次電池に関する。本発明は特に、電気容量やサイクル特性並びに保存特性に優れたリチウム二次電池、そしてそのようなリチウム二次電池の製造に有利に用いることのできる非水電解液と非水溶媒に関するものである。   The present invention relates to a non-aqueous electrolyte and a lithium secondary battery using the non-aqueous electrolyte. The present invention particularly relates to a lithium secondary battery excellent in electric capacity, cycle characteristics, and storage characteristics, and a non-aqueous electrolyte and a non-aqueous solvent that can be advantageously used in the production of such a lithium secondary battery. .

近年、パーソナルコンピュータや携帯電話、カメラ一体型ビデオカメラなどの小型電子機器の普及が目覚ましく、これらの小型電子機器の駆動用電源として、小型、軽量でかつ高容量の二次電池が強く求められている。小型、軽量でかつ高容量の二次電池という観点から、コバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウムなどの複合酸化物を正極活物質とし、そしてリチウムイオンのドープ・脱ドープが可能な炭素材料を負極活物質として用い、かつ、環状カーボネートと鎖状カーボネートとからなる非水溶媒にリチウム塩を溶解させた非水電解液を用いるリチウム二次電池が好適とされ、さらなる改良を目指して、目下、研究開発が活発に進められている。   In recent years, small electronic devices such as personal computers, mobile phones, and camera-integrated video cameras have been widely used, and a small, lightweight and high-capacity secondary battery is strongly demanded as a power source for driving these small electronic devices. Yes. From the viewpoint of a compact, lightweight and high-capacity secondary battery, a carbon material that can be doped / undoped with lithium ions using a composite oxide such as lithium cobaltate, lithium nickelate, and lithium manganate as the positive electrode active material Lithium secondary batteries using a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent composed of a cyclic carbonate and a chain carbonate are suitable for use as a negative electrode active material. Research and development is actively underway.

リチウムイオンのドープ・脱ドープが可能な炭素材料の中でも、特に黒鉛(グラファイト)は、電気容量が大きく、かつ電位の平坦性が高いなどの好ましい特徴を持つため、リチウム二次電池用負極活物質として最適な化合物の一つとされており多用されている。   Among carbon materials that can be doped / undoped with lithium ions, graphite, in particular, has preferable characteristics such as high electric capacity and high potential flatness, and therefore, a negative electrode active material for lithium secondary batteries. It is regarded as one of the most suitable compounds and is frequently used.

しかしながら、黒鉛系材料を負極活物質として用いたリチウム二次電池では、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、あるいはブチレンカーボネート(BC)などの環状カーボネートを電解液溶媒として使用すると、黒鉛系負極活物質によって、環状カーボネートが分解され、その際に炭素材料の表面で剥離が発生して、電気容量やサイクル特性、保存特性などの電池特性が低下する傾向がある。特にプロピレンカーボネートを含む電解液ではこの現象が顕著に現れ、初回充電時にプロピレンカーボネートがグラファイト負極で表面分解され、充放電が困難になるという問題がある。   However, in a lithium secondary battery using a graphite material as a negative electrode active material, if a cyclic carbonate such as ethylene carbonate (EC), propylene carbonate (PC), or butylene carbonate (BC) is used as an electrolyte solvent, The cyclic carbonate is decomposed by the negative electrode active material, and at this time, peeling occurs on the surface of the carbon material, and battery characteristics such as electric capacity, cycle characteristics, and storage characteristics tend to deteriorate. In particular, in an electrolytic solution containing propylene carbonate, this phenomenon appears remarkably, and there is a problem that during the first charge, the surface of propylene carbonate is decomposed by the graphite negative electrode, making charging and discharging difficult.

黒鉛系負極活物質による電解液中の環状カーボネートの分解および炭素材料の剥離を抑える方法として、種々の化合物の添加が提案されている。例えば、非特許文献1には、プロピレンカーボネートとエチレンカーボネートとを主構成成分とする電解液に、クラウンエーテル化合物(12−クラウン−4)を添加することによって、電解液の分解が抑制されることが提案されている。しかしながら、この場合には、高価なクラウンエーテルを、相当量加えなければ分解抑制効果が小さく、また達成される電池特性も未だ十分ではない。   Addition of various compounds has been proposed as a method for suppressing the decomposition of the cyclic carbonate in the electrolytic solution by the graphite-based negative electrode active material and the peeling of the carbon material. For example, Non-Patent Document 1 discloses that the decomposition of the electrolytic solution is suppressed by adding a crown ether compound (12-crown-4) to the electrolytic solution containing propylene carbonate and ethylene carbonate as main components. Has been proposed. However, in this case, if a considerable amount of expensive crown ether is not added, the effect of suppressing decomposition is small, and the battery characteristics to be achieved are still not sufficient.

また、特許文献1と特許文献2には、高誘電定数を有する第1の溶媒と低粘度を有する第2の溶媒とを含む、少なくとも二種の非プロトン性有機溶媒の混合物に、さらに少なくとも一個の不飽和結合を含み且つ不働体化層を形成するために、リチウムよりも1ボルト高い電位で、結晶度が0.8より高い炭素材料からなるアノードにおいて還元可能な、前記溶媒の少なくとも一種と同一種の可溶性溶媒を更に含有する溶媒系にリチウム塩を溶解させたリチウム電池の電解液が記載されている。そして、上記の高い還元電位を示す可溶性溶媒の添加により、電解液の分解が抑えられることが記載されている。この方法では、添加剤が充電時に負極で還元されて、グラファイト表面に不働体皮膜を形成し、これによって他の溶媒の還元が抑制されるとされている。   Patent Document 1 and Patent Document 2 further include at least one mixture of at least two aprotic organic solvents including a first solvent having a high dielectric constant and a second solvent having a low viscosity. At least one of the above-mentioned solvents, which can be reduced at an anode made of a carbon material having a crystallinity higher than 0.8 at a potential higher than lithium by 1 volt to form a passivating layer. An electrolyte solution for a lithium battery is described in which a lithium salt is dissolved in a solvent system further containing the same type of soluble solvent. And it is described that decomposition | disassembly of electrolyte solution can be suppressed by addition of the soluble solvent which shows said high reduction potential. In this method, the additive is reduced at the negative electrode during charging to form a passive film on the graphite surface, thereby suppressing the reduction of other solvents.

しかしながら、本発明者の研究によると、上記の記載の方法では、初回のクーロン(充放電)効率が必ずしも高くない上に、充放電を繰り返すことによって、電気容量は次第に低下し、満足なサイクル特性や保存安定性を得ることが困難である。   However, according to the research of the present inventors, in the above-described method, the initial coulomb (charge / discharge) efficiency is not necessarily high, and the electric capacity gradually decreases by repeating charge / discharge, and satisfactory cycle characteristics are obtained. It is difficult to obtain storage stability.

また、非特許文献2には、ビニレンカーボネート(VC)を5容量%を含み、1M LiPF6の電解質を含み、PC/EC/DMC(DMC:ジメチルカーボネート)の容量比が1/1/3の電解液からなり、グラファイト電極(作用極)/Li(対極)/Li(参照極)からなるセルを用いたボルタモグラム測定において、1ボルトに還元ピークが現れ、これが負極に不働体皮膜を形成して他の溶媒の還元を抑制することが報告されている。 Non-Patent Document 2 includes 5% by volume of vinylene carbonate (VC), 1M LiPF 6 electrolyte, and a volume ratio of PC / EC / DMC (DMC: dimethyl carbonate) is 1/3. In a voltammogram measurement using a cell made of an electrolyte and made of graphite electrode (working electrode) / Li (counter electrode) / Li (reference electrode), a reduction peak appears at 1 volt, which forms a passive film on the negative electrode. It has been reported to suppress the reduction of other solvents.

さらに、非特許文献3には電解液にクロロエチレンカーボネートを添加することによって、グラファイト電極表面でのPC分解が抑制されることが述べられている。これは、クロロエチレンカーボネートの分解生成物が、グラファイト表面で不働体皮膜を形成することによると考えられているが、電解液の分解に対する抑制効果が必ずしも良好でない。
J. Electrochem. Soc., Vol.140, No.6, L101(1993) 1997 Joint International Meeting of The Electrochemical Society, Inc. and International Society of Electrochemistry, Abstracts, P.153(1997) J. Electrochem. Soc., Vol. 140, No.9, L161(1995) 特開平8−45545号公報 米国特許第5626981号明細書
Furthermore, Non-Patent Document 3 states that the PC decomposition on the surface of the graphite electrode is suppressed by adding chloroethylene carbonate to the electrolytic solution. This is thought to be due to the fact that the decomposition product of chloroethylene carbonate forms a passive film on the graphite surface, but the inhibitory effect on the decomposition of the electrolytic solution is not necessarily good.
J. Electrochem. Soc., Vol.140, No.6, L101 (1993) 1997 Joint International Meeting of The Electrochemical Society, Inc. and International Society of Electrochemistry, Abstracts, P.153 (1997) J. Electrochem. Soc., Vol. 140, No. 9, L161 (1995) JP-A-8-45545 US Pat. No. 5,626,981

上記の各種の方法により、優れた非水溶媒である環状カーボネートを、グラファイト(黒鉛)などの高結晶性炭素負極と共用することが可能になったが、それらの非水溶媒系の使用によっても、まだ充分満足できる電池諸特性を示すリチウム二次電池を得ることができない。   By the above various methods, it has become possible to share a cyclic carbonate, which is an excellent nonaqueous solvent, with a highly crystalline carbon negative electrode such as graphite (graphite), but also by using these nonaqueous solvent systems. However, it is not possible to obtain a lithium secondary battery exhibiting sufficiently satisfactory battery characteristics.

本発明者は、電解液の非水溶媒として優れた特性を示す環状カーボネート、鎖状カーボネートおよびビニレンカーボネートを含む非水溶媒組成物に注目し、特にビニレンカーボネート(VC)による非水二次電池のグラファイト電極表面での電解液の分解の抑制効果について鋭意研究を行なった。その結果、リチウム二次電池において、ビニレンカーボネートとして、従来のビニレンカーボネート合成法で合成されたビニレンカーボネートを用いた場合には、充分満足すべき電池特性が得られず、またその電池特性にもばらつきが見られることが分かった。そして、さらに検討を重ねた結果、従来の方法により製造されたビニレンカーボネートには、そのビニレンカーボネートの製造時に副生する有機塩素化合物が不純物として相当量含まれており、ビニレンカーボネートを非水溶媒組成物に導入する際に、これらの有機塩素化合物が該非水溶媒組成物に混入して、該非水溶媒組成物を用いて製造した非水電解液の還元電位を上昇させ、電池特性の低下や、電池特性のばらつきをもたらしていることを見出した。   The inventor of the present invention pays attention to a non-aqueous solvent composition containing a cyclic carbonate, a chain carbonate, and vinylene carbonate, which exhibits excellent characteristics as a non-aqueous solvent for an electrolytic solution, and particularly a non-aqueous secondary battery using vinylene carbonate (VC). Intensive research was conducted on the effect of inhibiting the decomposition of the electrolyte on the graphite electrode surface. As a result, when using vinylene carbonate synthesized by a conventional vinylene carbonate synthesis method as a vinylene carbonate in a lithium secondary battery, sufficiently satisfactory battery characteristics cannot be obtained, and the battery characteristics also vary. It was found that can be seen. As a result of further investigation, the vinylene carbonate produced by the conventional method contains a considerable amount of an organic chlorine compound as a by-product during the production of the vinylene carbonate, and the vinylene carbonate has a non-aqueous solvent composition. When introduced into a product, these organochlorine compounds are mixed into the non-aqueous solvent composition to increase the reduction potential of the non-aqueous electrolyte prepared using the non-aqueous solvent composition, It was found that the battery characteristics varied.

本発明は、環状カーボネート、鎖状カーボネートおよび0.1〜5質量%の範囲の量のビニレンカーボネートを含む非水溶媒に電解質が溶解されてなる非水電解液であって、有機塩素化合物を塩素原子換算で2.5ppmを超える量にて含有することなく、そして還元電位が、リチウムを基準として、0.7ボルト〜0.8ボルトの範囲にあることを特徴とする、負極として結晶面間隔(d 002 )が0.34nm以下のグラファイト負極を含むリチウム二次電池用の非水電解液にある。 The present invention relates to a nonaqueous electrolytic solution in which an electrolyte is dissolved in a nonaqueous solvent containing cyclic carbonate, chain carbonate, and vinylene carbonate in an amount in the range of 0.1 to 5 % by mass, and an organic chlorine compound is chlorine. A crystal plane as a negative electrode, characterized in that it does not contain more than 2.5 ppm in terms of atoms, and the reduction potential is in the range of 0.7 to 0.8 volts, based on lithium It exists in the nonaqueous electrolyte for lithium secondary batteries containing the graphite negative electrode whose space | interval ( d002 ) is 0.34 nm or less .

本発明はさらに、正極、結晶面間隔(d002)が0.34nm以下のグラファイト負極、および環状カーボネート、鎖状カーボネートおよび0.1〜5質量%の範囲の量のビニレンカーボネートを含む非水溶媒に電解質が溶解されている電解液からなるリチウム二次電池において、該電解液として、有機塩素化合物を塩素原子換算で2.5ppmを超える量にて含有することなく、そして還元電位が、リチウムを基準として、0.7ボルト〜0.8ボルトの範囲にある電解液が用いられていることを特徴とするリチウム二次電池にもある。 The present invention further includes a non-aqueous solvent comprising a positive electrode, a graphite negative electrode having a crystal plane spacing (d 002 ) of 0.34 nm or less, and cyclic carbonate, chain carbonate, and vinylene carbonate in an amount in the range of 0.1 to 5 % by mass. In the lithium secondary battery comprising the electrolyte solution in which the electrolyte is dissolved, the electrolyte solution does not contain an organic chlorine compound in an amount exceeding 2.5 ppm in terms of chlorine atoms, and the reduction potential is lithium. There is also a lithium secondary battery characterized by using an electrolyte solution in a range of 0.7 volts to 0.8 volts with reference to.

本発明は特に、非水電解液あるいは非水溶媒の特性あるいは組成に特徴を有しており、その好ましい態様は下記の通りである。
)非水電解液中の有機塩素化合物がビニレンカーボネートの不純物として導入されたものである。
)非水電解液中に導入されたビニレンカーボネートに不純物として含まれていた有機塩素化合物の含有量がビニレンカーボネートに対して塩素原子換算で100ppm以下である。
The present invention is particularly characterized by the characteristics or composition of the non-aqueous electrolyte or non-aqueous solvent, and preferred embodiments thereof are as follows.
( 1 ) An organic chlorine compound in a non-aqueous electrolyte is introduced as an impurity of vinylene carbonate.
( 2 ) The content of the organochlorine compound contained as an impurity in the vinylene carbonate introduced into the non-aqueous electrolyte is 100 ppm or less in terms of chlorine atoms with respect to vinylene carbonate.

本発明の非水電解液中の有機塩素化合物の低減による還元電位の低下と、それによるリチウム二次電池の電池特性の改良に及ぼす作用は明確ではないが、下記のように推定される。   Although the reduction potential due to the reduction of the organic chlorine compound in the non-aqueous electrolyte of the present invention and the effect on the improvement of the battery characteristics of the lithium secondary battery are not clear, it is estimated as follows.

従来利用されてきた合成方法により製造したビニレンカーボネート(VC)製品には、少なくとも3000ppm程度の下記の化学式で示されるような複数の有機塩素化合物が含まれているが、そのようなビニレンカーボネートを、電解液の非水溶媒中に、通常の使用量である1〜10質量%程度導入すると、その非水溶媒中の該有機塩素化合物の含有量は、塩素原子換算で、およそ30〜300ppmとなる。   The vinylene carbonate (VC) product produced by a conventionally used synthesis method contains a plurality of organochlorine compounds as represented by the following chemical formula of at least about 3000 ppm. When about 1 to 10% by mass, which is a normal use amount, is introduced into the nonaqueous solvent of the electrolytic solution, the content of the organic chlorine compound in the nonaqueous solvent is about 30 to 300 ppm in terms of chlorine atoms. .

Figure 0004470902
Figure 0004470902

Figure 0004470902
Figure 0004470902

Figure 0004470902
Figure 0004470902

これらの有機塩素化合物は、ビニレンカーボネート、およびその他の電解液組成物より高い還元電位を示し、ビニレンカーボネートや電解液組成物の還元に先立って、負極のグラファイト表面で還元されて皮膜を形成し、ビニレンカーボネートや電解液の分解を抑制する効果を有する。   These organochlorine compounds exhibit a higher reduction potential than vinylene carbonate and other electrolyte compositions, and are reduced on the graphite surface of the negative electrode prior to the reduction of vinylene carbonate or the electrolyte composition to form a film. It has the effect of suppressing the decomposition of vinylene carbonate and electrolyte.

しかしながら、このようにして負極のグラファイト表面に形成された皮膜は塩素を含み、また皮膜が厚くなるために、十分満足な電解液分解抑制効果を示さないものと推定される。すなわち、ビニレンカーボネート中に不純物として含まれる有機塩素化合物が、ビニレンカーボネートの本来の電池性能向上を阻害して、十分な効果を与えないものと推定される。   However, the film formed on the graphite surface of the negative electrode in this way contains chlorine, and since the film becomes thick, it is presumed that it does not exhibit a sufficiently satisfactory electrolyte decomposition inhibiting effect. That is, it is presumed that the organic chlorine compound contained as an impurity in vinylene carbonate inhibits the original battery performance improvement of vinylene carbonate and does not give a sufficient effect.

そこで、本発明者は、ビニレンカーボネートの合成法および精製法を鋭意検討した結果、有機塩素化合物の含有量が極めて少ない高純度のビニレンカーボネートを製造する方法を開発した。すなわち、従来のビニレンカーボネート合成法としては、J. Am. Chem. Soc., 75, 1263(1953)等にも記載されているように、エチレンカーボネート(EC)の塩素化反応によってモノクロルエチレンカーボネートを合成し(第1工程)、これをエーテル系の低沸点溶媒中でアミンにより脱塩化水素化反応(第2工程)を行なうことにより、ビニレンカーボネートを製造する方法が知られている。この第2工程の溶媒を、ジブチルカーボネート(DBC)のようなエステル系の高沸点溶媒に代え、さらに蒸留または晶析で精製することによって、有機塩素化合物をほとんど含まない高純度ビニレンカーボネートを製造する方法を開発した。この高純度ビニレンカーボネートを添加剤とする電解液を用いたリチウム二次電池は、極めて優れた電気容量、サイクル特性および保存特性を示すことが確認された。 Thus, as a result of intensive studies on the synthesis and purification methods of vinylene carbonate, the present inventor has developed a method for producing high-purity vinylene carbonate with a very low content of organochlorine compounds. That is, as a conventional vinylene carbonate synthesis method, as described in J. Am. Chem. Soc., 75 , 1263 (1953), monochloroethylene carbonate is obtained by chlorination reaction of ethylene carbonate (EC). A method of producing vinylene carbonate by synthesizing (first step) and performing a dehydrochlorination reaction (second step) with an amine in an ether-based low boiling point solvent is known. The solvent in the second step is replaced with an ester-based high-boiling solvent such as dibutyl carbonate (DBC), and further purified by distillation or crystallization to produce high-purity vinylene carbonate containing almost no organic chlorine compound. Developed a method. It was confirmed that the lithium secondary battery using the electrolytic solution containing this high-purity vinylene carbonate as an additive exhibits extremely excellent electric capacity, cycle characteristics and storage characteristics.

本発明のリチウム二次電池の電解液は、有機塩素化合物の混在量が少ない高純度ビニレンカーボネートを含有する非水溶媒を用いており、リチウム基準として、還元電位が0.7ボルト〜0.8ボルトの範囲にあって、負極活物質としてグラファイトを用いることが可能であり、しかも高いクーロン効率から分るように大きな電気容量が得られる。さらに本発明のリチウム二次電池は、サイクル特性も良好である。 The electrolyte solution of the lithium secondary battery of the present invention uses a non-aqueous solvent containing high-purity vinylene carbonate with a small amount of mixed organic chlorine compounds, and the reduction potential is 0.7 volts to 0.8 as a lithium standard. In the range of bolts, graphite can be used as the negative electrode active material, and a large electric capacity can be obtained as can be seen from high Coulomb efficiency. Furthermore, the lithium secondary battery of the present invention has good cycle characteristics.

本発明の非水電解液に用いる非水溶媒中のビニレンカーボネート(VC)の含有量は0.1質量%〜5質量%の範囲にあることが好ましい。ビニレンカーボネートの含有量が過度に少ないとグラファイト負極で電解液の分解が起こり易く、過度に多いと電池特性が悪くなる。また、本発明のリチウム二次電池用電解液の調製に用いるビニレンカーボネート製品中の有機塩素化合物の含有量は、塩素含有量換算値として、100ppm以下、特に50ppm以下であることが好ましい。 The content of vinylene carbonate (VC) in the non-aqueous solvent used in the non-aqueous electrolyte of the present invention is 0 . It is preferable that it exists in the range of 1 mass%-5 mass%. When the content of vinylene carbonate is excessively small, the electrolytic solution is easily decomposed at the graphite negative electrode, and when it is excessively large, battery characteristics are deteriorated. In addition, the content of the organic chlorine compound in the vinylene carbonate product used for the preparation of the electrolyte solution for a lithium secondary battery of the present invention is preferably 100 ppm or less, particularly 50 ppm or less as a chlorine content converted value.

環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などが用いられ、これらは単独でもまたは二種類以上の混合物としても用いられる。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、メチルブチルカーボネート(MBC)などが用いられ、これらは単独でもまたは二種類以上の混合物としても用いられる。環状カーボネートと鎖状カーボネートとの割合は、容量比率で2:8〜6:4の範囲にあることが好適である。   As the cyclic carbonate, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like are used, and these may be used alone or as a mixture of two or more. As the chain carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), methyl butyl carbonate (MBC) and the like are used. It is used also as a mixture of the above. The ratio between the cyclic carbonate and the chain carbonate is preferably in the range of 2: 8 to 6: 4 by volume ratio.

本発明の非水電解液で使用される電解質としては、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33などのリチウム塩が挙げられる。これらの電解質は一種類で使用してもよく、二種類以上組み合わせて使用してもよい。これらの電解質は、前記の非水溶媒に通常、0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。 The electrolytes used in the non-aqueous electrolyte of the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) Lithium salt such as 3 . These electrolytes may be used alone or in combination of two or more. These electrolytes are usually used after being dissolved in the non-aqueous solvent at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.

本発明の非水電解液は、例えば、環状カーボネート、鎖状カーボネートおよび前記の高純度ビニレンカーボネートを混合して非水溶媒を調製し、これに前記電解質を溶解することによって得られる。   The nonaqueous electrolytic solution of the present invention can be obtained, for example, by mixing a cyclic carbonate, a chain carbonate and the high-purity vinylene carbonate to prepare a nonaqueous solvent, and dissolving the electrolyte therein.

本発明の電解液は、リチウム二次電池の構成材料として好適に使用される。二次電池を構成する電解液以外の構成材料については、特に限定されず、従来使用されている種々の構成材料が使用できる。   The electrolytic solution of the present invention is suitably used as a constituent material for a lithium secondary battery. The constituent materials other than the electrolyte solution constituting the secondary battery are not particularly limited, and various conventionally used constituent materials can be used.

例えば、正極活物質としては、コバルト、ニッケル、マンガン、クロム、バナジウムおよび鉄からなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiNiO2、LiMn24などが挙げられる。 For example, a composite metal oxide of at least one metal selected from the group consisting of cobalt, nickel, manganese, chromium, vanadium, and iron and lithium is used as the positive electrode active material. Examples of such composite metal oxides include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like.

正極は、前記の正極活物質をアセチレンブラックやカーボンブラックなどの導電剤、およびポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)などの結着剤、およびN−メチルピロリドン溶剤などと混練して正極合剤とした後、この正極合剤をアルミニウム箔やステンレス製シートなどの集電体に塗布し、50〜250℃で乾燥し、次に圧縮成型して作製される。   For the positive electrode, the positive electrode active material is kneaded with a conductive agent such as acetylene black or carbon black, a binder such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and an N-methylpyrrolidone solvent. Then, the positive electrode mixture is applied to a current collector such as an aluminum foil or a stainless steel sheet, dried at 50 to 250 ° C., and then compression molded.

負極活物質としては、結晶面間隔(d002)が0.34nm以下の天然または人造の黒鉛を用いることが好ましい。負極は、前記黒鉛をPVDF、PTFE、エチレンプロピレンジエンモノマー(EPDM)などの結着剤、およびN−メチルピロリドン溶剤と混練して、負極合剤とした後、この負極合剤を銅箔やステンレス製シートなどの集電体に塗布し、50〜250℃で乾燥し、次に圧縮成型して作製される。 As the negative electrode active material, it is preferable to use natural or artificial graphite having a crystal plane spacing (d 002 ) of 0.34 nm or less. For the negative electrode, the graphite was kneaded with a binder such as PVDF, PTFE, ethylene propylene diene monomer (EPDM), and an N-methylpyrrolidone solvent to form a negative electrode mixture. It is applied to a current collector such as a sheet made, dried at 50 to 250 ° C., and then compression molded.

本発明のリチウム二次電池の構成形態は特に限定されるものではなく、正極、負極、多孔膜セパレータおよび電解液を有するコイン電池や円筒型電池、角型電池、積層型電池などが一例として挙げられる。   The configuration form of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a positive electrode, a negative electrode, a porous membrane separator, and a coin battery, a cylindrical battery, a square battery, and a stacked battery having an electrolyte solution. It is done.

[ビニレンカーボネート]
後述の実施例1〜3および比較例1〜6において使用した三種類のビニレンカーボネートの入手先、合成法および性状を次に示す。
〔ビニレンカーボネートの入手先、合成法〕
[Vinylene carbonate]
The sources, synthesis methods and properties of the three types of vinylene carbonate used in Examples 1 to 3 and Comparative Examples 1 to 6 described below are shown below.
[Source of vinylene carbonate, synthesis method]

(1)Aldrich製ビニレンカーボネート
Aldrich Chemical Company. Inc.社から試薬として市販されているビニレンカーボネートを使用した。以下、このビニレンカーボネートを「Aldrich製ビニレンカーボネート」とする。
(1) Aldrich vinylene carbonate
Vinylene carbonate commercially available from Aldrich Chemical Company. Inc. was used. Hereinafter, this vinylene carbonate is referred to as “Aldrich vinylene carbonate”.

(2)公知法によるビニレンカーボネート合成
J. Am. Chem. Soc., 75, 1263(1953)、およびJ. Am. Chem. Soc., 77, 3789(1955)の方法に準じて合成した。すなわち、前もって蒸留精製したエチレンカーボネート600gに塩素ガスを吹き込みながら紫外線照射下、65℃、24時間反応を行い、反応後、減圧蒸留によってモノクロルエチレンカーボネート560gを分取した。つぎにモノクロルエチレンカーボネート493gを乾燥ジエチルエーテル500mL中に溶解させ、これにトリエチルアミン440gを還流下、6時間にわたって滴下し、さらに還流させながら14時間撹拌を続けた。その後、固体のトリエチルアミン塩酸塩を濾過し、エーテルとn−ヘキサン混合溶媒で洗浄した。濾液を単蒸留して、溶媒と過剰のアミンを留去した後、さらに30mmHgの減圧下で単蒸留を行ない、290gのビニレンカーボネート留分を分取した。このビニレンカーボネートをさらに30mmHgの減圧下で精密蒸留することによって、沸点73℃のビニレンカーボネート104gを得た。以下、このビニレンカーボネートを「従来合成法ビニレンカーボネート」とする。
(2) Synthesis of vinylene carbonate by known methods
Synthesized according to the methods of J. Am. Chem. Soc., 75, 1263 (1953) and J. Am. Chem. Soc., 77, 3789 (1955). That is, the reaction was carried out at 65 ° C. for 24 hours under ultraviolet irradiation while blowing chlorine gas into 600 g of ethylene carbonate that had been purified by distillation in advance. After the reaction, 560 g of monochloroethylene carbonate was collected by distillation under reduced pressure. Next, 493 g of monochloroethylene carbonate was dissolved in 500 mL of dry diethyl ether, and 440 g of triethylamine was added dropwise over 6 hours under reflux, and stirring was continued for 14 hours while further refluxing. Thereafter, solid triethylamine hydrochloride was filtered and washed with a mixed solvent of ether and n-hexane. The filtrate was subjected to simple distillation to distill off the solvent and excess amine, and then further subjected to simple distillation under reduced pressure of 30 mmHg to fractionate 290 g of vinylene carbonate fraction. This vinylene carbonate was further subjected to precision distillation under reduced pressure of 30 mmHg to obtain 104 g of vinylene carbonate having a boiling point of 73 ° C. Hereinafter, this vinylene carbonate is referred to as “conventional synthetic vinylene carbonate”.

(3)高純度ビニレンカーボネートの合成
まず、モノクロルエチレンカーボネートを前記(2)の方法で合成した。得られたモノクロルエチレンカーボネート494gを、ジブチルカーボネート500mLに溶解させて、これを2Lの反応器に仕込み、これにトリエチルアミン440gを50℃、6時間かけて滴下しながら反応させ、さらに14時間撹拌を続けた。このあと反応液を室温まで冷却して、トリエチルアミン塩酸塩を濾過し、ジブチルカーボネートで十分に洗浄した。得られた濾液2100gを30mmHgの減圧下で単蒸留を行い、過剰のトリエチルアミンを留去した後、390gのビニレンカーボネート留分を分取した。このビニレンカーボネートをシリカゲルカラムで処理した後、30mmHgの減圧下で精密蒸留を行なうことによって、不純物の極めて少ない沸点73℃のビニレンカーボネート195gを得た。得られたビニレンカーボネートを「高純度ビニレンカーボネート」とする。
(3) Synthesis of high-purity vinylene carbonate First, monochloroethylene carbonate was synthesized by the method (2). 494 g of the obtained monochloroethylene carbonate was dissolved in 500 mL of dibutyl carbonate and charged into a 2 L reactor, and 440 g of triethylamine was added dropwise at 50 ° C. over 6 hours, followed by further stirring for 14 hours. It was. Thereafter, the reaction solution was cooled to room temperature, and triethylamine hydrochloride was filtered and thoroughly washed with dibutyl carbonate. A simple distillation was performed on 2100 g of the obtained filtrate under a reduced pressure of 30 mmHg to distill off excess triethylamine, and 390 g of vinylene carbonate fraction was fractionated. After treating this vinylene carbonate with a silica gel column, precision distillation was performed under a reduced pressure of 30 mmHg to obtain 195 g of vinylene carbonate having a boiling point of 73 ° C. with very few impurities. The obtained vinylene carbonate is referred to as “high purity vinylene carbonate”.

〔ビニレンカーボネートのガスクロマトグラフィー質量分析〕
Aldrich製ビニレンカーボネート、および従来合成法ビニレンカーボネートのガスクロマトグラフ分析では、少量ながら多種類の不純物が検出され、ガスクロマトグラフ・質量分析を行った結果、ビニレンカーボネート合成時に生成したと思われる前記の三種類の塩素化合物と推定される塩素化合物が含まれていることが認められた。しかし、高純度ビニレンカーボネートには不純物はほとんど認められず、前記の塩素化合物と推定される塩素化合物も検出されなかった。
[Gas chromatography mass spectrometry of vinylene carbonate]
Gas chromatographic analysis of Aldrich vinylene carbonate and conventional synthetic vinylene carbonate detected a small amount of many types of impurities. It was confirmed that the chlorinated compounds estimated to be chlorinated compounds were included. However, almost no impurities were observed in the high-purity vinylene carbonate, and no chlorine compound presumed to be the chlorine compound was detected.

〔ビニレンカーボネート中の塩素量〕
ビニレンカーボネートを酸水素炎燃焼処理して、気体を水に吸収させ、吸収液中の塩素イオンをイオンクロマトグラフで測定し、結果を表1に示す。塩素としてAldrich製ビニレンカーボネートには3200ppm、従来合成法ビニレンカーボネートには3550ppmと多く含まれていたが、高純度ビニレンカーボネート中の含有量は29ppmと極めて少なかった。
[Chlorine content in vinylene carbonate]
The vinylene carbonate is subjected to oxyhydrogen flame combustion treatment, gas is absorbed in water, and chlorine ions in the absorption liquid are measured by an ion chromatograph. Table 1 shows the results. Aldrich vinylene carbonate contained 3200 ppm as chlorine and 3550 ppm in conventional synthetic vinylene carbonate, but the content in high-purity vinylene carbonate was 29 ppm, which was very low.

表1
────────────────────────────────────
使用したビニレンカーボネート 塩素含有量
────────────────────────────────────
Aldrich製ビニレンカーボネート 3200ppm
従来合成法ビニレンカーボネート 3550ppm
高純度ビニレンカーボネート 29ppm
────────────────────────────────────
Table 1
────────────────────────────────────
Vinylene carbonate used Chlorine content ─────────────────────────────────────
Aldrich vinylene carbonate 3200ppm
Conventional synthetic vinylene carbonate 3550ppm
High purity vinylene carbonate 29ppm
────────────────────────────────────

[実施例1]
〔電解液の調製〕
プロピレンカーボネート(PC)とジメチルカーボネート(DMC)との容量比1:2の混合溶媒に、高純度ビニレンカーボネートを2質量%となるように添加して、非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して電解液を調製した。
[Example 1]
(Preparation of electrolyte)
A non-aqueous solvent is prepared by adding a high-purity vinylene carbonate to a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2 so as to be 2% by mass, and LiPF 6 Was dissolved to a concentration of 1M to prepare an electrolytic solution.

〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を80質量%、アセチレンブラック(導電剤)を10質量%、ポリフッ化ビニリデン(結着剤)を10質量%の割合で混合し、これをN−メチルピロリドンで希釈して正極合剤を調製した。この合剤をアルミニウム箔集電体に塗布、乾燥、圧縮成型して正極とした。一方、天然黒鉛(d002=0.3354)90質量%とポリフッ化ビニリデン(結着剤)10質量%とを混合し、これをN−メチルピロリドンで希釈して負極合剤を調製した。この合剤を銅箔集電体に塗布、乾燥、圧縮成型して負極とした。正極と負極の比率は、ほぼ同じ電気容量となるようにした。
[Production of lithium secondary battery and measurement of battery characteristics]
80% by mass of LiCoO 2 (positive electrode active material), 10% by mass of acetylene black (conductive agent), and 10% by mass of polyvinylidene fluoride (binder) are mixed, and this is diluted with N-methylpyrrolidone. Thus, a positive electrode mixture was prepared. This mixture was applied to an aluminum foil current collector, dried and compression molded to obtain a positive electrode. On the other hand, 90% by mass of natural graphite (d 002 = 0.3354) and 10% by mass of polyvinylidene fluoride (binder) were mixed and diluted with N-methylpyrrolidone to prepare a negative electrode mixture. This mixture was applied to a copper foil current collector, dried and compression molded to obtain a negative electrode. The ratio between the positive electrode and the negative electrode was set to be approximately the same electric capacity.

これらの正極および負極、ポリプロピレン微多孔性フィルムからなるセパレータ、そして電解液から構成したコイン型電池(直径20mm、厚さ3.2mm)を作製し、室温(25℃)において、0.8mAの定電流、定電圧で電圧4.2Vまで5時間充電後、0.8mAの定電流で電圧2.7Vまで放電を行った。図1に、初回の充放電特性を、縦軸に電池電圧(V)を、横軸に容量(mAh/g炭素)をとったグラフに示す。さらに充放電を繰り返し放電容量のサイクル変化も調べた。   A coin-type battery (diameter 20 mm, thickness 3.2 mm) composed of these positive and negative electrodes, a separator made of a polypropylene microporous film, and an electrolyte solution was prepared, and a constant current of 0.8 mA was obtained at room temperature (25 ° C.). After charging for 5 hours at a current and constant voltage to a voltage of 4.2 V, the battery was discharged to a voltage of 2.7 V at a constant current of 0.8 mA. FIG. 1 shows the initial charge / discharge characteristics in a graph in which the vertical axis represents the battery voltage (V) and the horizontal axis represents the capacity (mAh / g carbon). Furthermore, charge / discharge was repeated and the cycle change of the discharge capacity was also examined.

[比較例1]
ビニレンカーボネートを添加しなかったほかは実施例1と同様にして二次電池を作製して充放電試験した。しかし、初回充電時にプロピレンカーボネートの分解が起こって所定電圧に達せず、放電はできなかった。充放電後に電池を解体した結果、負極のグラファイトの剥離が観察された。
[Comparative Example 1]
A secondary battery was prepared and charged / discharged in the same manner as in Example 1 except that vinylene carbonate was not added. However, at the first charge, the propylene carbonate decomposed and did not reach a predetermined voltage, and thus could not be discharged. As a result of disassembling the battery after charging and discharging, exfoliation of graphite on the negative electrode was observed.

[比較例2]
高純度ビニレンカーボネートの代わりにAldrich製ビニレンカーボネートを用いたほかは実施例1と同様に二次電池を作製して充放電試験を行った。初回充放電特性を図2に示す。
[Comparative Example 2]
A secondary battery was prepared in the same manner as in Example 1 except that Aldrich vinylene carbonate was used instead of high-purity vinylene carbonate, and a charge / discharge test was performed. The initial charge / discharge characteristics are shown in FIG.

[比較例3]
高純度ビニレンカーボネートの代わりに従来合成法ビニレンカーボネートを用いたほかは実施例1と同様に二次電池を作製して充放電試験を行った。
[Comparative Example 3]
A secondary battery was produced in the same manner as in Example 1 except that conventional synthetic vinylene carbonate was used instead of high-purity vinylene carbonate, and a charge / discharge test was performed.

実施例1および比較例2〜3のそれぞれで調製した二次電池の初回クーロン効率を表2に示す。これから明らかなように、高純度ビニレンカーボネートを用いることによって良好なクーロン効率が得られる。   Table 2 shows the initial coulomb efficiencies of the secondary batteries prepared in Example 1 and Comparative Examples 2 and 3, respectively. As is clear from this, good Coulomb efficiency can be obtained by using high-purity vinylene carbonate.

表2
(電解液非水溶媒:PC/DMC=1/2(容量比)+ビニレンカーボネート)
────────────────────────────────────
ビニレンカーボネート クーロン効率
────────────────────────────────────
実施例1 高純度ビニレンカーボネート(2質量%) 78%
────────────────────────────────────
比較例1 添加せず 充放電不可能
比較例2 Aldrich製ビニレンカーボネート(2質量%) 73%
比較例3 従来合成法ビニレンカーボネート(2質量%) 74%
────────────────────────────────────
Table 2
(Electrolytic solution non-aqueous solvent: PC / DMC = 1/2 (volume ratio) + vinylene carbonate)
────────────────────────────────────
Vinylene carbonate Coulomb efficiency ─────────────────────────────────────
Example 1 High purity vinylene carbonate (2% by mass) 78%
────────────────────────────────────
Comparative example 1 No addition Comparative example 2 incapable of charging / discharging Aldrich vinylene carbonate (2% by mass) 73%
Comparative Example 3 Conventional synthetic vinylene carbonate (2% by mass) 74%
────────────────────────────────────

図3に、実施例1および比較例2、比較例3のそれぞれの二次電池のサイクル特性を、縦軸に放電容量(mAh)、そして横軸にサイクル数をとって示す。   FIG. 3 shows the cycle characteristics of the secondary batteries of Example 1, Comparative Example 2, and Comparative Example 3, with the vertical axis representing discharge capacity (mAh) and the horizontal axis representing the number of cycles.

図3のグラフから分かるように、Aldrich製ビニレンカーボネートを添加した比較例2の二次電池および従来合成法ビニレンカーボネートを添加した比較例3の二次電池に比較すると、高純度ビニレンカーボネートを添加した実施例1の二次電池では良好なサイクル特性を維持している。   As can be seen from the graph of FIG. 3, when compared to the secondary battery of Comparative Example 2 to which Aldrich vinylene carbonate was added and the secondary battery of Comparative Example 3 to which conventional synthetic vinylene carbonate was added, high-purity vinylene carbonate was added. In the secondary battery of Example 1, good cycle characteristics are maintained.

[実施例2]
プロピレンカーボネート(PC)とジメチルカーボネート(DMC)との容量比1:2の混合溶媒の代わりに、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の容量比1:1の混合溶媒を用いた以外は実施例1と同様に電池を作製して充放電試験を行った。図4に初回の充放電曲線を示す。
[Example 2]
A mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a volume ratio of 1: 1 was used instead of a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) having a volume ratio of 1: 2. A battery was produced in the same manner as in Example 1, and a charge / discharge test was performed. FIG. 4 shows an initial charge / discharge curve.

[比較例4]
ビニレンカーボネートを用いないほかは実施例2と同様に電池を作製して充放電試験を行った。図5に初回の充放電曲線を示す。
[Comparative Example 4]
A battery was prepared and a charge / discharge test was conducted in the same manner as in Example 2 except that vinylene carbonate was not used. FIG. 5 shows an initial charge / discharge curve.

[比較例5]
高純度ビニレンカーボネートの代わりにAldrich製ビニレンカーボネートを用いたほかは実施例2と同様に電池を作製して充放電試験を行った。
[Comparative Example 5]
A battery was prepared and charged and discharged in the same manner as in Example 2 except that Aldrich vinylene carbonate was used instead of high-purity vinylene carbonate.

[比較例6]
高純度ビニレンカーボネートの代わりに従来合成法ビニレンカーボネートを用いた以外は実施例2と同様に電池を作製して充放電試験を行った。図6に初回の充放電曲線を示す。
[Comparative Example 6]
A battery was prepared and a charge / discharge test was performed in the same manner as in Example 2 except that conventional synthetic vinylene carbonate was used instead of high-purity vinylene carbonate. FIG. 6 shows an initial charge / discharge curve.

[実施例3]
プロピレンカーボネート(PC)とジメチルカーボネート(DMC)との容量比1:2の代わりに、プロピレンカーボネート(PC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC)の容量比1:1:2とした以外は実施例1と同様に電池を作製して充放電試験を行った。
[Example 3]
The volume ratio of propylene carbonate (PC), ethylene carbonate (EC) and dimethyl carbonate (DMC) was changed to 1: 1: 2 instead of the volume ratio of 1: 2 of propylene carbonate (PC) and dimethyl carbonate (DMC). A battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted.

実施例2〜3および比較例4〜6のそれぞれの二次電池の初回クーロン効率を表3に示す。これから明らかなように、高純度ビニレンカーボネートを用いることによって良好なクーロン効率が得られる。   Table 3 shows initial Coulomb efficiencies of the secondary batteries of Examples 2-3 and Comparative Examples 4-6. As is clear from this, good Coulomb efficiency can be obtained by using high-purity vinylene carbonate.

表3
(電解液非水溶媒:EC/DMC=1/1(容量比)+ビニレンカーボネート)
────────────────────────────────────
ビニレンカーボネート クーロン効率
────────────────────────────────────
実施例2 高純度ビニレンカーボネート(2質量%) 79%
────────────────────────────────────
比較例4 添加せず 72%
比較例5 Aldrich製ビニレンカーボネート(2質量%) 75%
比較例6 従来合成法ビニレンカーボネート(2質量%) 74%
────────────────────────────────────
実施例3 高純度ビニレンカーボネート(2質量%)* 80%
────────────────────────────────────
注:実施例3の電解液非水溶媒は、PC/EC/DMC=1/1/2(容量比)+ビニレンカーボネートである。
Table 3
(Electrolytic solution non-aqueous solvent: EC / DMC = 1/1 (volume ratio) + vinylene carbonate)
────────────────────────────────────
Vinylene carbonate Coulomb efficiency ─────────────────────────────────────
Example 2 High purity vinylene carbonate (2% by mass) 79%
────────────────────────────────────
Comparative Example 4 72% not added
Comparative Example 5 Aldrich vinylene carbonate (2% by mass) 75%
Comparative Example 6 Conventional synthetic vinylene carbonate (2% by mass) 74%
────────────────────────────────────
Example 3 High purity vinylene carbonate (2% by mass) * 80%
────────────────────────────────────
Note: The electrolyte nonaqueous solvent of Example 3 is PC / EC / DMC = 1/1/2 (volume ratio) + vinylene carbonate.

図7に、実施例2および比較例4、比較例5、比較例6のそれぞれの二次電池のサイクル特性を、縦軸に放電容量(mAh)、そして横軸にサイクル数をとって示す。   FIG. 7 shows the cycle characteristics of the secondary batteries of Example 2, Comparative Example 4, Comparative Example 5, and Comparative Example 6, with the discharge capacity (mAh) on the vertical axis and the number of cycles on the horizontal axis.

図7のグラフから分かるようにビニレンカーボネートを添加しない比較例4の二次電池、およびAldrich製ビニレンカーボネートを添加した比較例5の二次電池、そして従来合成法ビニレンカーボネートを添加した比較例6の二次電池にくらべて、高純度ビニレンカーボネートを添加した実施例2の二次電池では良好なサイクル特性を維持している。   As can be seen from the graph of FIG. 7, the secondary battery of Comparative Example 4 to which no vinylene carbonate was added, the secondary battery of Comparative Example 5 to which vinylidene carbonate made by Aldrich was added, and the comparative battery of Comparative Example 6 to which conventional synthetic vinylene carbonate was added. Compared to the secondary battery, the secondary battery of Example 2 to which high-purity vinylene carbonate was added maintained good cycle characteristics.

図8に、実施例3の二次電池(非水溶媒系を変えたもの)のサイクル特性を、縦軸に放電容量(mAh)、そして横軸にサイクル数をとって示すが、同様に、良好なサイクル特性を維持していることがわかる。   FIG. 8 shows the cycle characteristics of the secondary battery of Example 3 (in which the non-aqueous solvent system was changed), with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the number of cycles. It can be seen that good cycle characteristics are maintained.

[実施例4〜6]
電解液溶媒の容量比を表4記載のようにかえた以外は実施例1と同様に電池を作製して充放電試験を行った。初回のクーロン効率を表4に示す。また、実施例1と同様に良好なサイクル特性を有していることが判った。
[Examples 4 to 6]
A battery was prepared and a charge / discharge test was conducted in the same manner as in Example 1 except that the volume ratio of the electrolyte solvent was changed as shown in Table 4. The initial coulomb efficiency is shown in Table 4. Moreover, it turned out that it has favorable cycling characteristics similarly to Example 1.

表4
(電解液非水溶媒:基本溶媒組成+高純度ビニレンカーボネート2質量%)
────────────────────────────────────
基本溶媒組成 クーロン効率
────────────────────────────────────
実施例4 PC/EC/MEC=5/30/65 81%
実施例5 PC/EC/DEC=5/30/65 80%
実施例6 PC/EC/DEC/DMC=5/30/30/35 81%
────────────────────────────────────
Table 4
(Electrolytic solution non-aqueous solvent: basic solvent composition + high-purity vinylene carbonate 2% by mass)
────────────────────────────────────
Basic solvent composition Coulomb efficiency ────────────────────────────────────
Example 4 PC / EC / MEC = 5/30/65 81%
Example 5 PC / EC / DEC = 5/30/65 80%
Example 6 PC / EC / DEC / DMC = 5/30/30/35 81%
────────────────────────────────────

[還元電位の測定]
還元電位の測定は、1997 Joint International Meeting of The Electrochemical Society, Inc. and International Society of Electrochemistry, Abstracts, P.153(1997)に記載の方法に従って行なった。
[Measurement of reduction potential]
The reduction potential was measured according to the method described in 1997 Joint International Meeting of The Electrochemical Society, Inc. and International Society of Electrochemistry, Abstracts, P.153 (1997).

天然グラファイト粉末を10mg秤量し、これにポリフッ化ビニリデン(結着剤)を10質量%の割合で混合し、さらにN−メチルピロリドンを加えてスラリー状にして、ステンレス製の集電体(面積:2cm2)上に塗布した。これを作用極とし、対極及び参照極にリチウムメタルを用いた三極式セルを組み立てた。 10 mg of natural graphite powder is weighed and mixed with polyvinylidene fluoride (binder) at a ratio of 10% by mass. Further, N-methylpyrrolidone is added to form a slurry to obtain a stainless steel current collector (area: 2 cm 2 ). Using this as a working electrode, a triode cell using lithium metal as a counter electrode and a reference electrode was assembled.

別に、プロピレンカーボネート:エチレンカーボネート:ジメチルカーボネートを体積比で1:1:3で混合した非水溶媒を用意し、これに電解質としてLiPF6を濃度が1Mになるように溶解して基本電解液を調製した。この基本電解液を標準として、下記の五種類の電解液を用意した。 Separately, a nonaqueous solvent in which propylene carbonate: ethylene carbonate: dimethyl carbonate is mixed at a volume ratio of 1: 1: 3 is prepared, and LiPF 6 is dissolved as an electrolyte to a concentration of 1M to obtain a basic electrolyte solution. Prepared. Using this basic electrolytic solution as a standard, the following five types of electrolytic solutions were prepared.

(a)上記の基本電解液そのもの
(b)基本電解液に対して高純度ビニレンカーボネートを5質量%加えたもの
(c)基本電解液に対してモノクロルエチレンカーボネートを5質量%加えたもの
(d)基本電解液に対して5質量%の高純度ビニレンカーボネートと0.05質量%のモノクロルエチレンカーボネートとを加えたもの
(e)基本電解液に対して5質量%の高純度ビニレンカーボネートと0.25質量%のモノクロルエチレンカーボネートとを加えたもの
(A) The basic electrolyte itself (b) 5% by mass of high-purity vinylene carbonate added to the basic electrolyte (c) 5% by mass of monochloroethylene carbonate added to the basic electrolyte (d ) 5% by mass of high purity vinylene carbonate and 0.05% by mass of monochloroethylene carbonate with respect to the basic electrolyte (e) 5% by mass of high purity vinylene carbonate and 0. 25% by weight monochloroethylene carbonate added

次いで、前記の三極式セルに上記の電解液を充填し、室温にて、0.1mV/秒の電位走査速度で還元電位を測定した。その結果を図9に示す。この図から、高純度ビニレンカーボネートの還元電位のピークは、リチウムに対して0.7〜0.8ボルトの範囲にあることが分かる。 Subsequently, the above-mentioned electrolyte solution was filled in the triode cell, and the reduction potential was measured at room temperature at a potential scanning rate of 0.1 mV / sec. The result is shown in FIG. From this figure, the peak of reduction potential of High purity vinylene carbonate is to lithium 0. It can be seen that it is in the range of 7 to 0.8 volts.

実施例1のリチウム二次電池の充放電特性を示す図である。FIG. 3 is a diagram showing charge / discharge characteristics of the lithium secondary battery of Example 1. 比較例2のリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of the comparative example 2. 実施例1、比較例2および比較例3のそれぞれのリチウム二次電池のサイクル特性を示す図である。6 is a diagram showing cycle characteristics of lithium secondary batteries of Example 1, Comparative Example 2, and Comparative Example 3. FIG. 実施例2のリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of Example 2. 比較例4のリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of the comparative example 4. 比較例6のリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of the comparative example 6. 実施例2、比較例4、比較例5および比較例6のそれぞれのリチウム二次電池のサイクル特性を示す図である。6 is a diagram showing cycle characteristics of lithium secondary batteries of Example 2, Comparative Example 4, Comparative Example 5, and Comparative Example 6. FIG. 実施例3のリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of Example 3. 各種ビニレンカーボネート含有電解液のリチウム電極に対する還元電位の測定結果を示す図である。It is a figure which shows the measurement result of the reduction potential with respect to the lithium electrode of various vinylene carbonate containing electrolyte solution.

Claims (2)

環状カーボネート、鎖状カーボネートおよび0.1〜5質量%の範囲の量のビニレンカーボネートを含む非水溶媒に電解質が溶解されてなる非水電解液であって、有機塩素化合物を塩素原子換算で2.5ppmを超える量にて含有することなく、そして還元電位が、リチウムを基準として、0.7ボルト〜0.8ボルトの範囲にあることを特徴とする、負極として結晶面間隔(d 002 )が0.34nm以下のグラファイト負極を含むリチウム二次電池用の非水電解液。 Cyclic carbonate, a non-aqueous electrolyte solution of an electrolyte is dissolved in a nonaqueous solvent containing an amount of vinylene carbonate a chain carbonate and 0.1 to 5 wt% range, 2 organochlorine compound with chlorine atoms in terms of without containing in an amount of more than .5 ppm, and reduction potential, relative to the lithium, which lies in the range of 0.7 volts to 0.8 volts, lattice spacing as the negative electrode (d 002 ) Is a non-aqueous electrolyte for a lithium secondary battery including a graphite negative electrode having a size of 0.34 nm or less . 正極、結晶面間隔(d002)が0.34nm以下のグラファイト負極、および環状カーボネート、鎖状カーボネートおよび0.1〜5質量%の範囲の量のビニレンカーボネートを含む非水溶媒に電解質が溶解されている電解液を含むリチウム二次電池において、該電解液として、有機塩素化合物を塩素原子換算で2.5ppmを超える量にて含有することなく、そして還元電位が、リチウムを基準として、0.7ボルト〜0.8ボルトの範囲にある電解液が用いられていることを特徴とするリチウム二次電池。 The electrolyte is dissolved in a positive electrode, a graphite negative electrode having a crystal plane spacing (d 002 ) of 0.34 nm or less, and a non-aqueous solvent containing cyclic carbonate, chain carbonate, and vinylene carbonate in an amount ranging from 0.1 to 5 % by mass. In the lithium secondary battery including the electrolyte solution, the electrolyte solution contains no organic chlorine compound in an amount exceeding 2.5 ppm in terms of chlorine atoms, and the reduction potential is 0 based on lithium. A lithium secondary battery using an electrolyte solution in a range of .7 volts to 0.8 volts.
JP2006111531A 2000-04-17 2006-04-14 Non-aqueous electrolyte and lithium secondary battery Expired - Lifetime JP4470902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111531A JP4470902B2 (en) 2000-04-17 2006-04-14 Non-aqueous electrolyte and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000115111 2000-04-17
JP2006111531A JP4470902B2 (en) 2000-04-17 2006-04-14 Non-aqueous electrolyte and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001118631A Division JP2002008721A (en) 2000-04-17 2001-04-17 Nonaqueous electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006237015A JP2006237015A (en) 2006-09-07
JP4470902B2 true JP4470902B2 (en) 2010-06-02

Family

ID=37044379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111531A Expired - Lifetime JP4470902B2 (en) 2000-04-17 2006-04-14 Non-aqueous electrolyte and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4470902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698443B2 (en) * 2009-06-02 2015-04-08 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006237015A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
US6413678B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3438636B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR100751205B1 (en) Electrolyte for improving performance of battery and lithium secondary battery comprising the same
US5352548A (en) Secondary battery
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
US20070207389A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2010029971A1 (en) Electrolyte solution and use thereof
JP2005078820A (en) Non-aqueous electrolyte secondary battery
WO2019111983A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JP5207147B2 (en) Lithium secondary battery
JPH08298134A (en) Nonaqueous electrolyte
JP2004525495A (en) Nonionic surfactant containing electrolyte and lithium ion battery using the same
JP4632017B2 (en) Nonaqueous electrolyte secondary battery
JP2002008721A (en) Nonaqueous electrolyte and lithium secondary battery
JPH0837025A (en) Nonaqueous electrolyte
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP3815180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5398321B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4470902B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4470956B2 (en) Method for producing non-aqueous electrolyte for lithium secondary battery
JP2012253032A (en) Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4356287B2 (en) Non-aqueous electrolyte secondary battery
JP2004006401A (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220312

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term