JP4470053B2 - Method for producing lithium cobalt composite oxide - Google Patents

Method for producing lithium cobalt composite oxide Download PDF

Info

Publication number
JP4470053B2
JP4470053B2 JP2001530057A JP2001530057A JP4470053B2 JP 4470053 B2 JP4470053 B2 JP 4470053B2 JP 2001530057 A JP2001530057 A JP 2001530057A JP 2001530057 A JP2001530057 A JP 2001530057A JP 4470053 B2 JP4470053 B2 JP 4470053B2
Authority
JP
Japan
Prior art keywords
lithium
powder
composite oxide
cobalt composite
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001530057A
Other languages
Japanese (ja)
Inventor
学 数原
一夫 砂原
尚 斎藤
務 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Original Assignee
Seimi Chemical Co Ltd
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, AGC Seimi Chemical Ltd filed Critical Seimi Chemical Co Ltd
Application granted granted Critical
Publication of JP4470053B2 publication Critical patent/JP4470053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【技術分野】
【0001】
本発明は、リチウム二次電池用リチウムコバルト複合酸化物の製造方法に関する。
【背景技術】
【0002】
近年、機器のポータブル化、コードレス化が進むにつれ、さらに、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池に対する期待が高まっている。非水電解液二次電池用の活物質として、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn、LiMnOなどのリチウムと遷移金属の複合酸化物が知られている。
なかでも、リチウムコバルト複合酸化物(LiCoO)を正極活物質として用い、リチウム合金、グラファイト、カーボンファイバーなどのカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。
しかしながら、従来のリチウム二次電池には、充放電サイクルの繰り返しによりその電池放電容量が徐々に減少するというサイクル特性の劣化の問題、あるいは安全性が不十分である等の問題があった。また、体積容量密度の点でもさらなる高密度化が求められている。
【0003】
これらの電池特性を改良するために、特開平10−1316号公報には、リチウム二次電池のサイクル特性等の向上を目的として、コバルトの原子価が3価である水酸化コバルトまたはオキシ水酸化コバルト等を水酸化リチウム水溶液中に分散させた後、加熱処理することにより得られるLiCoOを活物質として用いることが提案されている。
また、特開平10−279315号公報及び特開平11−49519号公報には、コバルトの原子価が3価である三酸化二コバルト(Co)またはオキシ水酸化コバルト等を酸化リチウム等と混合し、該混合物を250〜1000℃で焼成することにより得られるLiCoOを活物質として、高容量かつサイクル特性のよいリチウム二次電池とすることが提案されている。
【0004】
また、特開平10−312805号公報には、格子定数のc軸長が14.051Å以下であり、結晶子(crystalIite)の(110)方向の結晶子径が45〜100nmの六方晶系であるLiCoOを正極活物質とすることによりリチウム二次電池のサイクル特性を向上させることが提案されている。
また、特公平7−32017号公報には、Co原子の5〜35%をW、Mn、Ta、TiまたはNbで置換したLiCoOを正極活物質とすることがリチウム二次電池のサイクル特性改良のために提案されている。また、特開平6−64928号公報には、溶融塩を用いた合成法による、Ti含有のリチウムコバルト複合酸化物を正極活物質に用いることによるリチウム二次電池の自己放電特性の向上が提案されている。
しかしながら、リチウムコバルト複合酸化物を正極活物質に用いたリチウム二次電池においても、従来、サイクル特性、初期重量容量密度、体積容量密度、安全性ならびに低温作動性、及び量産が容易な製造法等のすべてを十分に満足するものは未だ知られていない。
【発明が解決しようとする課題】
【0005】
本発明は、大きな電気容量を有し、低温での放電特性が良く、充放電サイクル耐久性に優れ、初期重量容量密度、体積容量密度、高い安全性を有するリチウム二次電池用リチウムコバルト複合酸化物の製造方法を提供することを目的とする。
【発明を解決するための手段】
【0006】
本発明者らは、組成及び結晶構造が特定のリチウムコバルト複合酸化物が、リチウム二次電池の正極に用いられたとき、電池特性が優れ、なかでも特定の製造方法により得られたリチウムコバルト複合酸化物は量産性に優れ、かつ該複合酸化物が正極活物質として用いられたリチウム二次電池は特段にサイクル特性に優れ、安全性かつ低温作動性にも優れていることを見出した。
本発明は、式LiCo1−Xで表され、同式中でxは0.0005≦x≦0.02で、MはTa、Ti、Nb、ZrおよびHfの群より選んだ少なくとも一種であり、かつCuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が0.1000.165°であるリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法であって、平均粒径1〜20μmかつ比表面積が2〜200m /gのオキシ水酸化コバルト粉末と、平均粒径1〜50μmかつ比表面積が0.1〜10m /gの炭酸リチウム粉末と、平均粒径10μm以下かつ比表面積が1〜100m /gの金属元素Mの酸化物粉末とを乾式混合し、該混合物を850〜1000℃で酸素含有雰囲気で焼成することを特徴とするリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法を提供する。
【発明を実施するための形態】
【0007】
記リチウムコバルト複合酸化物の式において、xが0.02より大きいと、初期電気容量が低下するので好ましくない。また、サイクル耐久性及び低温作動性の向上効果から、xは0.0005≦x≦0.02であり、特に好ましくは0.001≦x≦0.01、更に好ましくは、0.002≦x≦0.007である。
また、上記リチウムコバルト複合酸化物のCuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅は、リチウムコバルト複合酸化物の特定方向の結晶子径を反映し、ピーク半値幅が大きい程結晶子径は小さくなる関係が見出された。なお、本発明において、ピーク半値幅とはピーク高さの二分の一におけるピーク幅を意味する。
【0008】
本発明のリチウムコバルト複合酸化物の(110)面回折ピーク半値幅は0.1000.165°である。かかる半値幅が0.100°未満であると、正極活物質として用いた電池の充放電サイクル耐久性、初期電気容量、平均放電電圧、或いは安全性が低下するので好ましくない。また、かかる半値幅が0.165°を超えると電池の初期電気容量、安全性が低下するので好ましくない
更に本発明は、平均粒径1〜20μmかつ比表面積が2〜200m/gのオキシ水酸化コバルト粉末と、平均粒径1〜50μmかつ比表面積が0.1〜10m/gの炭酸リチウム粉末と、平均粒径10μm以下かつ比表面積が1〜200m/gの金属元素Mの酸化物粉末とを乾式混合後、850〜1000℃で、好ましくは4〜30時間、酸素含有雰囲気で焼成されることを特徴とするリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法を提供する。
【0009】
本発明において、平均粒径とは重量平均粒子直径を意味する。本発明において、平均粒径は、質量基準で粒度分布を求め、全質量を100%とした累積カーブにおいて、質量の累積カーブが50%となる点の粒径である。これを質量基準累積50%径ともいう(例えば、化学工学便覧「改定5版」(化学工学会編)p220〜221、Kirk−Othmer,“Encyclopedia of Chemical Technology”,3rd.Edition,vol.21,106−113(Wiley−Interscience)。粒径の測定は、水等の媒体に超音波処理等で充分分散させて粒度分布を測定する(例えば、日機装株式会社製マイクロトラックHRAX−100等を用いる)ことにより行われる。
【0010】
本発明の製造方法は、コバルト原料として既述の特定性状のオキシ水酸化コバルトを使用する。オキシ水酸化コバルトの平均粒径が1μm未満であると電池の安全性が低下したり、電極層の充填密度が低下する結果、体積当たりの電気容量が低下するので好ましくない。また、オキシ水酸化コバルトの平均粒径が20μmを超えると電池における大電流での放電特性が低下するので好ましくない。オキシ水酸化コバルトの好ましい平均粒径は4〜15μmである。
【0011】
上記のオキシ水酸化コバルトは含水状態で製造される場合があるが、かかる場合は比表面積を測定しがたいので、本発明では含水オキシ水酸化コバルトの比表面積とは、オキシ水酸化コバルトの含水物を120℃にて16時間乾燥脱水した粉末についての比表面積を意味する。なお、含水オキシ水酸化コバルトを用いる場合は、乾燥した後の粉体を用いるのが好ましく、例えば120℃で16時間乾燥した後、用いるのが好ましい。本発明において、オキシ水酸化コバルトの比表面積が2m/g未満であると大電流での放電容量が低下するので好ましくない。また、オキシ水酸化コバルトの比表面積が200m/gを超えると正極電極層の充填密度が低下する結果、体積当たりの電気容量が低下するので好ましくない。オキシ水酸化コバルトの好ましい比表面積は20〜100m/gである。
【0012】
本発明の製造方法は、リチウム原料として特定性状の炭酸リチウムを使用する。炭酸リチウムの平均粒径が1μm未満であると粉体の嵩密度が低下し、量産時の生産性が低下するので好ましくない。また、炭酸リチウムの平均粒径が100μmを超えると初期電気容量が低下するので好ましくない。炭酸リチウムの特に好ましい平均粒径は5〜30μmである。炭酸リチウムの比表面積が0.1m/g未満であると単位重量当たりの初期放電容量が低下するので好ましくない。また、炭酸リチウムの比表面積が10m/gを超えると正極電極層の充填密度が低下する結果、体積当たりの電気容量が低下するので好ましくない。炭酸リチウムの特に好ましい比表面積は0.3〜3m/gである。
【0013】
本発明のリチウムコバルト複合酸化物の製造方法においては、原料である元素Mを含む金属酸化物として特定性状の金属酸化物を使用する。元素Mを含む金属酸化物は、Mがチタン(Ti)の場合は酸化チタンTiOが好ましく例示される。酸化チタンとしては、アナターゼ型、ルチル型等があるが、特にアナターゼ型を用いると電池特性が良いので好ましい。Mがニオブ(Nb)の場合はNbが好ましく例示される。Mがタンタル(Ta)の場合はTaが好ましく例示される。Mがジルコニウム(Zr)の場合は酸化ジルコニウムZrOが好ましく例示される。Mがハフニウム(Hf)の場合はHfOが好ましく例示される。
【0014】
元素Mを含む金属酸化物の平均粒径が10μmを超えると、リチウムコバルト複合酸化物粒子内における元素Mの分布が不均一になる結果、電池性能に関する元素Mの添加効果が低下するので好ましくない。元素Mからなる酸化物の好ましい平均粒径は1μm以下であり、特に好ましくは0.3μm以下である。
【0015】
元素Mを含む金属酸化物の比表面積が1m/g未満であると、反応性が低下する結果、電池性能に関する元素Mの添加効果が低下するので好ましくない。また、元素Mを含む金属酸化物の比表面積が100m/gを超えると、元素Mが結晶格子内に均一に組み込まれる結果、電池性能に関する元素Mの添加効果が低下するので好ましくない。元素Mを含む酸化物の好ましい比表面積は2〜20m/gである。
【0016】
本発明のリチウムコバルト複合酸化物は、オキシ水酸化コバルト粉末と、炭酸リチウム粉末と、元素Mを含む酸化物粉末とを乾式混合後、850〜1000℃で、好ましくは4〜30時間、酸素含有雰囲気で焼成することにより得ることが好ましい。湿式混合は生産性が低いので好ましくない。焼成温度が850℃未満であると、充放電サイクル耐久性が低下するので好ましくない。一方、焼成温度が1000℃を超えると、初期電気容量が低下するので好ましくない。特に好ましくは870〜960℃であり、更に好ましくは880〜920℃である。焼成時間が4時間未満であると、量産時に焼成状態が不均一になり特性にバラツキを生じ易いので好ましくない。30時間以上であると、生産性が低下するので好ましくない。特に好ましくは8〜20時間の焼成時間が採用される。
【0017】
上記混合物の焼成は酸素気流下でおこなうことが好ましい。気流中の酸素濃度は10〜100体積%が好ましく、特に好ましくは19〜50体積%である。酸素濃度が低いと、電池性能が低下するので好ましくない。
【0018】
本発明の製造方法により得られ、かつ特定の(110)面の回折ピーク半値幅が特定値を有するリチウムコバルト複合酸化物を活物質とする正極を用いたリチウム二次電池は、初期電気容量を維持しつつ、従来より高い低温作動性、充放電サイクル耐久性に優れている。
【0019】
本発明の製造方法により得られるリチウムコバルト複合酸化物のなかでも、リチウムコバルト複合酸化物の充填プレス密度が2.90〜3.35g/cmであるものが、正極の電極層における単位体積当たりの容量密度を高くできるので好ましい。本発明において、充填プレス密度とは、リチウムコバルト複合酸化物粉末を0.3t/cmの荷重でプレスしたときのプレス成形体の見掛け密度を意味する。
【0020】
充填プレス密度が2.90g/cm未満であると、正極電極層の密度が低下する結果、体積当たりの容量が低下するので好ましくない。充填プレス密度が3.35g/cmを超えると、電池の高電流密度での容量発現性が低下するので好ましくない。リチウムコバルト複合酸化物の充填プレス密度は3.05〜3.25g/cmが特に好ましい。
【0021】
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いたリチウム二次電池においては、本発明の製造方法により得られるリチウムコバルト複合酸化物の粉末と導電材と結合材ならびに結合材の溶媒または分散媒を含むスラリーまたは混練物からなる分散液をアルミニウム箔、ステンレス箔等の正極集電体に塗布等をした後、乾燥させ担持せしめて正極とするのが好ましい。導電材には、アセチレンブラック、黒鉛、ケッチエンブラック等のカーボン系導電材等が好ましく用いられる。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が好ましく用いられる。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルム等が好ましく用いられる。
【0022】
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いたリチウム二次電池において、電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状または鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
【0023】
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いたリチウム二次電池において、上記炭酸エステルを単独でまたは2種以上を混合して使用できる。また、他の溶媒と混合してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。
また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社製:商品名カイナー)、特開平10−294131号公報に開示されたフッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を添加し、下記の溶質を加えることによりゲルポリマー電解質としても良い。
【0024】
上記電解質溶液またはポリマー電解質の溶質としては、ClO−、CFSO−、BF−、PF−、AsF−、SbF−、CFCO−、(CFSON−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を前記溶媒または溶媒含有ポリマーに0.2〜2.0mol/l(リットル)の濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5〜1.5mol/lが選定される。
【0025】
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いた正極活物質を用いるリチウム二次電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛または鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。
【0026】
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いた正極活物質を用いる電池における負極は、上記正極の場合と同様に、上記負極活物質を有機溶媒と混練してスラリとし、該スラリを金属箔集電体に塗布、乾燥、プレスして得ることが好ましい。
本発明の製造方法により得られるリチウムコバルト複合酸化物を用いたリチウム二次電池の形状には特に制約はない。シート状(いわゆるフィルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。
【実施例】
【0027】
以下に実施例により本発明を更に具体的に説明するが、本発明はこれらの例に限定して解釈されるべきでないことはもちろんである。なお、以下の例1〜例は本発明の例であり、例〜例16は比較例である。
【0028】
[例1]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末と、平均粒径0.22μmかつ比表面積が9m/gのアナターゼ型二酸化チタン粉末とを混合した。混合比は焼成後LiCo0.998Ti0.002となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、理学電機製RINT 2100型X線回折装置を用いてX線回折スペクトルを得た。CuKα線を使用したこの粉末X線回折において、六方晶系である回折ピークを得た。また、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.121°であった。
この正極活物質粉末を0.3t/cmでプレスし、その体積と重量から充填プレス密度を求めたところ、3.20g/cmであった。
【0029】
このようにして得たLiCo0.998Ti0.002粉末と、アセチレンブラックと、ポリテトラフルオロエチレン粉末とを80/16/4の重量比で混合し、トルエンを添加しつつ混練、乾燥し、厚さ150μmの正極板を作製した。
そして、厚さ20μmのアルミニウム箔を正極集電体とし、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、電解液には1M LiPF/EC+DEC(1:1)を用いてステンレス製簡易密閉セル電池をアルゴングローブボックス内で2個組立てた。
【0030】
この2個の電池について、まず、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。一方の電池については、更に充放電サイクル試験を40回行った。また、他方の電池は25℃にて充電後、−10℃に冷却し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して−10℃における初期放電容量を求めることにより、25℃における初期電気容量を100%とした際の−10℃における容量発現率を求めた。
25℃における2.5〜4.3Vにおける初期放電容量は149mAh/gであり、40回充放電サイクル後の容量維持率は95.3%であった。また、−10℃における容量発現率は70%であった。
【0031】
[例2]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末と、平均粒径0.15μmかつ比表面積が5.3m/gの酸化ニオブNb粉末とを混合した。混合比は焼成後LiCo0.998Nb0.002となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.115°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.23g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.998Nb0.002粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃での2.5〜4.3Vにおける初期放電容量は148mAh/gであり、40回充放電サイクル後の容量維持率は95.0%であった。また、−10℃における容量発現率は73%であった。
【0032】
[例3]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末と、平均粒径0.23μmかつ比表面積が9.8m/gの酸化タンタルTa粉末とを混合した。混合比は焼成後LiCo0.998Ta0.002となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.115°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.19g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.998Ta0.002粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃での2.5〜4.3Vにおける初期放電容量は148mAh/gであり、40回充放電サイクル後の容量維持率は96.1%であった。また、−10℃における容量発現率は75%であった。
【0033】
[例4]
平均粒径8μmかつ比表面積が40m/gのオキシ水酸化コバルト粉末と、平均粒径22μmかつ比表面積が0.64m/gの炭酸リチウム粉末と、平均粒径0.17μmかつ比表面積が35m/gのアナターゼ型二酸化チタン粉末とを混合した。混合比は焼成後LiCo0.994Ti0.006となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を19体積%とした雰囲気下、890℃にて15時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.127°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.11g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.994Ti0.006粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃での2.5〜4.3Vにおける初期放電容量は149mAh/gであり、40回充放電サイクル後の容量維持率は95.7%であった。また、−10℃における容量発現率は72%であった。
【0034】
[例5]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末と、平均粒径8.1μmかつ比表面積が15m/gの酸化ジルコニウム(ZrO)粉末とを混合した。混合比は焼成後LiCo0.998Zr0.002となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.117°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.19g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.998Zr0.002粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃での2.5〜4.3Vにおける初期放電容量は148mAh/gであり、40回充放電サイクル後の容量維持率は95.8%であった。また、−10℃における容量発現率は68%であった。
【0035】
[例6]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末と、平均粒径0.4μmかつ比表面積が7.2m/gの酸化ハフニウム(HfO)粉末とを混合した。混合比は焼成後LiCo0.998Hf0.002となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.119°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.18g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.998Hf0.002粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃での2.5〜4.3Vにおける初期放電容量は149mAh/gであり、40回充放電サイクル後の容量維持率は96.0%であった。また、−10℃における容量発現率は70%であった。
【0036】
[例7]
平均粒径8μmかつ比表面積が40m/gのオキシ水酸化コバルト粉末と、平均粒径22μmかつ比表面積が0.64m/gの炭酸リチウム粉末と、平均粒径8.1μmかつ比表面積が16m/gの酸化ジルコニウム粉末とを混合した。混合比は焼成後LiCo0.994Zr0.006となるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を19体積%とした雰囲気下、890℃にて15時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.128°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.10g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.994Zr0.006粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃,2.5〜4.3Vにおける初期放電容量は148mAh/gであり、40回充放電サイクル後の容量維持率は95.7%であった。また、−10℃における容量発現率は72%であった。
【0037】
[例8]
平均粒径10μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末とを混合した。混合比は焼成後LiCoOとなるように配合した。これら3種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気下、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.098°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.10g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃,2.5〜4.3Vにおける初期放電容量は149mAh/gであり、40回充放電サイクル後の容量維持率は94.8%であった。また、−10℃における容量発現率は54%であった。
【0038】
[例9]
平均粒径15μmかつ比表面積が60m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末とを混合した。混合比は焼成後LiCoOとなるように配合した。これら2種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気にて、910℃で12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.091°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.18g/cmであった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに、この電池について、引き続き充放電サイクル試験を30回行った。その結果、25℃,2.5〜4.3Vにおける初期放電容量は149mAh/gであり、30回充放電サイクル後の容量維持率は96.3%であった。
【0039】
また、他方の電池については、正極面積1cmにつき定電流0.2mAで4.3Vまで充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は165℃であった。
【0040】
[例10]
平均粒径8μmかつ比表面積が50m/gのオキシ水酸化コバルト粉末と、平均粒径15μmかつ比表面積が1.2m/gの炭酸リチウム粉末とを混合した。混合比は焼成後LiCoOとなるように配合した。これら2種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を28体積%とした雰囲気にて、910℃にて12時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.095°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.01g/cmであった。
【0041】
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個について、例9と同じく電池の初期電気容量と30サイクル後の容量を求めたところ、25℃,2.5〜4.3Vにおける初期放電容量は148mAh/gであり、30回充放電サイクル後の容量維持率は97.0%であった。
また、例9と同様にして、他方の電池について、充電された正極活物質の電解液との反応性を求めたところ、発熱開始温度は169℃であった。
【0042】
[例11]
平均粒径12μmかつ比表面積が66m/gのオキシ水酸化コバルト粉末と、平均粒径28μmかつ比表面積が0.43m/gの炭酸リチウム粉末とを混合した。混合比は焼成後LiCoOとなるように配合した。これら2種の粉末を乾式混合した後、空気に酸素ガスを添加することにより酸素濃度を19体積%とした雰囲気にて、890℃にて18時間焼成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.083°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.12g/cmであった。
【0043】
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個について、例9と同じく電池の初期電気容量と30サイクル後の容量を求めたところ、25℃,2.5〜4.3Vにおける初期放電容量は148mAh/gであり、30回充放電サイクル後の容量維持率は95.3%であった。
また、例9と同様にして、他方の電池について、充電された正極活物質の電解液との反応性を求めたところ、発熱開始温度は173℃であった。
【0044】
[例12]
オキシ水酸化コバルトの代わりに、平均粒径8μm、比表面積0.66m/gの酸化コバルト(Co)粉末を用いた他は、例9と同様にしてLiCoOを合成した。
焼成後の粉末(正極活物質粉末)について、例9と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.133°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、2.75g/cmであった。
【0045】
例9のLiCoO粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個について、例9と同じく電池の初期電気容量と30サイクル後の容量を求めたところ、25℃,2.5〜4.3Vにおける初期放電容量は148mAh/gであり、30回充放電サイクル後の容量維持率は96.4%であった。
また、例9と同様にして、他方の電池について、充電された正極活物質の電解液との反応性を求めたところ、発熱開始温度は155℃であった。
【0046】
[例13]
平均粒径15μmかつ比表面積が60m/gのオキシ水酸化コバルト粉末の替りに平均粒径30μm、比表面積7m/gのオキシ水酸化コバルト粉末を用いた他は、上記例9と同様にしてLiCoOを合成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.118°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、3.15g/cmであった。
例9のLiCoO粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個について、例9と同じく電池の初期電気容量と30サイクル後の容量を求めたところ、25℃,2.5〜4.3Vにおける初期放電容量は137mAh/gであり、30回充放電サイクル後の容量維持率は92.3%であった。
また、例9と同様にして、他方の電池について、充電された正極活物質の電解液との反応性を求めたところ、発熱開始温度は158℃であった。
【0047】
[例14]
例9における、温度910℃、12時間の焼成を780℃で12時間の焼成に変更した他は、例9と同様にしてLiCoOを合成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.138°であった。
この正極活物質粉末の充填プレス密度を例1と同様に求めたところ、2.98g/cmであった。
【0048】
例9のLiCoO粉末の替りに上記のLiCoO粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
その内の1個について、例9と同じく電池の初期電気容量と30サイクル後の容量を求めたところ、25℃,2.5〜4.3Vにおける初期放電容量は147mAh/gであり、30回充放電サイクル後の容量維持率は96.5%であった。
また、例9と同様にして、他方の電池について、充電された正極活物質の電解液との反応性を求めたところ、発熱開始温度は156℃であった。
【0049】
[例15]
オキシ水酸化コバルト粉末と、炭酸リチウム粉末と、アナターゼ型二酸化チタン粉末との混合比を焼成後LiCo0.95Ti0.05となるように配合した他は、例1と同様にしてLiCo0.95Ti0.05を合成した。
焼成後の粉末(正極活物質粉末)について、例1と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.188°であった。
例1のLiCo0.998Ti0.002粉末の替りに上記のLiCo0.95Ti0.05粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
この2個の電池について、例1と同様に測定したところ、25℃,2.5〜4.3Vにおける初期放電容量は141mAh/gであり、40回充放電サイクル後の容量維持率は93.6%であった。また、−10℃における容量発現率は68%であった。
【0050】
[例16]
オキシ水酸化コバルト粉末と、炭酸リチウム粉末と、酸化ジルコニウムとの混合比を焼成後LiCo0.95Zr0.05となるように配合した他は、例5と同様にしてLiCo0.95Zr0.05を合成した。
焼成後の粉末(正極活物質粉末)について、例5と同様に測定したところ、2θ=66.5±1°付近の(110)面の回折ピーク半値幅は0.183°であった。
例5のLiCo0.998Zr0.002粉末の替りに上記のLiCo0.95Zr0.05粉末を用いる以外は例1と同様にして、ステンレス製簡易密閉セル電池を2個組立てた。
【0051】
この2個の電池について、例5と同様に測定したところ、25℃,2.5〜4.3Vにおける初期放電容量は140mAh/gであり、40回充放電サイクル後の容量維持率は93.8%であった。また、−10℃における容量発現率は68%であった。
【発明の効果】
【0052】
本発明によれば、大きな電気容量を有し、低温での放電特性が良く、充放電サイクル耐久性に優れ、安全性の高い、リチウム二次電池用の正極活物質として優れた特性を有する六方晶系リチウムコバルト複合酸化物、およびかかるリチウムコバルト複合酸化物の効率的な有利な製造法が提供される。
【0053】
また、六方晶系リチウムコバルト複合酸化物を活物質とするリチウム二次電池用の正極およびかかる正極を使用した電気容量、放電特性、充放電サイクル耐久性、容量密度、安全性および低温作動性などの特性の点で優れたリチウム二次電池が提供される。
【Technical field】
[0001]
  The present invention relates to lithium cobalt composite oxidation for lithium secondary batteries.ThingManufacturing methodTo the lawRelated.
[Background]
[0002]
  In recent years, as devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries that are small, lightweight, and have high energy density are increasing. LiCoO as an active material for non-aqueous electrolyte secondary batteries2LiNiO2, LiNi0.8Co0.2O2, LiMn2O4LiMnO2There are known composite oxides of lithium and transition metals.
  Among these, lithium cobalt composite oxide (LiCoO2) Is used as a positive electrode active material, and lithium secondary batteries using carbon such as lithium alloy, graphite, and carbon fiber as negative electrodes are widely used as batteries having high energy density because a high voltage of 4V is obtained. Yes.
  However, the conventional lithium secondary battery has problems such as deterioration of cycle characteristics in which the battery discharge capacity gradually decreases due to repeated charge / discharge cycles, or insufficient safety. Further, higher density is also required in terms of volume capacity density.
[0003]
  In order to improve these battery characteristics, Japanese Patent Laid-Open No. 10-1316 discloses cobalt hydroxide or oxyhydroxide whose cobalt valence is trivalent for the purpose of improving the cycle characteristics and the like of the lithium secondary battery. LiCoO obtained by dispersing cobalt in an aqueous lithium hydroxide solution and then heat-treating it.2It has been proposed to use as an active material.
  In addition, Japanese Patent Laid-Open Nos. 10-279315 and 11-49519 disclose dicobalt trioxide (Co) in which the valence of cobalt is trivalent.3O2LiCoO obtained by mixing cobalt oxyhydroxide or the like with lithium oxide or the like and firing the mixture at 250 to 1000 ° C.2It has been proposed that a lithium secondary battery having a high capacity and good cycle characteristics is used as an active material.
[0004]
  JP-A-10-31805 discloses a hexagonal system in which the c-axis length of the lattice constant is not more than 14.051 mm and the crystallite diameter in the (110) direction of the crystallite is 45 to 100 nm. LiCoO2It has been proposed to improve the cycle characteristics of a lithium secondary battery by using as a positive electrode active material.
  Japanese Patent Publication No. 7-32017 discloses LiCoO in which 5-35% of Co atoms are substituted with W, Mn, Ta, Ti, or Nb.2Has been proposed to improve the cycle characteristics of lithium secondary batteries. JP-A-6-64928 proposes improvement of self-discharge characteristics of a lithium secondary battery by using a Ti-containing lithium cobalt composite oxide as a positive electrode active material by a synthesis method using a molten salt. ing.
  However, in lithium secondary batteries using lithium-cobalt composite oxide as the positive electrode active material, conventionally, cycle characteristics, initial weight capacity density, volume capacity density, safety and low temperature operability, and a manufacturing method that facilitates mass production, etc. It is not yet known what will satisfy all of them.
[Problems to be solved by the invention]
[0005]
  The present invention has a large electric capacity, good discharge characteristics at low temperature, excellent charge / discharge cycle durability, initial weight capacity density, volume capacity density, and lithium cobalt composite oxidation for lithium secondary batteries having high safety.ThingManufacturing methodThe lawThe purpose is to provide.
[Means for Solving the Invention]
[0006]
  When the lithium cobalt composite oxide having a specific composition and crystal structure is used for a positive electrode of a lithium secondary battery, the present inventors have excellent battery characteristics, and in particular, a lithium cobalt composite obtained by a specific manufacturing method. It has been found that an oxide is excellent in mass productivity, and a lithium secondary battery in which the composite oxide is used as a positive electrode active material has particularly excellent cycle characteristics, and is excellent in safety and low-temperature operability.
  The present invention relates to the formula LiCo1-XMXO2Where x is0.0005≦ x ≦ 0.02, M is at least one selected from the group of Ta, Ti, Nb, Zr and Hf, and 2θ = 66.5 ± 1 measured by X-ray diffraction using CuKα as a radiation source The (110) plane diffraction peak half-value width of0.100~0.165°RuHexagonal lithium cobalt oxide for lithium secondary batteryWith an average particle diameter of 1 to 20 μm and a specific surface area of 2 to 200 m 2 / G cobalt oxyhydroxide powder, an average particle size of 1 to 50 μm and a specific surface area of 0.1 to 10 m 2 / G lithium carbonate powder, an average particle size of 10 μm or less and a specific surface area of 1 to 100 m 2 / G of metal element M oxide powder is dry-mixed, and the mixture is fired at 850 to 1000 ° C. in an oxygen-containing atmosphere to produce a hexagonal lithium cobalt composite oxide for a lithium secondary battery MethodI will provide a.
BEST MODE FOR CARRYING OUT THE INVENTION
[0007]
  UpIn the formula of the lithium cobalt composite oxide, if x is larger than 0.02, the initial electric capacity is lowered, which is not preferable.. MaFurthermore, from the effect of improving cycle durability and low temperature operability, x is 0.0005 ≦ x ≦ 0.02.AndParticularly preferably, 0.001 ≦ x ≦ 0.01, and more preferably 0.002 ≦ x ≦ 0.007.
  In addition, the (110) plane diffraction peak half width of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα of the lithium cobalt composite oxide as a radiation source is in a specific direction of the lithium cobalt composite oxide. Reflecting the crystallite diameter, it was found that the larger the peak half-width, the smaller the crystallite diameter. In the present invention, the peak half-value width means a peak width at a half of the peak height.
[0008]
  The half width of the (110) plane diffraction peak of the lithium cobalt composite oxide of the present invention is0.100~0.165°. This half-width is0.100If it is less than 0 °, the charge / discharge cycle durability, initial electric capacity, average discharge voltage, or safety of the battery used as the positive electrode active material decreases, which is not preferable. In addition, the full width at half maximum is0.165Exceeding ° is not preferable because the initial electrical capacity and safety of the battery will decrease..
  Furthermore, the present invention has an average particle size of 1 to 20 μm and a specific surface area of 2 to 200 m.2/ G cobalt oxyhydroxide powder, an average particle size of 1 to 50 μm and a specific surface area of 0.1 to 10 m2/ G lithium carbonate powder and,flatAverage particle size of 10 μm or less and specific surface area of 1 to 200 m2Hexagonal lithium for a lithium secondary battery, which is dry-mixed with an oxide powder of a metal element M / g and calcined in an oxygen-containing atmosphere at 850 to 1000 ° C., preferably for 4 to 30 hours A method for producing a cobalt composite oxide is provided.
[0009]
  In the present invention, the average particle diameter means the weight average particle diameter. In the present invention, the average particle size is a particle size at which the cumulative curve of mass becomes 50% in a cumulative curve obtained by obtaining a particle size distribution on a mass basis and setting the total mass to 100%. This is also referred to as a mass-based cumulative 50% diameter (for example, Chemical Engineering Handbook “Revised 5th Edition” (edited by the Chemical Engineering Society) p220-221, Kirk-Othmer, “Encyclopedia of Chemical Technology”, 3rd. Edition, vol. 21, 106-113 (Wiley-Interscience) The particle size is measured by sufficiently dispersing in a medium such as water by ultrasonic treatment or the like (for example, using Microtrac HRAX-100 manufactured by Nikkiso Co., Ltd.). Is done.
[0010]
  The production method of the present invention uses the cobalt oxyhydroxide having the specific properties described above as a cobalt raw material.TheIf the average particle size of the cobalt oxyhydroxide is less than 1 μm, the safety of the battery is lowered or the packing density of the electrode layer is lowered. As a result, the electric capacity per volume is not preferred. Further, if the average particle size of the cobalt oxyhydroxide exceeds 20 μm, the discharge characteristics at a large current in the battery deteriorate, which is not preferable. The preferable average particle diameter of cobalt oxyhydroxide is 4-15 micrometers.
[0011]
  The cobalt oxyhydroxide may be produced in a water-containing state, but in such a case, it is difficult to measure the specific surface area. Therefore, in the present invention, the specific surface area of the water-containing cobalt oxyhydroxide is the water content of the cobalt oxyhydroxide. It means the specific surface area of a powder obtained by drying and dehydrating a product at 120 ° C. for 16 hours. In addition, when using hydrous cobalt oxyhydroxide, it is preferable to use the powder after drying, for example, it is preferable to use after drying at 120 degreeC for 16 hours. In the present invention, the specific surface area of cobalt oxyhydroxide is 2 m.2If it is less than / g, the discharge capacity at a large current decreases, which is not preferable. The specific surface area of cobalt oxyhydroxide is 200m.2If it exceeds / g, the packing density of the positive electrode layer is lowered, and as a result, the electric capacity per volume is lowered. The preferred specific surface area of cobalt oxyhydroxide is 20-100m2/ G.
[0012]
  The production method of the present invention uses lithium carbonate having specific properties as a lithium raw material.TheWhen the average particle size of lithium carbonate is less than 1 μm, the bulk density of the powder is lowered, and the productivity during mass production is lowered, which is not preferable. Moreover, when the average particle diameter of lithium carbonate exceeds 100 μm, the initial electric capacity is lowered, which is not preferable. The particularly preferable average particle diameter of lithium carbonate is 5 to 30 μm. The specific surface area of lithium carbonate is 0.1m2If it is less than / g, the initial discharge capacity per unit weight is lowered, which is not preferable. The specific surface area of lithium carbonate is 10m2If it exceeds / g, the packing density of the positive electrode layer is lowered, and as a result, the electric capacity per volume is lowered. The particularly preferred specific surface area of lithium carbonate is 0.3 to 3 m.2/ G.
[0013]
  In the method for producing a lithium cobalt composite oxide of the present invention,,originalMetal oxides with specific properties are used as metal oxides containing element MTheThe metal oxide containing the element M is titanium oxide TiO when M is titanium (Ti).2Is preferably exemplified. Titanium oxide includes anatase type, rutile type, and the like, and it is particularly preferable to use anatase type because battery characteristics are good. Nb when M is niobium (Nb)2O5Is preferably exemplified. Ta when M is tantalum (Ta)2O5Is preferably exemplified. When M is zirconium (Zr), zirconium oxide ZrO2Is preferably exemplified. HfO when M is hafnium (Hf)2Is preferably exemplified.
[0014]
  If the average particle diameter of the metal oxide containing the element M exceeds 10 μm, the distribution of the element M in the lithium cobalt composite oxide particles becomes non-uniform, resulting in a decrease in the effect of adding the element M on the battery performance. . A preferable average particle diameter of the oxide composed of the element M is 1 μm or less, and particularly preferably 0.3 μm or less.
[0015]
  Specific surface area of metal oxide containing element M is 1 m2If it is less than / g, the reactivity decreases, and as a result, the effect of adding the element M on the battery performance decreases, which is not preferable. The specific surface area of the metal oxide containing the element M is 100 m.2Exceeding / g is not preferable because the element M is uniformly incorporated in the crystal lattice, and as a result, the effect of adding the element M on the battery performance decreases. The preferable specific surface area of the oxide containing the element M is 2 to 20 m.2/ G.
[0016]
  The lithium cobalt composite oxide of the present invention includes a cobalt oxyhydroxide powder, a lithium carbonate powder, and an oxide powder containing the element M.DryIt is preferable to obtain by baking in an oxygen-containing atmosphere at 850 to 1000 ° C., preferably for 4 to 30 hours, after the formula mixing. Wet mixing is not preferable because of low productivity. If the firing temperature is less than 850 ° C., the charge / discharge cycle durability decreases, which is not preferable. On the other hand, when the firing temperature exceeds 1000 ° C., the initial electric capacity is lowered, which is not preferable. Especially preferably, it is 870-960 degreeC, More preferably, it is 880-920 degreeC. A firing time of less than 4 hours is not preferable because the firing state becomes non-uniform during mass production and the characteristics tend to vary. If it is 30 hours or longer, productivity is lowered, which is not preferable. Particularly preferably, a firing time of 8 to 20 hours is employed.
[0017]
  The mixture is preferably fired under an oxygen stream. The oxygen concentration in the airflow is preferably 10 to 100% by volume, particularly preferably 19 to 50% by volume. If the oxygen concentration is low, the battery performance deteriorates, which is not preferable.
[0018]
  A lithium secondary battery using a positive electrode obtained by the manufacturing method of the present invention and using a lithium cobalt composite oxide having a specific value of a diffraction peak half-width of a specific (110) plane as an active material has an initial capacitance. While maintaining it, it is superior in conventional low temperature operability and charge / discharge cycle durability.
[0019]
  Of the present inventionObtained by manufacturing methodAmong lithium cobalt composite oxides, the filling press density of the lithium cobalt composite oxide is 2.90 to 3.35 g / cm.3Is preferable because the capacity density per unit volume in the electrode layer of the positive electrode can be increased. In the present invention, the filling press density means that the lithium cobalt composite oxide powder is 0.3 t / cm.2This means the apparent density of the press-molded product when pressed with a load of.
[0020]
  Filling press density is 2.90 g / cm3If it is less than the lower limit, the density of the positive electrode layer is decreased, and as a result, the capacity per volume is decreased. Filling press density is 3.35 g / cm3Exceeding this is not preferable because the capacity development at a high current density of the battery is lowered. The filling press density of the lithium cobalt composite oxide is 3.05 to 3.25 g / cm.3Is particularly preferred.
[0021]
  Of the present inventionUsing lithium cobalt composite oxide obtained by the manufacturing methodIn the lithium secondary battery, the present inventionObtained by manufacturing methodAfter applying a dispersion liquid comprising a slurry or a kneaded material containing a lithium cobalt composite oxide powder, a conductive material, a binder, and a solvent or dispersion medium of the binder to an aluminum foil, a positive electrode current collector such as a stainless steel foil, etc. It is preferable that the positive electrode is dried and supported. As the conductive material, carbon-based conductive materials such as acetylene black, graphite, and Ketchen black are preferably used. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used. For the separator, porous polyethylene, porous polypropylene film or the like is preferably used.
[0022]
  Of the present inventionUsing lithium cobalt composite oxide obtained by the manufacturing methodIn the lithium secondary battery, a carbonate is preferable as the solvent of the electrolyte solution. The carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
[0023]
  Of the present inventionUsing lithium cobalt composite oxide obtained by the manufacturing methodIn the lithium secondary battery, the carbonate ester can be used alone or in admixture of two or more. Moreover, you may mix with another solvent. Moreover, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved.
  In addition, vinylidene fluoride-hexafluoropropylene copolymer (for example, product name: Kyner manufactured by Atchem Co.), vinylidene fluoride-perfluoropropyl vinyl ether copolymer disclosed in JP-A-10-294131 is used in these organic solvents. It is good also as a gel polymer electrolyte by adding the following solute.
[0024]
  The solute of the electrolyte solution or polymer electrolyte is ClO.4-, CF3SO3-, BF4-, PF6-, AsF6-, SbF6-, CF3CO2-, (CF3SO2)2It is preferable to use at least one lithium salt having N- or the like as an anion. In the above electrolyte solution or polymer electrolyte, an electrolyte composed of a lithium salt is preferably added to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / l (liter). If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / l is selected.
[0025]
  Of the present inventionUsing lithium cobalt composite oxide obtained by the manufacturing methodIn a lithium secondary battery using a positive electrode active material, a material capable of inserting and extracting lithium ions is used for the negative electrode active material. The material for forming this negative electrode active material is not particularly limited, but for example, lithium metal, lithium alloy, carbon material, periodic table 14, oxide mainly composed of group 15 metal, carbon compound, silicon carbide compound, silicon oxide compound, Examples thereof include titanium sulfide and boron carbide compounds. As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, or the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil or the like is used.
[0026]
  The present inventionLithium cobalt composite oxide obtained by the manufacturing method ofUse positive electrode active materialbatteryAs in the case of the positive electrode, the negative electrode in is preferably obtained by kneading the negative electrode active material with an organic solvent to form a slurry, applying the slurry to a metal foil current collector, drying, and pressing.
  Of the present inventionUsing lithium cobalt composite oxide obtained by the manufacturing methodThere are no particular restrictions on the shape of the lithium secondary battery. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
【Example】
[0027]
  The present invention will be described more specifically with reference to the following examples. However, the present invention should not be construed as being limited to these examples. In addition, the following examples 1 to example7Are examples of the present invention, examples8-Example 16 is a comparative example.
[0028]
[Example 1]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder, an average particle size of 0.22 μm and a specific surface area of 9 m2/ G of anatase-type titanium dioxide powder. Mixing ratio is LiCo after firing0.998Ti0.002O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  About the powder after baking (positive electrode active material powder), an X-ray diffraction spectrum was obtained using a RINT 2100 type X-ray diffractometer manufactured by Rigaku Corporation. In this powder X-ray diffraction using CuKα ray, a hexagonal diffraction peak was obtained. Further, the half value width of the diffraction peak of (110) plane around 2θ = 66.5 ± 1 ° was 0.121 °.
  This positive electrode active material powder was 0.3 t / cm.2And the filling press density was determined from the volume and weight of 3.20 g / cm.3Met.
[0029]
  LiCo thus obtained0.998Ti0.002O2Powder, acetylene black, and polytetrafluoroethylene powder were mixed at a weight ratio of 80/16/4, kneaded while adding toluene, and dried to prepare a positive electrode plate having a thickness of 150 μm.
  Then, 20 μm thick aluminum foil is used as the positive electrode current collector, 25 μm thick porous polypropylene is used as the separator, 500 μm thick metal lithium foil is used as the negative electrode, and nickel foil 20 μm is used as the negative electrode current collector. 1M LiPF is used as the electrolyte.6Two stainless steel simple sealed cell batteries were assembled in an argon glove box using / EC + DEC (1: 1).
[0030]
  For these two batteries, first, the battery was charged at a load current of 75 mA per 1 g of the positive electrode active material at 25 ° C. to 4.3 V, and discharged to 2.5 V at a load current of 75 mA per 1 g of the positive electrode active material. The capacity was determined. About one battery, the charge / discharge cycle test was further performed 40 times. The other battery was charged at 25 ° C., cooled to −10 ° C., discharged to 2.5 V at a load current of 75 mA per 1 g of the positive electrode active material, and the initial discharge capacity at −10 ° C. was obtained. The capacity expression rate at −10 ° C. when the initial electric capacity at 25 ° C. was taken as 100% was determined.
  The initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 149 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 95.3%. Moreover, the capacity | capacitance expression rate in -10 degreeC was 70%.
[0031]
[Example 2]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder, an average particle size of 0.15 μm and a specific surface area of 5.3 m2/ G niobium oxide Nb2O5The powder was mixed. Mixing ratio is LiCo after firing0.998Nb0.002O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.115 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.23 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.998Nb0.002O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 148 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 95. 0.0%. Moreover, the capacity | capacitance expression rate in -10 degreeC was 73%.
[0032]
[Example 3]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder, an average particle size of 0.23 μm and a specific surface area of 9.8 m2/ G tantalum oxide Ta2O5The powder was mixed. Mixing ratio is LiCo after firing0.998Ta0.002O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.115 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.19 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.998Ta0.002O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 148 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 96. It was 1%. Moreover, the capacity | capacitance expression rate in -10 degreeC was 75%.
[0033]
[Example 4]
  Average particle size 8μm and specific surface area 40m2/ G cobalt oxyhydroxide powder, average particle size 22 μm and specific surface area 0.64 m2/ G lithium carbonate powder, an average particle size of 0.17 μm and a specific surface area of 35 m2/ G of anatase-type titanium dioxide powder. Mixing ratio is LiCo after firing0.994Ti0.006O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were calcined at 890 ° C. for 15 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 19% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.127 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.11 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.994Ti0.006O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 149 mAh / g, and the capacity retention ratio after 40 charge / discharge cycles was 95. 0.7%. The capacity expression rate at −10 ° C. was 72%.
[0034]
[Example 5]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder, an average particle size of 8.1 μm and a specific surface area of 15 m2/ G zirconium oxide (ZrO2) The powder was mixed. Mixing ratio is LiCo after firing0.998Zr0.002O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  When the fired powder (positive electrode active material powder) was measured in the same manner as in Example 1, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.117 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.19 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.998Zr0.002O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 148 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 95. 8%. The capacity expression rate at −10 ° C. was 68%.
[0035]
[Example 6]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder, an average particle size of 0.4 μm and a specific surface area of 7.2 m2/ G hafnium oxide (HfO2) The powder was mixed. Mixing ratio is LiCo after firing0.998Hf0.002O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  When the fired powder (positive electrode active material powder) was measured in the same manner as in Example 1, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.119 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.18 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.998Hf0.002O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V at 25 ° C. was 149 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 96. 0.0%. Moreover, the capacity | capacitance expression rate in -10 degreeC was 70%.
[0036]
[Example 7]
  Average particle size 8μm and specific surface area 40m2/ G cobalt oxyhydroxide powder, average particle size 22 μm and specific surface area 0.64 m2/ G lithium carbonate powder, an average particle size of 8.1 μm and a specific surface area of 16 m2/ G of zirconium oxide powder was mixed. Mixing ratio is LiCo after firing0.994Zr0.006O2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were calcined at 890 ° C. for 15 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 19% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.128 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.10 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.994Zr0.006O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 148 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 95. 7%. The capacity expression rate at −10 ° C. was 72%.
[0037]
[Example 8]
  Average particle size 10μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder was mixed. Mixing ratio is LiCoO after firing2It mix | blended so that it might become. After these three kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.098 °.
When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.10 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  The two batteries were measured in the same manner as in Example 1. As a result, the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 149 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 94. It was 8%. Moreover, the capacity | capacitance expression rate in -10 degreeC was 54%.
[0038]
[Example 9]
  Average particle size 15μm and specific surface area 60m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder was mixed. Mixing ratio is LiCoO after firing2It mix | blended so that it might become. After these two kinds of powders were dry-mixed, they were calcined at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.091 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.18 g / cm.3Met.
  LiCo from Example 10.998Ti0.002O2LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  One of the batteries was charged at a load current of 75 mA per gram of positive electrode active material at 25 ° C. to 4.3 V, and discharged to 2.5 V at a load current of 75 mA per gram of positive electrode active material. The discharge capacity was determined. Furthermore, about this battery, the charge / discharge cycle test was performed 30 times continuously. As a result, the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 149 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.3%.
[0039]
  The other battery has a positive electrode area of 1 cm.2Is charged at a constant current of 0.2 mA up to 4.3 V, disassembled in an argon glove box, and the charged positive electrode sheet is taken out. After washing the positive electrode sheet, it is punched into a diameter of 3 mm and sealed in an aluminum capsule together with EC. The temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 165 ° C.
[0040]
[Example 10]
  Average particle size 8μm and specific surface area 50m2/ G cobalt oxyhydroxide powder, average particle size 15μm and specific surface area 1.2m2/ G lithium carbonate powder was mixed. Mixing ratio is LiCoO after firing2It mix | blended so that it might become. After these two kinds of powders were dry-mixed, they were baked at 910 ° C. for 12 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 28% by volume.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.095 °.
When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 3.01 g / cm.3Met.
[0041]
  LiCo from Example 10.998Ti0.002O2LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  For one of them, the initial electric capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 9, and the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 148 mAh / g, 30 times. The capacity retention rate after the charge / discharge cycle was 97.0%.
  Moreover, when the reactivity with the electrolyte solution of the charged positive electrode active material was calculated | required about the other battery like Example 9, the heat_generation | fever start temperature was 169 degreeC.
[0042]
[Example 11]
  Average particle size 12μm and specific surface area 66m2/ G cobalt oxyhydroxide powder, average particle size 28 μm and specific surface area 0.43 m2/ G lithium carbonate powder was mixed. Mixing ratio is LiCoO after firing2It mix | blended so that it might become. After these two kinds of powders were dry-mixed, they were baked at 890 ° C. for 18 hours in an atmosphere in which oxygen gas was added to air to make the oxygen concentration 19% by volume.
  When the fired powder (positive electrode active material powder) was measured in the same manner as in Example 1, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.083 °.
  The filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, and was found to be 3.12 g / cm.3Met.
[0043]
  LiCo from Example 10.998Ti0.002O2LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
For one of them, the initial electric capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 9, and the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 148 mAh / g, 30 times. The capacity retention rate after the charge / discharge cycle was 95.3%.
  Moreover, when the reactivity with the electrolyte solution of the charged positive electrode active material was calculated | required about the other battery like Example 9, the heat_generation | fever start temperature was 173 degreeC.
[0044]
[Example 12]
  Instead of cobalt oxyhydroxide, average particle size 8μm, specific surface area 0.66m2/ G cobalt oxide (Co3O4) LiCoO as in Example 9 except that powder was used2Was synthesized.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 9. As a result, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.133 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 2.75 g / cm.3Met.
[0045]
  LiCoO of Example 92LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  For one of them, the initial electric capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 9, and the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 148 mAh / g, 30 times. The capacity retention rate after the charge / discharge cycle was 96.4%.
  Moreover, when the reactivity with the electrolyte solution of the charged positive electrode active material was calculated | required about the other battery like Example 9, the heat_generation | fever start temperature was 155 degreeC.
[0046]
[Example 13]
  Average particle size 15μm and specific surface area 60m2/ G instead of cobalt oxyhydroxide powder, average particle size 30μm, specific surface area 7m2LiCoO in the same manner as in Example 9 except that the cobalt oxyhydroxide powder of / g was used.2Was synthesized.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.118 °.
  The filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, and was found to be 3.15 g / cm.3Met.
  LiCoO of Example 92LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  For one of them, the initial electric capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 9, and the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 137 mAh / g, 30 times. The capacity retention rate after the charge / discharge cycle was 92.3%.
  Moreover, when the reactivity with the electrolyte solution of the charged positive electrode active material was calculated | required about the other battery like Example 9, the heat_generation | fever start temperature was 158 degreeC.
[0047]
[Example 14]
  In the same manner as in Example 9 except that the firing at 910 ° C. for 12 hours in Example 9 was changed to the firing at 780 ° C. for 12 hours, LiCoO2Was synthesized.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.138 °.
  When the filling press density of this positive electrode active material powder was determined in the same manner as in Example 1, it was 2.98 g / cm.3Met.
[0048]
  LiCoO of Example 92LiCoO above instead of powder2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  For one of them, the initial electric capacity of the battery and the capacity after 30 cycles were determined in the same manner as in Example 9, and the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 147 mAh / g, 30 times. The capacity retention rate after the charge / discharge cycle was 96.5%.
  Moreover, when the reactivity with the electrolyte solution of the charged positive electrode active material was calculated | required about the other battery like Example 9, the heat_generation | fever start temperature was 156 degreeC.
[0049]
[Example 15]
  LiCo after sintering the mixing ratio of cobalt oxyhydroxide powder, lithium carbonate powder and anatase titanium dioxide powder0.95Ti0.05O2LiCo was prepared in the same manner as in Example 1 except that it was blended so that0.95Ti0.05O2Was synthesized.
  The powder after baking (positive electrode active material powder) was measured in the same manner as in Example 1. As a result, the half value width of the diffraction peak on the (110) plane near 2θ = 66.5 ± 1 ° was 0.188 °.
  LiCo from Example 10.998Ti0.002O2LiCo above instead of powder0.95Ti0.05O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
  When these two batteries were measured in the same manner as in Example 1, the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 141 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 93. It was 6%. The capacity expression rate at −10 ° C. was 68%.
[0050]
[Example 16]
  LiCo after sintering the mixing ratio of cobalt oxyhydroxide powder, lithium carbonate powder and zirconium oxide0.95Zr0.05O2LiCo was prepared in the same manner as in Example 5 except that0.95Zr0.05O2Was synthesized.
  When the fired powder (positive electrode active material powder) was measured in the same manner as in Example 5, the half value width of the diffraction peak of the (110) plane near 2θ = 66.5 ± 1 ° was 0.183 °.
  LiCo from Example 50.998Zr0.002O2LiCo above instead of powder0.95Zr0.05O2Two stainless steel simple sealed cell batteries were assembled in the same manner as in Example 1 except that powder was used.
[0051]
  When these two batteries were measured in the same manner as in Example 5, the initial discharge capacity at 25 ° C. and 2.5 to 4.3 V was 140 mAh / g, and the capacity retention rate after 40 charge / discharge cycles was 93. It was 8%. The capacity expression rate at −10 ° C. was 68%.
【The invention's effect】
[0052]
  According to the present invention, a hexagon having a large electric capacity, good discharge characteristics at low temperatures, excellent charge / discharge cycle durability, and high safety as a positive electrode active material for a lithium secondary battery. A crystalline lithium cobalt composite oxide and an efficient and advantageous method for producing such a lithium cobalt composite oxide are provided.
[0053]
  Also, a positive electrode for a lithium secondary battery using a hexagonal lithium cobalt composite oxide as an active material, and electric capacity, discharge characteristics, charge / discharge cycle durability, capacity density, safety and low temperature operability using such a positive electrode A lithium secondary battery excellent in terms of the characteristics is provided.

Claims (10)

式LiCo1−Xで表され、同式中でxは0.0005≦x≦0.02で、MはTa、Ti、Nb、ZrおよびHfの群より選んだ少なくとも一種であり、かつCuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が0.1000.165°であるリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法であって、平均粒径1〜20μmかつ比表面積が2〜200m /gのオキシ水酸化コバルト粉末と、平均粒径1〜50μmかつ比表面積が0.1〜10m /gの炭酸リチウム粉末と、平均粒径10μm以下かつ比表面積が1〜100m /gの金属元素Mの酸化物粉末とを乾式混合し、該混合物を850〜1000℃で酸素含有雰囲気で焼成することを特徴とするリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。 Represented by the formula LiCo 1-X M X O 2 , where x is 0.0005 ≦ x ≦ 0.02 and M is at least one selected from the group of Ta, Ti, Nb, Zr and Hf. and it is measured by X-ray diffraction as a radiation source a CuKα 2θ = 66.5 ± 1 ° of the (110) plane diffraction peak half width 0.100 ~ 0.165 ° der ruri lithium secondary battery A method for producing a hexagonal lithium-cobalt composite oxide, wherein the cobalt oxyhydroxide powder has an average particle diameter of 1 to 20 μm and a specific surface area of 2 to 200 m 2 / g, an average particle diameter of 1 to 50 μm and a specific surface area of 0. .1-10 m 2 / g lithium carbonate powder and metal element M oxide powder having an average particle size of 10 μm or less and a specific surface area of 1-100 m 2 / g are dry-mixed, and the mixture is mixed at 850 to 1000 ° C. Firing in an oxygen-containing atmosphere A method for producing a hexagonal lithium-cobalt composite oxide for a lithium secondary battery. 上記六方晶系リチウムコバルト複合酸化物の充填プレス密度が2.90〜3.35g/cmである請求項1に記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to claim 1, wherein a filling press density of the hexagonal lithium cobalt composite oxide is 2.90 to 3.35 g / cm 3 . 前記混合物を4〜30時間焼成する請求項1又は2に記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to claim 1 or 2, wherein the mixture is fired for 4 to 30 hours. 前記混合物を870〜960℃で焼成する請求項1〜3のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of claims 1 to 3, wherein the mixture is fired at 870 to 960 ° C. 前記xが0.002≦x≦0.007である請求項1〜4のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。Said x is 0.002 <= x <= 0.007, The manufacturing method of the hexagonal system lithium cobalt complex oxide for lithium secondary batteries in any one of Claims 1-4. 金属元素Mの酸化物の比表面積が2〜20mThe specific surface area of the metal element M oxide is 2 to 20 m. 2 /gである請求項1〜5のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of claims 1 to 5. 金属元素Mの酸化物がTiOMetal element M oxide is TiO 2 、Nb, Nb 2 O 5 、Ta, Ta 2 O 5 、ZrO, ZrO 2 又はHfOOr HfO 2 である請求項1〜6のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of claims 1 to 6. オキシ水酸化コバルト粉末の平均粒径が4〜15μmである請求項1〜7のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of claims 1 to 7, wherein the average particle diameter of the cobalt oxyhydroxide powder is 4 to 15 µm. 炭酸リチウム粉末の平均粒径が5〜30μmである請求項1〜8のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The average particle diameter of lithium carbonate powder is 5-30 micrometers, The manufacturing method of the hexagonal system lithium cobalt complex oxide for lithium secondary batteries in any one of Claims 1-8. 酸素含有雰囲気における酸素濃度が10〜100体積%である請求項1〜9のいずれかに記載のリチウム二次電池用六方晶系リチウムコバルト複合酸化物の製造方法。The method for producing a hexagonal lithium cobalt composite oxide for a lithium secondary battery according to any one of claims 1 to 9, wherein the oxygen concentration in the oxygen-containing atmosphere is 10 to 100% by volume.
JP2001530057A 1999-10-08 2000-10-05 Method for producing lithium cobalt composite oxide Expired - Fee Related JP4470053B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28778199 1999-10-08
JP28778599 1999-10-08
JP2000028860 2000-02-07
PCT/JP2000/006959 WO2001027032A1 (en) 1999-10-08 2000-10-05 Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same

Publications (1)

Publication Number Publication Date
JP4470053B2 true JP4470053B2 (en) 2010-06-02

Family

ID=27337381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001530057A Expired - Fee Related JP4470053B2 (en) 1999-10-08 2000-10-05 Method for producing lithium cobalt composite oxide

Country Status (4)

Country Link
US (2) US7306779B2 (en)
JP (1) JP4470053B2 (en)
AU (1) AU7557200A (en)
WO (1) WO2001027032A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7557200A (en) 1999-10-08 2001-04-23 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4020565B2 (en) 2000-03-31 2007-12-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US6737035B1 (en) * 2000-08-31 2004-05-18 Osram Sylvania Inc. Heterogenite material for making submicron cobalt powders
JP5150025B2 (en) * 2001-06-01 2013-02-20 日本化学工業株式会社 Method for producing lithium cobalt composite oxide
JP4773636B2 (en) * 2001-06-20 2011-09-14 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP4777543B2 (en) * 2001-06-20 2011-09-21 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP4190188B2 (en) * 2002-01-24 2008-12-03 三洋電機株式会社 Lithium secondary battery
JP4353808B2 (en) * 2002-02-15 2009-10-28 Agcセイミケミカル株式会社 Particulate cathode active material for lithium secondary battery
JP4209646B2 (en) * 2002-09-03 2009-01-14 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
KR100895225B1 (en) * 2002-09-26 2009-05-04 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active substance for lithium secondary battery and process for producing the same
KR101076590B1 (en) * 2004-03-29 2011-10-24 니폰 가가쿠 고교 가부시키가이샤 Lithium Cobalt Composite Oxide, Method for Preparing the Same and Nonaqueous Electrolyte Secondary Battery
CN101320804A (en) * 2004-04-30 2008-12-10 清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
WO2007015473A1 (en) 2005-08-01 2007-02-08 Santoku Corporation Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN101489936A (en) * 2006-12-28 2009-07-22 Agc清美化学股份有限公司 Lithium-containing composite oxide and method for production thereof
US20090017384A1 (en) * 2007-07-11 2009-01-15 Toda Kogyo Corporation Process for producing composite cathode active material for non-aqueous electrolyte secondary cell
JP5206948B2 (en) * 2008-03-28 2013-06-12 戸田工業株式会社 Cobalt oxyhydroxide particle powder and method for producing the same
KR101562686B1 (en) * 2008-03-28 2015-10-22 도다 고교 가부시끼가이샤 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5321802B2 (en) * 2008-11-13 2013-10-23 戸田工業株式会社 Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery
KR101117623B1 (en) * 2009-06-05 2012-02-29 에스비리모티브 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode
WO2014104234A1 (en) * 2012-12-28 2014-07-03 Agcセイミケミカル株式会社 Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
CN103296265A (en) * 2013-06-06 2013-09-11 南通瑞翔新材料有限公司 Lithium-containing composite oxide for positive electrode of lithium-ion secondary battery and manufacturing method of composite oxide
WO2024029267A1 (en) * 2022-08-04 2024-02-08 住友金属鉱山株式会社 Lithium carbonate powder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732017B2 (en) 1989-10-06 1995-04-10 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH0567467A (en) * 1991-09-09 1993-03-19 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JP3427570B2 (en) 1994-10-26 2003-07-22 ソニー株式会社 Non-aqueous electrolyte secondary battery
US5702843A (en) 1995-05-24 1997-12-30 Sharp Kabushiki Kaisha Nonaqueous secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH10310430A (en) * 1997-03-10 1998-11-24 Toda Kogyo Corp Production of lithium cobalt oxide
JP4060904B2 (en) * 1997-03-31 2008-03-12 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP4224143B2 (en) * 1997-07-30 2009-02-12 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2000200605A (en) 1998-10-30 2000-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacture
JP3806262B2 (en) * 1999-03-18 2006-08-09 セイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery
AU7557200A (en) 1999-10-08 2001-04-23 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
DE60143070D1 (en) * 2000-10-03 2010-10-28 Central Glass Co Ltd Electrolyte for electrochemical device
US20020081495A1 (en) 2000-11-08 2002-06-27 Hiroshi Nakajima Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US7306779B2 (en) 2007-12-11
AU7557200A (en) 2001-04-23
US20070111097A1 (en) 2007-05-17
US20040137325A1 (en) 2004-07-15
WO2001027032A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
JP4470053B2 (en) Method for producing lithium cobalt composite oxide
JP5044467B2 (en) Lithium transition metal composite oxide
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4666653B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
US7981547B2 (en) Process for positive electrode active substance for lithium secondary battery
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4854982B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP4833058B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
KR100601064B1 (en) Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP4268613B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4927369B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4773636B2 (en) Method for producing lithium cobalt composite oxide
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees