JP3806262B2 - Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery - Google Patents

Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery Download PDF

Info

Publication number
JP3806262B2
JP3806262B2 JP07448299A JP7448299A JP3806262B2 JP 3806262 B2 JP3806262 B2 JP 3806262B2 JP 07448299 A JP07448299 A JP 07448299A JP 7448299 A JP7448299 A JP 7448299A JP 3806262 B2 JP3806262 B2 JP 3806262B2
Authority
JP
Japan
Prior art keywords
lithium
cobalt
compound
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07448299A
Other languages
Japanese (ja)
Other versions
JP2000268821A5 (en
JP2000268821A (en
Inventor
純一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP07448299A priority Critical patent/JP3806262B2/en
Publication of JP2000268821A publication Critical patent/JP2000268821A/en
Publication of JP2000268821A5 publication Critical patent/JP2000268821A5/ja
Application granted granted Critical
Publication of JP3806262B2 publication Critical patent/JP3806262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法に関し、より詳細にはコバルト化合物とリチウム化合物との混合条件を特定することにより結晶性を改善したリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法に関する。
【0002】
【従来の技術】
従来より、リチウム2次電池正極活物質としてコバルト酸リチウム(LiCoO)が利用されている。また、最近はコバルト酸リチウムに第3成分を加えたリチウム含有複合酸化物をリチウム2次電池正極活物質として利用する検討も進められている。
【0003】
このコバルト酸リチウムは、コバルト塩とリチウム塩とを混合して焼成することにより合成される。また、第3成分を加えたリチウム含有複合酸化物は、第3成分の元素を含む塩とコバルト塩とを共沈させること等により得られるコバルトを他の元素に一部置換したコバルト含有塩を用いて同様に合成されている。
【0004】
上述したコバルト酸リチウムを合成する際には、通常上述したコバルト含有塩とリチウム塩とを粉体とし、これらの粉体をボールミル、ドラムミキサー、ナウターミキサー等の混合手段によって混合させ、その後に焼成させる方法が用いられている。しかしながら、従来では上述のようにコバルト含有塩とリチウム塩とを混合する際、原料のリチウム塩の粒径が大きいと混合粉体中に局所的にリチウム塩とコバルト含有塩とが不均一に分布した部分が生じ、均一混合ができないといった不都合が生じていた。このような不均一に分布した部分が存在すると、合成反応が不充分となり、焼成後のリチウム含有複合酸化物中に酸化コバルト等のコバルトリッチ相やリチウムリッチ相が形成されるという不都合があった。
【0005】
このための対策として特開平7−262994号公報において、昇温速度、酸素濃度を細かく限定した製造方法が開示されている。この方法は、遊離の酸化コバルトを低濃度に抑えることが可能であるものの、焼成時に高い酸素濃度を必要とするため、特定構造の焼成炉が必要であり、設備が高価なものになるという問題点がある。
【0006】
また、リチウム化合物とコバルト含有塩とが不均一に分布した部分を形成させないようにするための対策として、粒径の小さいリチウム塩微粉を使用することが提案されている。しかしながら、従来では微細なリチウム塩微粉を使用するとかえって混合中にリチウム塩が凝集してしまい、この結果リチウム塩とコバルト含有塩とが不均一に分布した部分を形成するという上述した問題は解決できなかった。このようなリチウム含有複合酸化物中の結晶相の均一性の低下は、リチウム含有複合酸化物をリチウム2次電池正極活物質として使用した場合に電池容量を低下させるため大きな問題とされている。
【0007】
【発明が解決しようとする課題】
本発明は上記課題を解決し、リチウム2次電池正極活物質として有用な、結晶相の均一性の高いリチウム含有複合酸化物の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の上記目的は、本発明のリチウム含有複合酸化物の製造方法を提供することによって解決される。すなわち、本発明においては、コバルト化合物とリチウム化合物とを含む混合物を、焼成することによって合成される下記式(1)で表されるリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法において、上記コバルト化合物と上記リチウム化合物との混合時の上記リチウム化合物の含水量が0.15〜5重量%であることを特徴とするリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法が提供される(式(1)中、xは、0.9〜1.1の実数であり、yは、0〜0.9の実数であり、Mは、Ni、Mn、Fe、V、Cr、Al、Mg、Ti、Y、Ce、Nb、Zr、Si及びCaからなる群から選ばれる1種以上の元素を示す。)。
【0009】
【化2】
【0010】
また、本発明の製造方法においては、コバルト化合物は、酸化コバルト(Co、Co又はこれらの混合物)、水酸化コバルト(Co(OH) )、オキシ水酸化コバルト(CoOOH)、及び炭酸コバルト(CoCO)を含有する化合物からなる群から選ばれる1種以上であることが好ましく、リチウム化合物は、炭酸リチウム及び水酸化リチウムからなる群から選ばれることが好ましい。
【0011】
さらに、本発明の製造方法においては、上記リチウム化合物は、重量平均粒径が1〜10μmとされていることが好ましい。
また、本発明の製造方法においては、上記混合物を大気中で850〜1000℃にて焼成することが好ましい。
【0012】
さらに、本発明の製造方法においては、焼成時間を10〜50時間とすることが好ましい。
【0013】
また、上記混合物は、300℃〜800℃にて焼成された後、さらに粉砕混合され、850℃〜1000℃にて焼成すると均一性が向上するので好ましい。
【0014】
【発明の実施の形態】
本発明のリチウム2次電池正極活物質用リチウム複合酸化物の製造方法は、コバルト化合物とリチウム化合物とを上記リチウム化合物の含水量を0.15〜5重量%として混合し、焼成することによって上記式(1)で表されるリチウム複合酸化物を製造することを特徴とする。
【0015】
本発明のリチウム含有複合酸化物は、リチウム、コバルト以外の第3成分(M)を含んでも含んでいなくとも良く、上記式(1)におけるyは0〜0.9の範囲とされることが好ましい。yが0でない場合に添加される第3成分としてのMは、Ni、Mn、Fe、V、Cr、Al、Mg、Ti、Y、Ce、Nb、Zr、Si及びCaからなる群から選ばれる1種以上の元素が好ましく、本発明では特にNi,Mnを用いることが好ましい。Mは、複数の成分からなっても良くその場合には、yは、当該複数のM成分の添加量の合計とする。
【0016】
第3成分MがNiからなるリチウム複合酸化物を正極活物質として用いたリチウム2次電池は、高い電池容量を達成できるために好ましい。また、第3成分MがMnからなるリチウム複合酸化物を正極活物質として用いたリチウム2次電池は、電池特性を維持しながら、Mn原料の価格が安価なため、リチウム複合酸化物のコストを下げることができるので好ましい。また、コバルト化合物は、2種類以上の化合物を混合して用いることも可能である。しかしながら、作業性の観点からはコバルト化合物は、単独の化合物として用いることが特に好ましい。
【0017】
本発明におけるコバルト化合物としては、Co、Co又はこれらの混合物からなる酸化コバルト、水酸化コバルト(Co(OH) )、オキシ水酸化コバルト(CoOOH)、炭酸コバルト(CoCO)を含有する化合物を挙げることができる。また、yが0でない場合には、第3成分としてのMは、酸化物、水酸化物、炭酸塩等として、焼成前のコバルト化合物とリチウム化合物とを含む混合物に添加することが好ましい。また、均一性を高めるためには、予めコバルト化合物と第3成分を含む化合物とを例えば共沈させてコバルトとMとの均一性の高い固溶体を作成してからリチウム化合物を混合することが好ましい。
【0018】
また、上述のリチウム化合物としては、炭酸リチウム又は水酸化リチウムが好ましい。また、リチウム化合物も2種類以上混合して用いることも可能である。しかしながら、作業性の観点からは上述したリチウム化合物は、単独の化合物として用いることが特に好ましい。
【0019】
本発明においては、上述したリチウム化合物は、できるだけ微細な微粉として添加することが、放電特性の向上を図る点で好ましい。この際のリチウム化合物微粉の重量平均粒径は、1〜10μmが好ましく、特に放電特性といった電池特性を良好にするためには2〜7μmとすることが好ましい。リチウム化合物微粉が10μmを超えると製造されるリチウム含有複合酸化物中に原料であるリチウム化合物の残存が多くなり結晶相の均一性が低下するため好ましくない。また、1μm未満では作業性が悪くなるので、好ましくない。本発明において、重量平均粒径とは、質量基準で粒度分布を求め、全質量を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径である(化学工学便覧「改訂5版」化学工業協会編、第220〜221頁)。
【0020】
従来このような重量平均粒径のリチウム化合物を用いても、リチウム化合物とコバルト化合物とを均一に混合できず、リチウム2次電池の放電特性を低下させてしまい、リチウム化合物微粉化の効果が充分に得られていなかった。本発明者は、鋭意検討した結果、用いるリチウム化合物微粉が、混合時に凝集体を形成してしまい、このリチウム化合物の凝集が、充分な均一結晶相を得ることができない原因の1つとなっていることを見出した。
【0021】
このようなリチウム化合物の混合時の凝集を抑制する手段は、種々考えられるが、本発明者等は鋭意検討の結果、リチウム化合物に対して水分を含有させることによってリチウム化合物の凝集が著しく改善されることを見出し、本発明に至ったものである。この際、リチウム化合物の含水量は、リチウム化合物中に0.15〜5重量%とされることが好ましい。リチウム化合物の含水量は、0.15重量%より少ないと塩の凝集を充分に抑えることができず、焼成後のリチウム含有複合酸化物に酸化コバルト等が残存してしまうので好ましくない。また、含水量が5重量%を超えると混合時の塩のべたつきが多くなり作業性が低下するため好ましくない。上述した含水量は、特に0.3〜1.0重量%とすることが好ましい。
【0022】
焼成は大気中又は酸素雰囲気中いずれでも行うことができる。しかしながら、作業性および設備の低コスト化から大気中において焼成を行うことが好ましい。この際、焼成温度は850〜1000℃で行うことが好ましく、焼成時間を10〜50時間とすることが好ましい。また、焼成の際には、焼成前に仮焼として300〜800℃で数時間焼成し、再混合した後、上述の条件で焼成する方法も結晶相の均一性を向上させる目的で用いることができる。
【0023】
本発明においてリチウム化合物混合時の含水量を0.15〜5重量%とすることによる作用機能は以下のように考えられる。
【0024】
平均粒径が10μm以下の小さい微粉状のリチウム化合物では、粒子が静電気を帯びていることにより小粒塊に凝集してしまい、原料混合粉体中に局所的にリチウム化合物とコバルト化合物とが不均一な部分が生じる。また静電気を帯びたリチウム化合物は、例えばボールミル、ドラムミキサー、ナウターミキサー等混合装置の内壁に付着してしまうことにより同様に小粒塊を形成してしまう。上述した二つの理由から、重量平均粒径が10μm以下のリチウム化合物とコバルト化合物と静電気を帯びた状態で均一に混合することが現実的には困難となる。
【0025】
本発明のようにリチウム化合物に少量の水分を含有させて混合することにより、この混合不具合の要因である粒子間に発生する静電気を抑制でき、静電気に起因する凝集したリチウム化合物小粒塊の発生や、混合装置の内壁にリチウム化合物が付着することにより生じる小粒塊の形成を防止し、焼成後の結晶性の低下と酸化コバルト等の残存を防止する効果を生ずるものと考えられる。さらに、重量平均粒径が10μm以下のリチウム化合物微粉を用いてコバルト化合物と反応させると、リチウム化合物微粉は、合成過程においてコバルト化合物と極めて高い反応性を示し、得られるリチウム含有複合酸化物結晶の均一性をより高くすることができる。この結果合成されたリチウム含有複合酸化物をリチウム2次電池正極活物質として用いれば、リチウム2次電池の放電容量といった電池性能をさらに向上させることができる。
【0026】
リチウム化合物に水分を含有させる方法は、該リチウム化合物の製造段階においてリチウム化合物中に水分を残留させる方法や、リチウム化合物に霧吹き等で水を添加する方法もあるが、必要量の水分をリチウム化合物の一部に添加して、撹拌ミル等の混合手段によって混合することのみでも水分は均一に添加することができ、充分な効果を得ることができる。含水量は、一般的な乾燥重量法(JISK0068.5.乾燥重量法参照)に従って測定することができる。
【0027】
本発明におけるリチウム含有複合酸化物をリチウム2次電池正極活物質としてリチウム2次電池に用いる方法を以下に例示する。
【0028】
リチウム含有複合酸化物を80〜90重量%、導電材としてアセチレンブラックを5〜16重量%、結着材としてポリテトラフルオロエチレン(以下PTFEという)を4〜15重量%を混合し、さらに有機溶媒を加えペースト状態として集電体(例えばアルミニウム、ニッケル、ステンレス鋼等の箔、網、多孔体)に塗布し、乾燥を行った後、0.5〜2.5t/cmの圧力でプレスを行って成形後、再び真空乾燥を行ない、正極板とする。
【0029】
この正極板に、金属リチウム等の負極、セパレータを積層させ、電解液中で密閉しリチウム2次電池とする。電解液の例としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチレンカーボネート等の単体又は混合体を挙げることができる。電解質の溶質の例としては、LiClO、LiBF、LiPF、CFSOLi等の無機リチウム塩及び有機リチウム塩を挙げることができる。
【0030】
【実施例】
以下に本発明の実施例を示す。例1〜例3は実施例、例4は比較例である。
リチウム2次電池正極活性物質用リチウム含有複合酸化物は、以下の方法により製造した。
【0031】
[例1]
酸化コバルト(Co、重量平均粒径6μm:例4まで粒径同じ)50重量部と、含水量が0.15重量%の炭酸リチウム(重量平均粒径4μm:例4まで粒径同じ)22重量部をボールミルで均一になるよう混合した。得られた混合物を昇温速度2℃/minで昇温し、大気下890℃、30時間焼成しLiCoOを得た。
[例2]
酸化コバルト50重量部と、含水量が0.25重量%の炭酸リチウム22重量部を用いて例1と同様の操作を行ないLiCoOを得た。
[例3]
酸化コバルト50重量部と、含水量が0.50重量%の炭酸リチウム22重量部を用いて例1と同様の操作を行ないLiCoOを得た。
[例4]
酸化コバルト50重量部と、無水炭酸リチウム22重量部を用いて例1と同様の操作を行ないLiCoOを得た。
【0032】
例1〜4で合成したLiCoOについて粉末X線回折(CuKα線)測定、残留酸化コバルト量分析及び電池評価を行った。上述の測定、分析及び電池評価は、以下のようにして行った。また、各例中の重量平均粒径は、日機装株式会社製マイクロトラックHRAX−100により測定した。
【0033】
[粉末X線回折(CuKα線)測定]
合成されたLiCoOを粉砕分級した粉末を粉末X線回折法(CuKα線)で測定し、残留Coに起因する2θ=36.5°近傍の回折線が視認されるかを確認した。この結果を、回折線が有り、微かに有り、無し、の三段階に評価した。X線回折装置としては、島津製作所社製X線回折装置XD―D1を用いた。
【0034】
[残留酸化コバルト量分析]
恒量精秤したグラスフィルタを用意し、この時のグラスフィルタの重量をw0(g)とした。合成されたLiCoO約1g(この時のLiCoOの重量をwA(g)とする)を精秤し、FeSO溶液に加え、常温で1時間撹拌した。その後、溶液を上述の恒量精秤したグラスフィルタで濾過し、そのグラスフィルタを120℃で1時間、乾燥、放冷し、この時のグラスフィルタの重量をw1(g)とした。残留酸化コバルト量(g)は、下記式(1)から求めた。
【0035】
【数1】
【0036】
[電池評価]
合成されたLiCoOを粉砕分級した粉末80重量部、アセチレンブラック16重量部及びPTFE4重量部を混合し、トルエンを加えペースト化した。そのペーストを真空乾燥し、2t/cmの圧力によりプレスして厚さ0.15mmとし、1.2cm角に切り抜いて正極板とした。この正極板を用い、コインセルに組み対極としてLiメタルを用いて充放電試験を行った。なお、電解液としてはエチレンカーボネートとジエチルカーボネートとの混合溶媒(容積比1:1)に1mol/LのLiPFを溶解した溶液を用いた。放電容量は、0.9mA/cmで4.3Vまで充電した後、2.5Vまで放電させる充放電を繰り返すことにより測定し、その1回目(1st)、10回目(10th)、20回目(20th)の放電容量を測定した。得られた結果を表1に示す。
【0037】
【表1】
【0038】
表1の結果から炭酸リチウム微粉に水分を添加して混合し、焼成することで残留する酸化コバルト量が抑制でき、結晶相をよりコバルト酸リチウムの均一相とすることができることがわかった。
また、例1〜例4について測定された電池特性を表2に示す。
【0039】
【表2】
【0040】
【発明の効果】
以上のように、本発明のコバルト化合物とリチウム化合物との混合時に、一定の含水量のリチウム化合物を使用するリチウム含有複合化合物の製造方法を提供することにより、結晶的に優れた均一層を有するリチウム含有複合酸化物を提供することができる。また、そのリチウム含有複合酸化物を正極活物質として用いることにより高性能のリチウム2次電池を提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lithium-containing composite oxide for a positive electrode active material for a lithium secondary battery, and more specifically, a lithium secondary battery positive electrode having improved crystallinity by specifying a mixing condition of a cobalt compound and a lithium compound. The present invention relates to a method for producing a lithium-containing composite oxide for an active material.
[0002]
[Prior art]
Conventionally, lithium cobalt oxide (LiCoO 2 ) has been used as a positive electrode active material for lithium secondary batteries. Recently, studies are also being conducted on the use of lithium-containing composite oxides obtained by adding a third component to lithium cobaltate as a positive electrode active material for lithium secondary batteries.
[0003]
This lithium cobaltate is synthesized by mixing and firing a cobalt salt and a lithium salt. In addition, the lithium-containing composite oxide to which the third component is added includes a cobalt-containing salt obtained by partially substituting cobalt obtained by coprecipitation of a salt containing the element of the third component and a cobalt salt with other elements. It is synthesized in the same way.
[0004]
When synthesizing the above-described lithium cobaltate, usually the above-mentioned cobalt-containing salt and lithium salt are used as powders, and these powders are mixed by a mixing means such as a ball mill, drum mixer, nauter mixer, etc. A method of firing is used. However, conventionally, when the cobalt-containing salt and the lithium salt are mixed as described above, if the particle size of the raw lithium salt is large, the lithium salt and the cobalt-containing salt are locally unevenly distributed in the mixed powder. As a result, there was a problem that uniform mixing was not possible. When such a non-uniformly distributed portion exists, the synthesis reaction becomes insufficient, and there is a disadvantage that a cobalt-rich phase such as cobalt oxide or a lithium-rich phase is formed in the lithium-containing composite oxide after firing. .
[0005]
As a countermeasure for this, Japanese Patent Application Laid-Open No. 7-262994 discloses a manufacturing method in which the rate of temperature rise and the oxygen concentration are finely limited. Although this method can suppress the free cobalt oxide to a low concentration, it requires a high oxygen concentration at the time of firing, so a firing furnace having a specific structure is necessary, and the equipment becomes expensive. There is a point.
[0006]
Further, it has been proposed to use a lithium salt fine powder having a small particle size as a countermeasure for preventing formation of a portion in which the lithium compound and the cobalt-containing salt are unevenly distributed. However, conventionally, when the fine lithium salt fine powder is used, the lithium salt is agglomerated during the mixing, and as a result, the above-mentioned problem that the lithium salt and the cobalt-containing salt are unevenly distributed can be solved. There wasn't. Such a decrease in the uniformity of the crystal phase in the lithium-containing composite oxide is a serious problem because the battery capacity is reduced when the lithium-containing composite oxide is used as a positive electrode active material for a lithium secondary battery.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a lithium-containing composite oxide having high crystal phase uniformity and useful as a positive electrode active material for a lithium secondary battery.
[0008]
[Means for Solving the Problems]
The above object of the present invention is solved by providing a method for producing the lithium-containing composite oxide of the present invention. That is, in this invention, the manufacturing method of the lithium containing complex oxide for lithium secondary battery positive electrode active materials represented by following formula (1) synthesize | combined by baking the mixture containing a cobalt compound and a lithium compound. The lithium-containing composite oxide for a positive electrode active material for a lithium secondary battery is characterized in that the water content of the lithium compound at the time of mixing the cobalt compound and the lithium compound is 0.15 to 5% by weight. A method is provided (wherein x is a real number from 0.9 to 1.1, y is a real number from 0 to 0.9, and M is Ni, Mn, Fe, V And one or more elements selected from the group consisting of Cr, Al, Mg, Ti, Y, Ce, Nb, Zr, Si, and Ca.
[0009]
[Chemical 2]
[0010]
In the production method of the present invention, the cobalt compound is cobalt oxide (Co 3 O 4 , Co 2 O 3 or a mixture thereof), cobalt hydroxide (Co (OH) 2 ), cobalt oxyhydroxide (CoOOH). And one or more selected from the group consisting of compounds containing cobalt carbonate (CoCO 3 ), and the lithium compound is preferably selected from the group consisting of lithium carbonate and lithium hydroxide.
[0011]
Furthermore, in the manufacturing method of this invention, it is preferable that the said lithium compound is 1-10 micrometers in weight average particle diameter.
Moreover, in the manufacturing method of this invention, it is preferable to bake the said mixture at 850-1000 degreeC in air | atmosphere.
[0012]
Furthermore, in the manufacturing method of this invention, it is preferable to make baking time into 10 to 50 hours.
[0013]
Moreover, the above mixture is preferably pulverized and mixed after being fired at 300 ° C. to 800 ° C., and is preferably fired at 850 ° C. to 1000 ° C., since the uniformity is improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a lithium composite oxide for a positive electrode active material of a lithium secondary battery according to the present invention comprises mixing a cobalt compound and a lithium compound at a water content of 0.15 to 5% by weight and firing the mixture. A lithium composite oxide represented by the formula (1) is produced.
[0015]
The lithium-containing composite oxide of the present invention may or may not contain the third component (M) other than lithium and cobalt, and y in the above formula (1) is in the range of 0 to 0.9. Is preferred. M as the third component added when y is not 0 is selected from the group consisting of Ni, Mn, Fe, V, Cr, Al, Mg, Ti, Y, Ce, Nb, Zr, Si, and Ca. One or more elements are preferred, and Ni and Mn are particularly preferably used in the present invention. M may consist of a plurality of components, in which case y is the sum of the added amounts of the plurality of M components.
[0016]
A lithium secondary battery using a lithium composite oxide in which the third component M is made of Ni as a positive electrode active material is preferable because a high battery capacity can be achieved. In addition, a lithium secondary battery using a lithium composite oxide whose third component M is Mn as a positive electrode active material maintains the battery characteristics, and the cost of the lithium composite oxide is low because the price of the Mn raw material is low. It is preferable because it can be lowered. Moreover, a cobalt compound can also be used in mixture of 2 or more types of compounds. However, the cobalt compound is particularly preferably used as a single compound from the viewpoint of workability.
[0017]
Examples of the cobalt compound in the present invention include cobalt oxide, cobalt hydroxide (Co (OH) 2 ), cobalt oxyhydroxide (CoOOH), and cobalt carbonate (CoCO 3 ) made of Co 3 O 4 , Co 2 O 3 or a mixture thereof. ) -Containing compounds. When y is not 0, M as the third component is preferably added to the mixture containing the cobalt compound and the lithium compound before firing as an oxide, hydroxide, carbonate, or the like. In order to improve the uniformity, it is preferable to pre-coprecipitate, for example, a cobalt compound and a compound containing the third component to prepare a solid solution with high uniformity of cobalt and M, and then mix the lithium compound. .
[0018]
Moreover, as said lithium compound, lithium carbonate or lithium hydroxide is preferable. Also, two or more lithium compounds can be mixed and used. However, from the viewpoint of workability, the above-described lithium compound is particularly preferably used as a single compound.
[0019]
In the present invention, it is preferable to add the above-described lithium compound as fine powder as fine as possible in terms of improving discharge characteristics. In this case, the weight average particle size of the lithium compound fine powder is preferably 1 to 10 μm, and particularly preferably 2 to 7 μm in order to improve battery characteristics such as discharge characteristics. When the lithium compound fine powder exceeds 10 μm, it is not preferable because the lithium compound as a raw material remains in the lithium-containing composite oxide produced and the uniformity of the crystal phase is lowered. On the other hand, if the thickness is less than 1 μm, workability deteriorates, which is not preferable. In the present invention, the weight average particle size is the particle size at which the cumulative curve is 50% when the particle size distribution is determined on a mass basis and the cumulative curve is determined with the total mass being 100% (Chemical Engineering Handbook). “Revised 5th edition” edited by Chemical Industry Association, pages 220-221).
[0020]
Conventionally, even when a lithium compound having such a weight average particle diameter is used, the lithium compound and the cobalt compound cannot be mixed uniformly, and the discharge characteristics of the lithium secondary battery are deteriorated. It was not obtained. As a result of diligent study, the present inventors have formed an aggregate when the lithium compound fine powder used is mixed, and this aggregation of the lithium compound is one of the reasons that a sufficient uniform crystal phase cannot be obtained. I found out.
[0021]
Various means for suppressing such aggregation during mixing of the lithium compound are conceivable. However, as a result of intensive studies, the present inventors have remarkably improved the aggregation of the lithium compound by adding moisture to the lithium compound. The inventors have found that the present invention has been achieved. At this time, the water content of the lithium compound is preferably 0.15 to 5% by weight in the lithium compound. When the water content of the lithium compound is less than 0.15% by weight, salt aggregation cannot be sufficiently suppressed, and cobalt oxide or the like remains in the lithium-containing composite oxide after firing, which is not preferable. On the other hand, if the water content exceeds 5% by weight, the stickiness of the salt at the time of mixing increases, and the workability decreases, which is not preferable. The water content described above is particularly preferably 0.3 to 1.0% by weight.
[0022]
Firing can be performed in the air or in an oxygen atmosphere. However, firing is preferably performed in the air from the viewpoint of workability and cost reduction of equipment. In this case, the firing temperature is preferably 850 to 1000 ° C., and the firing time is preferably 10 to 50 hours. In the firing, a method of calcining at 300 to 800 ° C. for several hours as a calcination before firing, remixing, and firing under the above-mentioned conditions is also used for the purpose of improving the uniformity of the crystal phase. it can.
[0023]
In the present invention, the function and function by setting the water content at the time of mixing the lithium compound to 0.15 to 5% by weight is considered as follows.
[0024]
In the case of small pulverized lithium compounds having an average particle size of 10 μm or less, the particles are agglomerated due to static electricity, and the lithium compound and cobalt compound are locally uneven in the raw material mixed powder. A new part arises. Further, the electrostatically charged lithium compound adheres to the inner wall of a mixing device such as a ball mill, a drum mixer, and a nauter mixer, for example, and similarly forms a small particle lump. For the two reasons described above, it is practically difficult to uniformly mix the lithium compound having a weight average particle diameter of 10 μm or less and the cobalt compound in a static state.
[0025]
By mixing a lithium compound with a small amount of water as in the present invention, static electricity generated between particles that is a cause of this mixing failure can be suppressed, and generation of aggregated lithium compound small agglomerates caused by static electricity or It is considered that the formation of small agglomerates caused by the lithium compound adhering to the inner wall of the mixing apparatus is prevented, and the effect of preventing the decrease in crystallinity after firing and the remaining of cobalt oxide or the like is produced. Furthermore, when a lithium compound fine powder having a weight average particle size of 10 μm or less is reacted with a cobalt compound, the lithium compound fine powder exhibits extremely high reactivity with the cobalt compound in the synthesis process, and the resulting lithium-containing composite oxide crystal The uniformity can be further increased. If the lithium-containing composite oxide synthesized as a result is used as a positive electrode active material for a lithium secondary battery, battery performance such as a discharge capacity of the lithium secondary battery can be further improved.
[0026]
There are two methods for adding water to the lithium compound: a method in which water remains in the lithium compound in the production stage of the lithium compound, and a method in which water is added to the lithium compound by spraying or the like. Even if it is added to a part of the mixture and mixed only by mixing means such as a stirring mill, moisture can be uniformly added, and a sufficient effect can be obtained. The water content can be measured according to a general dry weight method (see JIS K0068.5. Dry weight method).
[0027]
A method of using the lithium-containing composite oxide in the present invention as a lithium secondary battery positive electrode active material for a lithium secondary battery is exemplified below.
[0028]
80 to 90% by weight of a lithium-containing composite oxide, 5 to 16% by weight of acetylene black as a conductive material, 4 to 15% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder, and an organic solvent Is applied to a current collector (eg, foil, net, porous body of aluminum, nickel, stainless steel, etc.) as a paste state, dried, and then pressed at a pressure of 0.5 to 2.5 t / cm 2 After the forming, vacuum drying is performed again to obtain a positive electrode plate.
[0029]
On this positive electrode plate, a negative electrode such as metallic lithium and a separator are laminated, and sealed in an electrolytic solution to obtain a lithium secondary battery. Examples of the electrolytic solution include simple substances or mixtures of propylene carbonate, ethylene carbonate, dimethyl carbonate, diethylene carbonate, and the like. Examples of the electrolyte solute include inorganic lithium salts and organic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , and CF 3 SO 3 Li.
[0030]
【Example】
Examples of the present invention are shown below. Examples 1 to 3 are examples, and example 4 is a comparative example.
The lithium-containing composite oxide for a lithium secondary battery positive electrode active material was produced by the following method.
[0031]
[Example 1]
50 parts by weight of cobalt oxide (Co 3 O 4 , weight average particle size 6 μm: the same particle size up to Example 4) and lithium carbonate having a water content of 0.15 wt% (weight average particle size 4 μm: the same particle size up to Example 4) ) 22 parts by weight were mixed with a ball mill so as to be uniform. The obtained mixture was heated at a rate of temperature increase of 2 ° C./min and calcined in the atmosphere at 890 ° C. for 30 hours to obtain LiCoO 2 .
[Example 2]
The same operation as in Example 1 was performed using 50 parts by weight of cobalt oxide and 22 parts by weight of lithium carbonate having a water content of 0.25% by weight to obtain LiCoO 2 .
[Example 3]
The same operation as in Example 1 was performed using 50 parts by weight of cobalt oxide and 22 parts by weight of lithium carbonate having a water content of 0.50% by weight to obtain LiCoO 2 .
[Example 4]
The same operation as in Example 1 was performed using 50 parts by weight of cobalt oxide and 22 parts by weight of anhydrous lithium carbonate to obtain LiCoO 2 .
[0032]
LiCoO 2 synthesized in Examples 1 to 4 was subjected to powder X-ray diffraction (CuKα ray) measurement, residual cobalt oxide content analysis, and battery evaluation. The above measurement, analysis, and battery evaluation were performed as follows. Moreover, the weight average particle diameter in each example was measured by Nikkiso Co., Ltd. Microtrac HRAX-100.
[0033]
[Powder X-ray diffraction (CuKα ray) measurement]
The powder obtained by pulverizing and classifying synthesized LiCoO 2 was measured by a powder X-ray diffraction method (CuKα ray), and it was confirmed whether a diffraction line near 2θ = 36.5 ° due to residual Co 3 O 4 was visually recognized. . The results were evaluated in three stages: presence of diffraction lines, slight presence, and absence. As the X-ray diffractometer, an X-ray diffractometer XD-D1 manufactured by Shimadzu Corporation was used.
[0034]
[Amount analysis of residual cobalt oxide]
A glass filter precisely weighed was prepared, and the weight of the glass filter at this time was defined as w0 (g). About 1 g of synthesized LiCoO 2 (the weight of LiCoO 2 at this time is defined as wA (g)) was precisely weighed, added to the FeSO 4 solution, and stirred at room temperature for 1 hour. Thereafter, the solution was filtered through the above-described glass filter with a constant balance, and the glass filter was dried and allowed to cool at 120 ° C. for 1 hour. The weight of the glass filter at this time was defined as w1 (g). The residual cobalt oxide amount (g) was determined from the following formula (1).
[0035]
[Expression 1]
[0036]
[Battery evaluation]
80 parts by weight of the powder obtained by pulverizing and classifying synthesized LiCoO 2 , 16 parts by weight of acetylene black and 4 parts by weight of PTFE were mixed, and toluene was added to form a paste. The paste was vacuum-dried, pressed with a pressure of 2 t / cm 2 to a thickness of 0.15 mm, and cut into a 1.2 cm square to obtain a positive electrode plate. Using this positive electrode plate, a charge / discharge test was conducted using Li metal as a counter electrode assembled in a coin cell. As an electrolytic solution, a solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) was used. The discharge capacity was measured by repeatedly charging and discharging to 0.9V / cm 2 to 4.3V and then discharging to 2.5V. The first (1st), 10th (10th), 20th ( 20th) discharge capacity was measured. The obtained results are shown in Table 1.
[0037]
[Table 1]
[0038]
From the results of Table 1, it was found that the amount of remaining cobalt oxide can be suppressed by adding water to lithium carbonate fine powder, mixing and firing, and the crystal phase can be made to be a more uniform phase of lithium cobaltate.
Table 2 shows the battery characteristics measured for Examples 1 to 4.
[0039]
[Table 2]
[0040]
【The invention's effect】
As described above, by providing a method for producing a lithium-containing composite compound that uses a lithium compound having a certain water content when the cobalt compound of the present invention and a lithium compound are mixed, a uniform layer excellent in crystallinity is provided. A lithium-containing composite oxide can be provided. Moreover, a high-performance lithium secondary battery can be provided by using the lithium-containing composite oxide as a positive electrode active material.

Claims (4)

コバルト化合物とリチウム化合物とを含む混合物を、焼成することによって合成される下記式(1)で表されるリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法において、前記コバルト化合物と含水量が0.15〜5重量%であって重量平均粒径が1〜10μmである前記リチウム化合物とを混合することを特徴とするリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法(式(1)中、xは、0.9〜1.1の実数であり、yは、0〜0.9の実数であり、Mは、Ni、Mn、Fe、V、Cr、Al、Mg、Ti、Y、Ce、Nb、Zr、Si及びCaからなる群から選ばれる1種以上の元素を示す。)。
The mixture containing the cobalt compound and the lithium compound, the method for producing a lithium secondary battery positive electrode active material for a lithium-containing composite oxide represented by the following formula (1) which is synthesized by firing, said cobalt compound and containing A method for producing a lithium-containing composite oxide for a positive electrode active material for a lithium secondary battery, comprising mixing the lithium compound having a water content of 0.15 to 5% by weight and a weight average particle diameter of 1 to 10 μm. (In the formula (1), x is a real number of 0.9 to 1.1, y is a real number of 0 to 0.9, and M is Ni, Mn, Fe, V, Cr, Al, One or more elements selected from the group consisting of Mg, Ti, Y, Ce, Nb, Zr, Si, and Ca are shown.
前記コバルト化合物は、酸化コバルト(Co、Co又はこれらの混合物)、水酸化コバルト(Co(OH))、オキシ水酸化コバルト(CoOOH)、及び炭酸コバルト(CoCO)からなる群から選ばれる1種以上であり、リチウム化合物は、炭酸リチウム及び水酸化リチウムからなる群から選ばれる1種以上である請求項1記載のリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法。The cobalt compound is composed of cobalt oxide (Co 3 O 4 , Co 2 O 3 or a mixture thereof), cobalt hydroxide (Co (OH) 2 ), cobalt oxyhydroxide (CoOOH), and cobalt carbonate (CoCO 3 ). The lithium-containing composite oxide for a lithium secondary battery positive electrode active material according to claim 1, wherein the lithium compound is one or more selected from the group consisting of lithium carbonate and lithium hydroxide. Manufacturing method. 前記混合物を、大気中で850〜1000℃にて焼成する請求項1又は2記載のリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法。The manufacturing method of the lithium containing complex oxide for lithium secondary battery positive electrode active materials of Claim 1 or 2 which bakes the said mixture at 850-1000 degreeC in air | atmosphere. 前記混合物を、10〜50時間焼成する請求項1、2、又は3記載のリチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法。The method for producing a lithium-containing composite oxide for a lithium secondary battery positive electrode active material according to claim 1, 2, or 3 , wherein the mixture is fired for 10 to 50 hours.
JP07448299A 1999-03-18 1999-03-18 Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery Expired - Fee Related JP3806262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07448299A JP3806262B2 (en) 1999-03-18 1999-03-18 Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07448299A JP3806262B2 (en) 1999-03-18 1999-03-18 Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2000268821A JP2000268821A (en) 2000-09-29
JP2000268821A5 JP2000268821A5 (en) 2005-02-24
JP3806262B2 true JP3806262B2 (en) 2006-08-09

Family

ID=13548552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07448299A Expired - Fee Related JP3806262B2 (en) 1999-03-18 1999-03-18 Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3806262B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027032A1 (en) * 1999-10-08 2001-04-19 Seimi Chemical Co., Ltd. Lithium-cobalt composite oxide, method for preparing the same, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2002321921A (en) * 2001-04-24 2002-11-08 Sony Corp Method for manufacturing lithium cobalt oxide
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN100401562C (en) * 2003-08-19 2008-07-09 清美化学股份有限公司 Positive electrode material for lithium secondary cell and process for producing the same
JP4518865B2 (en) * 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN100421297C (en) * 2004-12-14 2008-09-24 中国电子科技集团公司第十八研究所 Lithium ion battery capable of low-temperature working
JP4873915B2 (en) * 2005-09-26 2012-02-08 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP5353125B2 (en) * 2008-08-28 2013-11-27 住友金属鉱山株式会社 Method for producing lithium nickel composite oxide
WO2021049310A1 (en) 2019-09-11 2021-03-18 日本化学工業株式会社 Positive electrode active material for lithium secondary batteries, and lithium secondary battery
JP7030865B2 (en) * 2019-09-11 2022-03-07 日本化学工業株式会社 Manufacturing method of positive electrode active material for lithium secondary battery
JP7252174B2 (en) * 2020-06-02 2023-04-04 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN113233516B (en) * 2021-05-28 2023-01-06 金川集团股份有限公司 Preparation method of single crystal small-granularity cobaltosic oxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067165B2 (en) * 1990-06-20 2000-07-17 ソニー株式会社 Positive electrode active material LiCoO2 for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3325423B2 (en) * 1995-03-20 2002-09-17 松下電器産業株式会社 Non-aqueous electrolyte secondary battery, positive electrode active material for battery and method for producing the same
JP3770569B2 (en) * 1996-08-30 2006-04-26 日本化学工業株式会社 Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JP3943168B2 (en) * 1996-08-30 2007-07-11 日本化学工業株式会社 Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JPH1179751A (en) * 1997-09-02 1999-03-23 Toda Kogyo Corp Production of lithium-nickel oxide particulate powder
JP4058797B2 (en) * 1997-09-02 2008-03-12 戸田工業株式会社 Method for producing lithium cobalt oxide particle powder
JPH11343120A (en) * 1998-05-29 1999-12-14 Toda Kogyo Corp Production of spinel oxide particulate powder

Also Published As

Publication number Publication date
JP2000268821A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
CN109715562B (en) Surface stable cathode material for lithium ion battery and synthesis method thereof
EP2214234B1 (en) Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP5651937B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101021991B1 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP2518804A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery
WO1997023918A1 (en) Anode active material and nonaqueous secondary battery
CA2672072A1 (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JP2000235857A (en) Lithium secondary battery
JP2006019229A (en) Positive electrode material for lithium secondary battery, and its manufacturing method
JP2005225734A (en) Fluorine-containing lithium cobalt complex oxide and its manufacturing method
JP3806262B2 (en) Method for producing lithium-containing composite oxide for positive electrode active material of lithium secondary battery
CN107078292A (en) The positive active material and its manufacture method and non-aqueous electrolyte secondary battery of non-aqueous electrolyte secondary battery
JP2018049685A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP6910697B2 (en) Manufacturing method of positive electrode active material
WO2020149244A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
WO2024093679A1 (en) Positive electrode material, positive electrode sheet comprising same, and battery
JPH11317226A (en) Positive active material for lithium secondary battery and its manufacture
JP2006147499A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2008257902A (en) Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012111293A1 (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method for same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees