JP4469952B2 - Solid phase growth carbon fiber and method for producing the same - Google Patents

Solid phase growth carbon fiber and method for producing the same Download PDF

Info

Publication number
JP4469952B2
JP4469952B2 JP2005258627A JP2005258627A JP4469952B2 JP 4469952 B2 JP4469952 B2 JP 4469952B2 JP 2005258627 A JP2005258627 A JP 2005258627A JP 2005258627 A JP2005258627 A JP 2005258627A JP 4469952 B2 JP4469952 B2 JP 4469952B2
Authority
JP
Japan
Prior art keywords
carbon fiber
producing
carbon
solid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005258627A
Other languages
Japanese (ja)
Other versions
JP2007070756A (en
Inventor
克美 亀川
昌也 児玉
桂子 西久保
芳雄 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005258627A priority Critical patent/JP4469952B2/en
Publication of JP2007070756A publication Critical patent/JP2007070756A/en
Application granted granted Critical
Publication of JP4469952B2 publication Critical patent/JP4469952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、固相成長炭素繊維とその製造方法に関する。更に詳しくは、テレフタル酸ナトリウムを主成分とする原料を500〜1000℃の温度で熱分解することにより炭素繊維と炭酸ナトリウム化合物の複合物を形成させ、それを水で洗浄して炭酸ナトリウムを除去して乾燥することにより、10〜200nmの極微細な固相成長炭素繊維とその製造方法に関するものである。   The present invention relates to a solid growth carbon fiber and a method for producing the same. More specifically, a raw material mainly composed of sodium terephthalate is pyrolyzed at a temperature of 500 to 1000 ° C. to form a composite of carbon fiber and sodium carbonate compound, which is washed with water to remove sodium carbonate. And drying, the present invention relates to an ultrafine solid-phase grown carbon fiber of 10 to 200 nm and a method for producing the same.

炭素繊維は、有機繊維を不活性ガス中で700〜1800℃で加熱し炭化させてつくった繊維であり、軽くて強く、耐熱性がある微細なグラファイト結晶構造をもつ繊維状の炭素物質として知られている。有機繊維は、衣料の原料等知られているアクリル樹脂や石油、石炭からとれるピッチ等を繊維化して作られる。   Carbon fiber is a fiber made by heating organic carbon in an inert gas at 700-1800 ° C. and carbonizing, and is known as a fibrous carbon material with a fine graphite crystal structure that is light, strong and heat resistant. It has been. Organic fibers are made by fiberizing known acrylic resins such as clothing, pitches from petroleum and coal.

従来の繊維状炭素材料としては、アクリル繊維等を熱分解して得られる炭素繊維(例えば、特許文献1参照。)や、触媒存在下でベンゼンなどの有機化合物を熱分解して得られる気相成長炭素繊維等があげられる。しかし前者では繊維を形作る紡糸工程や熱処理中の溶融を防ぐための不融化処理等の多くの工程が必要であること、また後者では流動状態の触媒表面上へ炭素繊維を析出させるため、大量の炭素繊維を製造することが困難であるなどの欠点があった。   Conventional fibrous carbon materials include carbon fibers obtained by thermally decomposing acrylic fibers and the like (see, for example, Patent Document 1), and gas phases obtained by thermally decomposing organic compounds such as benzene in the presence of a catalyst. Examples include grown carbon fiber. However, the former requires many processes such as a spinning process for forming fibers and an infusibilization treatment to prevent melting during heat treatment, and the latter causes carbon fibers to be deposited on the surface of the fluidized catalyst. There were drawbacks such as difficulty in producing carbon fibers.

また、ポリエステル織物のアルカリ減料加工廃液中のテレフタル酸をカルシウム塩として分離し、これを炭化し炭素材料として利用する方法が提案されている(特許文献2)。しかしながら、この方法は、pH調整した上に塩化カルシウムを添加する必要があり、工程数が多い。更に、製造された炭化物は、炭素繊維ではなく炭化物であり、炭素繊維を作るものではない。
特開2005−126857号公報 特許第2694601号
In addition, a method has been proposed in which terephthalic acid in an alkali-reducing processing waste liquid of a polyester fabric is separated as a calcium salt and carbonized to be used as a carbon material (Patent Document 2). However, in this method, it is necessary to add calcium chloride after adjusting the pH, and the number of steps is large. Further, the manufactured carbide is not carbon fiber but carbide, and does not make carbon fiber.
JP 2005-126857 A Japanese Patent No. 2694601

従来の炭素繊維の製造方法では、紡糸工程や不融化工程などの多くの製造工程を要することや、大量の炭素繊維を製造することが困難であるなどの欠点があった。以上のような技術背景から、本発明は、以下の目的を達成する。   Conventional carbon fiber production methods have drawbacks such as requiring many production processes such as a spinning process and an infusibilization process, and producing a large amount of carbon fibers. From the above technical background, the present invention achieves the following objects.

本発明の目的は、紡糸工程や不融化工程等が必要のない固相成長炭素繊維の製造方法を提供することにある。   An object of the present invention is to provide a method for producing solid-phase grown carbon fiber that does not require a spinning process, an infusibilization process, or the like.

本発明の他の目的は、コストの安い固相成長炭素繊維の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing solid-phase grown carbon fiber at a low cost.

本発明の他の目的は、PETボトル等の廃棄物を原料とする固相成長炭素繊維の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing solid-phase-grown carbon fibers using waste such as PET bottles as a raw material.

本発明の他の目的は、テレフタル酸ナトリウムを不活性ガス中で加熱して炭化させるのみで炭素繊維を製造するテレフタル酸ナトリウムを原料とする固相成長炭素繊維の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing solid-phase-grown carbon fiber using sodium terephthalate as a raw material, which produces carbon fiber only by heating sodium terephthalate in an inert gas and carbonizing it. .

本発明の固相成長炭素繊維とその製造方法は、テレフタル酸ナトリウム結晶を主成分とする原料を500〜1000℃の温度で熱分解させ、それを水で洗浄した後、乾燥処理することにより、10〜200nmの極微細な炭素繊維を製造するものである。即ち、本発明者らは、単にテレフタル酸ナトリウムを主成分とする原料を500〜1000℃の温度で熱分解させ、それを水で洗浄、乾燥することにより、10〜200nmの極微細な炭素繊維が製造できることを見いだした。このような炭素繊維の製造方法はこれまで報告されていない。そしてこの製造方法は、洗浄処理のときに発生するアルカリ性廃液などは再度、テレフタル酸のナトリウム塩調製に使用することができ、廃棄物をほとんど発生させない優れた製造方法であることがわかった。 The solid-phase-grown carbon fiber of the present invention and its production method are obtained by thermally decomposing a raw material mainly composed of sodium terephthalate crystals at a temperature of 500 to 1000 ° C., washing it with water, and then drying it. It produces ultrafine carbon fibers of 10 to 200 nm. That is, the present inventors simply pyrolyze a raw material mainly composed of sodium terephthalate at a temperature of 500 to 1000 ° C., wash it with water, and dry it to obtain an ultrafine carbon fiber of 10 to 200 nm. Found that can be manufactured. No method for producing such a carbon fiber has been reported so far. This production method was found to be an excellent production method in which the alkaline waste liquid generated during the washing treatment can be used again for preparing the sodium salt of terephthalic acid and hardly generates waste.

本発明の固相成長炭素繊維の製造方法は、簡便な操作により、これまでにない極微細な炭素繊維を大量に製造することが可能になる。更にはその製造工程において廃液や廃棄物をほとんど発生させることがない。   The method for producing solid-phase-grown carbon fibers of the present invention makes it possible to produce a large amount of ultrafine carbon fibers that have never been obtained by a simple operation. Furthermore, almost no waste liquid or waste is generated in the manufacturing process.

本発明は、テレフタル酸ナトリウムを主成分とする原料を500℃以上の温度で熱分解することにより炭素と炭酸ナトリウム化合物の複合物を形成させ、それを更に水で洗浄して炭酸ナトリウムを除去することにより、10〜200nmの極微細な炭素繊維を製造することができる。   In the present invention, a raw material mainly composed of sodium terephthalate is thermally decomposed at a temperature of 500 ° C. or higher to form a composite of carbon and a sodium carbonate compound, which is further washed with water to remove sodium carbonate. As a result, an ultrafine carbon fiber of 10 to 200 nm can be produced.

1モルのテレフタル酸に対して2モルの水酸化ナトリウム水溶液を加えてテレフタル酸ナトリウム水溶液を調製し、この溶液を乾固させてテレフタル酸ナトリウム結晶を得た。この結晶をアルミナボートに入れて横型炉中でアルゴン雰囲気下において600℃で2時間熱処理し、その後放冷した。生成物を水洗して反応で生成した炭酸ナトリウムを洗浄除去し、それを乾燥することにより、原料のテレフタル酸ナトリウム結晶と同じ形状の炭素粒子を調製した。熱処理温度と熱分解物および炭素粒子(繊維)の収率との関係を図1に示す。   2 mol of sodium hydroxide aqueous solution was added to 1 mol of terephthalic acid to prepare a sodium terephthalate aqueous solution, and this solution was dried to obtain sodium terephthalate crystals. The crystals were put in an alumina boat and heat-treated at 600 ° C. for 2 hours in a horizontal furnace in an argon atmosphere, and then allowed to cool. The product was washed with water to remove sodium carbonate produced by the reaction and dried to prepare carbon particles having the same shape as the raw material sodium terephthalate crystals. The relationship between the heat treatment temperature and the yield of pyrolyzate and carbon particles (fibers) is shown in FIG.

図2は、テレフタル酸ナトリウム原料と生成された炭素繊維を示す走査型子顕微鏡写真を示すものであり、図2(a)はテレフタル酸ナトリウム原料、図2(b)は得られた炭素粒子、図2(c)は炭素粒子の破断面、及び図2(d)は炭素粒子中の炭素繊維をそれぞれ示す。得られる炭素繊維の形状は製造条件により異なり、より高温で熱処理するにつれて、炭素繊維同士がより結合した構造となる傾向が見られた。そして、高温では炭素と炭酸ナトリウムとの反応によりミクロ孔が発達した活性炭繊維類似の構造を持つようになることがわかった。図3は、熱処理温度と比表面積との関係を示すものである。   FIG. 2 shows a scanning microscope photo showing the sodium terephthalate raw material and the produced carbon fiber, FIG. 2 (a) is the sodium terephthalate raw material, FIG. 2 (b) is the obtained carbon particles, FIG. 2 (c) shows the fracture surface of the carbon particles, and FIG. 2 (d) shows the carbon fibers in the carbon particles. The shape of the carbon fiber obtained was different depending on the production conditions, and as the heat treatment was performed at a higher temperature, the carbon fibers tended to have a more bonded structure. And it became clear that it became a structure similar to activated carbon fiber with micropores developed by the reaction between carbon and sodium carbonate at high temperatures. FIG. 3 shows the relationship between the heat treatment temperature and the specific surface area.

次に示す表1は、この実施例で製造した炭素繊維の元祖分析結果である。

Figure 0004469952
Table 1 shown below is an ancestor analysis result of the carbon fibers produced in this example.
Figure 0004469952

本方法を用いることにより、従来法で問題となっていた複雑な製造工程や大量生産に適さない製造方法を改善することができるとともに、これまでの市販の炭素繊維よりも更に微細な炭素繊維が得られる。また、本方法の原料として使用するテレフタル酸は、PET樹脂原料として工業的に用いられている比較的に安価な有機原料であり、製造コストの面でも優位性を有している。また、PETボトル等の廃棄物を分解して得られたテレフタル酸ナトリウムを原料として使用しても良い。   By using this method, it is possible to improve a complicated manufacturing process and a manufacturing method that is not suitable for mass production, which have been problems in the conventional method, and a carbon fiber that is finer than conventional commercially available carbon fibers. can get. Further, terephthalic acid used as a raw material for this method is a relatively inexpensive organic raw material that is industrially used as a PET resin raw material, and has an advantage in terms of manufacturing cost. Further, sodium terephthalate obtained by decomposing waste such as PET bottles may be used as a raw material.

図1は、原料、熱分解物、及び炭素繊維のX線回析結果を示す図である。FIG. 1 is a diagram showing X-ray diffraction results of raw materials, pyrolysates, and carbon fibers. 図2は、テレフタル酸ナトリウム原料と生成された炭素繊維を示す走査型子顕微鏡写真を示すものであり、図2(a)はテレフタル酸ナトリウム原料、図2(b)は得られた炭素粒子、図2(c)は炭素粒子の破断面、及び図2(d)は炭素粒子中の炭素繊維をそれぞれ示すものである。FIG. 2 shows a scanning microscope photo showing the sodium terephthalate raw material and the produced carbon fiber, FIG. 2 (a) is the sodium terephthalate raw material, FIG. 2 (b) is the obtained carbon particles, FIG. 2 (c) shows the fracture surface of the carbon particles, and FIG. 2 (d) shows the carbon fibers in the carbon particles. 図3は、実施例1で製造した炭素繊維の比表面積の熱処理温度依存性を示す図である。FIG. 3 is a graph showing the heat treatment temperature dependence of the specific surface area of the carbon fibers produced in Example 1.

Claims (2)

テレフタル酸ナトリウム結晶を不活性ガス中で500℃〜1000℃に加熱し炭化させて製造された固相成長炭素繊維であって、
前記固相成長炭素繊維は、直径が10〜200nmの極細繊維である
ことを特徴とする固相成長炭素繊維。
Solid-phase grown carbon fiber produced by heating and carbonizing sodium terephthalate crystals in an inert gas to 500 ° C. to 1000 ° C. ,
The solid phase growth carbon fiber is an ultrafine fiber having a diameter of 10 to 200 nm.
テレフタル酸ナトリウム結晶を不活性ガス中で500〜1000℃に加熱し炭化させ固相成長炭素繊維の製造方法において、
前記固相成長炭素繊維は、直径が10〜200nmの極細繊維である
ことを特徴とする固相成長炭素繊維の製造方法。
In the manufacturing method of the sodium terephthalic acid crystals were heated to 500 to 1000 ° C. in an inert gas solid-phase growth carbon fiber that is carbonized,
The method for producing solid-phase-grown carbon fiber, wherein the solid-phase-grown carbon fiber is an ultrafine fiber having a diameter of 10 to 200 nm.
JP2005258627A 2005-09-07 2005-09-07 Solid phase growth carbon fiber and method for producing the same Expired - Fee Related JP4469952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258627A JP4469952B2 (en) 2005-09-07 2005-09-07 Solid phase growth carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258627A JP4469952B2 (en) 2005-09-07 2005-09-07 Solid phase growth carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007070756A JP2007070756A (en) 2007-03-22
JP4469952B2 true JP4469952B2 (en) 2010-06-02

Family

ID=37932462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258627A Expired - Fee Related JP4469952B2 (en) 2005-09-07 2005-09-07 Solid phase growth carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4469952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207255B (en) * 2015-03-05 2019-12-27 株式会社科特拉 Porous carbon body, method for producing same, ammonia adsorbent, carbon canister, and method for producing same
JP6042922B2 (en) * 2015-03-05 2016-12-14 株式会社豊田中央研究所 Porous carbon, production method thereof, and ammonia adsorbent

Also Published As

Publication number Publication date
JP2007070756A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Soltani et al. Review on the physicochemical treatments of rice husk for production of advanced materials
US8377843B2 (en) Activated carbon fibers and engineered forms from renewable resources
CN1039436C (en) Process for producing sodium salts from brines of sodium ores
CN1060170C (en) Method for purification of lactide
CN112777577B (en) Preparation method of carbon nitride nanocubes
CN103523814A (en) Gypsum abnormity powder preparation and modification integrated method in normal-pressure open system
CN108929708A (en) Sodium chloride abraum salt recycling processing method during a kind of DYE PRODUCTION
JP4469952B2 (en) Solid phase growth carbon fiber and method for producing the same
Sun et al. Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum
CN106835500A (en) A kind of non-woven fabrics that can be degradable
CN1295150C (en) Nanometer A type molecular sieve preparation method
Ngoc et al. High‐purity amorphous silica from rice husk: Preparation and characterization
CN100503901C (en) Process for producing aluminum oxide crystal whisker
US20240026225A1 (en) Using stimulus to convert coal to mesophase pitch and carbon fibers
CN1299992C (en) High purity magnesium oxide cleaning production method
CN115108554A (en) Method for preparing activated carbon by utilizing PTA oxidation residues
KR100798417B1 (en) Preparation method of magnesium chloride anhydrate from magnesium chloride aqueous solution with ammonium chloride
JPH0757686B2 (en) Synthetic xonotlite crystal aggregate and method for producing the same
JPH0669889B2 (en) Hydrothermal Synthesis of Layered Silicate
JPH06183715A (en) Production of activated carbon
CN108313989A (en) One type lamella shape nitrogenizes the preparation method and products obtained therefrom of carbosphere
Chuakham et al. Synthesis of Sustainable and High Purity of Quicklime Derived from Calcination of Eggshell Waste in a Laboratory-Scale Rotary Furnace
Immanuel et al. Synthesis of carbon cloth by controlled pyrolysis of rayon cloth for aerospace and advanced engineering applications
CN1766178A (en) Porous magnesia whisker preparation method
KR20100118398A (en) Manufacturing method of high-strength glass-ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees