JP6042922B2 - Porous carbon, production method thereof, and ammonia adsorbent - Google Patents

Porous carbon, production method thereof, and ammonia adsorbent Download PDF

Info

Publication number
JP6042922B2
JP6042922B2 JP2015043718A JP2015043718A JP6042922B2 JP 6042922 B2 JP6042922 B2 JP 6042922B2 JP 2015043718 A JP2015043718 A JP 2015043718A JP 2015043718 A JP2015043718 A JP 2015043718A JP 6042922 B2 JP6042922 B2 JP 6042922B2
Authority
JP
Japan
Prior art keywords
carbon
nitrogen
nitrogen adsorption
stp
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015043718A
Other languages
Japanese (ja)
Other versions
JP2016160170A (en
Inventor
瀬戸山 徳彦
徳彦 瀬戸山
哲也 久米
哲也 久米
靖之 東恩納
靖之 東恩納
雄二 望月
雄二 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Central R&D Labs Inc filed Critical Cataler Corp
Priority to JP2015043718A priority Critical patent/JP6042922B2/en
Priority to KR1020177019808A priority patent/KR20170097137A/en
Priority to PCT/JP2016/056419 priority patent/WO2016140266A1/en
Priority to CN201680006231.0A priority patent/CN107207255B/en
Publication of JP2016160170A publication Critical patent/JP2016160170A/en
Application granted granted Critical
Publication of JP6042922B2 publication Critical patent/JP6042922B2/en
Priority to US15/636,720 priority patent/US20170326527A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、炭素多孔体、その製法及びアンモニア吸着材に関する。   The present invention relates to a carbon porous body, a production method thereof, and an ammonia adsorbent.

従来より、炭素多孔体は、種々の技術分野で利用されている。具体的には、炭素多孔体は、電気化学キャパシタの電極材料として利用されたり、固体高分子型燃料電池の電極触媒担体として利用されたり、バイオ燃料電池の酵素電極を担持する材料として利用されたり、キャニスタの吸着材として利用されたり、燃料精製設備の吸着材として利用されたりしている。   Conventionally, carbon porous bodies have been used in various technical fields. Specifically, the carbon porous body is used as an electrode material for an electrochemical capacitor, used as an electrode catalyst carrier for a polymer electrolyte fuel cell, or used as a material for supporting an enzyme electrode of a biofuel cell. It is used as an adsorbent for canisters and as an adsorbent for fuel refining equipment.

電気化学キャパシタは、電極(正極及び負極)の界面において、電極と電解液中のイオンとの間で電子の授受を伴わない非ファラデー反応、あるいは電子の授受を伴うファラデー反応に起因して発現する容量を利用したキャパシタである。固体高分子型燃料電池は、イオン伝導性を有する固体高分子膜を電解質として用いる燃料電池であり、負極、正極及び固体高分子膜を備えている。固体高分子型燃料電池では、負極側で触媒を利用して水素やメタノールなどの燃料を分解してプロトンと電子を発生させ、そのうちプロトンは固体高分子膜を、電子は外部回路を解してそれぞれ正極側に移動し、正極ではプロトンと電子を用いた酸素の還元反応を触媒を利用して進行させて水を生成する。この一連の反応により、固体高分子型燃料電池から電気エネルギーを取り出すことができる。バイオ燃料電池は、通常の燃料電池と同様、負極、正極、電解質及びセパレータを備えており、負極及び正極に酵素を利用するものである。バイオ燃料電池では、負極側で酵素により糖を分解してプロトンと電子を発生させ、そのうちプロトンは電解質を、電子は外部回路を介してそれぞれ正極側に移動し、正極ではプロトンと電子を用いた酸素の還元反応を酵素により進行させて水を生成する。この一連の反応により、バイオ燃料電池から電気エネルギーを取り出すことができる。キャニスタは、炭素多孔体が詰められた缶状の容器であり、自動車に搭載される。キャニスタは、自動車のエンジン停止中は燃料タンクで発生したガソリン蒸気を配管を通じて受け入れて吸着する一方、エンジン作動中は新鮮な空気が通されることにより吸着したガソリン蒸気を放出してエンジンの燃焼室へ供給する。燃料精製設備は、燃料に含まれる不純物を炭素多孔体に吸着させて燃料を精製する。   Electrochemical capacitors are expressed at the interface between electrodes (positive and negative electrodes) due to non-Faraday reactions that do not involve the transfer of electrons between the electrodes and ions in the electrolyte, or Faraday reactions that involve the transfer of electrons. It is a capacitor that uses capacitance. A solid polymer fuel cell is a fuel cell that uses a solid polymer membrane having ion conductivity as an electrolyte, and includes a negative electrode, a positive electrode, and a solid polymer membrane. In a polymer electrolyte fuel cell, a fuel such as hydrogen or methanol is decomposed using a catalyst on the negative electrode side to generate protons and electrons, of which protons dissolve the solid polymer membrane and electrons break the external circuit. Each moves to the positive electrode side, and at the positive electrode, the oxygen reduction reaction using protons and electrons proceeds using a catalyst to generate water. Through this series of reactions, electric energy can be extracted from the polymer electrolyte fuel cell. The biofuel cell is provided with a negative electrode, a positive electrode, an electrolyte, and a separator, as in a normal fuel cell, and uses an enzyme for the negative electrode and the positive electrode. In a biofuel cell, an enzyme decomposes sugar on the negative electrode side to generate protons and electrons, of which protons move to the electrolyte and electrons move to the positive electrode side via an external circuit, respectively. The oxygen reduction reaction proceeds with an enzyme to produce water. Through this series of reactions, electric energy can be extracted from the biofuel cell. The canister is a can-like container filled with a carbon porous body, and is mounted on an automobile. The canister accepts and absorbs the gasoline vapor generated in the fuel tank through the pipe when the engine of the automobile is stopped, while releasing the adsorbed gasoline vapor by passing fresh air while the engine is running, and the combustion chamber of the engine To supply. The fuel purification facility purifies the fuel by adsorbing impurities contained in the fuel to the carbon porous body.

これまでに、炭素多孔体として、炭素骨格の一部が窒素原子で置換されたものが知られている(特許文献1)。この炭素多孔体は、平均細孔径が2nm以下のミクロ細孔構造を有している。一方、セルサイズが約0.1μmの低密度の炭素発泡体も知られている(特許文献2)。この炭素発泡体は、レゾルシノールとホルムアルデヒドとの重縮合によって得られるポリマークラスタを共有結合的に架橋してゲルを合成し、そのゲルを超臨界条件で処理してエアロゲルとし、そのエアロゲルを炭素化することによって合成されている。   So far, carbon porous bodies in which a part of the carbon skeleton is substituted with nitrogen atoms are known (Patent Document 1). This carbon porous body has a micropore structure with an average pore diameter of 2 nm or less. On the other hand, a low-density carbon foam having a cell size of about 0.1 μm is also known (Patent Document 2). In this carbon foam, a polymer cluster obtained by polycondensation of resorcinol and formaldehyde is covalently crosslinked to synthesize a gel, and the gel is treated under supercritical conditions to form an airgel, and the airgel is carbonized. Is synthesized.

特開2011−051828号公報JP 2011-051828 A 米国特許第4873218号明細書U.S. Pat. No. 4,873,218

ところで、これまで、メソ細孔構造でありながら窒素相対圧力の比較的大きな領域において窒素相対圧力差に対する窒素吸着量差が大きい炭素多孔体は知られておらず、当然、こうした炭素多孔体を容易に製造する方法も知られていなかった。このような炭素多孔体は、特定ガスの脱着材への利用のほか、電気化学キャパシタの電極材料やバイオ燃料電池の酵素電極を担持する材料、キャニスタの吸着材、燃料精製設備の吸着材などへの利用が期待される。   By the way, until now, there has been no known carbon porous body that has a mesopore structure, but has a large difference in the amount of nitrogen adsorption relative to the nitrogen relative pressure difference in a relatively large region of the nitrogen relative pressure. Also, a method for producing the same was not known. Such carbon porous materials can be used not only as desorbing materials for specific gases, but also as electrode materials for electrochemical capacitors, materials supporting enzyme electrodes for biofuel cells, canister adsorbents, and adsorbents for fuel purification equipment. Is expected to be used.

本発明はこのような課題を解決するためになされたものであり、メソ細孔構造でありながら窒素相対圧力の比較的大きな領域において窒素相対圧力差に対する窒素吸着量差が大きい炭素多孔体を提供することを主目的とする。   The present invention has been made to solve such problems, and provides a carbon porous body having a large difference in nitrogen adsorption amount relative to a nitrogen relative pressure difference in a relatively large region of the nitrogen relative pressure while having a mesopore structure. The main purpose is to do.

上述した目的を達成するために鋭意研究したところ、本発明者らは、テレフタル酸のカルシウム塩を不活性雰囲気中550〜700℃で加熱して炭素と炭酸カルシウムとの複合体を形成し、酸性水溶液でその複合体を洗浄して炭酸カルシウムを除去して得られた炭素多孔体が優れた特性を有することを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the inventors of the present invention heated a calcium salt of terephthalic acid at 550 to 700 ° C. in an inert atmosphere to form a complex of carbon and calcium carbonate. It was found that the carbon porous body obtained by washing the complex with an aqueous solution to remove calcium carbonate has excellent characteristics, and completed the present invention.

即ち、本発明の炭素多孔体は、温度77Kで測定した窒素吸着等温線のαSプロット解析から算出したミクロ細孔容量が、0.1cm3/g以下であり、前記窒素吸着等温線における窒素相対圧力P/P0が0.97のときの窒素吸着量から前記ミクロ細孔容量を差し引いて算出したメソ細孔容量よりも小さく、前記窒素吸着等温線において、窒素相対圧力P/P0が0.5のときの窒素吸着量が500cm3(STP)/g以下の範囲にあり且つ窒素相対圧力P/P0が0.85のときの窒素吸着量が600cm3(STP)/g以上1100cm3(STP)/g以下の範囲にあるものである。 That is, the carbon porous body of the present invention has a micropore capacity calculated from an α S plot analysis of a nitrogen adsorption isotherm measured at a temperature of 77 K, which is 0.1 cm 3 / g or less, and the nitrogen in the nitrogen adsorption isotherm relative pressure P / P 0 is smaller than the mesopore volume is calculated by subtracting the micropore volume from the nitrogen adsorption amount at 0.97, in the nitrogen adsorption isotherm of nitrogen relative pressure P / P 0 The amount of nitrogen adsorption when 0.5 is in the range of 500 cm 3 (STP) / g or less and the nitrogen relative pressure P / P 0 is 0.85 is 600 cm 3 (STP) / g or more and 1100 cm. 3 (STP) / g or less.

また、本発明の炭素多孔体の製法は、ベンゼンジカルボン酸のアルカリ土類金属塩を、炭化水素ガスを吸着するトラップ材の存在下、不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去して炭素多孔体を得るものである。   In addition, the method for producing a porous carbon body of the present invention comprises heating an alkaline earth metal salt of benzenedicarboxylic acid at 550 to 700 ° C. in an inert atmosphere in the presence of a trap material that adsorbs hydrocarbon gas. A composite with an earth metal carbonate is formed, and the composite is washed with a cleaning solution capable of dissolving the carbonate to remove the carbonate to obtain a carbon porous body.

更に、本発明のアンモニア吸着材は、上述した本発明の炭素多孔体を利用したものである。   Furthermore, the ammonia adsorbent of the present invention uses the above-described porous carbon of the present invention.

本発明の炭素多孔体によれば、特定のガスに対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。また、本発明の炭素多孔体の製法によれば、こうした炭素多孔体を簡単に得ることができる。更に、本発明のアンモニア吸着材によれば、アンモニアガスに対してガス圧力を所定範囲で変化させたときのアンモニアガス吸脱着量を大きくすることができる。   According to the carbon porous body of the present invention, the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas can be increased. Moreover, according to the manufacturing method of the carbon porous body of this invention, such a carbon porous body can be obtained easily. Furthermore, according to the ammonia adsorbent of the present invention, it is possible to increase the ammonia gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to the ammonia gas.

吸着等温線のIUPAC分類のIV型のグラフ。Type IV graph of IUPAC classification of adsorption isotherms. 実験例1〜3の窒素吸着等温線のグラフ。The graph of the nitrogen adsorption isotherm of Experimental Examples 1-3. 実験例1,3のアンモニア吸着等温線のグラフ。The graph of the ammonia adsorption isotherm of Experimental example 1 and 3.

本発明の炭素多孔体は、温度77Kで測定した窒素吸着等温線のαSプロット解析から算出したミクロ細孔容量が、0.1cm3/g以下であり、前記窒素吸着等温線における窒素相対圧力P/P0が0.97のときの窒素吸着量から前記ミクロ細孔容量を差し引いて算出したメソ細孔容量よりも小さく、前記窒素吸着等温線において、窒素相対圧力P/P0が0.5のときの窒素吸着量(A1)が500cm3(STP)/g以下の範囲にあり且つ窒素相対圧力P/P0が0.85のときの窒素吸着量(A2)が600cm3(STP)/g以上1100cm3(STP)/g以下の範囲にあるものである。ここで、メソ細孔とは直径が2nmより大きく50nm以下の細孔を示し、ミクロ細孔とは直径が2nm以下の細孔を示すものとする。窒素吸着量A1は、例えば、100cm3(STP)/g以上としてもよく、278cm3(STP)/g以上としてもよいし、421cm3(STP)/g以上としてもよい。この窒素吸着量A1は、421cm3(STP)/g以下としてもよいし、278cm3(STP)/g以上としてもよい。また、窒素吸着量A2は、例えば、628cm3(STP)/g以上としてもよいし、650cm3(STP)/g以上としてもよいし、1016cm3(STP)/g以上としてもよい。この窒素吸着量A2は、1016cm3(STP)/g以下としてもよいし、628cm3(STP)/g以下としてもよい。 The carbon porous body of the present invention has a micropore capacity calculated from an α S plot analysis of a nitrogen adsorption isotherm measured at a temperature of 77 K, and is 0.1 cm 3 / g or less, and the nitrogen relative pressure in the nitrogen adsorption isotherm P / P 0 is smaller than the mesopore volume is calculated by subtracting the micropore volume from the nitrogen adsorption amount at 0.97, in the nitrogen adsorption isotherm, the nitrogen relative pressure P / P 0 is 0. When the nitrogen adsorption amount (A1) is 5 or less in the range of 500 cm 3 (STP) / g and the nitrogen relative pressure P / P 0 is 0.85, the nitrogen adsorption amount (A2) is 600 cm 3 (STP). / G or more and 1100 cm 3 (STP) / g or less. Here, the mesopore indicates a pore having a diameter greater than 2 nm and not more than 50 nm, and the micropore indicates a pore having a diameter of 2 nm or less. Nitrogen adsorption amount A1, for example, 100cm 3 (STP) / g may be higher, may be 278cm 3 (STP) / g or more, may be 421cm 3 (STP) / g or more. The nitrogen adsorption amount A1 may be as follows 421cm 3 (STP) / g, may be 278cm 3 (STP) / g or more. Further, the nitrogen adsorption amount A2 may be, for example, a 628cm 3 (STP) / g or more, may be 650cm 3 (STP) / g or more, it may be 1016cm 3 (STP) / g or more. This nitrogen adsorption amount A2 may be 1016 cm 3 (STP) / g or less, or 628 cm 3 (STP) / g or less.

この炭素多孔体は、ミクロ細孔容量が0.1cm3/g以下であることが好ましく、0.01cm3/g以下であることがより好ましい。また、温度77Kでの窒素吸着等温線がIUPAC分類のIV型に属することが好ましい。こうしたものでは、窒素吸着等温線のIUPAC分類の型がメソ細孔を持つことを示すIV型(図1参照)であり、直径2nm以下の細孔容量が0.1cm3/g以下と小さいことから、ほぼメソ細孔から構成されているといえる。 The porous carbon material is preferably micropore capacity is 0.1 cm 3 / g or less, more preferably 0.01 cm 3 / g or less. Further, it is preferable that the nitrogen adsorption isotherm at a temperature of 77K belongs to the IV type of the IUPAC classification. In such a case, the IUPAC classification type of the nitrogen adsorption isotherm is type IV (see FIG. 1) indicating that it has mesopores, and the pore capacity of 2 nm or less in diameter is as small as 0.1 cm 3 / g or less. Therefore, it can be said that it is almost composed of mesopores.

また、本発明の炭素多孔体は、窒素吸着等温線において窒素相対圧力P/P0が0.85のときの窒素吸着量から窒素相対圧力P/P0が0.5のときの窒素吸着量を差し引いた値(窒素吸着量差(ΔA))が100cm3(STP)/g以上になることから、窒素相対圧力の比較的大きな領域において窒素相対圧力の変化量に対する窒素吸着量の変化量が大きい。そのため、特定のガスに対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。窒素吸着量差ΔAは、200cm3(STP)/g以上であることが好ましく、300cm3(STP)/g以上であることがより好ましく、500cm3(STP)/g以上であることがさらに好ましい。窒素吸着量差ΔAは、例えば、350cm3(STP)/g以上としてもよく、595cm3(STP)/g以上としてもよい。この窒素吸着量差ΔAの上限は特に限定されないが、1000cm3(STP)/g以下としてもよく、595cm3(STP)/g以下としてもよいし、350cm3(STP)/g以下としてもよい。 Further, the carbon porous body of the present invention has a nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.5 from the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.85 in the nitrogen adsorption isotherm. Since the value (nitrogen adsorption amount difference (ΔA)) is less than 100 cm 3 (STP) / g, the amount of change in nitrogen adsorption amount relative to the amount of change in nitrogen relative pressure in a relatively large region of nitrogen relative pressure is large. Therefore, it is possible to increase the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas. The nitrogen adsorption amount difference ΔA is preferably 200 cm 3 (STP) / g or more, more preferably 300 cm 3 (STP) / g or more, and further preferably 500 cm 3 (STP) / g or more. . Nitrogen adsorption amount difference ΔA, for example, may be a 350cm 3 (STP) / g or more, may be 595cm 3 (STP) / g or more. This upper limit of the nitrogen adsorption amount difference ΔA is not particularly limited, 1000cm 3 (STP) / g may be less, may be 595cm 3 (STP) / g or less, may be 350cm 3 (STP) / g or less .

本発明の炭素多孔体は、温度77Kでの窒素吸着等温線において、窒素相対圧力P/P0が0.99のときの窒素吸着量(A3)が1500cm3(STP)/g以上の範囲にあることが好ましい。こうしたものでは、窒素吸着等温線において窒素相対圧力P/P0が0.99のときの窒素吸着量から窒素相対圧力P/P0が0.5のときの窒素吸着量を差し引いた値が1000cm3(STP)/g以上になることから、窒素相対圧力の比較的大きな領域において窒素相対圧力の変化量に対する窒素吸着量の変化量が大きい。そのため、特定のガスに対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。窒素吸着量A3は、1517cm3(STP)/g以上としてもよいし、1948cm3(STP)/g以上としてもよい。窒素吸着量A3の上限は特に限定されないが、例えば、2000cm3(STP)/g以下としてもよいし、1948cm3(STP)/g以下としてもよいし、1517cm3(STP)/g以下としてもよい。 The carbon porous material of the present invention has a nitrogen adsorption isotherm at a temperature of 77 K, and the nitrogen adsorption amount (A3) when the nitrogen relative pressure P / P 0 is 0.99 is in the range of 1500 cm 3 (STP) / g or more. Preferably there is. In such a case, in the nitrogen adsorption isotherm, a value obtained by subtracting the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.5 from the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.99 is 1000 cm. Since 3 (STP) / g or more, the amount of change in the nitrogen adsorption amount relative to the amount of change in the nitrogen relative pressure is large in a relatively large region of the nitrogen relative pressure. Therefore, it is possible to increase the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas. Nitrogen adsorption amount A3 may be a 1517cm 3 (STP) / g or more, may be 1948cm 3 (STP) / g or more. Is not an upper limit particularly limited nitrogen adsorption amount A3, for example, may be as follows 2000cm 3 (STP) / g, may be less 1948cm 3 (STP) / g, even below 1517cm 3 (STP) / g Good.

本発明の炭素多孔体は、例えば、BET比表面積が700m2/g以上であるものとしてもよく、BET比表面積が800m2/g以上であるものとしてもよい。また、本発明の炭素多孔体は、例えば、BET比表面積が1200m2/g以下であるものとしてもよい。比表面積の大きさが、各種機能特性の向上に相関があるためである。 The porous carbon body of the present invention may have, for example, a BET specific surface area of 700 m 2 / g or more and a BET specific surface area of 800 m 2 / g or more. Moreover, the porous carbon body of the present invention may have, for example, a BET specific surface area of 1200 m 2 / g or less. This is because the size of the specific surface area correlates with improvements in various functional characteristics.

本発明の炭素多孔体は、例えば、電気化学キャパシタの電極材料として、特に適している。こうした電気化学キャパシタでは、比較的大きなメソ細孔を有する電極材料を用いることで、電気二重層を形成する正又は負イオンの移動がより円滑に行われるためである。   The porous carbon body of the present invention is particularly suitable as an electrode material for an electrochemical capacitor, for example. This is because, in such an electrochemical capacitor, the movement of positive or negative ions forming an electric double layer is performed more smoothly by using an electrode material having relatively large mesopores.

本発明の炭素多孔体の製法は、ベンゼンジカルボン酸のアルカリ土類金属塩を、炭化水素ガスを吸着するトラップ材の存在下、不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去することにより炭素多孔体を得るものである。この製法は、上述した本発明の炭素多孔体を得るのに好適である。   In the method for producing a porous carbon body of the present invention, an alkaline earth metal salt of benzenedicarboxylic acid is heated at 550 to 700 ° C. in an inert atmosphere in the presence of a trap material that adsorbs hydrocarbon gas, and carbon and alkaline earth are obtained. A composite with a metal carbonate is formed, and the composite is washed with a cleaning solution capable of dissolving the carbonate to remove the carbonate, thereby obtaining a porous carbon body. This production method is suitable for obtaining the carbon porous body of the present invention described above.

トラップ材は、炭化水素ガスを吸着(吸着除去)するものであればよく、例えば、活性炭、シリカゲル、ゼオライト、珪藻土からなる群より選ばれる1以上であるものとしてもよい。このうち、活性炭が好ましい。トラップ材は、ベンゼンジカルボン酸のアルカリ土類金属塩と混合された状態で存在させてもよいし、フィルター状に形成し、ベンゼンジカルボン酸の上部に配設された状態で存在させてもよいし、この両方としてもよい。また、それ以外の状態で存在させてもよい。フィルター状に形成したトラップ材としては、例えば、トラップ材そのものをハニカム形状に成型したものや、セラミックや金属製のハニカム担体やメッシュ材にトラップ材をコーティングしたもの、複数枚の金属メッシュ材の間にトラップ材を挟んで固定したもの、などを用いることができる。ベンゼンジカルボン酸のアルカリ土類金属塩を加熱する際にトラップ材を共存させることで、比較的容易に、加熱時に発生する炭化水素ガスの濃度を本発明の炭素多孔体を得るのに好適な範囲とすることができる。トラップ材の量は、特に限定されないが、例えば、ベンゼンジカルボン酸に対して100質量%以上1000質量%以下の範囲内とすることが好ましく、200質量%以上300質量%以下の範囲内とすることがより好ましい。   The trap material may be any material that adsorbs (adsorbs and removes) hydrocarbon gas, and may be, for example, one or more selected from the group consisting of activated carbon, silica gel, zeolite, and diatomaceous earth. Of these, activated carbon is preferred. The trap material may be present in a state where it is mixed with an alkaline earth metal salt of benzenedicarboxylic acid, or may be present in a state of being formed in a filter and disposed on top of benzenedicarboxylic acid. Both of these may be used. Further, it may exist in other states. Examples of the trap material formed in a filter shape include a trap material itself formed into a honeycomb shape, a ceramic or metal honeycomb carrier or a mesh material coated with a trap material, and a plurality of metal mesh materials. It is possible to use a material that is fixed with a trap material sandwiched between them. A trapping material is allowed to coexist when heating the alkaline earth metal salt of benzenedicarboxylic acid, so that the concentration of hydrocarbon gas generated during heating is relatively suitable for obtaining the porous carbon material of the present invention. It can be. The amount of the trap material is not particularly limited. For example, the amount of the trap material is preferably in the range of 100% by mass to 1000% by mass with respect to benzenedicarboxylic acid, and in the range of 200% by mass to 300% by mass. Is more preferable.

本発明の炭素多孔体の製法において、ベンゼンジカルボン酸としては、例えば、フタル酸(ベンゼン−1,2−ジカルボン酸)、イソフタル酸(ベンゼン−1,3−ジカルボン酸)、テレフタル酸(ベンゼン−1,4−ジカルボン酸)などが挙げられるが、このうちテレフタル酸が好ましい。また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられるが、このうちカルシウムが好ましい。ベンゼンジカルボン酸のアルカリ土類金属塩は、市販品を購入してもよいし、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合することにより合成してもよい。その場合、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とのモル比は、中和反応式に基づく化学量論量だけ用いてもよいし、一方が他方に対して過剰になるように用いてもよい。例えば、モル比は、1.5:1〜1:1.5の範囲に設定すればよい。ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合する際には、50〜100℃に加熱してもよい。   In the method for producing a porous carbon body of the present invention, examples of benzenedicarboxylic acid include phthalic acid (benzene-1,2-dicarboxylic acid), isophthalic acid (benzene-1,3-dicarboxylic acid), and terephthalic acid (benzene-1). , 4-dicarboxylic acid), among which terephthalic acid is preferred. Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like, among which calcium is preferable. The alkaline earth metal salt of benzenedicarboxylic acid may be purchased commercially, or may be synthesized by mixing benzenedicarboxylic acid and hydroxide of alkaline earth metal in water. In that case, the molar ratio of benzenedicarboxylic acid to alkaline earth metal hydroxide may be used in a stoichiometric amount based on the neutralization reaction formula, or one may be used in excess with respect to the other. May be. For example, the molar ratio may be set in the range of 1.5: 1 to 1: 1.5. When mixing benzenedicarboxylic acid and an alkaline earth metal hydroxide in water, the mixture may be heated to 50 to 100 ° C.

本発明の炭素多孔体の製法において、不活性雰囲気としては、窒素雰囲気やアルゴン雰囲気などが挙げられる。また、加熱温度は、550〜700℃に設定するのが好ましい。550℃未満では、77Kでの窒素吸着等温線の窒素相対圧力P/P0が0.85のときの窒素吸着量が十分大きくならないため好ましくない。700℃を超えると、炭素多孔体が得られないため好ましくない。加熱後に得られる炭素とアルカリ土類金属炭酸塩との複合体は、層状炭化物の層間にアルカリ土類金属炭酸塩が入り込んだ構造をとっていると推察される。加熱温度での保持時間は、例えば50時間以下としてもよい。このうち、0.5〜20時間が好ましく、1〜10時間がより好ましい。0.5時間以上では、炭素とアルカリ土類金属炭酸塩との複合体の形成が十分に行われる。20時間以下では、BET比表面積の比較的大きな炭素多孔体が得られる。 In the method for producing a porous carbon body of the present invention, examples of the inert atmosphere include a nitrogen atmosphere and an argon atmosphere. The heating temperature is preferably set to 550 to 700 ° C. If it is less than 550 ° C., the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 of the nitrogen adsorption isotherm at 77 K is 0.85 is not sufficiently large, which is not preferable. If it exceeds 700 ° C., a porous carbon material cannot be obtained, which is not preferable. It is inferred that the composite of carbon and alkaline earth metal carbonate obtained after heating has a structure in which alkaline earth metal carbonate enters between the layers of the layered carbide. The holding time at the heating temperature may be, for example, 50 hours or less. Among these, 0.5 to 20 hours are preferable, and 1 to 10 hours are more preferable. In 0.5 hours or more, the complex of carbon and alkaline earth metal carbonate is sufficiently formed. In 20 hours or less, a carbon porous body having a relatively large BET specific surface area can be obtained.

本発明の炭素多孔体の製法において、アルカリ土類金属炭酸塩を溶解可能な洗浄液としては、例えば、アルカリ土類金属炭酸塩が炭酸カルシウムの場合には水や酸性水溶液を用いることが好ましい。酸性水溶液としては、例えば、塩酸、硝酸及び酢酸などの水溶液が挙げられる。こうした洗浄を行うことにより、複合体中のアルカリ土類金属炭酸塩が存在していた箇所は空洞になると推察される。   In the method for producing a porous carbon body of the present invention, as the cleaning liquid capable of dissolving the alkaline earth metal carbonate, for example, when the alkaline earth metal carbonate is calcium carbonate, it is preferable to use water or an acidic aqueous solution. Examples of the acidic aqueous solution include aqueous solutions of hydrochloric acid, nitric acid, acetic acid, and the like. By performing such cleaning, it is presumed that the place where the alkaline earth metal carbonate in the composite was present becomes a cavity.

本発明のアンモニア吸着材は、上述した炭素多孔体からなるものである。このアンモニア吸着材は、アンモニア圧力が390kPaのときのアンモニア吸着量からアンモニア圧力が300kPaのときのアンモニア吸着量を差し引いた値が0.40g/g以上であることが好ましい。こうすれば、アンモニア圧力を調節することにより、多量のアンモニアを吸着させたりそれを放出させたりすることができるからである。本発明のアンモニア吸着材は、例えば、アンモニアを作動媒体とする蓄熱デバイスの、アンモニア吸着タンク用のアンモニア吸着材として、特に適している。こうした蓄熱デバイスでは、特に一定の圧力域でアンモニアと反応する蓄熱材を用いるため、蓄熱材の反応に好適な圧力域でアンモニアをなるべく多量に出し入れ可能であることが要求されるためである。   The ammonia adsorbent of the present invention is composed of the above-described porous carbon material. The ammonia adsorbent preferably has a value obtained by subtracting the ammonia adsorption amount when the ammonia pressure is 300 kPa from the ammonia adsorption amount when the ammonia pressure is 390 kPa is 0.40 g / g or more. This is because a large amount of ammonia can be adsorbed or released by adjusting the ammonia pressure. The ammonia adsorbent of the present invention is particularly suitable as an ammonia adsorbent for an ammonia adsorption tank of a heat storage device using ammonia as a working medium, for example. This is because such a heat storage device uses a heat storage material that reacts with ammonia in a specific pressure range, and therefore, it is required that ammonia can be taken in and out as much as possible in a pressure range suitable for the reaction of the heat storage material.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、本発明の炭素多孔体は、本発明の炭素多孔体の製造方法で製造したものに限定されない。例えば、本発明の炭素多孔体は、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去することにより得られたものとしてもよい。すなわち、トラップ材の非存在下で得られたものとしてもよい。   For example, the carbon porous body of the present invention is not limited to those manufactured by the method for manufacturing a carbon porous body of the present invention. For example, in the porous carbon body of the present invention, an alkaline earth metal salt of benzenedicarboxylic acid is heated at 550 to 700 ° C. in an inert atmosphere to form a composite of carbon and alkaline earth metal carbonate, It is good also as what was obtained by wash | cleaning the said composite_body | complex with the washing | cleaning liquid which can melt | dissolve a salt, and removing the said carbonate. That is, it may be obtained in the absence of a trap material.

以下には、本発明の炭素多孔体を具体的に製造した例を実施例として説明する。なお、実験例1,2が本発明の実施例に相当し、実験例3が比較例に相当する。   Below, the example which manufactured the carbon porous body of the present invention concretely is explained as an example. Experimental examples 1 and 2 correspond to examples of the present invention, and experimental example 3 corresponds to a comparative example.

[実験例1]
(テレフタル酸のカルシウム塩の合成)
テレフタル酸(1mol)と水酸化カルシウム(1mol)とを水2L中に加え、80℃の水浴で4時間加熱した。生成したテレフタル酸のカルシウム塩の結晶を濾過して分取し、室温で風乾した。
[Experiment 1]
(Synthesis of calcium salt of terephthalic acid)
Terephthalic acid (1 mol) and calcium hydroxide (1 mol) were added to 2 L of water and heated in a water bath at 80 ° C. for 4 hours. The produced crystals of calcium salt of terephthalic acid were collected by filtration and air-dried at room temperature.

(テレフタル酸のカルシウム塩の炭素化)
テレフタル酸のカルシウム塩(20g)を電気管状炉内に配置し、その上にトラップ材として粒状活性炭(株式会社キャタラー製、GA−5、20g)を重ねて配置し、その管状炉内を不活性ガス(流速0.1L/分)でフロー置換した。不活性ガスとしては窒素ガスを用いたが、アルゴンガスを用いてもよい。ガスフローを維持したまま、管状炉温度を設定温度まで1時間かけて昇温した。ここでは、設定温度を550℃にした。昇温完了後、ガスフローを維持したまま、その設定温度で2時間保持し、その後室温まで冷却した。これにより、管状炉内には、炭素と炭酸カルシウムとの複合体が生成した。
(Carbonization of calcium salt of terephthalic acid)
A calcium salt of terephthalic acid (20 g) is placed in an electric tube furnace, and a granular activated carbon (GA-5, 20 g, manufactured by Cataler Co., Ltd.) is placed thereon as a trap material, and the inside of the tube furnace is inert. The flow was replaced with gas (flow rate 0.1 L / min). Nitrogen gas is used as the inert gas, but argon gas may be used. While maintaining the gas flow, the tubular furnace temperature was raised to the set temperature over 1 hour. Here, the set temperature was set to 550 ° C. After completion of the temperature increase, the gas flow was maintained and maintained at the set temperature for 2 hours, and then cooled to room temperature. Thereby, the composite_body | complex of carbon and calcium carbonate produced | generated in the tubular furnace.

(複合体の酸処理)
複合体を管状炉から取り出し、水500mLに分散させた。分散液に2mol/Lの塩酸を液のpHが4以下になるまで添加し、撹拌した。そうしたところ、炭酸カルシウムの分解により発泡が見られた。分散液をろ過後、乾燥し、粒状活性炭をふるい分け除去して実験例1の炭素多孔体を得た(収量約4g)。
(Acid treatment of complex)
The composite was removed from the tubular furnace and dispersed in 500 mL of water. 2 mol / L hydrochloric acid was added to the dispersion until the pH of the solution was 4 or less, and the mixture was stirred. As a result, foaming was observed due to decomposition of calcium carbonate. The dispersion was filtered and dried, and the granular activated carbon was sieved and removed to obtain a carbon porous body of Experimental Example 1 (yield about 4 g).

[実験例2]
テレフタル酸カルシウム塩の炭素化に際し、トラップ材の重量を5gに変更した以外は、実験例1と同様にして、実験例2の炭素多孔体を得た(収量約5g)。
[Experiment 2]
The carbon porous body of Experimental Example 2 was obtained in the same manner as in Experimental Example 1 except that the weight of the trap material was changed to 5 g when the terephthalic acid calcium salt was carbonized (yield: about 5 g).

[実験例3]
実験例3の炭素多孔体として、市販の活性炭である商品名メソコール(株式会社キャタラー製)を用意した。
[Experiment 3]
As a carbon porous body of Experimental Example 3, a commercial name mesocor (made by Cataler Co., Ltd.), which is a commercially available activated carbon, was prepared.

[特性値測定]
実験例1〜3の各炭素多孔体について、液体窒素温度(77K)における窒素吸着測定から表1に示す特性値を求めた。図2は、実験例1〜3の77Kでの窒素吸着等温線である。表1中、BET比表面積は、BET解析から算出した。窒素吸着等温線は、カンタクローム社製Autosorb−1を用いて測定を行い、吸着量の解析を行った。また、αsプロット解析において、プロット外挿直線の切片の値により、ミクロ細孔容量(cm3(STP)/g)を求めた。ミクロ細孔容量(cm3/g)は、標準ガス体積(cm3(STP)/g)を77Kの液体窒素密度(0.808g/cm3)を用いて変換した。窒素吸着等温線における窒素相対圧力P/P0が0.97のときの窒素吸着量からミクロ細孔容量を差し引いた値を、メソ細孔容量として算出した。窒素相対圧力P/P0が0.50及び0.85のときの窒素吸着量A1,A2の値を窒素吸着等温線のグラフから読み取り、両者の差を窒素吸着量差△A(=A2−A1)とした。また、窒素相対圧力P/P0が0.99のときの窒素吸着量A3の値を窒素吸着等温線のグラフから読み取った。なお、αSプロット解析では、比較用の標準等温線として、“Characterization of porous carbons with high resolution alpha(s)-analysis and low temperature magnetic susceptibility”Kaneko, K; Ishii, C; Kanoh, H; Hanazawa, Y; Setoyama, N; Suzuki, T ADVANCES IN COLLOID AND INTERFACE SCIENCE vol.76, p295-320(1998)に記載された標準等温線を用いた。
[Characteristic value measurement]
About each carbon porous body of Experimental Examples 1-3, the characteristic value shown in Table 1 was calculated | required from the nitrogen adsorption measurement in liquid nitrogen temperature (77K). FIG. 2 is a nitrogen adsorption isotherm at 77K of Experimental Examples 1 to 3. In Table 1, the BET specific surface area was calculated from BET analysis. The nitrogen adsorption isotherm was measured using Autosorb-1 manufactured by Cantachrome, and the amount of adsorption was analyzed. In the αs plot analysis, the micropore volume (cm 3 (STP) / g) was determined from the value of the intercept of the extrapolated line. Micropore volume (cm 3 / g) was converted using standard gas volume (cm 3 (STP) / g) with liquid nitrogen density of 77K (0.808 g / cm 3 ). A value obtained by subtracting the micropore volume from the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 at the nitrogen adsorption isotherm was 0.97 was calculated as the mesopore volume. The nitrogen adsorption amounts A1 and A2 when the nitrogen relative pressure P / P 0 is 0.50 and 0.85 are read from the graph of the nitrogen adsorption isotherm, and the difference between the two is the nitrogen adsorption amount difference ΔA (= A2− A1). Further, the value of the nitrogen adsorption amount A3 when the nitrogen relative pressure P / P 0 was 0.99 was read from the graph of the nitrogen adsorption isotherm. In the α S plot analysis, “Characterization of porous carbons with high resolution alpha (s) -analysis and low temperature magnetic susceptibility” Kaneko, K; Ishii, C; Kanoh, H; Hanazawa, Y; Setoyama, N; Suzuki, T ADVANCES IN COLLOID AND INTERFACE SCIENCE vol.76, p295-320 (1998).

表1から明らかなように、実験例1,2の炭素多孔体は、BET比表面積が700m2/g以上と大きく、ミクロ細孔の細孔容量が0.01cm3/g以下と小さかった。また、図2に示す実験例1,2の炭素多孔体の窒素吸着等温線は、IUPAC分類のIV型(メソ細孔を持つことを示す型、図1参照)に属するものであった。こうしたことから、実験例1,2の炭素多孔体は、ほぼメソ細孔から構成されているといえる。 As is clear from Table 1, the carbon porous bodies of Experimental Examples 1 and 2 had a large BET specific surface area of 700 m 2 / g or more and a micropore pore volume of 0.01 cm 3 / g or less. Further, the nitrogen adsorption isotherms of the porous carbon bodies of Experimental Examples 1 and 2 shown in FIG. 2 belonged to the IUPAC class IV type (type showing mesopores, see FIG. 1). Therefore, it can be said that the carbon porous bodies of Experimental Examples 1 and 2 are substantially composed of mesopores.

また、実験例1,2の炭素多孔体は、窒素吸着等温線において窒素相対圧力P/P0が0.85のときの窒素吸着量A2が600cm3(STP)/g以上1100cm3(STP)/g以下の範囲にあり、窒素相対圧力P/P0が0.5のときの窒素吸着量A1が500cm3(STP)/g以下の範囲にあり、窒素吸着量差△Aの値が100cm3(STP)/g以上であった。このことから、実験例1,2の炭素多孔体は、窒素相対圧力の比較的大きな領域において窒素相対圧力の変化量に対する窒素吸着量の変化量が大きいといえる。そのため、実験例1,2の炭素多孔体は、特定のガス(例えば窒素など)に対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。 Further, in the carbon porous bodies of Experimental Examples 1 and 2, the nitrogen adsorption amount A2 when the nitrogen relative pressure P / P 0 is 0.85 in the nitrogen adsorption isotherm is 600 cm 3 (STP) / g or more and 1100 cm 3 (STP). The nitrogen adsorption amount A1 when the nitrogen relative pressure P / P 0 is 0.5 is in the range of 500 cm 3 (STP) / g or less, and the value of the nitrogen adsorption amount difference ΔA is 100 cm. 3 (STP) / g or more. From this, it can be said that the carbon porous bodies of Experimental Examples 1 and 2 have a large change amount of the nitrogen adsorption amount with respect to the change amount of the nitrogen relative pressure in a relatively large region of the nitrogen relative pressure. Therefore, the porous carbon bodies of Experimental Examples 1 and 2 can increase the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas (for example, nitrogen).

これに対して、実験例3の炭素多孔体は、窒素吸着量差△A2が66cm3(STP)/gと小さかった。このため、実験例3は、特定ガスに対してガス圧力を所定範囲で変化させたとしても、ガスの吸脱着量を実験例1,2のように大きくすることができない。 On the other hand, the carbon porous body of Experimental Example 3 had a small nitrogen adsorption amount difference ΔA2 of 66 cm 3 (STP) / g. For this reason, in Experimental Example 3, even if the gas pressure is changed within a predetermined range with respect to the specific gas, the gas adsorption / desorption amount cannot be increased as in Experimental Examples 1 and 2.

ここで、各炭素多孔体につき、特定ガスとしてアンモニアを用いて、273Kにおける吸着測定を行った。飽和蒸気圧は430kPaであった。アンモニア圧力が390kPaのときのアンモニア吸着量B2からアンモニア圧力が300kPaのときのアンモニア吸着量B1を差し引いたアンモニア吸着量差△Bを求め、その値を表1に示した。図3は、実験例1,3のアンモニア吸着等温線である。   Here, for each carbon porous body, adsorption measurement at 273 K was performed using ammonia as a specific gas. The saturated vapor pressure was 430 kPa. The ammonia adsorption amount difference ΔB obtained by subtracting the ammonia adsorption amount B1 when the ammonia pressure was 300 kPa from the ammonia adsorption amount B2 when the ammonia pressure was 390 kPa was determined, and the value is shown in Table 1. FIG. 3 is an ammonia adsorption isotherm of Experimental Examples 1 and 3.

表1に示すように、アンモニア圧力が300−390kPaの範囲において、実験例1では0.78g/g、実験例2では0.46g/g以上という大きなアンモニア吸着量差△Bが得られたが、実験例3では0.06g/g以下という小さな値しか得られなかった。このことから、実験例1,2の炭素多孔体を用いた場合、アンモニア圧力を調節することにより、多量のアンモニアを吸着させたりそれを放出させたりすることが可能なことが分かった。   As shown in Table 1, a large ammonia adsorption amount difference ΔB of 0.78 g / g in Experimental Example 1 and 0.46 g / g or more in Experimental Example 2 was obtained in an ammonia pressure range of 300-390 kPa. In Experimental Example 3, only a small value of 0.06 g / g or less was obtained. From this, it was found that when the carbon porous bodies of Experimental Examples 1 and 2 were used, a large amount of ammonia could be adsorbed or released by adjusting the ammonia pressure.

本発明の炭素多孔体は、例えば、窒素やアンモニアの吸着材として利用可能なほか、電気化学キャパシタの電極材料、固体高分子型燃料電池の電極触媒担体、バイオ燃料電池の酵素電極を担持する材料、キャニスタの吸着材、燃料精製設備の吸着材などに利用可能である。   The carbon porous body of the present invention can be used as, for example, an adsorbent for nitrogen or ammonia, and is an electrode material for an electrochemical capacitor, an electrode catalyst carrier for a polymer electrolyte fuel cell, or a material for supporting an enzyme electrode for a biofuel cell It can be used as an adsorbent for canisters and as an adsorbent for fuel refining equipment.

Claims (12)

温度77Kで測定した窒素吸着等温線のαSプロット解析から算出したミクロ細孔容量が、0.1cm3/g以下であり、前記窒素吸着等温線における窒素相対圧力P/P0が0.97のときの窒素吸着量から前記ミクロ細孔容量を差し引いて算出したメソ細孔容量よりも小さく、前記窒素吸着等温線において、窒素相対圧力P/P0が0.5のときの窒素吸着量が500cm3(STP)/g以下の範囲にあり且つ窒素相対圧力P/P0が0.85のときの窒素吸着量が600cm3(STP)/g以上1100cm3(STP)/g以下の範囲にある、炭素多孔体。 The micropore capacity calculated from the α S plot analysis of the nitrogen adsorption isotherm measured at a temperature of 77 K is 0.1 cm 3 / g or less, and the nitrogen relative pressure P / P 0 at the nitrogen adsorption isotherm is 0.97. The nitrogen adsorption amount is smaller than the mesopore volume calculated by subtracting the micropore volume from the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.5 in the nitrogen adsorption isotherm. In the range of 500 cm 3 (STP) / g or less and the nitrogen relative pressure P / P 0 is 0.85, the nitrogen adsorption amount is in the range of 600 cm 3 (STP) / g or more and 1100 cm 3 (STP) / g or less. A porous carbon body. 窒素相対圧力P/P0が0.85のときの窒素吸着量から窒素相対圧力P/P0が0.5のときの窒素吸着量を差し引いた値が200cm3(STP)/g以上である、請求項1に記載の炭素多孔体。 The value obtained by subtracting the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.5 from the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.85 is 200 cm 3 (STP) / g or more. The carbon porous body according to claim 1. 温度77Kでの窒素吸着等温線において、窒素相対圧力P/P0が0.99のときの窒素吸着量が1500cm3(STP)/g以上の範囲にある、請求項1又は2に記載の炭素多孔体。 The carbon according to claim 1 or 2, wherein in the nitrogen adsorption isotherm at a temperature of 77K, the nitrogen adsorption amount when the nitrogen relative pressure P / P 0 is 0.99 is in the range of 1500 cm 3 (STP) / g or more. Porous body. 窒素吸着により求めたBET比表面積が700m2/g以上である、請求項1〜3のいずれか1項に記載の炭素多孔体。 The carbon porous body according to any one of claims 1 to 3, wherein the BET specific surface area determined by nitrogen adsorption is 700 m 2 / g or more. 窒素吸着により求めたBET比表面積が1200m2/g以下である、請求項1〜4のいずれか1項に記載の炭素多孔体。 The porous carbon body according to any one of claims 1 to 4, wherein a BET specific surface area determined by nitrogen adsorption is 1200 m 2 / g or less. ベンゼンジカルボン酸のアルカリ土類金属塩を、炭化水素ガスを吸着するトラップ材の存在下、不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去して炭素多孔体を得る、
炭素多孔体の製法。
An alkaline earth metal salt of benzenedicarboxylic acid is heated at 550 to 700 ° C. in an inert atmosphere in the presence of a trap material that adsorbs hydrocarbon gas to form a composite of carbon and alkaline earth metal carbonate. , The composite is washed with a washing solution capable of dissolving the carbonate to remove the carbonate to obtain a porous carbon body.
Manufacturing method of carbon porous body.
前記トラップ材は、活性炭、シリカゲル、ゼオライト、珪藻土からなる群より選ばれる1以上である、請求項6に記載の炭素多孔体の製法。   The method for producing a porous carbon body according to claim 6, wherein the trap material is one or more selected from the group consisting of activated carbon, silica gel, zeolite, and diatomaceous earth. 前記トラップ材は、前記ベンゼンジカルボン酸のアルカリ土類金属塩と混合された状態、及び、フィルター状に形成され前記ベンゼンジカルボン酸の上部に配設された状態、の少なくとも一方で存在する、請求項6又は7に記載の炭素多孔体の製法。   The trap material is present in at least one of a state in which the trap material is mixed with an alkaline earth metal salt of the benzenedicarboxylic acid and a state in which the trap material is formed in a filter and disposed on top of the benzenedicarboxylic acid. 6. A method for producing a porous carbon material according to 6 or 7. 前記ベンゼンジカルボン酸のアルカリ土類金属塩は、ベンゼンジカルボン酸とアルカリ土類金属とのモル比が1.5:1〜1:1.5の範囲にある、
請求項6〜8のいずれか1項に記載の炭素多孔体の製法。
The alkaline earth metal salt of benzenedicarboxylic acid has a molar ratio of benzenedicarboxylic acid to alkaline earth metal in the range of 1.5: 1 to 1: 1.5.
The manufacturing method of the carbon porous body of any one of Claims 6-8.
前記ベンゼンジカルボン酸のアルカリ土類金属塩は、テレフタル酸のカルシウム塩である、請求項6〜9のいずれか1項に記載の炭素多孔体の製法。   The method for producing a porous carbon body according to any one of claims 6 to 9, wherein the alkaline earth metal salt of benzenedicarboxylic acid is a calcium salt of terephthalic acid. 請求項1〜5のいずれか1項に記載の炭素多孔体からなるアンモニア吸着材。   The ammonia adsorption material which consists of a carbon porous body of any one of Claims 1-5. アンモニア圧力が390kPaのときのアンモニア吸着量からアンモニア圧力が300kPaのときのアンモニア吸着量を差し引いた値が0.40g/g以上である、
請求項11に記載のアンモニア吸着材。
The value obtained by subtracting the ammonia adsorption amount when the ammonia pressure is 300 kPa from the ammonia adsorption amount when the ammonia pressure is 390 kPa is 0.40 g / g or more.
The ammonia adsorbent according to claim 11.
JP2015043718A 2015-03-05 2015-03-05 Porous carbon, production method thereof, and ammonia adsorbent Active JP6042922B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015043718A JP6042922B2 (en) 2015-03-05 2015-03-05 Porous carbon, production method thereof, and ammonia adsorbent
KR1020177019808A KR20170097137A (en) 2015-03-05 2016-03-02 Carbon porous body, production method thereof, ammonia adsorbent material, canister, and production method thereof
PCT/JP2016/056419 WO2016140266A1 (en) 2015-03-05 2016-03-02 Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same
CN201680006231.0A CN107207255B (en) 2015-03-05 2016-03-02 Porous carbon body, method for producing same, ammonia adsorbent, carbon canister, and method for producing same
US15/636,720 US20170326527A1 (en) 2015-03-05 2017-06-29 Carbon porous body, production method thereof, ammonia adsorbent material, canister, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043718A JP6042922B2 (en) 2015-03-05 2015-03-05 Porous carbon, production method thereof, and ammonia adsorbent

Publications (2)

Publication Number Publication Date
JP2016160170A JP2016160170A (en) 2016-09-05
JP6042922B2 true JP6042922B2 (en) 2016-12-14

Family

ID=56846253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043718A Active JP6042922B2 (en) 2015-03-05 2015-03-05 Porous carbon, production method thereof, and ammonia adsorbent

Country Status (1)

Country Link
JP (1) JP6042922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006216B2 (en) 2019-11-29 2024-06-11 Toyota Jidosha Kabushiki Kaisha Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949113B2 (en) 2018-03-16 2024-04-02 Cataler Corporation Electrode catalyst for fuel cell, and fuel cell using same
EP3868712A4 (en) 2018-10-15 2022-06-22 National Institute Of Advanced Industrial Science And Technology Ammonia chemical species elimination method using carbon dioxide, ammonia chemical species-supplying agent, and ammonia chemical species adsorption and elimination device
JP7144378B2 (en) * 2019-08-15 2022-09-29 トヨタ自動車株式会社 Graphitized carbon porous material for fuel cell catalyst carrier, fuel cell catalyst, and method for producing fuel cell catalyst layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469952B2 (en) * 2005-09-07 2010-06-02 独立行政法人産業技術総合研究所 Solid phase growth carbon fiber and method for producing the same
JP5473255B2 (en) * 2008-06-16 2014-04-16 株式会社キャタラー Activated carbon for gas component adjustment
JP6327053B2 (en) * 2013-09-13 2018-05-23 株式会社豊田中央研究所 Porous carbon, production method thereof, and ammonia adsorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006216B2 (en) 2019-11-29 2024-06-11 Toyota Jidosha Kabushiki Kaisha Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2016160170A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
He et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture
Shao et al. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture
Pan et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO 2 capture and supercapacitor electrode materials
Liang et al. ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range
Yu et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal
CN104583120B (en) Activated carbon with high active surface area
KR101404484B1 (en) Preparation method of n-doped activated carbons for carbon dioxide capture
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
JP6327053B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
JP2014055110A (en) Method for producing microporous carbonaceous material
JP6042922B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
WO2016140266A1 (en) Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same
US10137405B2 (en) Porous carbon, humidity control adsorbent, adsorption heat pump, and fuel cell
KR102113719B1 (en) Activated carbon and its manufacturing method
CN109718727B (en) Carbon aerogel prepared by calcining MOFs wafer, method thereof and application thereof in environmental protection and energy storage
WO2007046881A2 (en) Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same
Gaikwad et al. Electrospun fiber mats with multistep seeded growth of UTSA-16 metal organic frameworks by microwave reaction with excellent CO2 capture performance
KR101631181B1 (en) Manufacturing method of activated carbon aerogel for carbon dioxide adsorption
Tang et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@ resorcinol-formaldehyde resin for atmospheric water harvesting
JPH07155589A (en) Production of carbon material having large specific surface area
JP2016160251A (en) Production method of calcium salt and manufacturing method of carbon porous body
CN114314584B (en) Preparation method and application of performance-repeatable pore multi-polarization nano carbon material
EP3059011B1 (en) Carbon porous body, method for producing the same, and ammonia-adsorbing material
CN114849652A (en) Activated carbon-encapsulated imidazole metal organic framework composite material with high gas separation selectivity and preparation method thereof
Luchetta et al. CO2 metallothermal reduction to graphene: the influence of Zn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6042922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250