KR100798417B1 - Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution - Google Patents
Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution Download PDFInfo
- Publication number
- KR100798417B1 KR100798417B1 KR1020070075288A KR20070075288A KR100798417B1 KR 100798417 B1 KR100798417 B1 KR 100798417B1 KR 1020070075288 A KR1020070075288 A KR 1020070075288A KR 20070075288 A KR20070075288 A KR 20070075288A KR 100798417 B1 KR100798417 B1 KR 100798417B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnesium chloride
- chloride
- ammonium chloride
- solution
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 title claims abstract description 148
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 229910001629 magnesium chloride Inorganic materials 0.000 title claims abstract description 59
- 235000019270 ammonium chloride Nutrition 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 10
- 239000000243 solution Substances 0.000 claims abstract description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 20
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 20
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 abstract description 3
- 239000011777 magnesium Substances 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 2
- 230000018044 dehydration Effects 0.000 description 8
- 238000006297 dehydration reaction Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 6
- YPVGEVAPNPLPEP-UHFFFAOYSA-N azanium;chloride;hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Cl-] YPVGEVAPNPLPEP-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- KAWFDBNKGGSINF-UHFFFAOYSA-N O.O.O.O.O.O.[Cl-].[Mg].[NH4+] Chemical compound O.O.O.O.O.O.[Cl-].[Mg].[NH4+] KAWFDBNKGGSINF-UHFFFAOYSA-N 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- XEEYVTMVFJEEEY-UHFFFAOYSA-L magnesium;dichloride;tetrahydrate Chemical compound O.O.O.O.[Mg+2].[Cl-].[Cl-] XEEYVTMVFJEEEY-UHFFFAOYSA-L 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XKMYFMNFNYKQQG-UHFFFAOYSA-N [Cl-].[NH4+].O.O.O.O.O.O.[NH4+].[Cl-] Chemical compound [Cl-].[NH4+].O.O.O.O.O.O.[NH4+].[Cl-] XKMYFMNFNYKQQG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FLNKWZNWHZDGRT-UHFFFAOYSA-N azane;dihydrochloride Chemical compound [NH4+].[NH4+].[Cl-].[Cl-] FLNKWZNWHZDGRT-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- -1 magnesium hydride magnesium chloride Chemical compound 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- DTGRQRFFKHYRJG-UHFFFAOYSA-N magnesium tetrahydrate Chemical compound O.O.O.O.[Mg+2] DTGRQRFFKHYRJG-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/26—Magnesium halides
- C01F5/30—Chlorides
- C01F5/32—Preparation of anhydrous magnesium chloride by chlorinating magnesium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/26—Magnesium halides
- C01F5/30—Chlorides
- C01F5/34—Dehydrating magnesium chloride containing water of crystallisation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
본 발명은 마그네슘 용융염전해에 원료로 사용되는 무수 염화마그네슘의 제조방법에 관한 것으로서, 보다 상세하게는 a) 산화마그네슘을 염산 수용액에 용해시켜 염화마그네슘 수용액을 제조하는 단계; b) 상기 염화마그네슘 수용액에 염화암모늄 수용액을 첨가하여 함수 염화암모늄마그네슘 용액을 제조하는 단계; c) 상기 함수 염화암모늄마그네슘 용액을 가열, 감압농축하여 함수 염화암모늄마그네슘 결정을 회수하는 단계; 및 d) 상기 함수 염화암모늄마그네슘을 열처리하는 단계; 를 포함하는 무수 염화마그네슘의 제조방법에 관한 것이다.The present invention relates to a method for producing anhydrous magnesium chloride used as a raw material for magnesium molten salt, more specifically, a) dissolving magnesium oxide in an aqueous hydrochloric acid solution to prepare a magnesium chloride aqueous solution; b) adding an aqueous ammonium chloride solution to the aqueous magnesium chloride solution to prepare a hydrous ammonium chloride solution; c) recovering the hydrous ammonium chloride crystals by heating and decompressing the hydrous ammonium chloride solution; And d) heat treating the hydrous ammonium chloride; It relates to a method for producing anhydrous magnesium chloride containing a.
본 발명에 따른 무수 염화마그네슘의 제조방법은 기존의 염산 분위기에서 함수 염화마그네슘을 탈수시키는 공정에 비하여 친환경적이고 공정이 간단한 장점을 가지고 있다.The method for producing anhydrous magnesium chloride according to the present invention has the advantages of environmentally friendly and simple process compared to the process of dehydrating hydrous magnesium chloride in the existing hydrochloric acid atmosphere.
Description
본 발명은 염화마그네슘 수용액으로부터 무수염화마그네슘을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing anhydrous magnesium chloride from an aqueous magnesium chloride solution.
본 발명은 염화마그네슘 수용액에 염화암모늄(NH4Cl)을 첨가하여 가열, 농축시킴으로서 함수염화마그네슘을 용이하게 회수함과 동시에 농축, 결정화된 함수 염화암모늄마그네슘(NH4MgCl36H2O)을 열처리 온도에 따라 대기 또는 불활성 분위기에서 탈수하여 무수 염화마그네슘을 제조하는 방법에 관한 것이다.The present invention easily recovers hydrous magnesium chloride by adding ammonium chloride (NH 4 Cl) to an aqueous magnesium chloride solution and heating and concentrating the same, and heat-treating the concentrated and crystallized hydrous magnesium chloride (NH 4 MgCl 3 6H 2 O). It relates to a method for producing anhydrous magnesium chloride by dehydration in air or inert atmosphere depending on the temperature.
마그네슘 금속을 얻기 위한 마그네슘 용융염 전해는 주로 무수 염화마그네슘을 원료물질로 사용한다. 상기 무수 염화마그네슘은 함수 염화마그네슘을 탈수하여 얻어지며, 함수 염화마그네슘은 산화마그네슘을 염산 수용액에 용해한 후 가열, 농 축시켜 얻을 수 있다. 그러나 이 과정에서 농축, 결정화된 함수염화마그네슘은 딱딱하게 굳어지면서 용기에 붙어 회수가 어려운 문제점이 있다.Magnesium molten salt electrolysis to obtain magnesium metal mainly uses anhydrous magnesium chloride as raw material. The anhydrous magnesium chloride is obtained by dehydrating hydrous magnesium chloride, hydrous magnesium chloride can be obtained by dissolving magnesium oxide in an aqueous hydrochloric acid solution and then heating and concentrating. In this process, however, the concentrated and crystallized magnesium chloride has a problem that it is difficult to recover because it is hardened and stuck to the container.
함수 염화마그네슘으로부터 무수 염화마그네슘으로의 탈수는 식 (1)-(4)의 과정을 통하여 이루어진다.Dehydration from hydrous magnesium chloride to anhydrous magnesium chloride is accomplished through the process of formulas (1)-(4).
MgCl26H2O → MgCl24H2O + 2H2O T = 117℃ (1)MgCl 2 6H 2 O → MgCl 2 4H 2 O + 2H 2 OT = 117 ° C (1)
MgCl24H2O → MgCl22H2O + 2H2O T = 185℃ (2)MgCl 2 4H 2 O → MgCl 2 2H 2 O + 2H 2 OT = 185 ° C (2)
MgCl22H2O → MgCl2H2O + H2O T = 242℃ (3)MgCl 2 2H 2 O → MgCl 2 H 2 O + H 2 OT = 242 ° C (3)
MgCl2H2O → MgCl2 + H2O T = 304℃ (4)MgCl 2 H 2 O → MgCl 2 + H 2 OT = 304 ° C (4)
그러나 182℃ 이상에서는 하기 식 (5)와 같이 2수화 염화마그네슘의 부분 가수분해가 일어나기 시작하고, 350℃이상에서 완전히 가수분해가 일어나 염화수산화마그네슘(MgOHCl)이 형성되는데, 염화수산화마그네슘은 탈수과정에서 산화마그네슘(MgO)으로 전환된다.However, at 182 ° C or above, partial hydrolysis of dihydrated magnesium chloride begins to occur as shown in Equation (5) below, and complete hydrolysis occurs at 350 ° C or higher to form magnesium chloride (MgOHCl), which is dehydrated. Is converted to magnesium oxide (MgO).
MgCl22H2O → MgOHCl + HCl + H2O T = 182 ~ 350℃ (5)MgCl 2 2H 2 O → MgOHCl + HCl + H 2 OT = 182 ~ 350 ℃ (5)
MgOHCl → MgO + HCl (6)MgOHCl → MgO + HCl (6)
이렇게 생성된 산화마그네슘은 용융염전해 과정에서 금속마그네슘으로의 전해효율을 감소시키는 원인이 된다. 그러므로 함수 염화마그네슘으로부터 무수 염화마그네슘을 얻기 위해서는 염산 분위기에서 탈수가 이루어져야 하기 때문에 탈수공정을 엄격하게 관리해야 하는 등 복잡하고 까다로운 문제점을 가지고 있다.The magnesium oxide thus produced is a cause of reducing the electrolytic efficiency to the metal magnesium in the molten salt electrolysis process. Therefore, in order to obtain anhydrous magnesium chloride from hydrous magnesium chloride, it must be dehydrated in hydrochloric acid atmosphere, and thus has a complicated and difficult problem such as strict management of the dehydration process.
본 발명은 상기와 같이 함수 염화마그네슘을 가열, 농축시 함수 염화마그네슘이 딱딱하게 굳어지면서 용기에 붙어 회수가 어려운 문제점과, 탈수과정에서 산화마그네슘의 생성을 억제하기 위하여 함수염화마그네슘을 염산 분위기에서 탈수해야 하는 등의 복잡하고 까다로운 탈수과정을 단순하게 하기 위하여, 염화마그네슘 수용액 가열, 농축시 염화암모늄을 첨가하여 함수 염화암모늄마그네슘을 형성함으로 함수염화마그네슘을 용이하게 회수하고, 이때 형성된 함수 염화암모늄마그네슘을 열처리 온도에 따라 대기 또는 불활성 분위기에서 탈수함으로서 무수 염화마그네슘을 손쉽게 제조하는 방법을 제공하는데 그 목적이 있다.The present invention is difficult to recover as the magnesium hydroxide is hardened hard when it is heated and concentrated when the magnesium chloride is heated and concentrated as described above, and the hydrous magnesium chloride is dehydrated in a hydrochloric acid atmosphere to suppress the formation of magnesium oxide during the dehydration process. In order to simplify the complicated and difficult dehydration process, such as, the aqueous magnesium chloride is formed by adding ammonium chloride when heating and concentrating the aqueous magnesium chloride solution to easily recover the hydrous magnesium chloride. It is an object of the present invention to provide a method for easily producing anhydrous magnesium chloride by dehydration in an air or inert atmosphere depending on the heat treatment temperature.
본 발명은 상기 목적을 달성하기 위하여 The present invention to achieve the above object
a) 산화마그네슘을 염산 수용액에 용해시켜 염화마그네슘 수용액을 제조하는 단계;a) dissolving magnesium oxide in an aqueous hydrochloric acid solution to prepare a magnesium chloride aqueous solution;
b) 상기 염화마그네슘 수용액에 염화암모늄 수용액을 첨가하여 함수 염화암모늄마그네슘 용액을 제조하는 단계;b) adding an aqueous ammonium chloride solution to the aqueous magnesium chloride solution to prepare a hydrous ammonium chloride solution;
c) 상기 함수 염화암모늄마그네슘 용액을 가열, 감압농축하여 함수 염화암모늄마그네슘 결정을 회수하는 단계; 및c) recovering the hydrous ammonium chloride crystals by heating and decompressing the hydrous ammonium chloride solution; And
d) 상기 함수 염화암모늄마그네슘을 열처리하는 단계;d) thermally treating said hydrous ammonium chloride;
를 포함하는 무수 염화마그네슘의 제조방법을 제공한다.It provides a method for producing anhydrous magnesium chloride comprising a.
본 발명을 좀더 구체적으로 살펴보기 위하여 도 1을 참조하여 본 발명의 제조방법을 설명한다.In order to look at the present invention in more detail with reference to Figure 1 will be described the manufacturing method of the present invention.
먼저 무수 염화마그네슘을 제조하기 위하여 함수 염화마그네슘 수용액을 제조하며, 상기 함수 염화마그네슘은 산화마그네슘을 염산 수용액에 용해하여 얻어지며 이때의 반응식은 다음과 같다.First, an aqueous magnesium chloride solution is prepared to prepare anhydrous magnesium chloride, and the aqueous magnesium chloride is obtained by dissolving magnesium oxide in an aqueous hydrochloric acid solution. The reaction formula is as follows.
상기 반응식에서 s는 고체이며, l은 액체이다.Where s is a solid and l is a liquid.
상기와 같이 얻어진 염화마그네슘 수용액에 염화암모늄을 첨가하여 염화암모늄마그네슘 수용액을 제조한 후 가열, 농축하여 함수 염화암모늄마그네슘 결정을 회수한다. 염화암모늄이 첨가되지 않은 염화마그네슘 수용액은 가열, 농축 후 4수화 염화마그네슘이 생성되어 껌 형태로 용기에 붙어 회수가 어려우나 염화암모늄을 사용하여 가열, 농축한 함수 염화암모늄마그네슘은 입자화 되어 회수가 용이하며, 특히 염화암모늄 첨가량이 증가함에 따라 농축한 함수염화물은 큰 덩어리로 뭉쳐져 회수가 더욱 용이하다. 따라서 염화마그네슘 수용액에 염화암모늄을 첨가하여 함수 염화암모늄마그네슘 수용액을 제조하며, 이때 염화암모늄은 염화마그네슘에 대하여 1: 1 ~2 의 몰비로 첨가한다. 염화마그네슘에 대하여 염화암모늄의 몰비가 1이하이 면 가열, 농축 후 회수되는 결정에 6수화 염화암모늄마그네슘(NH4MgCl36H2O)과 4수화 염화마그네슘(MgCl24H2O)이 혼재되어 있어 탈수공정시 염화수산화마그네슘이 생성될 수 있으며, 염화마그네슘에 대하여 염화암모늄의 몰비가 2이상이면 가열, 농축 후 회수되는 결정에 염화암모늄이 주성분인 결정이 생성되므로 불필요한 염화암모늄을 사용하는 것이 된다. 이때의 반응식은 하기 반응식 2와 같다.Ammonium chloride was added to the aqueous magnesium chloride solution obtained as described above to prepare an aqueous magnesium chloride solution, followed by heating and concentration to recover hydrous magnesium chloride crystals. Magnesium chloride solution without added ammonium chloride is heated and concentrated to produce tetrahydrated magnesium chloride, which is difficult to recover as it is attached to the container in the form of gum, but the aqueous magnesium chloride, heated and concentrated using ammonium chloride, is granulated for easy recovery. In particular, as the amount of ammonium chloride is increased, the concentrated hydrochloride is aggregated into large chunks for easier recovery. Therefore, ammonium chloride aqueous solution is prepared by adding ammonium chloride to the aqueous magnesium chloride solution, wherein ammonium chloride is added in a molar ratio of 1: 1 to 2 with respect to magnesium chloride. When the molar ratio of ammonium chloride to magnesium chloride is less than 1, crystals recovered after heating and concentration are mixed with magnesium hexahydrate ammonium chloride (NH 4 MgCl 3 6H 2 O) and magnesium hydride magnesium chloride (MgCl 2 4H 2 O). Magnesium chloride can be produced during the dehydration process. If the molar ratio of ammonium chloride to magnesium chloride is 2 or more, since ammonium chloride is the main component in crystals recovered after heating and concentration, unnecessary ammonium chloride is used. The reaction scheme at this time is the same as in
염화암모늄마그네슘 수용액의 가열, 감압농축은 진공회전증발기를 이용하여 가열온도 70 ~ 90℃ , -0.8 ~ -0.95 atm로 감압하여 농축함으로 함수 염화암모늄마그네슘결정을 회수한다. 감압상태에서 가열온도가 70℃이하이면 농축시간이 너무 지연되고, 농축하고자하는 용매가 물이므로 감압상태에서 90℃이상의 가열은 에너지 효율이 부적절하다. 따라서 염화암모늄마그네슘 수용액의 가열, 감압농축은 가열온도 70 ~ 90℃ , -0.8 ~ -0.95 atm로 감압하여 농축하는 것이 좋다.The aqueous ammonium chloride solution is concentrated under reduced pressure using a vacuum rotary evaporator and concentrated under reduced pressure at a heating temperature of 70 to 90 ° C and -0.8 to -0.95 atm to recover hydrous magnesium chloride crystals. If the heating temperature is below 70 ℃ under reduced pressure, the concentration time is too delayed, and since the solvent to be concentrated is water, heating above 90 ℃ under reduced pressure is inadequate in energy efficiency. Therefore, heating and decompression concentration of aqueous magnesium chloride solution are preferably concentrated under reduced pressure at a heating temperature of 70 to 90 ° C. and −0.8 to −0.95 atm.
본 발명은 회수된 함수 염화암모늄마그네슘을 400 ~ 500℃로 30분 ~ 1시간 동안 열처리함으로 결정수를 탈수하여 무수 염화마그네슘을 제조한다. 열처리온도가 400℃이하이면 함수 염화암모늄마그네슘이 일부 존재하고, 열처리온도가 500℃이상이면 대기 중에서 산화마그네슘 결정으로 전환된다. 6수화 염화암모늄마그네슘 에서 무수 염화마그네슘으로의 전환은 하기와 같은 메카니즘으로 진행된다.The present invention dehydrates the crystal water by heat-treating the recovered hydrous magnesium chloride to 400 ~ 500 ℃ for 30 minutes to 1 hour to prepare anhydrous magnesium chloride. When the heat treatment temperature is 400 ° C. or lower, some hydrous ammonium chloride is present. When the heat treatment temperature is 500 ° C. or higher, it is converted into magnesium oxide crystals in the atmosphere. The conversion from magnesium hexahydrate ammonium chloride to anhydrous magnesium chloride proceeds with the following mechanism.
열처리 온도 500℃이상의 온도에서 일부 생성된 산화마그네슘은 600℃에서 완전히 산화마그네슘으로 전환된다. 염화마그네슘은 712℃에서 녹기 때문에 600℃에서 열처리할 때 생성되는 산화마그네슘 결정은 대기 중의 산소와 반응하여 전환되는 것으로 사료된다.Partially produced magnesium oxide at a temperature above 500 ° C. is completely converted to magnesium oxide at 600 ° C. Since magnesium chloride melts at 712 ° C, magnesium oxide crystals produced by heat treatment at 600 ° C are thought to be converted by reaction with oxygen in the atmosphere.
따라서 열처리 온도에 따라 불활성 분위기에서 탈수공정이 이루어지면 무수 염화마그네슘의 산화를 억제할 수 있다.Therefore, if the dehydration process is performed in an inert atmosphere according to the heat treatment temperature, the oxidation of anhydrous magnesium chloride can be suppressed.
상기한 바와 같이 염화마그네슘 수용액으로부터 염화암모늄을 사용하여 얻은 함수 염화암모늄마그네슘은 열처리온도에 따라 대기 또는 불활성 분위기에서 열처리함으로서 손쉽게 무수 염화마그네슘을 제조하게 된다.As described above, the aqueous magnesium chloride obtained by using ammonium chloride from the aqueous magnesium chloride solution is easily prepared by anhydrous magnesium chloride by heat treatment in an air or inert atmosphere depending on the heat treatment temperature.
이상에서 살펴본 바와 같이 본 발명에 따라 산화마그네슘을 염산에 용해시킨 염산 수용액에 염화암모늄을 첨가하여 가열, 농축시킨 6수화 염화암모늄마그네슘을 대기 또는 불활성 분위기로 400 ~ 500℃에서 열처리하면 무수 염화마그네슘을 쉽게 얻을 수 있다, 이 방법은 기존에 함수 염화마그네슘을 염산 분위기에서 열처리하여 무수 염화마그네슘을 얻는 방법과 비교하여 친환경적이고, 공정이 간단하며, 운전조업을 단순화 시킬 수 있으므로 생산단가를 낮출 수 있는 등 많은 장점을 가지고 있다.As described above, by adding ammonium chloride to an aqueous hydrochloric acid solution in which magnesium oxide is dissolved in hydrochloric acid according to the present invention, anhydrous magnesium chloride is heat-treated at 400 to 500 ° C. by heating ammonium hexahydrate ammonium chloride at atmospheric or inert atmosphere. This method can be easily obtained, compared to the conventional method of obtaining anhydrous magnesium chloride by thermally treating hydrous magnesium chloride in hydrochloric acid atmosphere, which is environmentally friendly, simpler in process, and simpler in operation. It has many advantages.
이하 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명하는바 하기의 실시예 및 비교예가 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, which are not intended to limit the scope of the present invention.
[실시예1] Example 1
1000ml 비이커에 35% 염산 수용액 200ml 를 넣고 98% 산화마그네슘 41.1 g을 가한 후 용해하여 1M 염화마그네슘 수용액 1000ml를 제조하였다. 제조한 1M 염화마그네슘 수용액 100 ml에 99% 염화암모늄 5.4g을 첨가하고 진공회전증발기를 이용하여 80℃, 90 rpm, -0.9 atm 조건으로 가열, 농축시켜 6수화 염화암모늄마그네슘 25g을 회수하였으며, 그 결과를 도 2, 도 3에 나타내었다. 회수한 6수화 염화암모늄마그네슘을 400℃, 30분간 열처리하여 9.5g의 무수 염화마그네슘을 수득하였고, 이때의 무수염화마그네슘의 결정구조를 X-선 회절분석기(RIGAKU, RU-200)로 분석하여 결과를 도 6과 도 7에 나타내었다. 상대적으로 300℃ 이하에서는 도 6에서 보듯이 목적으로 하는 순수한 무수 염화마그네슘을 얻을 수 없었다.200 ml of 35% aqueous hydrochloric acid solution was added to a 1000 ml beaker, 41.1 g of 98% magnesium oxide was added thereto, and then dissolved to prepare 1000 ml of 1 M magnesium chloride aqueous solution. 5.4 g of 99% ammonium chloride was added to 100 ml of the prepared 1M magnesium chloride aqueous solution, and heated and concentrated at 80 ° C., 90 rpm, and −0.9 atm using a vacuum rotary evaporator to recover 25 g of hexahydrate ammonium chloride. The results are shown in FIGS. 2 and 3. The recovered hexahydrated ammonium chloride was heat-treated at 400 ° C. for 30 minutes to obtain 9.5 g of anhydrous magnesium chloride. The crystal structure of the anhydrous magnesium chloride was analyzed by an X-ray diffractometer (RIGAKU, RU-200). 6 and 7 are shown. Under 300 ° C or less, pure anhydrous magnesium chloride could not be obtained as shown in FIG. 6.
[실시예2] Example 2
1000ml 비이커에 35% 염산 수용액 200ml 를 넣고 98% 산화마그네슘 41.1 g을 가한 후 용해하여 1M 염화마그네슘 수용액 1000ml를 제조하였다. 제조한 1M 염화마그네슘 수용액 100 ml에 99% 염화암모늄 5.4g을 첨가하고 진공회전증발기를 이용하여 80℃, 90 rpm, -0.9 atm 조건으로 가열, 농축시켜 6수화 염화암모늄마그네슘 25g을 회수하였으며, 그 결과를 도 2, 도 3에 나타내었다. 회수한 6수화 염화암모늄마그네슘을 500℃, 30분간 열처리하여 7.75g의 무수 염화마그네슘과 산화마그네슘 혼합물을 수득하였고, 이때의 혼합물의 결정구조를 X-선 회절분석기로 분석하여 결과를 도 6에 나타내었다.200 ml of 35% aqueous hydrochloric acid solution was added to a 1000 ml beaker, 41.1 g of 98% magnesium oxide was added thereto, and then dissolved to prepare 1000 ml of 1 M magnesium chloride aqueous solution. 5.4 g of 99% ammonium chloride was added to 100 ml of the prepared 1M magnesium chloride aqueous solution, and heated and concentrated at 80 ° C., 90 rpm, and −0.9 atm using a vacuum rotary evaporator to recover 25 g of hexahydrate ammonium chloride. The results are shown in FIGS. 2 and 3. The recovered hexahydrated ammonium chloride was heat treated at 500 ° C. for 30 minutes to obtain 7.75 g of anhydrous magnesium chloride and magnesium oxide mixture, and the crystal structure of the mixture was analyzed by X-ray diffractometer. It was.
[비교예1] Comparative Example 1
1000ml 비이커에 35% 염산 수용액 200ml 를 넣고 98% 산화마그네슘 41.1 g을 가한 후 용해하여 1M 염화마그네슘 수용액 1000ml를 제조하였다. 이후 1M 염화마그네슘 100ml를 진공회전증발기를 이용하여 80 ℃, 90 rpm, -0.9 atm 조건으로 가열, 농축시켜 4수화 염화마그네슘 16g을 회수하였으며, 그 결과를 도 2, 도 3에 나타내었다. 회수한 4수화 염화마그네슘을 각각 100, 140, 180, 220, 300, 400, 500 및 600℃로 30분간 열처리하여 결과물의 결정구조를 X-선 회절분석기로 분석하여 결과를 도 4 및 도 5에 나타내었다.200 ml of 35% aqueous hydrochloric acid solution was added to a 1000 ml beaker, 41.1 g of 98% magnesium oxide was added thereto, and then dissolved to prepare 1000 ml of 1 M magnesium chloride aqueous solution. Thereafter, 100 ml of 1 M magnesium chloride was heated and concentrated at 80 ° C., 90 rpm, and −0.9 atm using a vacuum rotary evaporator to recover 16 g of tetrahydrated magnesium chloride, and the results are shown in FIGS. 2 and 3. The recovered tetrahydrated magnesium chloride was heat-treated at 100, 140, 180, 220, 300, 400, 500 and 600 ° C. for 30 minutes, and the resulting crystal structure was analyzed by X-ray diffractometer. Indicated.
염화암모늄이 첨가되지 않은 4수화 염화마그네슘은 껌 형태로 용기에 붙어 회수가 매우 어려웠다. 회수한 4수화 염화마그네슘을 140℃와 180℃에서 열처리한 결과 4수화 염화마그네슘과 2수화 염화마그네슘(MgCl22H2O) 결정이 함께 존재하였으며, 180℃ 이상의 조건에서 온도가 높아짐에 따라 가수분해가 일어나 400℃ 근처에서 대부분 염화수산화마그네슘이 생성되었으며, 400℃에서 열처리된 산물의 X-선 회절분석 결과를 확대하여 도 5에 나타내었다. 500℃ 이상의 조건에서는 모두 산화마그네슘로 산화되었다. The tetrahydrated magnesium chloride without ammonium chloride was attached to the container in the form of gum and was very difficult to recover. As a result of heat-treatment of the recovered tetrahydrated magnesium chloride at 140 ° C and 180 ° C, crystals of magnesium tetrahydrate and dihydrated magnesium chloride (MgCl 2 2H 2 O) were present together and hydrolyzed as the temperature increased above 180 ° C. Magnesium chloride was produced mostly at about 400 ° C., and the result of X-ray diffraction analysis of the product heat-treated at 400 ° C. was enlarged and shown in FIG. 5. All were oxidized to magnesium oxide in the conditions of 500 degreeC or more.
[비교예2] Comparative Example 2
실시예 2와 동일하게 실시하되 1M 염화마그네슘 수용액 100ml에 99% 염화암모늄을 5.4g 대신 각각 1.6, 2.7, 10.8, 21.6g씩 첨가하였다. 이때 가열, 농축한 결과를 도 3에 나타내었다. 염화암모늄을 각각 1.6 및 2.7g 첨가하였을 때는 6수화 염화암모늄마그네슘과 4수화 염화마그네슘 결정이 혼재되어 있는 것을 알 수 있었으며, 염화암모늄을 각각 10.8, 21.6g 첨가하였을 경우 6수화 염화암모늄마그네슘과 염화암모늄 결정이 혼재되어 있는 것을 알 수 있었다.In the same manner as in Example 2, 99% ammonium chloride was added to 1.6ml, 2.7, 10.8, and 21.6g, respectively, instead of 5.4g to 100ml of 1M magnesium chloride solution. In this case, the results of heating and concentration are shown in FIG. 3. When 1.6 and 2.7 g of ammonium chloride were added, it was found that the hexahydrate ammonium chloride and tetrahydrate magnesium chloride crystals were mixed, and when 10.8 and 21.6 grams of ammonium chloride were added, the hexahydrate ammonium chloride and ammonium chloride were added. It was found that the crystals were mixed.
도 1은 본 발명에 따른 무수 염화마그네슘의 제조공정도이다.1 is a manufacturing process chart of anhydrous magnesium chloride according to the present invention.
도 2는 염화암모늄 첨가에 따라 가열, 농축하여 회수된 함수염화물의 형태이다.Figure 2 is a form of the hydrous chloride recovered by heating, concentration in accordance with the addition of ammonium chloride.
도 3은 염화암모늄 첨가에 따른 함수염화물 결정의 X-선 회절양상이다.Figure 3 is an X-ray diffraction pattern of the hydrochloride chloride with the addition of ammonium chloride.
도 4는 4수화 염화마그네슘의 열처리 온도에 따른 X-선 회절양상이다.4 is an X-ray diffraction pattern according to the heat treatment temperature of tetrahydrate magnesium chloride.
도 5는 4수화 염화마그네슘을 400℃에서 열처리했을 때의 X-선 회절양상이다.Fig. 5 is an X-ray diffraction pattern when the tetrahydrated magnesium chloride is heat treated at 400 ° C.
도 6은 6수화 염화암모늄마그네슘의 열처리 온도에 따른 X-선 회절양상이다. 6 is an X-ray diffraction pattern of the hexahydrate ammonium chloride according to the heat treatment temperature.
도 7은 6수화 염화암모늄마그네슘을 400℃에서 열처리했을 때의 X-선 회절양상이다.Fig. 7 is an X-ray diffraction pattern of a hexahydrated ammonium chloride chloride when heat treated at 400 ° C.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070075288A KR100798417B1 (en) | 2007-07-26 | 2007-07-26 | Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070075288A KR100798417B1 (en) | 2007-07-26 | 2007-07-26 | Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100798417B1 true KR100798417B1 (en) | 2008-01-28 |
Family
ID=39219432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070075288A Active KR100798417B1 (en) | 2007-07-26 | 2007-07-26 | Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100798417B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101191743B1 (en) | 2010-12-28 | 2012-10-15 | 재단법인 포항산업과학연구원 | Method for Leaching Magnesium from Ferronickel Slag |
CN105293540A (en) * | 2014-06-10 | 2016-02-03 | 中国科学院过程工程研究所 | Magnesium oxide chlorination method |
CN114212930A (en) * | 2021-11-03 | 2022-03-22 | 湘潭大学 | A kind of method for improving the purity of wet desulfurization wastewater by-product |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228144A (en) | 1978-02-22 | 1980-10-14 | Ube Industries Ltd. | Process for the preparation of anhydrous magnesium chloride having a high degree of purity |
US5514359A (en) | 1993-04-06 | 1996-05-07 | Alcan International Limited | Process for making anhydrous magnesium chloride |
US6143270A (en) | 1993-10-28 | 2000-11-07 | Commonwealth Scientific And Industrial Research Organisation | Anhydrous magnesium chloride |
KR20000068137A (en) * | 1997-06-20 | 2000-11-25 | 앨린 앤더슨 | PROCESS FOR PRODUCING ANHYDROUS MgCl2 |
-
2007
- 2007-07-26 KR KR1020070075288A patent/KR100798417B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228144A (en) | 1978-02-22 | 1980-10-14 | Ube Industries Ltd. | Process for the preparation of anhydrous magnesium chloride having a high degree of purity |
US5514359A (en) | 1993-04-06 | 1996-05-07 | Alcan International Limited | Process for making anhydrous magnesium chloride |
US6143270A (en) | 1993-10-28 | 2000-11-07 | Commonwealth Scientific And Industrial Research Organisation | Anhydrous magnesium chloride |
KR20000068137A (en) * | 1997-06-20 | 2000-11-25 | 앨린 앤더슨 | PROCESS FOR PRODUCING ANHYDROUS MgCl2 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101191743B1 (en) | 2010-12-28 | 2012-10-15 | 재단법인 포항산업과학연구원 | Method for Leaching Magnesium from Ferronickel Slag |
CN105293540A (en) * | 2014-06-10 | 2016-02-03 | 中国科学院过程工程研究所 | Magnesium oxide chlorination method |
CN114212930A (en) * | 2021-11-03 | 2022-03-22 | 湘潭大学 | A kind of method for improving the purity of wet desulfurization wastewater by-product |
CN114212930B (en) * | 2021-11-03 | 2023-05-26 | 湘潭大学 | Method for improving purity of wet desulfurization waste water byproducts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009046390A5 (en) | ||
CA2843696C (en) | Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up | |
JP2018500261A (en) | Lithium hydroxide production | |
AU2012295626B2 (en) | Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up | |
JPH0627004B2 (en) | Method for producing scandium oxide having a dodecahedron crystal form | |
CN104003443B (en) | A kind of method adding JZPD capsule ammonium meta-vanadate | |
JP6890098B2 (en) | Recovery of carboxylic acids from their magnesium salts by precipitation with hydrochloric acid, useful for fermentation broth treatment | |
CN101748297A (en) | Method for preparing ammonium metavanadate from vanadium extraction leaching solution | |
US20240367994A1 (en) | Method for partially reducing vanadium pentoxide using ammonia solution, and vanadium dioxide powder prepared thereby | |
KR20170101225A (en) | Method of producing lithium metal phosphates | |
EP2744747A1 (en) | Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up | |
KR100798417B1 (en) | Method for preparing anhydrous magnesium chloride using ammonium chloride from magnesium chloride aqueous solution | |
CN108642271A (en) | A kind of method that novel vanadium-containing shale produces vanadium dioxide without ammonia-sinking vanadium | |
CN112408478B (en) | A kind of preparation method of vanadium trioxide | |
CN102531055B (en) | The preparation method of sodium metavanadate/potassium metavanadate | |
CN106946290A (en) | A kind of method of vanadic anhydride purification | |
KR100360559B1 (en) | Process for the production of extra fine powder of Cobalt | |
CN104495885B (en) | A kind of method utilizing magnesium halogen crystalline substance high purity magnesium chloride | |
Suino et al. | Thermal analysis and mechanism of α-Zn2SiO4: Mn2+ formation from zinc oxalate dihydrate under hydrothermal conditions | |
CN1156398C (en) | Methodf or preparing anhydrous magnesium chloride | |
CN114408975A (en) | The preparation method of ammonium metatungstate | |
CN1103321C (en) | Clean production process of ammonium chromate crystal | |
CN112939003A (en) | Method for preparing SBA-15 molecular sieve by using fluorine-containing silicon slag and recovering fluorine | |
JP2012219037A (en) | Method for producing bis(perfluoroalkanesulfone)imide salt | |
KR101031921B1 (en) | Process for producing high purity anhydrous magnesium chloride from hydrous ammonium chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070726 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20070727 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20070726 Patent event code: PA03021R01I Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071015 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20071226 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080121 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080122 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110104 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120113 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20121226 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20121226 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140102 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140102 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20141226 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20141226 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20151230 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20151230 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20161227 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20171219 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20171219 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20181226 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20191231 Year of fee payment: 20 |
|
PR1001 | Payment of annual fee |
Payment date: 20191231 Start annual number: 13 End annual number: 20 |