JP4468517B2 - Current interrupt circuit for motor drive - Google Patents

Current interrupt circuit for motor drive Download PDF

Info

Publication number
JP4468517B2
JP4468517B2 JP22253699A JP22253699A JP4468517B2 JP 4468517 B2 JP4468517 B2 JP 4468517B2 JP 22253699 A JP22253699 A JP 22253699A JP 22253699 A JP22253699 A JP 22253699A JP 4468517 B2 JP4468517 B2 JP 4468517B2
Authority
JP
Japan
Prior art keywords
current
transistor
winding
motor
cutoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22253699A
Other languages
Japanese (ja)
Other versions
JP2001054287A (en
Inventor
和英 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Servo Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP22253699A priority Critical patent/JP4468517B2/en
Publication of JP2001054287A publication Critical patent/JP2001054287A/en
Application granted granted Critical
Publication of JP4468517B2 publication Critical patent/JP4468517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータ駆動回路の電流遮断機能とその動作確認方法に関するものである。
【0002】
【従来の技術】
従来の技術によるモータ駆動回路の電流遮断機能においては、図2に示す如く駆動回路と電源正極を接続する部分を遮断トランジスタ18によって開閉し、遮断機能の作動確認には遮断トランジスタ18通過後の部分の電圧を検出器21によって検知する構成を取る。
【0003】
【発明が解決しようとする課題】
上述の如き従来の構成は、次のような問題を有している。
【0004】
装置の異常検出機能として装置各部の動作を確認する場合、遮断機能についても作動確認を行うことになるがモータ駆動回路において運転時間が長期間に渡る用途では電源投入時のみの作動確認では不十分であることが考えられ、その場合には遮断機能の作動確認をモータの回転中においても行うことができる必要がある。
図2において遮断トランジスタ18を遮断すると、遮断トランジスタ18の後段の上段トランジスタ2a、2b、2cのエミッタが結ばれた遮断トランジスタ作動検出増幅器21に入力される遮断トランジスタ作動検出点23の電位は、定常的には低電位に落ち着くが安定電位に遷移するまでの期間では上段トランジスタ2a、2b、2cの状態とそのときの巻線電流によって遷移時間にばらつきが生じる。遷移時間が一番長く掛かる場合には遮断トランジスタ18に遮断処理を行ってから遮断トランジスタ作動検出増幅器21が遮断を検出するまでに百μs以上を要してしまい、特に数kHzの周波数で励磁相を切り替えるステッピングモータの制御や低振動を要求される制御系等においてはモータの制御に支障をきたすため、回転中に遮断機能が正常に機能するかを確認することはできない。
【0005】
【課題を解決するための手段】
上述の目的を達成するため、電流遮断トランジスタ11を下側トランジスタ3a、3b、3cと電流検出抵抗8の間に挿入し、遮断機能の作動確認には下側トランジスタ3a、3b、3cと遮断トランジスタ11の間に作動検出点17を設け遮断トランジスタ11の開閉を検知する方式を用いる。
【0006】
【作用】
上述の如き構成においては、モ−タの回転制御に影響を与えない程度の短い期間で迅速に遮断機能の正常作動を確認することができる。
【0007】
【発明の実施の形態】
以下図面によって本発明の実施例を説明する、図1は本発明になる一実施例を示す。
【0008】
モータ1はコイル巻線に通電されることによって出力軸にトルクを発生するが、連続した出力トルクを得るためには上側トランジスタ2a、2b、2c、下側開閉トランジスタ3a、3b、3cの開閉により通電巻線を適宜切り替えることが必要である。 モータ1の巻線電流は電流検出抵抗8に誘起する電圧を電流帰還増幅器9が増幅率設定抵抗10a、10bによって設定された増幅率で増幅し制御回路に帰還電圧として出力する。制御回路はトランジスタ2a、2b、2c,3a、3b、3cをそれぞれの駆動バッファ6a,6b,6c,7a、7b、7cを用いて開閉することによりモータ1の回転及びトルクの制御を行う。
モータ1の巻線に通電中に電流量を制御する目的で制御回路がいままで閉じていた上側トランジスタ2a、2b、2cのいずれかを開いた場合、モータ1の巻線インダクタンスにより電流は継続して流れようとするため、仮にいままで上側トランジスタ2aと下側トランジスタ3bを閉じて巻線に通電していたとすると上側トランジスタ2aを開くと今まで図3の矢印に示すように電源正極より上側トランジスタ2a、モータ1の巻線と通過し下側トランジスタ3bから電流検出抵抗8を通って電源負極に通じていた電流は電源正極より上側トランジスタ2aを通る経路が遮断されるため図4の矢印に示すように電源負極より下側環流ダイオード3aを通過してモータ1に流れる。
【0009】
ここで図1に示す様に電流遮断トランジスタ11を下側トランジスタ3a、3b、3cのコレクタを結束した線と電流検出抵抗8の間に配し、プルアップ抵抗13,プルダウン抵抗14,ダイオード15a、15bによって検出しバッファ16で波形整形する遮断検出回路の入力を電流遮断トランジスタ11と下側トランジスタ3a、3b、3cのコレクタの間に接続する。
【0010】
電流検出抵抗8の電圧降下は電流制御に支障が無い範囲で十分小さくなるように設定し電流遮断トランジスタ11の飽和電圧も十分小さいものとすると、電流遮断トランジスタ11が閉じているときにはバッファ16への入力電圧はほぼ遮断トランジスタ11の飽和電圧と電流検出抵抗8の電圧降下を足した値となるためバッファ16のしきい値電圧よりも低い電圧となる。
【0011】
次に上記の状態から遮断トランジスタ11を開いた場合、モータ1の巻線電流は上側トランジスタ2aが閉じているときには図5に示す様に上側トランジスタ2aとモータ巻線、上側環流ダイオード4bで環流し、上側トランジスタ2aが開いたときには図6に示すように電源負極から下側環流ダイオード5aを通りモータ巻線、上側環流ダイオード4bを経て電源正極へと流れる。
このとき、遮断トランジスタ11を開いたときのバッファ16への入力電圧はダイオード15aから遮断トランジスタ11に流れていた電流が遮断されるため、検出回路の電源電圧からダイオード15bの順電圧降下を引いた電圧にプルダウン抵抗14の抵抗値をプルアップ抵抗13の抵抗値とプルダウン抵抗14の抵抗値の合計で除したものを掛け合わせた電圧となる。この電圧をバッファ16のしきい値電圧より高くなるように設定することにより遮断トランジスタ11が開いたことを検出することができる。
【0012】
仮に、上側トランジスタ2aと下側トランジスタ3bを閉じて巻線に通電していたときに遮断トランジスタ11を開いて電流を遮断する操作を行った場合、モータ1の巻線電流は上側トランジスタ2aからモータ1の巻線を通過し、下側トランジスタ3bが遮断トランジスタ11を開いたことにより開いてしまうので下側トランジスタ3bの代わりに上側環流ダイオード4bを通り上側トランジスタ2aへと流れる。この電流経路に検出回路が関与する部分は無いため遮断回路の作動検出に環流電流の影響は受けず、遮断トランジスタ11の開閉を1〜5μs程度の遅れで検出することが可能である。
【0013】
ここで、遮断トランジスタ11が開いたことによって電流検出抵抗8の端子電圧は0Vとなり、実際の電流値とは異なる値を検出してしまうことになる。
しかし、遮断トランジスタ11が開いたことにより巻線電流は減少することになり、遮断機能の作動確認から復帰した際の電流制御系の処理としてはいずれにせよ電流を増加させようと機能することになるため、開いたことを検出した後に直ちに閉じれば10μs程度で遮断トランジスタ11を元通りに閉じることは十分可能なので、40kHz以下の周波数で開閉を行う制御系では制御に支障を生じることはほとんどない。
【0014】
ここで、遮断トランジスタ11を元通りに閉じることをせずに開いたままの状態を継続するとモータ1の巻線電流は前述の経路にしばらくは継続して流れるが遮断トランジスタ11が開いたことにより電源負極との接続が遮断されるため、巻線インダクタンスに蓄えられた電気エネルギー及びモータ1の出力軸負荷に蓄えられた運動エネルギーが放出されると巻線電流は零になりモータ1の出力軸が発生するトルクもなくなる。この状態が本来の目的である遮断トランジスタ11によって電流遮断機能を行使した結果の状態である。
【0015】
【発明の効果】
本発明に成る回路では遮断機能の作動確認が瞬時に行えるため、モータが回転中であってもモータの回転に影響を与えずに遮断機能が作動することを確認することができる。
【図面の簡単な説明】
【図1】本発明に成る例の実施例
【図2】従来の回路例
【図3】通電中の電流経路
【図4】上側トランジスタを開いた際の電流経路
【図5】遮断トランジスタを開いた際の電流経路
【符号の説明】
1 モータ
2a 上側トランジスタa
2b 上側トランジスタb
2c 上側トランジスタc
3a 下側トランジスタa
3b 下側トランジスタb
3c 下側トランジスタc
4a 上側環流ダイオードa
4b 上側環流ダイオードb
4c 上側環流ダイオードc
5a 下側環流ダイオードa
5b 下側環流ダイオードb
5c 下側環流ダイオードc
6a 上側トランジスタ駆動バッファa
6b 上側トランジスタ駆動バッファb
6c 上側トランジスタ駆動バッファc
7a 下側トランジスタ駆動バッファa
7b 下側トランジスタ駆動バッファb
7c 下側トランジスタ駆動バッファc
8 電流検出抵抗
9 電流帰還増幅器
10a 増幅率設定抵抗a
10b 増幅率設定抵抗b
11 遮断トランジスタ
12 遮断トランジスタ駆動バッファ
13 プルアップ抵抗
14 プルダウン抵抗
15a ダイオードa
15b ダイオードb
16 バッファ
17 遮断トランジスタ作動検出点
18 従来例遮断トランジスタ
19 ゲートプルアップ抵抗
20 従来例遮断トランジスタ駆動トランジスタ
21 従来例遮断トランジスタ作動検出増幅器
22a 従来例遮断トランジスタ作動検出しきい値設定抵抗a
22b 従来例遮断トランジスタ作動検出しきい値設定抵抗b
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current interruption function of a motor drive circuit and an operation confirmation method thereof.
[0002]
[Prior art]
In the current cutoff function of the motor drive circuit according to the prior art, as shown in FIG. 2, the part connecting the drive circuit and the power supply positive electrode is opened and closed by the cutoff transistor 18, and the part after passing the cutoff transistor 18 is used to confirm the operation of the cutoff function. The voltage is detected by the detector 21.
[0003]
[Problems to be solved by the invention]
The conventional configuration as described above has the following problems.
[0004]
When confirming the operation of each part of the device as an abnormality detection function of the device, the operation of the shut-off function will also be confirmed, but in applications where the operation time is long in the motor drive circuit, it is not sufficient to confirm the operation only when the power is turned on. In this case, it is necessary to check the operation of the blocking function even while the motor is rotating.
When the cutoff transistor 18 is cut off in FIG. 2, the potential of the cutoff transistor operation detection point 23 input to the cutoff transistor operation detection amplifier 21 to which the emitters of the upper transistors 2a, 2b and 2c subsequent to the cutoff transistor 18 are connected is steady. Specifically, the transition time varies depending on the state of the upper transistors 2a, 2b, and 2c and the winding current at that time until the potential settles to a low potential but transitions to a stable potential. When the transition time takes the longest, it takes 100 μs or more until the cutoff transistor operation detection amplifier 21 detects the cutoff after the cutoff process is performed on the cutoff transistor 18, and in particular, the excitation phase has a frequency of several kHz. In a control system or the like that requires control of a stepping motor that switches between and a low vibration, the motor control is hindered, so it is not possible to confirm whether the cutoff function functions normally during rotation.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the current cutoff transistor 11 is inserted between the lower transistors 3a, 3b, 3c and the current detection resistor 8, and the lower transistors 3a, 3b, 3c and the cutoff transistor are used for confirming the operation of the cutoff function. 11 is used to detect the opening / closing of the cutoff transistor 11 by providing an operation detection point 17 between the two.
[0006]
[Action]
In the configuration as described above, the normal operation of the shut-off function can be quickly confirmed in a short period that does not affect the motor rotation control.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment according to the present invention.
[0008]
The motor 1 generates torque on the output shaft when the coil winding is energized. In order to obtain continuous output torque, the upper transistor 2a, 2b, 2c and the lower opening / closing transistors 3a, 3b, 3c are opened and closed. It is necessary to switch the current winding as appropriate. The winding current of the motor 1 amplifies the voltage induced in the current detection resistor 8 with the amplification factor set by the amplification factor setting resistors 10a and 10b by the current feedback amplifier 9, and outputs it as a feedback voltage to the control circuit. The control circuit controls the rotation and torque of the motor 1 by opening and closing the transistors 2a, 2b, 2c, 3a, 3b, and 3c using the respective drive buffers 6a, 6b, 6c, 7a, 7b, and 7c.
If the control circuit opens any of the upper transistors 2a, 2b, 2c, which has been closed for the purpose of controlling the amount of current while the winding of the motor 1 is energized, the current continues due to the winding inductance of the motor 1. Assuming that the upper transistor 2a and the lower transistor 3b have been closed and the coil is energized until now, when the upper transistor 2a is opened, the upper transistor from the power supply positive electrode as shown by the arrow in FIG. 4a, the current passing through the winding of the motor 1 and passing from the lower transistor 3b through the current detection resistor 8 to the power supply negative electrode is blocked by the path through the upper transistor 2a from the power supply positive electrode, and is shown by the arrow in FIG. Thus, it passes through the lower freewheeling diode 3a from the power source negative electrode and flows to the motor 1.
[0009]
Here, as shown in FIG. 1, the current cut-off transistor 11 is arranged between a line obtained by binding the collectors of the lower transistors 3a, 3b, and 3c and the current detection resistor 8, and a pull-up resistor 13, a pull-down resistor 14, a diode 15a, The input of the interruption detection circuit which detects by 15b and shapes the waveform by the buffer 16 is connected between the current interruption transistor 11 and the collectors of the lower transistors 3a, 3b and 3c.
[0010]
If the voltage drop of the current detection resistor 8 is set to be sufficiently small within a range where there is no problem in current control, and the saturation voltage of the current cutoff transistor 11 is also sufficiently small, when the current cutoff transistor 11 is closed, the voltage drop to the buffer 16 is reduced. Since the input voltage is substantially the sum of the saturation voltage of the cutoff transistor 11 and the voltage drop of the current detection resistor 8, the input voltage is lower than the threshold voltage of the buffer 16.
[0011]
Next, when the cutoff transistor 11 is opened from the above state, the winding current of the motor 1 is circulated by the upper transistor 2a, the motor winding, and the upper free-wheeling diode 4b as shown in FIG. 5 when the upper transistor 2a is closed. When the upper transistor 2a is opened, as shown in FIG. 6, it flows from the negative power supply through the lower freewheeling diode 5a to the positive power supply via the motor winding and the upper freewheeling diode 4b.
At this time, since the current flowing from the diode 15a to the cutoff transistor 11 is cut off as the input voltage to the buffer 16 when the cutoff transistor 11 is opened, the forward voltage drop of the diode 15b is subtracted from the power supply voltage of the detection circuit. The voltage is obtained by multiplying the resistance value of the pull-down resistor 14 by the sum of the resistance value of the pull-up resistor 13 and the resistance value of the pull-down resistor 14. By setting this voltage to be higher than the threshold voltage of the buffer 16, it can be detected that the cutoff transistor 11 is opened.
[0012]
If the upper transistor 2a and the lower transistor 3b are closed and the winding is energized and the cutoff transistor 11 is opened to cut off the current, the winding current of the motor 1 is transferred from the upper transistor 2a to the motor. 1 passes through the winding 1, and the lower transistor 3b is opened by opening the cutoff transistor 11, so that it flows to the upper transistor 2a through the upper freewheeling diode 4b instead of the lower transistor 3b. Since there is no portion involving the detection circuit in this current path, the operation detection of the cutoff circuit is not affected by the circulating current, and the opening / closing of the cutoff transistor 11 can be detected with a delay of about 1 to 5 μs.
[0013]
Here, when the cutoff transistor 11 is opened, the terminal voltage of the current detection resistor 8 becomes 0 V, and a value different from the actual current value is detected.
However, when the cutoff transistor 11 is opened, the winding current is reduced, and the current control process when returning from the operation check of the cutoff function functions to increase the current anyway. Therefore, if it is immediately closed after detecting the opening, it is sufficiently possible to close the cutoff transistor 11 in about 10 .mu.s. Therefore, in a control system that opens and closes at a frequency of 40 kHz or less, there is almost no trouble in the control. .
[0014]
Here, when the state in which the cutoff transistor 11 is kept open without being closed is continued, the winding current of the motor 1 continues to flow in the above-mentioned path for a while, but the cutoff transistor 11 is opened. Since the connection with the negative electrode of the power source is cut off, when the electrical energy stored in the winding inductance and the kinetic energy stored in the output shaft load of the motor 1 are released, the winding current becomes zero and the output shaft of the motor 1 No torque is generated. This state is a result of exercising the current cutoff function by the cutoff transistor 11 which is the original purpose.
[0015]
【The invention's effect】
In the circuit according to the present invention, since the operation check of the shut-off function can be performed instantaneously, it can be confirmed that the shut-off function operates without affecting the rotation of the motor even when the motor is rotating.
[Brief description of the drawings]
1 is an example of an embodiment according to the present invention. FIG. 2 is a circuit example of the prior art. FIG. 3 is a current path during energization. FIG. 4 is a current path when the upper transistor is opened. Current path [Explanation of symbols]
1 Motor 2a Upper transistor a
2b Upper transistor b
2c Upper transistor c
3a Lower transistor a
3b Lower transistor b
3c Lower transistor c
4a Upper freewheeling diode a
4b Upper freewheeling diode b
4c Upper freewheeling diode c
5a Lower freewheeling diode a
5b Lower freewheeling diode b
5c Lower freewheeling diode c
6a Upper transistor drive buffer a
6b Upper transistor drive buffer b
6c Upper transistor drive buffer c
7a Lower transistor drive buffer a
7b Lower transistor drive buffer b
7c Lower transistor drive buffer c
8 Current detection resistor 9 Current feedback amplifier 10a Amplification factor setting resistor a
10b Gain setting resistor b
11 Cut-off transistor 12 Cut-off transistor drive buffer 13 Pull-up resistor 14 Pull-down resistor 15a Diode a
15b Diode b
16 Buffer 17 Detection transistor operation detection point 18 Conventional example cutoff transistor 19 Gate pull-up resistor 20 Conventional example cutoff transistor drive transistor 21 Conventional example cutoff transistor operation detection amplifier 22a Conventional example cutoff transistor operation detection threshold setting resistor a
22b Conventional example cutoff transistor operation detection threshold setting resistor b

Claims (1)

モータの通電端子ごとに、電流を制御する為の入切を行う上側トランジスタと巻線への通電方向の制御を行う下側トランジスタとを配置し、上下各トランジスタの接続点を前記通電端子にそれぞれ接続し、電源正極からの電流を上側トランジスタ,巻線及び下側トランジスタを経て電源負極側に流れるように構成し、巻線に流れる電流の電流値の検出を行うために前記各下側トランジスタを流れる電流が共通の電流検出用抵抗に流れるように、前記下側トランジスタと電源負極との間に前記電流検出用抵抗を接続すると共に、各下側トランジスタの上側の上側トランジスタが入から切の状態に切り替わった際においてもモータの巻線と回路を循環する環流電流を電流検出抵抗に通過させるために、各下側トランジスタ毎の環流ダイオードを、上下トランジスタの接続点と、前記電流検出用抵抗の電源負極との接続点との間にそれぞれ接続し、さらに、巻線への電源供給を遮断する機能として通電遮断機能専用の遮断用トランジスタを、前記各下側トランジスタと前記電流検出抵抗との間に接続したことを特徴とするモータ駆動装置の電流遮断回路。For each energization terminal of the motor, an upper transistor that performs on / off control for current control and a lower transistor that controls the energization direction of the winding are arranged, and the connection points of the upper and lower transistors are respectively connected to the energization terminals. Connected, and configured to flow the current from the power supply positive electrode to the power supply negative electrode side through the upper transistor, winding and lower transistor, and to detect each current value of the current flowing through the winding, The current detection resistor is connected between the lower transistor and the power supply negative electrode so that the flowing current flows to a common current detection resistor, and the upper transistor on each lower transistor is turned on and off to pass to the current detection resistor a circulating electric current circulating in the winding and the circuit of the motor even when the switching to the reflux diodes each lower transistor, And connection underneath transistors, respectively connected between the connection point between the current detecting resistor supply negative electrode, further, the blocking transistor of the current blocking function only as a function of cutting off the power supply to the winding, A current interrupt circuit for a motor drive device, wherein the current interrupt circuit is connected between each of the lower transistors and the current detection resistor.
JP22253699A 1999-08-05 1999-08-05 Current interrupt circuit for motor drive Expired - Fee Related JP4468517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22253699A JP4468517B2 (en) 1999-08-05 1999-08-05 Current interrupt circuit for motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22253699A JP4468517B2 (en) 1999-08-05 1999-08-05 Current interrupt circuit for motor drive

Publications (2)

Publication Number Publication Date
JP2001054287A JP2001054287A (en) 2001-02-23
JP4468517B2 true JP4468517B2 (en) 2010-05-26

Family

ID=16783985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22253699A Expired - Fee Related JP4468517B2 (en) 1999-08-05 1999-08-05 Current interrupt circuit for motor drive

Country Status (1)

Country Link
JP (1) JP4468517B2 (en)

Also Published As

Publication number Publication date
JP2001054287A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP3458768B2 (en) Load drive
JPS61137984A (en) Control apparatus of motor of car window
JP4468517B2 (en) Current interrupt circuit for motor drive
WO2006016400A1 (en) Drive circuit of dc voltage driven magnet contactor and power converter
JP2001500359A (en) Generator regulator
JP2000308253A (en) Controller and method for power supply
JP3779917B2 (en) Field effect transistor failure detection device
EP0653834B1 (en) Power window driving controller
JP3596415B2 (en) Inductive load drive circuit
US6291954B1 (en) Method and circuit arrangement for monitoring the operating state of a load
JP2910135B2 (en) DC motor drive circuit controller
JP2001095148A (en) Method for protection of semiconductor relay system
JP3191661B2 (en) Semiconductor element overload protection circuit
JP2653553B2 (en) Actuator drive
US6677739B1 (en) High-reliability, low-cost, pulse-width-modulated vehicular alternator voltage regulator with short-circuit protection and low inserted electrical noise
JPS6015365Y2 (en) electric car control device
JP3728857B2 (en) Load drive device
KR0126280B1 (en) Regenerating/braking method of an electric vehicle
JP2000175345A (en) Overcurrent protective circuit apparatus
JP3181568B2 (en) Power supply device for sorting conveyor equipped with switching device of electromagnetic coil type
JP6555181B2 (en) Reverse connection protection circuit
JPS605684Y2 (en) Electric car control device
JPH0633665A (en) Driving controller for power window
JPS6031430Y2 (en) DC motor control device
JP3034638B2 (en) Drive circuit of electronic control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees