JP4467998B2 - Method for treating soil containing heavy metals - Google Patents

Method for treating soil containing heavy metals Download PDF

Info

Publication number
JP4467998B2
JP4467998B2 JP2004017726A JP2004017726A JP4467998B2 JP 4467998 B2 JP4467998 B2 JP 4467998B2 JP 2004017726 A JP2004017726 A JP 2004017726A JP 2004017726 A JP2004017726 A JP 2004017726A JP 4467998 B2 JP4467998 B2 JP 4467998B2
Authority
JP
Japan
Prior art keywords
soil
heavy metal
soil containing
particle size
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004017726A
Other languages
Japanese (ja)
Other versions
JP2004306012A (en
Inventor
信彦 阿部
泰史 山本
光邦 中村
浩司 鎌田
義正 村岡
拓哉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004017726A priority Critical patent/JP4467998B2/en
Publication of JP2004306012A publication Critical patent/JP2004306012A/en
Application granted granted Critical
Publication of JP4467998B2 publication Critical patent/JP4467998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

本発明は、有害な重金属で汚染された土壌から、高い除去率で重金属を除去するための処理方法に関する。   The present invention relates to a treatment method for removing heavy metals with high removal rate from soil contaminated with harmful heavy metals.

従来より、有害な重金属で汚染された土壌から、重金属を分離するための種々の方法が知られている。例えば、物理的な分離方法として、(a)洗浄分級法、(b)磁力による選別方法、(c)比重による選別方法、(d)浮遊選鉱等が知られている。
これらの物理的な方法は、処理対象となる土壌の種類に制限があり、例えば、シルト質や粘土分等の微細粒子を多く含むものに対して、重金属の十分な分離を行なうことができないという問題がある。
一方、有害な重金属で汚染された土壌に対して、加熱処理を施し、重金属を水に溶けにくい酸化物の形態に変化させて、重金属の溶出および拡散を抑制する方法が提案されている(非特許文献1)。
Conventionally, various methods for separating heavy metals from soil contaminated with harmful heavy metals are known. For example, as a physical separation method, (a) a cleaning classification method, (b) a sorting method using magnetic force, (c) a sorting method using specific gravity, (d) flotation ore is known.
These physical methods are limited in the type of soil to be treated, for example, they cannot sufficiently separate heavy metals from those containing many fine particles such as silt and clay. There's a problem.
On the other hand, a method for suppressing elution and diffusion of heavy metals by applying heat treatment to soil contaminated with harmful heavy metals to change the heavy metals into a form of oxide that is difficult to dissolve in water has been proposed (non- Patent Document 1).

また、有害な重金属を除去するための化学的な方法として、塩化揮発法が知られている。この塩化揮発法を利用した技術として、例えば、製鉄工場で発生する鉛等の塩化性非鉄金属を含む粉状鉄源(例えば、高炉ダスト等)に対して、後に添加するCaClからのCa量を予定して、CaO/SiOのモル比が1.2以下(好ましくは1.0以下)となるようにCaO或いはSiO量を調整する第一工程と、得られた調整原料を酸化焙焼処理する第二工程と、得られた酸化焙焼処理物に塩化カルシウムを添加してペレット化する第三工程と、得られたペレットを加熱焼成して、鉛等の塩化性非鉄金属を塩化揮発させる第四工程とからなる非鉄金属を含む粉状鉄源の精製方法が、提案されている(特許文献1)。
環境省環境管理局水環境部土壌環境課、“重金属汚染土壌の加熱処理技術”、[online]、2002年7月、[平成14年10月28日検索]、インターネット<URL : http://nett21.unep.or.jp/SGC_DATA/JP/html/sgcj-052.html> 特開昭54−38207号公報
Further, a chloride volatilization method is known as a chemical method for removing harmful heavy metals. As a technique using this chlorination volatilization method, for example, the amount of Ca from CaCl 2 to be added later to a powdered iron source (for example, blast furnace dust) containing a chlorinated nonferrous metal such as lead generated in an iron factory. The first step of adjusting the amount of CaO or SiO 2 so that the molar ratio of CaO / SiO 2 is 1.2 or less (preferably 1.0 or less), and the obtained adjustment raw material is oxidized and roasted. The second step to bake, the third step to add calcium chloride to the resulting oxidized roasted product and pelletize it, and the resulting pellet is heated and fired to chlorinate chlorinated non-ferrous metals such as lead The refinement | purification method of the powdered iron source containing the nonferrous metal which consists of the 4th process volatilized is proposed (patent document 1).
Ministry of the Environment, Environmental Management Bureau, Soil Environment Division, “Environmental Heat Treatment Technology for Heavy Metal Contaminated Soil”, [online], July 2002, [October 28, 2002 search], Internet <URL: http: // nett21.unep.or.jp/SGC_DATA/JP/html/sgcj-052.html> JP 54-38207 A

上述の非特許文献1に記載された方法においては、加熱処理後の土壌は、pH7の溶出試験で鉛の土壌環境基準を満たすまでに浄化されているものの、加熱処理によってかなり性質が変わっており、敷き砂等の規定を満たしていないなどの理由から、再利用先が見出されていない。また、加熱処理後の土壌は、処理後に性状が変化していく可能性があるので、この点においても再利用の途が狭められている。さらに、加熱処理後の土壌は、鉛等の重金属自体が除去されているわけではないので、セメント原料として用いることが困難である。   In the method described in Non-Patent Document 1 described above, the heat-treated soil has been purified to meet the soil environmental standards for lead in the pH 7 dissolution test, but the properties have changed considerably due to the heat treatment. No re-use destinations have been found for reasons such as not satisfying regulations such as sand. Moreover, since the property after heat processing may change a property after a process, the way of reuse is narrowed also in this point. Furthermore, since the heavy metal itself such as lead is not removed from the heat-treated soil, it is difficult to use it as a cement raw material.

一方、上述の特許文献1に記載された方法は、鉄を主成分とするダストを処理対象とするものであって、土壌を対象とするものではない。したがって、この方法を土壌に適用した場合に、どのような成分組成および性状を有する焼成物が得られるかは、不明である。
特に、焼成条件を種々変えた場合に、重金属や塩素の残留量の点で、例えばセメント原料として用い得るような土壌の焼成物を得ることができるかについては、予測が困難である。セメント原料として用いるためには、カルシウムとシリカのいずれか一つ以上が相当量で含まれている必要があるが、この点、特許文献1の方法は、鉄を主成分とするものを対象としており、セメント原料の調整方法とは明らかに技術分野を異にしている。
そこで、本発明は、重金属を含む土壌から高い除去率で重金属を除去することができるとともに、処理後に得られる固体分をセメント原料等として用い得るような重金属を含む土壌の処理方法を提供することを目的とする。
On the other hand, the method described in Patent Document 1 described above is intended to treat dust containing iron as a main component, and not to soil. Therefore, when this method is applied to soil, it is unclear what kind of component composition and baked product is obtained.
In particular, when various firing conditions are changed, it is difficult to predict whether a fired product of soil that can be used, for example, as a cement raw material in terms of residual amounts of heavy metals and chlorine. In order to use it as a raw material for cement, it is necessary that at least one of calcium and silica is contained in a considerable amount. In this respect, the method of Patent Document 1 is intended for a material mainly composed of iron. The technical field is clearly different from the adjustment method of cement raw materials.
Then, this invention provides the processing method of the soil containing heavy metal which can remove heavy metal with high removal rate from the soil containing heavy metal, and can use the solid content obtained after a process as a cement raw material etc. With the goal.

本発明者は、上記課題を解決するために鋭意検討した結果、重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上となるように所定の処理を行ない、次いで、該土壌に対して、該土壌中のCa/Siのモル比が0.1〜0.6となる量のCa源、および、塩素源を添加して、成分調整された土壌(ただし、該成分調整された土壌中の75μm以下の粒度を有する粒子におけるCa/Siのモル比が0.2〜0.6となるように、前記重金属を含む土壌に添加される各材料の添加量を定めるものとする。)を得た後、この土壌を、ロータリーキルンの如き焼成炉内にて、該焼成炉内のガスの水分含有率を10%以下に調整して所定の温度で加熱すれば、この土壌に含まれていた重金属が塩化揮発して、重金属および塩素の含有率が小さくセメント原料等として用い得る焼成物(塩素の含有率:0.05質量%以下)が得られること等を見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventor performs predetermined treatment so that the content of particles having a particle size of 75 μm or less is 30% by mass or more with respect to soil containing heavy metal, Next, an amount of Ca source in which the molar ratio of Ca / Si in the soil is 0.1 to 0.6 and a chlorine source are added to the soil to adjust the components (however, The amount of each material added to the soil containing the heavy metal is adjusted so that the Ca / Si molar ratio in the particles having a particle size of 75 μm or less in the adjusted soil is 0.2 to 0.6. After obtaining this, if this soil is heated at a predetermined temperature in a baking kiln such as a rotary kiln, the moisture content of the gas in the kiln is adjusted to 10% or less , Heavy metal contained in this soil is volatilized and evaporated. And calcined product content can be used as a small cement raw material of chlorine (chlorine content: 0.05 wt% or less) found such that the obtained, thereby completing the present invention.

すなわち、本発明の重金属を含む土壌の処理方法は、重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上となるように所定の処理を行なう粒度調整工程と、(A)該粒度調整工程で得られた重金属を含む土壌に対して、該土壌中のCa/Siのモル比が0.1〜0.6となる量のCa源(カルシウムを含有する物質)、および塩素源(塩素を含有する物質)を添加して、成分調整された土壌を得る工程と、(B)該成分調整された土壌を焼成炉内で加熱して、前記重金属を塩化揮発させるとともに、塩素の含有率が0.05質量%以下である焼成物を得る工程とを含み、前記工程(A)で得られる成分調整された土壌中の75μm以下の粒度を有する粒子におけるCa/Siのモル比が0.2〜0.6となるように、前記重金属を含む土壌に添加される各材料(具体的には、工程(A)で添加されるCa源、および粒度調整工程で添加されるSi源)の添加量を定め、前記工程(B)において、前記焼成炉内のガスの水分含有率を10%以下に調整することを特徴とする。 That is, the method for treating soil containing heavy metal according to the present invention includes a particle size adjusting step of performing predetermined treatment so that the content of particles having a particle size of 75 μm or less is 30% by mass or more with respect to soil containing heavy metal. for soil containing heavy metals obtained in (a) the particle size adjustment step, the molar ratio of Ca / Si of the soil contains a Ca source (calcium amount corresponding to 0.1 to 0.6 substances ), And a chlorine source (chlorine-containing substance) to obtain a component-adjusted soil; and (B) heating the component-adjusted soil in a firing furnace to volatilize the heavy metal by chlorination. And a step of obtaining a calcined product having a chlorine content of 0.05% by mass or less, and the Ca / in particles having a particle size of 75 μm or less in the component-adjusted soil obtained in the step (A) The molar ratio of Si is 0.2 to 0.6 As described above, the amount of each material added to the soil containing the heavy metal (specifically, the Ca source added in the step (A) and the Si source added in the particle size adjustment step) is determined, In the step (B), the moisture content of the gas in the firing furnace is adjusted to 10% or less .

本発明の方法の工程(B)において、焼成炉内のガスの水分含有率は1%以上に調整することが好ましい。
工程(A)で用いられるCa源の好ましい具体例として、例えば、消石灰、炭酸カルシウム、生石灰および塩化カルシウムからなる群より選ばれる1種以上が挙げられる。
工程(A)で用いられる塩素源の好ましい具体例として、例えば、塩化カルシウムが挙げられる。
前記粒度調整工程における処理の具体例として、(a)重金属を含む土壌を粉砕すること、(b)重金属を含む土壌に水を添加して、該土壌の凝集を解離すること、(c)Si源の粉末を添加すること、等が挙げられる。ここで、Si源の粉末の好ましい具体例として、例えば、珪石、粘土およびガラスからなる群より選ばれる1種以上が挙げられる。
In the step of the method of the present invention (B), the moisture content of the gas in the firing furnace is preferably adjusted to 1% or more.
Preferable specific examples of the Ca source used in the step (A) include, for example, one or more selected from the group consisting of slaked lime, calcium carbonate, quick lime, and calcium chloride.
A preferable specific example of the chlorine source used in the step (A) is, for example, calcium chloride.
As a specific example of the treatment in the particle size adjustment step, (a) pulverizing soil containing heavy metal, (b) adding water to soil containing heavy metal, and dissociating the aggregation of the soil, (c) Si Adding the source powder, and the like. Here, as a preferable specific example of the powder of the Si source, for example, one or more selected from the group consisting of silica, clay, and glass can be given.

本発明の重金属を含む土壌の処理方法によれば、重金属を含む土壌から高い除去率で重金属を除去することができる。
また、処理後に得られる焼成物は、重金属および塩素の含有率が小さいため、セメント原料等として好適に用いることができる。
特に、工程(B)において焼成炉内のガスの水分含有率を10%以下に調整しているので、重金属の塩化揮発を促進することができ、焼成物中の重金属の含有率をより一層小さくすることができる。また、該水分含有率を1%以上に調整すれば、焼成物中の塩素の含有率をより一層小さくすることができる。
また、本発明の処理方法において、工程(A)の前工程として、重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上となるように所定の処理を行なう粒度調整工程を設けているので、工程(B)で得られる焼成物中の重金属および塩素の含有率をより一層小さくすることができる。
According to the method for treating soil containing heavy metal of the present invention, heavy metal can be removed from soil containing heavy metal at a high removal rate.
Further, the fired product obtained after the treatment can be suitably used as a cement raw material or the like because the content of heavy metals and chlorine is small.
In particular, since the moisture content of the gas in the firing furnace is adjusted to 10% or less in the step (B), chlorination of heavy metals can be promoted, and the content of heavy metals in the fired product can be further reduced. can do. Moreover, if the moisture content is adjusted to 1% or more, the chlorine content in the fired product can be further reduced.
In the treatment method of the present invention, as a pre-step of step (A), a predetermined treatment is performed so that the content of particles having a particle size of 75 μm or less is 30% by mass or more with respect to soil containing heavy metal. Since the particle size adjustment step is provided , the content of heavy metals and chlorine in the fired product obtained in step (B) can be further reduced.

本発明の重金属を含む土壌の処理方法は、重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上となるように所定の処理を行なう粒度調整工程と、(A)該粒度調整工程で得られた重金属を含む土壌に対して、該土壌中のCa/Siのモル比が0.1〜0.6となる量のCa源、および塩素源を添加して、成分調整された土壌を得る工程と、(B)該成分調整された土壌を焼成炉内で加熱して、前記重金属を塩化揮発させるとともに、塩素の含有率が0.05質量%以下である焼成物を得る工程とを含み、前記工程(A)で得られる成分調整された土壌中の75μm以下の粒度を有する粒子におけるCa/Siのモル比が0.2〜0.6となるように、前記重金属を含む土壌に添加される各材料の添加量を定め、前記工程(B)において、前記焼成炉内のガスの水分含有率を10%以下に調整するものである。
本発明で処理対象となる土壌としては、有害な重金属を含むものであればよく、具体的には、工場の跡地の土壌や、廃棄物焼却場の周辺の土壌等が挙げられる。
ここで、有害な重金属としては、例えば、鉛、亜鉛、カドミウム、水銀等が挙げられる。
以下、各工程を詳しく説明する。
The method for treating a soil containing heavy metal according to the present invention includes a particle size adjusting step of performing a predetermined treatment on the soil containing heavy metal so that the content of particles having a particle size of 75 μm or less is 30% by mass or more. A) To the soil containing the heavy metal obtained in the particle size adjustment step, an amount of Ca source and a chlorine source in which the molar ratio of Ca / Si in the soil is 0.1 to 0.6 are added. The step of obtaining the component-adjusted soil, and (B) heating the component-adjusted soil in a baking furnace to volatilize and volatilize the heavy metal, and the chlorine content is 0.05% by mass or less. A step of obtaining a baked product, and the molar ratio of Ca / Si in particles having a particle size of 75 μm or less in the component-adjusted soil obtained in the step (A) is 0.2 to 0.6. The amount of each material added to the soil containing the heavy metal Because, in the step (B), the water content of the gas in the firing furnace and adjusts than 10%.
The soil to be treated in the present invention is not limited as long as it contains harmful heavy metals, and specific examples include soil on the site of a factory, soil around a waste incineration plant, and the like.
Here, examples of harmful heavy metals include lead, zinc, cadmium, mercury, and the like.
Hereinafter, each process will be described in detail.

[粒度調整工程]
本工程は、工程(A)の前工程として、重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上、好ましくは35質量%以上となるように所定の処理を行なう工程である。
75μm以下の粒度を有する粒子の含有率を上記数値範囲内に調整することによって、焼成物中の重金属および塩素の含有率を効果的に減少させることができる。
なお、「75μm以下の粒度を有する粒子」とは、目開き寸法が75μmである篩を通過することのできる粒子をいう。
重金属を含む土壌の粒度の調整方法としては、例えば、(a)重金属を含む土壌をボールミル等の粉砕手段を用いて粉砕して、75μm以下の粒度を有する粒子の割合を増大させる方法、(b)重金属を含む土壌に水を添加して、スラリー化し、土壌の微粒の凝集体を解離することによって、75μm以下の粒度を有する粒子の割合を増大させる方法、(c)75μm以下の粒度を有するSi源の粉末(例えば、珪石、粘土、ガラス等の粉末)を添加して、75μm以下の粒度を有する粒子の割合を増大させる方法等が挙げられる。
[Granularity adjustment process]
In this step, as a previous step of step (A), a predetermined treatment is performed so that the content of particles having a particle size of 75 μm or less is 30% by mass or more, preferably 35% by mass or more with respect to soil containing heavy metal. It is the process of performing.
By adjusting the content of particles having a particle size of 75 μm or less within the above numerical range, the content of heavy metals and chlorine in the fired product can be effectively reduced.
The “particles having a particle size of 75 μm or less” refers to particles that can pass through a sieve having an opening size of 75 μm.
Examples of the method for adjusting the particle size of the soil containing heavy metal include: (a) a method of increasing the proportion of particles having a particle size of 75 μm or less by pulverizing the soil containing heavy metal using a pulverizing means such as a ball mill; ) A method of increasing the proportion of particles having a particle size of 75 μm or less by adding water to the soil containing heavy metal to form a slurry and dissociating the fine particles of the soil, (c) having a particle size of 75 μm or less Examples include a method of increasing the proportion of particles having a particle size of 75 μm or less by adding Si source powder (for example, powder of silica, clay, glass, etc.).

[工程(A)]
本工程は、重金属を含む土壌に対して、該土壌中のCa/Siのモル比が0.1〜0.6となる量のCa源、および塩素源を添加して、成分調整された土壌を得る工程である。
Ca源としては、例えば、消石灰、炭酸カルシウム、生石灰、塩化カルシウム等が挙げられる。
Ca源の添加量は、重金属を含む土壌中のCa/Siのモル比が、0.1以上、好ましくは0.2以上、特に好ましくは0.3以上となる量に定められる。該モル比が0.1未満では、土壌から重金属を十分に除去することができなくなる。
また、Ca源の添加量は、重金属を含む土壌中のCa/Siのモル比が0.6以下となる量に定められる。
該モル比が1.2を超えると、焼成物中の塩素の含有率が大きくなるので、好ましくない。
[Step (A)]
In this step, the soil in which the components are adjusted by adding a Ca source and a chlorine source in an amount such that the Ca / Si molar ratio in the soil is 0.1 to 0.6 with respect to the soil containing heavy metal. It is the process of obtaining.
Examples of the Ca source include slaked lime, calcium carbonate, quick lime, calcium chloride and the like.
The addition amount of the Ca source is determined such that the Ca / Si molar ratio in the soil containing heavy metals is 0.1 or more, preferably 0.2 or more, and particularly preferably 0.3 or more. When the molar ratio is less than 0.1, heavy metals cannot be sufficiently removed from the soil.
The amount of Ca sources, the molar ratio of Ca / Si in the soil containing heavy metals is determined to an amount of 0.6 or less.
When the molar ratio exceeds 1.2, the content of chlorine in the fired product increases, which is not preferable.

添加するCa源の量が比較的多い場合には、Ca源として塩化カルシウムを単独で用いると、土壌中の塩素の量が過大になって、焼成物中の塩素の含有率が大きくなることがあるので、塩化カルシウムと、塩素を含まないCa源(具体的には、消石灰、炭酸カルシウム、生石灰等)を併用するか、あるいは、塩素を含まないCa源のみを用いることが望ましい。
添加するCa源の量が比較的少ない場合には、Ca源として塩化カルシウムを単独で用いることができる。
When the amount of Ca source to be added is relatively large, if calcium chloride is used alone as the Ca source, the amount of chlorine in the soil becomes excessive, and the content of chlorine in the fired product may increase. Therefore, it is desirable to use calcium chloride and a Ca source that does not contain chlorine (specifically, slaked lime, calcium carbonate, quick lime, etc.) or use only a Ca source that does not contain chlorine.
When the amount of Ca source to be added is relatively small, calcium chloride can be used alone as the Ca source.

本発明においては、重金属を含む土壌に対して、塩素源が添加される。
塩素源としては、例えば、塩化カルシウム、塩化マグネシウム、塩素を含むプラスチック、塩酸等が挙げられる。また、ごみ焼却施設等で塩化水素の中和剤として使用されるCaO源(具体的には、消石灰、炭酸カルシウム、生石灰等)の使用後の廃棄物も、塩素源およびカルシウム源として使用することができる。
中でも、塩化カルシウムは、本発明におけるCa源にもなるので、本発明において好ましく用いられる。
塩素源の添加量は、土壌中の塩化揮発の対象となる元素(例えば、PbO、NaO、KO、CaO、MgO等)の合計量に応じて、適宜定めればよい。
In the present invention, a chlorine source is added to the soil containing heavy metals.
Examples of the chlorine source include calcium chloride, magnesium chloride, chlorine-containing plastics, hydrochloric acid, and the like. In addition, waste after the use of CaO sources (specifically, slaked lime, calcium carbonate, quick lime, etc.) used as neutralizing agents for hydrogen chloride in refuse incineration facilities, etc. should also be used as chlorine and calcium sources. Can do.
Among them, calcium chloride is preferably used in the present invention because it also serves as a Ca source in the present invention.
The addition amount of the chlorine source may be appropriately determined according to the total amount of elements (for example, PbO, Na 2 O, K 2 O, CaO, MgO, etc.) that are subject to chlorination and volatilization in the soil.

重金属を含む土壌にCa源および塩素源を添加して、成分調整された土壌を得るには、(a)重金属を含む土壌とCa源と塩素源とを、混合機等の混合手段を用いて混合する方法や、(b)ロータリーキルンの如き可動式焼成炉内に、重金属を含む土壌とCa源と塩素源とを別々に投入し、可動式焼成炉の回転等によって、これらの材料の混合を行なうとともに、得られた混合物の焼成をこの炉内で行なう方法、等が挙げられる。
このうち、(a)の方法は、材料を均一に混合させることができるので、好ましく用いられる。
なお、(b)の方法を用いた場合には、各材料が混合されて土壌の成分が調整される工程と、成分調整された土壌が焼成される工程とが、同一の手段(焼成炉)によって連続的に行なわれることになる。
In order to obtain a component-adjusted soil by adding a Ca source and a chlorine source to a soil containing heavy metals, (a) using a mixing means such as a mixer, the soil containing the heavy metals, the Ca source and the chlorine source. (B) A soil containing heavy metal, a Ca source and a chlorine source are separately charged into a movable firing furnace such as a rotary kiln, and these materials are mixed by rotating the movable firing furnace. And a method of firing the obtained mixture in this furnace.
Among these, the method (a) is preferably used because the materials can be mixed uniformly.
In addition, when the method of (b) is used, the process by which each material is mixed and the component of soil is adjusted, and the process by which the component-adjusted soil is baked are the same means (baking furnace). Will be performed continuously.

[工程(B)]
本工程は、工程(A)で成分調整された土壌を焼成炉内で加熱して、重金属を塩化揮発させるとともに、焼成物を得る工程である。
重金属を含む土壌とCa源と塩素源との混合物が焼成される際、焼成炉内のガスの水分含有率は、好ましくは1%以上、より好ましくは2%以上、特に好ましくは3%以上に調整される。
ここで、ガスの水分含有率(%)は、次の式によって定義される。
ガスの水分含有率(%)
=[水蒸気量(mN)/湿り燃焼ガス量(mN)]×100
該水分含有率を上記好ましい数値範囲内に調整することによって、焼成物中の塩素の含有率を低く抑えることができる。
また、焼成炉内のガスの水分含有率は10%以下に調整される。
該水分含有率が20%を超えると、塩化揮発反応が十分に進まず、重金属の除去率が小さくなる傾向が見られるほか、焼成炉内に供給すべき水の量が大きくなり、コストや装置の負荷が増大するので好ましくない。
[Step (B)]
This step is a step of heating the soil whose components are adjusted in step (A) in a baking furnace to volatilize and volatilize heavy metals and to obtain a fired product.
When the mixture of soil containing heavy metal, Ca source and chlorine source is fired, the moisture content of the gas in the firing furnace is preferably 1% or more, more preferably 2% or more, and particularly preferably 3% or more. Adjusted.
Here, the moisture content (%) of the gas is defined by the following equation.
Moisture content of gas (%)
= [Water vapor amount (m 3 N) / Wet combustion gas amount (m 3 N)] × 100
By adjusting the water content within the preferable numerical range, the chlorine content in the fired product can be kept low.
The water content of the gas in the firing furnace is adjusted to 10% or less.
If the moisture content exceeds 20%, the chlorination volatilization reaction does not proceed sufficiently, and the removal rate of heavy metals tends to decrease, and the amount of water to be supplied into the firing furnace increases, resulting in cost and equipment. This is not preferable because of increasing the load.

焼成炉内のガスの水分含有率を調整する方法としては、例えば、外熱式ロータリーキルンの如き外熱炉に対して、外部から水蒸気を含む空気を所定の流量で供給する方法等が挙げられる。
なお、内熱式ロータリーキルンの如き炉内で水分が発生する焼成炉においては、炉内に供給される燃料の種類および量を考慮して、炉内のガスの水分含有率を調整する必要がある。例えば、水分の発生源である重油と、水分の発生量の少ない活性炭とを適宜の割合で併用するなどの方法が用いられる。
焼成炉内の温度は、重金属の塩化揮発が生じる温度であればよく、例えば、800〜1,400℃である。
焼成炉としては、例えば、外熱式ロータリーキルン、内熱式ロータリーキルン、電気炉等が挙げられる。
Examples of a method for adjusting the moisture content of the gas in the firing furnace include a method of supplying air containing water vapor from the outside at a predetermined flow rate to an external heating furnace such as an external heating rotary kiln.
In a firing furnace such as an internal heat rotary kiln in which moisture is generated, it is necessary to adjust the moisture content of the gas in the furnace in consideration of the type and amount of fuel supplied to the furnace. . For example, a method in which heavy oil that is a source of moisture and activated carbon with a small amount of moisture are used in an appropriate ratio is used.
The temperature in the firing furnace may be a temperature at which chlorination of heavy metals occurs and is, for example, 800 to 1,400 ° C.
Examples of the firing furnace include an externally heated rotary kiln, an internally heated rotary kiln, and an electric furnace.

本発明においては、上述のCa/Siのモル比や、焼成炉内の水分含有率を調整することによって、鉛の除去率や塩素の含有率を調整することができる。
例えば、Ca/Siのモル比が0.1〜0.6(好ましくは0.2〜0.6)であり、かつ、焼成炉内のガスの水分含有率が2〜10%(好ましくは3〜10%)であれば、鉛の大半が除去され、かつ塩素の含有率が非常に小さい焼成物を得ることができ、セメント原料として好適に用いることができる。
なお、鉛(Pb)の除去率は、次の式によって定義される。
鉛の除去率(%)
=100−[[焼成残渣中のPbO(%)/焼成残渣中のCaO(%)]
÷[調合原料中のPbO(%)/調合原料中のCaO(%)]×100]
本発明で得られる焼成物は、例えば、セメント原料として好適に用いることができる。
一方、焼成炉内で塩化揮発した重金属等の塩化物は、焼成炉の排ガスと共に、バグフィルタ等の集塵機に導かれ、捕集される。
In the present invention, the lead removal rate and the chlorine content can be adjusted by adjusting the above-mentioned Ca / Si molar ratio and the moisture content in the firing furnace.
For example, the Ca / Si molar ratio is 0.1 to 0.6 (preferably 0.2 to 0.6), and the moisture content of the gas in the firing furnace is 2 to 10% (preferably 3). 10%), most of the lead can be removed, and a fired product with a very low chlorine content can be obtained, which can be suitably used as a cement raw material.
In addition, the removal rate of lead (Pb) is defined by the following formula.
Lead removal rate (%)
= 100-[[PbO (%) in the firing residue / CaO (%) in the firing residue]]
÷ [PbO (%) in blended raw material / CaO (%) in blended raw material] × 100]
The fired product obtained in the present invention can be suitably used, for example, as a cement raw material.
On the other hand, chlorides such as heavy metals that have been volatilized and volatilized in the firing furnace are led to a dust collector such as a bag filter and collected together with the exhaust gas from the firing furnace.

以下、実験例に基づいて本発明を説明する。
[実施例1]
乾燥処理した関東ローム粘土の粉砕物100質量部に対し、酸化鉛0.3質量部を添加して混合し、試験用土壌とした。この試験用土壌の成分組成および75μm篩通過割合を表1に示す。

Figure 0004467998
Hereinafter, the present invention will be described based on experimental examples.
[Example 1]
0.3 parts by mass of lead oxide was added to and mixed with 100 parts by mass of the pulverized product of Kanto Loam clay that had been subjected to drying treatment to obtain a test soil. Table 1 shows the component composition and the 75 μm sieve passage ratio of the test soil.
Figure 0004467998

得られた試験用土壌100質量部に対し、塩化カルシウム9.0質量部および消石灰微粉末13.8質量部を添加して混合し、焼成用試料とした。焼成用試料のCa/Siのモル比は、0.26であった。また、焼成用試料中の75μm以下の粒度を有する粒子におけるCa/Siのモル比は、0.30であった。
この焼成用試料を、ポリ塩化ビニル製の円環状の成形体(内径:30mm、高さ:5mm)内に充填して、プレス成形(圧力:140MPa)し、焼成用試料からなる塊状物を得た。この塊状物を砕いて、5mm角程度の粒状物にした。
To 100 parts by mass of the obtained test soil, 9.0 parts by mass of calcium chloride and 13.8 parts by mass of fine slaked lime powder were added and mixed to obtain a firing sample. The Ca / Si molar ratio of the firing sample was 0.26. Moreover, the molar ratio of Ca / Si in the particles having a particle size of 75 μm or less in the firing sample was 0.30.
The firing sample is filled into an annular molded body (inner diameter: 30 mm, height: 5 mm) made of polyvinyl chloride, and press-molded (pressure: 140 MPa) to obtain a lump made of the firing sample. It was. This lump was crushed into a granular material of about 5 mm square.

得られた粒状物を、管状の電気炉(内径:30mm、長さ:1,500mm)内の白金製の皿(幅:25mm、長さ:700mm)上に敷き詰めた後、電気炉を閉じて、炉内の温度を800℃に上昇させ、かつ、炉内の雰囲気をガス流量1リットル/分、酸素濃度4%、水分含有率4.9%に調整した。
なお、ガス流量、および炉内の酸素濃度は、酸素濃度が異なる数種の標準ガスボンベ(酸素以外のガスとして窒素を含むもの)、およびフロー型流量計を用いることによって調整した。
After the obtained granular material was spread on a platinum dish (width: 25 mm, length: 700 mm) in a tubular electric furnace (inner diameter: 30 mm, length: 1,500 mm), the electric furnace was closed. The temperature in the furnace was raised to 800 ° C., and the atmosphere in the furnace was adjusted to a gas flow rate of 1 liter / min, an oxygen concentration of 4%, and a moisture content of 4.9%.
The gas flow rate and the oxygen concentration in the furnace were adjusted by using several standard gas cylinders (containing nitrogen as a gas other than oxygen) and flow type flow meters having different oxygen concentrations.

一方、水分含有率は、炉内に供給される標準ガスを、マントルヒーターで温度調整されたフラスコ内の水でバブリングさせ、その温度および圧力下の飽和水蒸気ガスを電気炉に供給することによって、調整した。
電気炉内の温度を50分間で800℃から1,100℃まで上昇させた後、1,100℃の温度で10分間保ち、焼成用試料の粒状物を焼成させた。
焼成後、得られた粒状物(焼成物)を化学分析したところ、表2に示すように、PbOの含有率は0.018重量%であり、塩素(Cl)の含有率は0.027重量%であった。これらの分析結果から、焼成物をセメント原料として好適に用い得ることがわかった。
On the other hand, the moisture content is determined by bubbling the standard gas supplied into the furnace with water in the flask whose temperature is adjusted with a mantle heater, and supplying the saturated steam gas under the temperature and pressure to the electric furnace. It was adjusted.
After raising the temperature in the electric furnace from 800 ° C. to 1,100 ° C. in 50 minutes, the temperature was kept at 1,100 ° C. for 10 minutes to fire the granular material of the firing sample.
After the calcination, the obtained granular material (calcined product) was chemically analyzed. As shown in Table 2, the PbO content was 0.018% by weight and the chlorine (Cl) content was 0.027%. %Met. From these analysis results, it was found that the fired product can be suitably used as a cement raw material.

[実施例2〜参考例1〜6、比較例1、2]
塩化カルシウムおよび消石灰微粉末の添加量と、電気炉内の水分含有率を表2に示すように変えた以外は、実施例1と同様にして実験した。結果を表2に示す。

Figure 0004467998
[Examples 2 to 3 , Reference Examples 1 to 6, Comparative Examples 1 and 2]
An experiment was conducted in the same manner as in Example 1 except that the addition amounts of calcium chloride and fine slaked lime powder and the moisture content in the electric furnace were changed as shown in Table 2. The results are shown in Table 2.
Figure 0004467998

[実施例
乾燥処理した土壌100質量部に対し、酸化鉛0.3質量部を添加して混合した後、ボールミルで粗粉砕し、試験用土壌とした。この試験用土壌の成分組成および75μm篩通過割合を表3に示す。

Figure 0004467998
[Example 4 ]
After adding and mixing 0.3 parts by mass of lead oxide to 100 parts by mass of the dried soil, coarsely pulverized with a ball mill to obtain test soil. Table 3 shows the component composition and the 75 μm sieve passage ratio of this test soil.
Figure 0004467998

次いで、この試験用土壌100質量部に対し、石灰石微粉末20.0質量部および塩化カルシウム3.0質量部を添加して混合し、さらに試料の飛散防止のため散水し、焼成用試料とした。
得られた試料を、内熱式ロータリーキルン(内径:270mm、長さ:4,500mm)の窯尻側から供給して焼成した。キルン内の焼成条件は、焼点温度(バーナー付近の試料温度)が1,100℃、窯尻のガス温度が600℃、滞留時間が42分間、窯尻におけるガス速度が1.5〜3.0m/秒、充填率(キルン内の空間の体積に占める原料の体積の割合)が5.4%、酸素濃度が4.0%、水分含有率が7%であった。
得られた焼成物の化学分析の結果を表2に示す。表2から焼成物をセメント原料として好適に用い得ることがわかる。
Next, 20.0 parts by mass of limestone fine powder and 3.0 parts by mass of calcium chloride are added to and mixed with 100 parts by mass of this test soil, and water is sprayed to prevent the sample from scattering, thereby obtaining a firing sample. .
The obtained sample was supplied from the kiln bottom side of an internal heat type rotary kiln (inner diameter: 270 mm, length: 4,500 mm) and fired. The firing conditions in the kiln are as follows: the baking temperature (sample temperature near the burner) is 1,100 ° C., the gas temperature at the kiln bottom is 600 ° C., the residence time is 42 minutes, and the gas velocity at the kiln bottom is 1.5-3. The filling rate (ratio of the volume of the raw material to the volume of the space in the kiln) was 5.4%, the oxygen concentration was 4.0%, and the moisture content was 7%.
Table 2 shows the results of chemical analysis of the obtained fired product. It can be seen from Table 2 that the fired product can be suitably used as a cement raw material.

[実施例
乾燥処理した土壌100質量部に対し、酸化鉛0.3質量部および珪石微粉末10.0質量部を添加して混合し、試験用土壌とした。この試験用土壌の成分組成および75μm篩通過割合を表4に示す。

Figure 0004467998
[Example 5 ]
To 100 parts by mass of the dried soil, 0.3 part by mass of lead oxide and 10.0 parts by mass of fine silica powder were added and mixed to obtain a test soil. Table 4 shows the component composition of the test soil and the passage rate of the 75 μm sieve.
Figure 0004467998

次いで、この試験用土壌100質量部に対し、石灰石微粉末20.0質量部および塩化カルシウム3.0質量部を添加して混合し、さらに試料の飛散防止のため散水し、焼成用試料とした。なお、このときの75μm篩通過割合は36質量%であった。
得られた試料を、実施例と同様の条件で焼成した。得られた焼成物の化学分析の結果を表2に示す。表2から焼成物をセメント原料として好適に用い得ることがわかる。
参考例7
乾燥処理した土壌100質量部に対し、酸化鉛0.3質量部を添加して混合し、そのまま試験用土壌とした。この試験用土壌の成分組成および75μm篩通過割合を表5に示す。

Figure 0004467998
Next, 20.0 parts by mass of limestone fine powder and 3.0 parts by mass of calcium chloride are added to and mixed with 100 parts by mass of this test soil, and water is sprayed to prevent the sample from scattering, thereby obtaining a firing sample. . In addition, the 75 micrometer sieve passage ratio at this time was 36 mass%.
The obtained sample was fired under the same conditions as in Example 4 . Table 2 shows the results of chemical analysis of the obtained fired product. It can be seen from Table 2 that the fired product can be suitably used as a cement raw material.
[ Reference Example 7 ]
With respect to 100 parts by mass of the dried soil, 0.3 part by mass of lead oxide was added and mixed to obtain a test soil as it was. Table 5 shows the component composition and the 75 μm sieve passage ratio of this test soil.
Figure 0004467998

次いで、この試験用土壌100質量部に対し、石灰石微粉末20.0質量部および塩化カルシウム3.0質量部を添加して混合し、さらに試料の飛散防止のため散水し、焼成用試料とした。なお、このときの75μm篩通過割合は21質量%であった。得られた試料を、実施例と同様の条件で焼成した。
得られた焼成物の化学分析の結果を表2に示す。
Next, 20.0 parts by mass of limestone fine powder and 3.0 parts by mass of calcium chloride are added to and mixed with 100 parts by mass of this test soil, and water is sprayed to prevent the sample from scattering, thereby obtaining a sample for firing. . In addition, the 75-micrometer sieve passage ratio at this time was 21 mass%. The obtained sample was fired under the same conditions as in Example 4 .
Table 2 shows the results of chemical analysis of the obtained fired product.

Claims (8)

重金属を含む土壌に対して、75μm以下の粒度を有する粒子の含有率が30質量%以上となるように所定の処理を行なう粒度調整工程と、
(A)該粒度調整工程で得られた重金属を含む土壌に対して、該土壌中のCa/Siのモル比が0.1〜0.6となる量のCa源、および塩素源を添加して、成分調整された土壌を得る工程と、
(B)該成分調整された土壌を焼成炉内で加熱して、前記重金属を塩化揮発させるとともに、塩素の含有率が0.05質量%以下である焼成物を得る工程とを含み、
前記工程(A)で得られる成分調整された土壌中の75μm以下の粒度を有する粒子におけるCa/Siのモル比が0.2〜0.6となるように、前記重金属を含む土壌に添加される各材料の添加量を定め、
前記工程(B)において、前記焼成炉内のガスの水分含有率を10%以下に調整することを特徴とする重金属を含む土壌の処理方法。
A particle size adjusting step for performing a predetermined treatment so that the content of particles having a particle size of 75 μm or less is 30% by mass or more with respect to the soil containing heavy metal,
(A) To the soil containing heavy metal obtained in the particle size adjustment step, an amount of Ca source and a chlorine source in which the molar ratio of Ca / Si in the soil is 0.1 to 0.6 are added. And obtaining a component-adjusted soil,
(B) heating the component-adjusted soil in a firing furnace to volatilize and volatilize the heavy metal, and obtaining a fired product having a chlorine content of 0.05% by mass or less ,
It is added to the soil containing the heavy metal so that the molar ratio of Ca / Si in the particles having a particle size of 75 μm or less in the component-adjusted soil obtained in the step (A) is 0.2 to 0.6. Determine the amount of each material to be added,
In the said process (B), the moisture content rate of the gas in the said baking furnace is adjusted to 10% or less, The processing method of the soil containing a heavy metal characterized by the above-mentioned.
前記工程(B)において、前記焼成炉内のガスの水分含有率を1%以上に調整する請求項に記載の重金属を含む土壌の処理方法。 In the step (B), the processing method of soil containing heavy metals according to claim 1 for adjusting the moisture content of gas in the firing furnace to more than 1%. 前記工程(A)で用いられるCa源が、消石灰、炭酸カルシウム、生石灰および塩化カルシウムからなる群より選ばれる1種以上である請求項1又は2に記載の重金属を含む土壌の処理方法。 The method for treating soil containing heavy metals according to claim 1 or 2 , wherein the Ca source used in the step (A) is at least one selected from the group consisting of slaked lime, calcium carbonate, quicklime and calcium chloride. 前記工程(A)で用いられる塩素源が、塩化カルシウムである請求項1〜のいずれか1項に記載の重金属を含む土壌の処理方法。 The method for treating soil containing heavy metals according to any one of claims 1 to 3 , wherein the chlorine source used in the step (A) is calcium chloride. 前記粒度調整工程における処理は、前記重金属を含む土壌を粉砕するものである請求項1〜4のいずれか1項に記載の重金属を含む土壌の処理方法。 The processing in the said particle size adjustment process grind | pulverizes the soil containing the said heavy metal, The processing method of the soil containing the heavy metal of any one of Claims 1-4 . 前記粒度調整工程における処理は、前記重金属を含む土壌に水を添加して、該土壌の凝集を解離するものである請求項1〜4のいずれか1項に記載の重金属を含む土壌の処理方法。 The processing in the said particle size adjustment process adds water to the soil containing the said heavy metal, and dissociates the aggregation of this soil, The processing method of the soil containing the heavy metal of any one of Claims 1-4 . 前記粒度調整工程における処理は、Si源の粉末を添加するものである請求項1〜4のいずれか1項に記載の重金属を含む土壌の処理方法。 The processing in the said particle size adjustment process adds the powder of Si source, The processing method of the soil containing the heavy metal of any one of Claims 1-4 . 前記Si源の粉末が、珪石、粘土およびガラスからなる群より選ばれる1種以上である請求項に記載の重金属を含む土壌の処理方法。 The method for treating soil containing heavy metal according to claim 7 , wherein the powder of the Si source is at least one selected from the group consisting of silica, clay and glass.
JP2004017726A 2003-03-26 2004-01-26 Method for treating soil containing heavy metals Expired - Fee Related JP4467998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017726A JP4467998B2 (en) 2003-03-26 2004-01-26 Method for treating soil containing heavy metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086261 2003-03-26
JP2004017726A JP4467998B2 (en) 2003-03-26 2004-01-26 Method for treating soil containing heavy metals

Publications (2)

Publication Number Publication Date
JP2004306012A JP2004306012A (en) 2004-11-04
JP4467998B2 true JP4467998B2 (en) 2010-05-26

Family

ID=33478328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017726A Expired - Fee Related JP4467998B2 (en) 2003-03-26 2004-01-26 Method for treating soil containing heavy metals

Country Status (1)

Country Link
JP (1) JP4467998B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172495A (en) * 2008-01-23 2009-08-06 Mhi Environment Engineering Co Ltd Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals
JP6061291B2 (en) * 2012-11-12 2017-01-18 鳥取県 Method for separating heavy metals from glass
JP6091183B2 (en) * 2012-11-26 2017-03-08 太平洋セメント株式会社 Method for removing radioactive cesium and method for producing fired product

Also Published As

Publication number Publication date
JP2004306012A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JPH08501601A (en) Method and associated apparatus for removing mercury from contaminated soil and industrial waste
Min et al. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process
JPH11310832A (en) Treatement of metal oxide of steel making waste
JP2013122440A (en) Method for removing radioactive cesium and method for manufacturing fired material
WO2014068800A1 (en) Method for eliminating radioactive cesium and method for producing burned product
JP3910132B2 (en) Recycling method for soil containing heavy metals
JP6091183B2 (en) Method for removing radioactive cesium and method for producing fired product
JP4467998B2 (en) Method for treating soil containing heavy metals
TW512077B (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP4686227B2 (en) Treatment method of sulfuric acid pitch
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
JP4949713B2 (en) Method for firing heavy metal-containing raw materials
JP2779028B2 (en) High titanium content aggregates sintered
JP5109060B2 (en) Method for producing inorganic solidified body with detoxification of lead glass
JP4889925B2 (en) Method and apparatus for treating sulfuric acid pitch
US4065294A (en) Energy conserving process for purifying iron oxide
JP4904300B2 (en) Method for dechlorination of husk
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP4408226B2 (en) Method for treating soil containing lead
US6136063A (en) Process for separating hazardous metals from waste materials during vitrification
JP2004323255A (en) Method and system for converting soil to cement raw material
PL229591B1 (en) Method for rendering harmless and utilization of dusts from burning installations and pulp from floatation enrichment of non-ferrous metal ores, containing dangerous substances, in the process of production of lightweight aggregate for building industry
JP2009050776A (en) Method of rendering heavy metal-containing contaminant harmless
JP5583359B2 (en) Detoxification equipment for asbestos products
JP5378901B2 (en) Refractory brick manufacturing method and fireproof brick made from asbestos detoxified material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4467998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees