JP4466473B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP4466473B2
JP4466473B2 JP2005147835A JP2005147835A JP4466473B2 JP 4466473 B2 JP4466473 B2 JP 4466473B2 JP 2005147835 A JP2005147835 A JP 2005147835A JP 2005147835 A JP2005147835 A JP 2005147835A JP 4466473 B2 JP4466473 B2 JP 4466473B2
Authority
JP
Japan
Prior art keywords
groove
outer ring
ring
width
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005147835A
Other languages
Japanese (ja)
Other versions
JP2006322579A (en
Inventor
賀津雄 井手
耕志郎 山川
一寿 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005147835A priority Critical patent/JP4466473B2/en
Publication of JP2006322579A publication Critical patent/JP2006322579A/en
Application granted granted Critical
Publication of JP4466473B2 publication Critical patent/JP4466473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

本発明は、転がり軸受に係り、詳しくは、軌道輪と相手部材とのはめあい面に生じるクリープを防止しうる転がり軸受に関する。   The present invention relates to a rolling bearing, and more particularly to a rolling bearing capable of preventing creep that occurs on a fitting surface between a bearing ring and a mating member.

転がり軸受は、その内輪を軸に、外輪をハウジングに、それぞれ適切なはめあいで固定するか、もしくはピンや樹脂などの適宜の部材で回転防止をする必要があり、この回転防止が不充分であると、はめあい面で円周方向にクリープと呼ばれる、有害な滑りを生じる。このクリープが生じると、異常発熱、はめあい面の摩耗、摩耗粉の軸受内部への侵入、振動発生等、様々なトラブルを引き起こす。   It is necessary to fix the rolling bearing around the inner ring and the outer ring to the housing with an appropriate fit, or to prevent rotation with an appropriate member such as a pin or resin, and this rotation prevention is insufficient. This creates a harmful slip called creep in the circumferential direction on the mating surface. When this creep occurs, various troubles such as abnormal heat generation, wear of the fitting surface, intrusion of wear powder into the bearing, vibration, etc. are caused.

特に、自動車の変速機の軸支持用軸受のように、高荷重の条件下で使用される転がり軸受では、固定輪である外輪の外周面とハウジングとの間でクリープが生じ、外輪やハウジングを摩耗させる、という問題がある。   In particular, in a rolling bearing used under a high load condition, such as a shaft support bearing of an automobile transmission, creep occurs between the outer peripheral surface of the outer ring, which is a fixed ring, and the housing, and the outer ring and the housing are There is a problem of wear.

このようなクリープに対しては、従来、外輪の外周面とハウジングとの間に、樹脂製のリング等の環状の部材を介装することが行われている(例えば、特許文献1参照)。
特開平6−159375号公報
For such creep, conventionally, an annular member such as a resin ring is interposed between the outer peripheral surface of the outer ring and the housing (see, for example, Patent Document 1).
JP-A-6-159375

しかしながら、上記のように、外輪とハウジングとの間に樹脂等の環状の部材を介装したものでは、環状の部材は大きな荷重により圧縮されて破壊されることがあり、このような部材により、高荷重の条件下で使用される転がり軸受に生じるクリープを確実に防止することが困難である。   However, as described above, in the case where an annular member such as a resin is interposed between the outer ring and the housing, the annular member may be compressed and broken by a large load. It is difficult to reliably prevent creep that occurs in rolling bearings used under high load conditions.

本発明は、高荷重の条件下で使用される転がり軸受においても、固定輪とその相手部材とのはめあい面に生じるクリープを効果的に抑制することを課題とする。   An object of the present invention is to effectively suppress creep generated on a fitting surface between a fixed ring and its counterpart member even in a rolling bearing used under high load conditions.

本件発明者らが、固定輪、例えば外輪と、その相手部材であるハウジングとの間でクリープが発生するメカニズムを検討したところでは、玉等の転動体が高負荷を受けて外輪の軌道面を通過する際、外輪の外周面の相手部材(ハウジング)との接触領域の弾性変位による相対すべりにより、クリープが発生する、という知見を得ている。   The inventors of the present invention have studied a mechanism in which creep occurs between a fixed ring, for example, an outer ring, and a housing that is a counterpart member thereof. It has been found that creep occurs due to relative slip due to elastic displacement of the contact area of the outer peripheral surface of the outer ring with the mating member (housing) when passing.

本発明による転がり軸受は、上記知見に基づいて創案されたもので、転がり軸受の固定輪の相手部材とのはめあい面において、該固定輪もしくは相手部材のはめあい面に、該固定輪の軌道面幅を越えない範囲の幅のクリープ防止用逃げ溝が形成され、上記逃げ溝の深さは、該逃げ溝形成部位の径方向の最大弾性変形量(弾性的に変形しうる変形量の最大値)以下に設定されていることを特徴とするものである。 The rolling bearing according to the present invention was created based on the above knowledge, and in the fitting surface of the rolling bearing with the mating member of the fixed ring, the fixed ring or the mating surface of the mating member has a raceway width of the stationary ring. A clearance groove for preventing creep having a width not exceeding the width of the clearance groove is formed, and the depth of the clearance groove is the maximum amount of elastic deformation in the radial direction of the portion where the clearance groove is formed (maximum amount of deformation that can be elastically deformed). It is characterized by being set as follows .

固定輪が外輪である場合は、外輪の外周面もしくは相手部材(ハウジング)の内周面にクリープ防止用の逃げ溝が形成され、固定輪が内輪である場合は、内輪の内周面もしくは軸の外周面に逃げ溝が形成される。   When the fixed ring is an outer ring, a clearance groove for preventing creep is formed on the outer peripheral surface of the outer ring or the inner peripheral surface of the mating member (housing). When the fixed ring is an inner ring, the inner peripheral surface or shaft of the inner ring An escape groove is formed on the outer peripheral surface of the.

上記構成の転がり軸受では、高荷重のもとで、転動体が固定輪の軌道面を通過する際、転動体の荷重直下にある固定輪の軌道面形成部位のはめあい面側に、相手部材との接触領域の最大弾性変位が発生することになる。   In the rolling bearing configured as described above, when the rolling element passes through the raceway surface of the fixed ring under a high load, the mating member and The maximum elastic displacement of the contact area occurs.

本発明では、軌道面形成部位のはめあい面側には逃げ溝があって、この逃げ溝により、軌道面形成部位と相手部材(ハウジングもしくは軸)とが直接接触しないよう空間的に隔離されているから、固定輪の軌道面形成部位の弾性変位は、ほとんど相手部材に伝わらない。このため、固定輪とその相手部材とのはめあい面でのクリープの発生が抑制される。   In the present invention, there is a clearance groove on the fitting surface side of the raceway surface forming portion, and the clearance surface is spatially separated by this clearance groove so that the raceway surface formation portion and the counterpart member (housing or shaft) do not directly contact each other. Therefore, the elastic displacement of the raceway surface forming portion of the fixed ring is hardly transmitted to the counterpart member. For this reason, generation | occurrence | production of the creep by the fitting surface of a fixed ring and its mating member is suppressed.

上記構成の転がり軸受において、固定輪は厚肉であることが望ましく、より具体的には、固定輪の上記逃げ溝および軌道面の各形成部位を除く部分の肉厚が、回転輪の対応する部分の肉厚より厚肉に形成されていることが望ましい。   In the rolling bearing having the above-described configuration, it is desirable that the fixed ring is thick. More specifically, the thickness of a portion of the fixed ring excluding the relief groove and the formation portion of the raceway surface corresponds to that of the rotating ring. It is desirable that it is formed thicker than the thickness of the part.

このように、逃げ溝が形成されている固定輪が厚肉であると、固定輪は、厚肉により剛性が増大するから、転動体の圧接転動に伴う固定輪自体の脈動変位が抑えられ、上記した逃げ溝の脈動変位の伝達遮断効果と相俟って、固定輪とその相手部材との間のクリープがより効果的に抑制される。   In this way, if the fixed ring on which the relief groove is formed is thick, the rigidity of the fixed ring increases due to the thick wall, so that the pulsation displacement of the fixed ring itself due to the pressure contact rolling of the rolling element can be suppressed. Combined with the above-described transmission blocking effect of the pulsation displacement of the escape groove, the creep between the fixed ring and its counterpart member is more effectively suppressed.

上記のように逃げ溝の深さが限定されていると、高荷重により、固定輪の逃げ溝形成部位がハウジング等の相手部材の側に大きく変形すると、この変形部分が相手部材に受け止められることになり、それ以上の逃げ溝形成部位の過度の変形が抑制されるので、高荷重による逃げ溝形成部位の塑性変形や破損を未然に防止することができ、したがって、高荷重での軸受の使用が可能になる。 If the depth of the escape groove is limited as described above, if the escape groove forming portion of the fixed ring is greatly deformed to the side of the counterpart member such as the housing due to a high load, the deformed portion is received by the counterpart member. Therefore, excessive deformation of the clearance groove forming portion beyond that is suppressed, so that plastic deformation and breakage of the clearance groove forming portion due to high load can be prevented in advance, and therefore use of a bearing at high load is possible. Is possible.

本発明によれば、高荷重の条件下においても、固定輪とその相手部材との間に生じるクリープを抑制することができる。   According to the present invention, it is possible to suppress creep that occurs between the fixed ring and its counterpart member even under high load conditions.

以下、本発明の最良の実施の形態を、図1を参照して説明する。最良の実施の形態は、本発明を深溝玉軸受に実施したもので、図1は、最良の実施の形態に係る深溝玉軸受の半断面図である。   Hereinafter, the best mode of the present invention will be described with reference to FIG. In the best embodiment, the present invention is applied to a deep groove ball bearing, and FIG. 1 is a half sectional view of the deep groove ball bearing according to the best embodiment.

図1において、符号1は、深溝玉軸受の全体を示し、この深溝玉軸受1は、外輪2と、内輪3と、玉4と、保持器5と、シール6とを備えている。本実施形態では、外輪2が固定輪であって、ハウジング7の嵌合孔の内周に嵌合されている。内輪3は、回転輪として回転駆動される軸8の外周面に嵌着されている。   In FIG. 1, reference numeral 1 denotes the entire deep groove ball bearing. The deep groove ball bearing 1 includes an outer ring 2, an inner ring 3, a ball 4, a cage 5, and a seal 6. In the present embodiment, the outer ring 2 is a fixed ring and is fitted to the inner periphery of the fitting hole of the housing 7. The inner ring 3 is fitted on the outer peripheral surface of a shaft 8 that is rotationally driven as a rotating wheel.

外輪2は、内周に玉4が転動する軌道面2aを有し、ハウジング7とのはめあい面である外周面には、逃げ溝9が全周にわたって形成されている。この逃げ溝9は、外輪2とハウジング7との間に生じるクリープを防止するためのもので、前記軌道面2aに径方向に対応する位置に設けられており、その幅Wbは、前記軌道面2aの幅Waより小さい値に設定されている(Wa>Wb)。   The outer ring 2 has a raceway surface 2 a on which the balls 4 roll on the inner periphery, and a clearance groove 9 is formed on the entire outer periphery which is a fitting surface with the housing 7. The escape groove 9 is for preventing creep generated between the outer ring 2 and the housing 7, and is provided at a position corresponding to the radial direction of the raceway surface 2a. A value smaller than the width Wa of 2a is set (Wa> Wb).

また、逃げ溝9の深さDは、外輪軌道面2aへの玉4の圧接により変形する逃げ溝9形成部位(外輪2の幅方向各部位のうち、逃げ溝9が形成されている部位)の径方向の変形量に対応して設定されており、より具体的には、逃げ溝9形成部位の径方向の最大弾性変形量以下の深さとなっている。要するに、外輪軌道面2aへの玉4の圧接転動により逃げ溝9形成部位が径方向に変形した場合、その変形量が所定量(逃げ溝9の深さD分の量)を越えると、逃げ溝9形成部位の一部がハウジング7に接触し、受け止められるようになっている。具体的には、深溝玉軸受では、逃げ溝9の深さDは、最小0.01mm、最大1.0mmの範囲内に設定される。   Further, the depth D of the escape groove 9 is set so that the escape groove 9 is deformed by the pressure contact of the balls 4 with the outer ring raceway surface 2a (the part where the escape groove 9 is formed among the respective parts in the width direction of the outer ring 2). More specifically, the depth is set to be equal to or less than the maximum elastic deformation amount in the radial direction of the portion where the relief groove 9 is formed. In short, when the part where the escape groove 9 is formed is deformed in the radial direction by the rolling contact of the balls 4 to the outer ring raceway surface 2a, if the deformation amount exceeds a predetermined amount (the amount corresponding to the depth D of the escape groove 9), A part of the portion where the escape groove 9 is formed contacts the housing 7 and can be received. Specifically, in the deep groove ball bearing, the depth D of the escape groove 9 is set within a range of 0.01 mm at the minimum and 1.0 mm at the maximum.

さらに、本実施形態では、外輪2は厚肉に形成されており、外輪2の上記逃げ溝9および軌道面2aの各形成部位を除く部分の肉厚Toが、内輪3の対応する部分(軌道面3aの形成部位を除く部分)の肉厚Tiより厚肉に形成されている(To>Ti)。この場合、玉4のピッチ円直径(PCD)を変えずに外輪2を外径側に増肉してもよいし、PCDを減少させるとともに、外輪2を内径側に増肉してもよい。   Furthermore, in the present embodiment, the outer ring 2 is formed thick, and the thickness To of the portion of the outer ring 2 excluding the formation portions of the clearance groove 9 and the raceway surface 2a is a corresponding portion of the inner ring 3 (track). It is formed thicker than the thickness Ti of the portion excluding the formation portion of the surface 3a (To> Ti). In this case, the outer ring 2 may be increased on the outer diameter side without changing the pitch circle diameter (PCD) of the balls 4, or the outer ring 2 may be increased on the inner diameter side while reducing the PCD.

上記構成の深溝玉軸受1において、大きな回転荷重の下で内輪3が回転すると、玉4の転動に伴い、外輪2、特に、その軌道面2aの形成部位が波打つように脈動変位するが、軌道面2a形成部位の外周側には逃げ溝9があって、この逃げ溝9により、軌道面2a形成部位とハウジング7とは空間的に隔離されているから、軌道面2a形成部位の脈動変位は、ほとんどハウジング7に伝わらず、外輪2とハウジング7との間でのクリープの発生が抑制される。   In the deep groove ball bearing 1 having the above-described configuration, when the inner ring 3 rotates under a large rotational load, the outer ring 2, particularly, the formation portion of the raceway surface 2 a pulsates and displaces as the ball 4 rolls. There is a clearance groove 9 on the outer peripheral side of the raceway surface 2a formation site, and the raceway 2a formation site and the housing 7 are spatially separated by this escape groove 9, so that the pulsation displacement of the raceway surface 2a formation site Is hardly transmitted to the housing 7 and the occurrence of creep between the outer ring 2 and the housing 7 is suppressed.

また、外輪2は厚肉に形成されているから、剛性が大きく、玉4の圧接転動に伴う外輪2全体の脈動変位が抑えられる。この点からも、外輪2とハウジング7との間のクリープがより効果的に抑制される。   Further, since the outer ring 2 is formed to be thick, the rigidity is large, and the pulsation displacement of the entire outer ring 2 due to the press-contact rolling of the ball 4 is suppressed. Also from this point, the creep between the outer ring 2 and the housing 7 is more effectively suppressed.

さらに、高荷重が加わると、外輪2の逃げ溝9形成部位がハウジング7側に大きく変形しようとするが、逃げ溝9の深さDが限定されているために、変形部分は逃げ溝9内を通り越してハウジング7の内周面に受け止められることになり、それ以上の逃げ溝9形成部位の変形が抑制される。これで、逃げ溝9形成部位の塑性変形や破損が防止され、高荷重での軸受の使用が可能になる。   Further, when a high load is applied, the portion of the outer ring 2 where the escape groove 9 is formed tends to be greatly deformed to the housing 7 side. However, since the depth D of the escape groove 9 is limited, the deformed portion is inside the escape groove 9. And is received by the inner peripheral surface of the housing 7, and further deformation of the portion where the escape groove 9 is formed is suppressed. This prevents plastic deformation and breakage of the portion where the relief groove 9 is formed, and allows the use of the bearing with a high load.

さらに、具体的には、クリープの発生は、前述したように、はめあい面の接触領域の弾性変位による相対すべりが基本メカニズムなので、上記逃げ溝9の変形により相手部材(この実施形態ではハウジング7)と接触した部分の面圧が、固定輪である外輪2の外周面の溝肩部(逃げ溝9両側の外輪2外周面部分)の面圧と同等、もしくはそれ以下になるように、予め逃げ溝9の深さと幅とを設定すれば、逃げ溝9の変形部分と、外輪2の外周面の溝肩部との相対すべり量はほぼ同じとなるため、転動体である玉4の荷重直下の軌道面2a形成部位のみに大きな面圧(弾性変位)をもたらすこともなく、また、相手部材で逃げ溝9の変形を受け止められることにより、逃げ溝9部分の強度低下も防止することができ、耐クリープ性能を向上させながら、強度確保もできることになる。   More specifically, as described above, the occurrence of creep is based on the relative mechanism by the elastic displacement of the contact area of the fitting surface, so that the counterpart member (the housing 7 in this embodiment) is deformed by the deformation of the escape groove 9. Escape in advance so that the surface pressure in contact with the outer surface of the outer ring 2 that is a fixed ring is equal to or less than the surface pressure of the shoulders of the outer surface of the outer ring 2 (the outer surface of the outer ring 2 on both sides of the escape groove 9). If the depth and width of the groove 9 are set, the relative slip amount between the deformed portion of the escape groove 9 and the groove shoulder portion of the outer peripheral surface of the outer ring 2 becomes almost the same, so that the load just below the ball 4 that is a rolling element Thus, a large surface pressure (elastic displacement) is not produced only at the portion where the raceway surface 2a is formed, and the deformation of the escape groove 9 can be received by the mating member, thereby preventing a decrease in strength of the escape groove 9 portion. Improve creep resistance performance Reluctant, so that can also ensure strength.

次に、上記構成を見出すために行った実験の結果と、モデル解析の結果とを、図2および図3の関係図を参照して説明する。   Next, the results of experiments conducted to find the above configuration and the results of model analysis will be described with reference to the relationship diagrams of FIGS.

実験では、A,B,C3系列のサンプルとして、外輪2の肉厚が異なる3種の深溝玉軸受1を用意し、各種の深溝玉軸受1毎に、外輪2に逃げ溝9がないものと、外輪2に互いに異なる幅の逃げ溝9を有するものとを造った。   In the experiment, three types of deep groove ball bearings 1 having different outer ring 2 thicknesses are prepared as A, B, and C3 series samples, and the outer ring 2 has no escape groove 9 for each of the various deep groove ball bearings 1. The outer ring 2 was made to have relief grooves 9 with different widths.

すなわち、A系列のサンプルは、所定規格(型番62122RS)の深溝玉軸受であって、外径110mm、PCD87mmである。このA系列のサンプルには、外輪2に逃げ溝9がないものと、外輪2に幅4mm、6mm、8mm、10mmおよび12mmの各逃げ溝9を有するものとがある。   That is, the A series sample is a deep groove ball bearing of a predetermined standard (model number 62122RS), and has an outer diameter of 110 mm and a PCD of 87 mm. The A-series samples include those in which the outer ring 2 does not have the escape grooves 9 and those in which the outer ring 2 has the respective relief grooves 9 having a width of 4 mm, 6 mm, 8 mm, 10 mm, and 12 mm.

B系列のサンプルは、A系列のサンプルより外輪2の肉厚Toを外径側に1mm増肉した深溝玉軸受であって、PCDは変わらず87mmであって、外径が112mmである。このB系列のサンプルには、外輪2に逃げ溝9がないものと、外輪2に幅4mm、6mmおよび8mmの各逃げ溝9を有するものとがある。   The B series sample is a deep groove ball bearing in which the wall thickness To of the outer ring 2 is increased by 1 mm to the outer diameter side from the A series sample, and the PCD is 87 mm and the outer diameter is 112 mm. The B-series samples include those in which the outer ring 2 does not have the escape grooves 9 and those in which the outer ring 2 has the relief grooves 9 having a width of 4 mm, 6 mm, and 8 mm.

C系列のサンプルは、A系列のサンプルより外輪2の肉厚Toを内径側にも外径側にも1mmずつ(合計2mm)増肉するとともに、その分PCDを減少させた深溝玉軸受であって、外径112mm、PCD85mmである。このC系列のサンプルには、外輪2に逃げ溝9がないものと、外輪2に幅4mm、6mmおよび8mmの各逃げ溝9を有するものとがある。   The C series sample is a deep groove ball bearing in which the wall thickness To of the outer ring 2 is increased by 1 mm (2 mm in total) both on the inner diameter side and the outer diameter side compared to the A series sample, and the PCD is reduced accordingly. The outer diameter is 112 mm and the PCD is 85 mm. The C-series samples include those in which the outer ring 2 does not have the escape grooves 9 and those in which the outer ring 2 has the relief grooves 9 having a width of 4 mm, 6 mm, and 8 mm.

上記A,B,C各系列のサンプルを試験装置にかけて実験を行ったところ、図2に示すような結果を得た。図2は、逃げ溝9の幅Wbと周方向すべり量(クリープの量)との関係を示す関係図で、横軸に溝幅(mm)をとり、縦軸に最大荷重部近傍での周方向最大すべり量(μm)をとっている。   When the experiment was carried out using the samples of each of the A, B, and C series on a test apparatus, results as shown in FIG. 2 were obtained. FIG. 2 is a relationship diagram showing the relationship between the width Wb of the escape groove 9 and the amount of slip in the circumferential direction (creep amount). The horizontal axis indicates the groove width (mm), and the vertical axis indicates the circumference near the maximum load portion. The maximum amount of sliding in the direction (μm) is taken.

図2に示された結果を見ると、いずれの系列のサンプルについても、逃げ溝9の幅Wbが広いほど、周方向すべり量が減少し、クリープに対して有効なのが分かる。また、系列別に結果を見ると、外輪2の肉厚Toが厚いほど、周方向すべり量が減少し、クリープに対して有効なのが分かる。   From the results shown in FIG. 2, it can be seen that in any series of samples, the greater the width Wb of the relief groove 9, the smaller the slip amount in the circumferential direction, which is effective against creep. Further, when the results are seen for each series, it can be seen that the thicker the wall thickness To of the outer ring 2 is, the smaller the amount of slip in the circumferential direction is, which is effective against creep.

次いで、A,B,C各系列のサンプルのうちから代表例としてA系列のサンプルを選択し、このA系列の各サンプルについて、モデル解析により、外輪2内部に生じる応力を求めたところ、図3に示すような結果を得た。図3は、逃げ溝9の幅Wbと外輪2内部の主応力との関係図で、横軸に溝幅(mm)をとり、縦軸に最大荷重部近傍での最大主応力最大値(MPa)をとっている。   Next, a sample of the A series was selected as a representative example from the samples of the A, B, and C series, and the stress generated in the outer ring 2 was determined by model analysis for each sample of the A series. The result as shown in FIG. FIG. 3 is a diagram showing the relationship between the width Wb of the relief groove 9 and the main stress inside the outer ring 2. The horizontal axis indicates the groove width (mm), and the vertical axis indicates the maximum main stress maximum value (MPa) near the maximum load portion. ).

図3に示された結果からは、逃げ溝9の幅Wbが広くなるほど、軌道面2aの中央部の応力(最大主応力最大値)が大きくなっているのが分かる。このモデルでは、溝幅が6mmを越えると、応力も1000MPaを越えるようになり、さらに、溝幅Wbが軌道面2aの幅Waを越えると、一段と応力が増大しており、塑性変形や破損が生じる可能性が大となっている。このように、逃げ溝9の幅Wbが広くなり、軌道面2aの幅Waを越えるようになると、一段と応力が増大するのは、逃げ溝9と軌道面2aとが径方向内外で重なり、逃げ溝9と軌道面2aとの間に肉厚の薄い部分ができ、この部分に応力が集中するため、と考えられる。したがって、一般的には、逃げ溝9と軌道面2aとの重複が少なくなるように、逃げ溝9の幅Wbを、外輪軌道面2aの幅Waの範囲内に収めれば、外輪2の最大荷重部近傍での最大主応力が過大となることがなく、外輪2の塑性変形や破損を防止しうると推定できる。   From the results shown in FIG. 3, it can be seen that the stress (maximum principal stress maximum value) at the center of the raceway surface 2a increases as the width Wb of the escape groove 9 increases. In this model, when the groove width exceeds 6 mm, the stress also exceeds 1000 MPa, and when the groove width Wb exceeds the width Wa of the raceway surface 2a, the stress is further increased, and plastic deformation and breakage are caused. The potential for this is great. In this way, when the width Wb of the escape groove 9 becomes wider and exceeds the width Wa of the raceway surface 2a, the stress increases further because the escape groove 9 and the raceway surface 2a overlap in the radial direction inside and outside. This is probably because a thin portion is formed between the groove 9 and the raceway surface 2a, and stress is concentrated on this portion. Therefore, generally, if the width Wb of the escape groove 9 is within the range of the width Wa of the outer ring raceway surface 2a so that the overlap between the escape groove 9 and the raceway surface 2a is reduced, the maximum of the outer ring 2 is achieved. It can be estimated that the maximum principal stress in the vicinity of the load portion does not become excessive, and the plastic deformation and breakage of the outer ring 2 can be prevented.

<他の実施形態>
上記実施形態では、内輪回転型の深溝玉軸受1について、固定輪である外輪2の外周面にクリープ防止用の逃げ溝9を設けたが、外輪回転型の軸受については、図4に示すように、固定輪である内輪の内周面に逃げ溝を形成すればよい。
<Other embodiments>
In the above embodiment, the inner ring rotation type deep groove ball bearing 1 is provided with the escape groove 9 for preventing creep on the outer peripheral surface of the outer ring 2 which is a fixed ring, but the outer ring rotation type bearing is shown in FIG. In addition, a relief groove may be formed on the inner peripheral surface of the inner ring which is a fixed ring.

図4は、他の実施形態に係る深溝玉軸受の半断面図である。この実施形態の深溝玉軸受1は、外輪回転型で、内輪3が固定輪として静止状態の軸8の外周に嵌着される。内輪3のはめあい面である内周面には、クリープ防止用の逃げ溝10が全周にわたって形成されている。この逃げ溝10の幅Wdが、内輪3の軌道面3aの幅Wcを越えない範囲の幅に設定される点は、図1の実施形態の場合と同じである。逃げ溝10の深さDは、該逃げ溝10形成部位の径方向の最大弾性変形量以下に設定されていることが望ましい。   FIG. 4 is a half sectional view of a deep groove ball bearing according to another embodiment. The deep groove ball bearing 1 of this embodiment is an outer ring rotating type, and the inner ring 3 is fitted on the outer periphery of the stationary shaft 8 as a fixed ring. On the inner peripheral surface that is the fitting surface of the inner ring 3, an escape groove 10 for preventing creep is formed over the entire periphery. The width Wd of the relief groove 10 is set to a width that does not exceed the width Wc of the raceway surface 3a of the inner ring 3 as in the embodiment of FIG. It is desirable that the depth D of the escape groove 10 is set to be equal to or less than the maximum elastic deformation amount in the radial direction of the portion where the escape groove 10 is formed.

さらに、固定輪である内輪3は、厚肉であることが望ましく、図示の例では、内輪3の上記逃げ溝10および軌道面3aの各形成部位を除く部分の肉厚Tiが、外輪2の対応する部分の肉厚Toより厚肉に形成されている。   Furthermore, it is desirable that the inner ring 3 that is a fixed ring is thick. In the example shown in the drawing, the thickness Ti of the portion of the inner ring 3 excluding the formation portions of the escape groove 10 and the raceway surface 3a is equal to that of the outer ring 2. It is formed thicker than the corresponding part thickness To.

この実施形態の構成によれば、内輪3内周に逃げ溝10があること、および内輪3が厚肉であることにより、内輪3の内周面と軸8の外周面との間に生じるクリープが抑制される。   According to the configuration of this embodiment, the creep generated between the inner peripheral surface of the inner ring 3 and the outer peripheral surface of the shaft 8 due to the presence of the escape groove 10 in the inner periphery of the inner ring 3 and the thick inner ring 3. Is suppressed.

また、前記の実施例では、軸受の固定輪にクリープ防止用の逃げ溝を設けたが、玉4の転動に伴う軌道面2a形成部位の外周側とハウジングとの間に脈動変位を伝わらなくする空間である逃げ溝を、軸受の固定輪ではなく、該固定輪とのはめあい面であるハウジングなどの相手部材に設けても、同様のクリープ防止効果が得られることは言うまでもない。   Further, in the above-described embodiment, the escape ring for preventing creep is provided in the fixed ring of the bearing, but the pulsation displacement is not transmitted between the outer peripheral side of the raceway surface 2a formation portion and the housing due to the rolling of the balls 4. Needless to say, the same creep preventing effect can be obtained even if the clearance groove which is the space to be provided is provided not on the fixed ring of the bearing but on a mating member such as a housing which is a fitting surface with the fixed ring.

本発明は、深溝玉軸受に限らず、円筒ころ軸受、円すいころ軸受等、他のタイプの転がり軸受に適用可能である。   The present invention is applicable not only to deep groove ball bearings but also to other types of rolling bearings such as cylindrical roller bearings and tapered roller bearings.

本発明の最良の形態に係る深溝玉軸受の半断面図。1 is a half sectional view of a deep groove ball bearing according to the best mode of the present invention. 上記深溝玉軸受における逃げ溝の溝幅と周方向すべり量との関係を示す関係図。The relationship figure which shows the relationship between the groove width of the escape groove in the said deep groove ball bearing, and the amount of circumferential slip. 上記深溝玉軸受における逃げ溝の幅と外輪内部の主応力との関係を示す関係図。The relationship figure which shows the relationship between the width | variety of the escape groove in the said deep groove ball bearing, and the main stress inside an outer ring | wheel. 本発明の他の実施形態に係る深溝玉軸受の半断面図。The half sectional view of the deep groove ball bearing concerning other embodiments of the present invention.

符号の説明Explanation of symbols

1 深溝玉軸受
2 外輪(固定輪)
2a 軌道面
3 内輪(回転輪)
4 玉
7 ハウジング(相手部材)
9 逃げ溝
Wa 外輪軌道面の幅
Wb 逃げ溝の幅
To 外輪の肉厚
Ti 内輪の肉厚
D 逃げ溝の深さ
1 Deep groove ball bearing 2 Outer ring (fixed ring)
2a Raceway surface 3 Inner ring (Rotating wheel)
4 ball 7 housing (mating member)
9 Relief groove Wa Outer ring raceway width Wb Escape groove width To Outer ring thickness Ti Inner ring thickness D Escape groove depth

Claims (1)

転がり軸受の固定輪の相手部材とのはめあい面において、該固定輪もしくは相手部材のはめあい面に、該固定輪の軌道面幅を越えない範囲の幅のクリープ防止用逃げ溝が形成され、上記逃げ溝の深さは、該逃げ溝形成部位の径方向の最大弾性変形量以下に設定されていることを特徴とする転がり軸受。 In fitting surface with the mating member of the fixed ring of the rolling bearing, said the fitting surface of the stationary ring or the mating member, the anti-creep for clearance groove width of the range not exceeding the orbital plane width of the stationary ring is formed, the relief A rolling bearing characterized in that the depth of the groove is set to be equal to or less than the maximum elastic deformation amount in the radial direction of the clearance groove forming portion .
JP2005147835A 2005-05-20 2005-05-20 Rolling bearing Active JP4466473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147835A JP4466473B2 (en) 2005-05-20 2005-05-20 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147835A JP4466473B2 (en) 2005-05-20 2005-05-20 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2006322579A JP2006322579A (en) 2006-11-30
JP4466473B2 true JP4466473B2 (en) 2010-05-26

Family

ID=37542408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147835A Active JP4466473B2 (en) 2005-05-20 2005-05-20 Rolling bearing

Country Status (1)

Country Link
JP (1) JP4466473B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747914B2 (en) * 2010-06-01 2015-07-15 日本精工株式会社 Slide device
JP5900485B2 (en) 2011-07-15 2016-04-06 日本精工株式会社 Rolling bearing
JP6634785B2 (en) * 2015-11-16 2020-01-22 株式会社ジェイテクト Rolling bearing
JP2017089844A (en) 2015-11-16 2017-05-25 株式会社ジェイテクト Rolling bearing
JP6977815B2 (en) * 2015-11-16 2021-12-08 株式会社ジェイテクト Method for forming deep groove ball bearings and annular grooves for suppressing creep
JP6613845B2 (en) * 2015-11-25 2019-12-04 株式会社ジェイテクト Rolling bearing
JP2017137896A (en) * 2016-02-01 2017-08-10 トヨタ自動車株式会社 Stationary support structure of rolling bearing
JP6728901B2 (en) * 2016-04-04 2020-07-22 株式会社ジェイテクト Rolling bearing
JP2018004062A (en) * 2016-07-08 2018-01-11 株式会社ジェイテクト Rolling bearing
JP6790555B2 (en) * 2016-08-01 2020-11-25 株式会社ジェイテクト Rolling bearing
JP2018066453A (en) 2016-10-21 2018-04-26 株式会社ジェイテクト Rolling bearing
JP7151175B2 (en) * 2017-09-15 2022-10-12 日本電産株式会社 transmission and actuator
JP7152916B2 (en) * 2018-09-19 2022-10-13 Ntn株式会社 bearing device
JP7353067B2 (en) * 2019-05-22 2023-09-29 Ntn株式会社 bearing device
JP2020190290A (en) * 2019-05-22 2020-11-26 Ntn株式会社 Bearing device

Also Published As

Publication number Publication date
JP2006322579A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4466473B2 (en) Rolling bearing
US8517389B2 (en) Fixing arrangement for a rubber seal for sealing a rolling bearing
US10047796B2 (en) Rolling Bearing
US10054164B2 (en) Rolling bearing
WO2013145355A1 (en) Rolling bearing device
CN110785572A (en) Slinger for roller bearing seals, related assemblies and methods
JP6790555B2 (en) Rolling bearing
JP2008256204A (en) Rolling bearing
JP4735453B2 (en) Rolling bearing device
JP2010096217A (en) Rolling bearing device
CN113631819B (en) Rolling bearing
JP2008223965A (en) Rolling bearing
JP2006300130A (en) Bearing structure
JP2007270966A (en) Creep prevention structure of rolling bearing
WO2009087957A1 (en) Thrust roller bearing, and retainer therefor
JP6981143B2 (en) Ball bearing with seal
JP2009008213A (en) Roller bearing device and method for assembling same
JP2010038353A (en) Roller bearing
JP4952284B2 (en) Bearing sealing device and bearing unit
WO2018131359A1 (en) Spacer member and axle bearing device provided therewith
JP2007315459A (en) Bearing device
WO2018056000A1 (en) Bearing device for axle
JP4919161B2 (en) Wheel support device
JP2008223967A (en) Rolling bearing
WO2024127741A1 (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3