JP7353067B2 - bearing device - Google Patents

bearing device Download PDF

Info

Publication number
JP7353067B2
JP7353067B2 JP2019095626A JP2019095626A JP7353067B2 JP 7353067 B2 JP7353067 B2 JP 7353067B2 JP 2019095626 A JP2019095626 A JP 2019095626A JP 2019095626 A JP2019095626 A JP 2019095626A JP 7353067 B2 JP7353067 B2 JP 7353067B2
Authority
JP
Japan
Prior art keywords
bearing
raceway
radial
groove portion
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019095626A
Other languages
Japanese (ja)
Other versions
JP2020190283A (en
Inventor
隼人 川口
希 磯部
俊樹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2019095626A priority Critical patent/JP7353067B2/en
Publication of JP2020190283A publication Critical patent/JP2020190283A/en
Application granted granted Critical
Publication of JP7353067B2 publication Critical patent/JP7353067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、軸とハウジング間に転がり軸受が介在する軸受装置に関する。 The present invention relates to a bearing device in which a rolling bearing is interposed between a shaft and a housing.

軸とハウジング間に作用するラジアル荷重を受ける転がり軸受の軌道輪は、軸の外周又はハウジングの内周に嵌合される。軌道輪、軸、ハウジングにそれぞれ形成される嵌め合い面は、通常、円筒面状である。軌道輪の内周又は外周に形成された嵌め合い面と、軸又はハウジングに形成された嵌め合い面との間の嵌め合いは、荷重条件、装置の組立て性等を考慮して、しまり嵌め、普通嵌め、すきま嵌めの中から選択される。すきま嵌めされた軌道輪は、クリープする、すなわち、その嵌合の相手部材である軸又はハウジングに対して円周方向に位置ずれを起こすことがある。 A bearing ring of a rolling bearing that receives a radial load acting between the shaft and the housing is fitted onto the outer periphery of the shaft or the inner periphery of the housing. The fitting surfaces formed on the raceway, shaft, and housing are usually cylindrical. The fit between the fitting surface formed on the inner or outer periphery of the bearing ring and the fitting surface formed on the shaft or housing is determined by interference fit, taking into consideration load conditions, ease of assembly of the device, etc. Select from normal fit or clearance fit. A loosely fitted raceway ring may creep, ie, become circumferentially misaligned with respect to its mating partner, the shaft or housing.

例えば、自動車のトランスミッションの軸を転がり軸受を介してハウジングに支持する軸受装置では、ハウジングへの組み付けを容易にするため、転がり軸受の外方の軌道輪がハウジングにすきま嵌めされている。このため、荷重負荷時や高速回転時の軸のアンバランス荷重などにより、外方の軌道輪がクリープすることがある。 For example, in a bearing device that supports the shaft of an automobile transmission in a housing via a rolling bearing, the outer raceway of the rolling bearing is loosely fitted into the housing in order to facilitate assembly into the housing. For this reason, the outer raceway ring may creep due to unbalanced loads on the shaft during heavy loads or high-speed rotation.

クリープの機序として、軌道輪の表面に進行波が発生し、その進行波が軌道輪自体を移送させることが知られている。すなわち、転動体荷重が軌道輪の軌道面に作用すると、その直下で軌道輪の表面が突出し、波打つ。軸受が回転すると転動体も公転するため、その表面の波打ちが進行波となる。軌道輪の表面に発生する進行波は、転がり軸受の負荷圏にわたり円周方向および半径方向へのぜん動運動的な挙動をとる。その進行波が相手部材を転動体の公転方向と逆方向に移送しようとするが、相手部材(軸又はハウジング)の抵抗で逆に押し戻される形となり、結果、軌道輪が転動体の公転方向、すなわち軸受回転と同方向に回転するクリープを起こすことになる。 It is known that the mechanism of creep is that a traveling wave is generated on the surface of the raceway, and the traveling wave causes the raceway itself to move. That is, when the rolling element load acts on the raceway surface of the raceway ring, the surface of the raceway protrudes directly below it and becomes wavy. When the bearing rotates, the rolling elements also revolve, and the undulations on their surfaces become traveling waves. The traveling waves generated on the surface of the bearing ring exhibit peristaltic behavior in the circumferential and radial directions over the load area of the rolling bearing. The traveling wave attempts to transport the mating member in the direction opposite to the direction of revolution of the rolling element, but it is pushed back by the resistance of the mating member (shaft or housing), and as a result, the bearing ring moves in the direction of revolution of the rolling element. In other words, creep occurs in which the bearing rotates in the same direction as the rotation.

このような機序のクリープを抑制するため、従来、軌道輪又は軌道輪の嵌合相手となる相手部材(軸もしくはハウジング)に溝部を形成することが行われている(特許文献1~3)。 In order to suppress creep due to such a mechanism, grooves have conventionally been formed in the bearing ring or a mating member (shaft or housing) to which the bearing ring is fitted (Patent Documents 1 to 3). .

特許文献1の軸受装置では、軌道輪又は相手部材の嵌め合い面から径方向深さをもって円周方向全周に連続する溝部が形成されている。 In the bearing device of Patent Document 1, a groove portion is formed that extends from the fitting surface of the bearing ring or the mating member to a depth in the radial direction and continues all the way in the circumferential direction.

特許文献2、3の軸受装置では、軌道輪にクリープ抑制用の溝部を形成せず、ハウジングにだけ溝部が形成されている。その溝部は、ハウジングの嵌め合い面の円周方向長さよりも短い有限の溝底面をもっている。 In the bearing devices of Patent Documents 2 and 3, a groove for suppressing creep is not formed in the bearing ring, but a groove is formed only in the housing. The groove has a finite groove bottom surface that is shorter than the circumferential length of the mating surface of the housing.

特許文献1等の溝部は、ラジアル荷重を受ける軌道輪の負荷圏において、軌道輪の進行波が相手部材に伝わることを抑え、クリープの発生を抑制する。 The groove portions disclosed in Patent Document 1 and the like suppress the traveling waves of the bearing ring from being transmitted to the mating member in the load range of the bearing ring that receives a radial load, thereby suppressing the occurrence of creep.

特許第4466473号公報Patent No. 4466473 特開2017-137896号公報Japanese Patent Application Publication No. 2017-137896 特開2009-174556号公報Japanese Patent Application Publication No. 2009-174556

しかしながら、特許文献1のように溝部を軌道輪の全周に形成すると、軸のアンバランス荷重等でラジアル荷重の方向が変動する場合でも溝部が必ず荷重負荷圏に位置するため、クリープ抑制効果に特に優れるが、その反面、軌道輪の強度低下が懸念される。 However, if the groove is formed around the entire circumference of the bearing ring as in Patent Document 1, even if the direction of the radial load fluctuates due to an unbalanced load on the shaft, the groove will always be located in the load area, which will reduce the creep suppression effect. This is particularly good, but on the other hand, there is a concern that the strength of the bearing ring may decrease.

一方、特許文献2、3のように溝部をハウジング等の相手部材に円周方向に部分的に形成すると、転がり軸受に負荷されるラジアル荷重の方向と溝部の位置が一致しない場合、クリープ抑制効果を発揮できない場合ある。例えば、ラジアル荷重が静止荷重であって、その荷重方向と溝部の位置が合っていない場合や、軸のアンバランス荷重等でラジアル荷重の方向が変動する場合には、溝部が荷重負荷圏に位置せず、クリープ抑制効果を発揮できない場合がある。 On the other hand, when grooves are partially formed in the circumferential direction on a mating member such as a housing as in Patent Documents 2 and 3, if the direction of the radial load applied to the rolling bearing does not match the position of the groove, the creep suppression effect is There are times when you may not be able to fully demonstrate your abilities. For example, if the radial load is a static load and the direction of the load does not match the position of the groove, or if the direction of the radial load fluctuates due to an unbalanced load on the shaft, etc., the groove may be located within the load area. Therefore, the creep suppressing effect may not be exhibited.

上述の背景に鑑み、この発明が解決しようとする課題は、転がり軸受の軌道輪を軸又はハウジングである相手部材にすきま嵌めした軸受装置において、転がり軸受に負荷されるラジアル荷重の方向と溝部の位置が一致しない場合であっても軌道輪の溝部でクリープ抑制を図れるようにしつつ、軌道輪の強度低下を抑えることである。 In view of the above-mentioned background, the problem to be solved by the present invention is to determine the direction of the radial load applied to the rolling bearing and the direction of the groove in a bearing device in which the bearing ring of the rolling bearing is loosely fitted to a mating member such as a shaft or a housing. The objective is to suppress a decrease in the strength of the bearing ring while making it possible to suppress creep in the groove portion of the bearing ring even when the positions do not match.

上記の課題を達成するため、この発明は、軸と、前記軸を取り囲むハウジングと、前記軸と前記ハウジングとの間に介在する転がり軸受とを備え、前記転がり軸受が、複数の転動体と、前記軸と前記ハウジングのうちのいずれか一方である相手部材とすきま嵌めされた軌道輪とを有し、前記軌道輪が、前記転動体の走路となる軌道面を有し、前記軌道輪と前記相手部材が、円周方向に延びる嵌め合い面を有する軸受装置において、前記軌道輪が、前記軌道面から径方向に直下の位置で前記嵌め合い面から径方向深さをもって円周方向に延びる溝部を有し、前記溝部が、円周方向に有限の長さに形成されている構成を採用した。 In order to achieve the above object, the present invention includes a shaft, a housing surrounding the shaft, and a rolling bearing interposed between the shaft and the housing, the rolling bearing having a plurality of rolling elements, a bearing ring that is loosely fitted to a mating member that is either one of the shaft and the housing; the bearing ring has a raceway surface serving as a running path for the rolling elements; In a bearing device in which a mating member has a fitting surface extending in the circumferential direction, the bearing ring has a groove portion extending in the circumferential direction with a radial depth from the fitting surface at a position directly below the raceway surface in the radial direction. , and the groove portion is formed to have a finite length in the circumferential direction.

上記構成によれば、転がり軸受に負荷されるラジアル荷重の方向と溝部の位置が一致する場合、ラジアル荷重による軌道輪の波状変形が進行波として相手部材側に伝わることを溝部で抑えて、クリープを抑制することができる。ラジアル荷重の方向と溝部の位置が一致しない場合であっても、軌道輪がクリープして溝部の位置が一致する状態になるので、クリープ抑制を図ることができる。その溝部は円周方向に有限長に形成されているので、全周に溝部を形成する場合に比して軌道輪の強度低下を抑えることができる。 According to the above configuration, when the direction of the radial load applied to the rolling bearing matches the position of the groove, the groove suppresses the wave-like deformation of the bearing ring due to the radial load from being transmitted to the mating member as a traveling wave, thereby causing creep. can be suppressed. Even if the direction of the radial load does not match the position of the groove, the bearing ring creeps and the position of the groove matches, so that creep can be suppressed. Since the groove is formed to have a finite length in the circumferential direction, a reduction in strength of the bearing ring can be suppressed compared to a case where the groove is formed all around the circumference.

例えば、前記溝部が、前記転がり軸受に負荷されるラジアル荷重の範囲内で最大のラジアル荷重を負荷された場合の荷重負荷圏で前記相手部材との間に径方向隙間を残せるように形成されているとよい。このようにすると、溝部の溝底面の波状変形が相手部材の嵌め合い面に接触することがなく、溝底面の摩耗が生じないため、軌道面と溝部間の肉厚減少を避けることができる。 For example, the groove portion is formed so as to leave a radial gap with the mating member in the load range when the maximum radial load is applied within the range of radial loads applied to the rolling bearing. Good to have. In this way, the wave-like deformation of the groove bottom surface of the groove portion does not come into contact with the fitting surface of the mating member, and wear of the groove bottom surface does not occur, so that a decrease in the wall thickness between the raceway surface and the groove portion can be avoided.

また、前記転動体が、玉からなり、前記溝部の幅中央が、前記軌道面の幅中央から径方向に直下の位置にあり、前記溝部の幅が、前記軌道面の幅以下であって、前記転がり軸受に負荷されるラジアル荷重の範囲内で最大のラジアル荷重を負荷された場合の前記軌道面と前記転動体の接触楕円の長径以上に設定されているとよい。転がり軸受が玉軸受の場合、転動体としての玉と軌道面の点接触が楕円状になるが、通常、その接触楕円が軌道面から食み出ることはない。このため、溝部の幅中央が軌道面の幅中央から径方向に直下の位置にあれば、ラジアル荷重による波状変形を溝部で生じさせることができる。ここで、溝部の幅が軌道面の幅以下であり、転がり軸受に負荷されるラジアル荷重の範囲内で最大のラジアル荷重を負荷された場合の軌道面と転動体の接触楕円の長径以上であれば、溝部の両側にある軌道輪と相手部材の嵌め合い領域でラジアル荷重を受けて軌道輪の過剰な波状変形を避けつつ、溝部でクリープ抑制を図ることができる。 Further, the rolling element is made of a ball, the width center of the groove is located directly below the width center of the raceway surface in the radial direction, and the width of the groove is equal to or less than the width of the raceway surface, It is preferable that the length be set to be greater than or equal to the major axis of the contact ellipse between the raceway surface and the rolling element when a maximum radial load is applied within the range of radial loads applied to the rolling bearing. When the rolling bearing is a ball bearing, the point contact between the balls as rolling elements and the raceway surface is elliptical, but normally the contact ellipse does not protrude from the raceway surface. Therefore, if the width center of the groove is located directly below the width center of the raceway surface in the radial direction, wave-like deformation due to the radial load can be caused in the groove. Here, the width of the groove is less than or equal to the width of the raceway surface, and is greater than or equal to the major axis of the contact ellipse between the raceway surface and the rolling elements when the maximum radial load is applied within the range of radial loads applied to the rolling bearing. For example, it is possible to suppress creep in the groove while avoiding excessive wave-like deformation of the bearing ring due to radial load in the fitting region between the bearing ring and the mating member on both sides of the groove.

また、前記軌道面と前記軌道輪の嵌め合い面間で径方向に最小の軌道輪肉厚をHとし、前記溝部の径方向深さをδとしたとき、0.005H≦δ≦0.1Hに設定されていることよい。最小の軌道輪肉厚Hを大きくする程、ラジアル荷重による波状変形が小さくなるので、クリープ抑制に有利となるが、軸受サイズが大型化するため、最小の軌道輪肉厚Hを大きくすることに限界がある。その最小の軌道輪肉厚Hに対して溝部の径方向深さδが小さくなる程、クリープ抑制効果が期待できなくなり、大きくなる程、ラジアル荷重による軌道輪の溝部付近のたわみ、応力が大きくなる。そのたわみ、応力を抑えた形状にするため、0.005H≦δ≦0.1Hの関係を満足することが好ましい。 Further, when H is the minimum thickness of the raceway in the radial direction between the raceway surface and the fitting surface of the raceway, and δ is the radial depth of the groove, 0.005H≦δ≦0.1H It is good that it is set to . The larger the minimum raceway ring thickness H, the smaller the wave-like deformation caused by radial load, which is advantageous in suppressing creep, but as the bearing size increases, it is necessary to increase the minimum raceway ring thickness H. There is a limit. As the radial depth δ of the groove becomes smaller relative to the minimum raceway ring wall thickness H, the creep suppression effect cannot be expected, and as it becomes larger, the deflection and stress near the groove of the raceway due to radial load increases. . In order to obtain a shape that suppresses deflection and stress, it is preferable to satisfy the relationship 0.005H≦δ≦0.1H.

また、前記溝部が、前記軌道輪の円周方向一箇所にだけ形成されており、前記溝部の円周方向長さを規定する角度をαとし、転動体ピッチを規定する角度をθとしたとき、0.5θ≦α≦θに設定されているとよい。軌道輪の強度低下を抑える上で、溝部の数をなるべく少なくすることが好ましく、溝部の円周方向長さもなるべく短くすることが好ましい。転がり軸受にラジアル荷重が負荷されるとき、軌道輪の波状変形は、ラジアル荷重の方向に一致する位置の転動体と軌道面の接触部から径方向に直下の位置で最大に生じ、この位置から円周方向に離れる程に小さくなる。溝部の円周方向長さを規定する角度αが転動体ピッチを規定する角度θの0.5倍未満であると、クリープ抑制に不十分となる可能性があるが、転動体ピッチを規定する角度θの1倍を超えるとクリープ抑制に対する貢献が低くなる。これらのことから、溝部を円周方向一箇所に限り、0.5θ≦α≦θにすることが好ましい。 Further, when the groove is formed only at one location in the circumferential direction of the bearing ring, α is an angle that defines the length of the groove in the circumferential direction, and θ is an angle that defines the rolling element pitch. , 0.5θ≦α≦θ. In order to suppress a decrease in the strength of the bearing ring, it is preferable to reduce the number of grooves as much as possible, and it is also preferable to make the length of the grooves in the circumferential direction as short as possible. When a radial load is applied to a rolling bearing, the wave-like deformation of the bearing ring occurs at its maximum at a position directly below the contact point between the rolling element and raceway surface in the direction of the radial load, and from this position. The further apart in the circumferential direction, the smaller it becomes. If the angle α that defines the circumferential length of the groove is less than 0.5 times the angle θ that defines the rolling element pitch, it may be insufficient to suppress creep; When the angle θ exceeds 1 time, the contribution to creep suppression decreases. For these reasons, it is preferable that the groove portion be limited to one location in the circumferential direction and that 0.5θ≦α≦θ.

また、前記相手部材がハウジングからなるとよい。この場合、軌道輪の外周側に溝部を形成することになるので、ハウジングの内周にアンダーカットの溝部加工が不要になり、ハウジングの製造が困難にならない。 Moreover, it is preferable that the mating member is a housing. In this case, since the groove is formed on the outer periphery of the bearing ring, there is no need to process an undercut groove on the inner periphery of the housing, and the manufacturing of the housing does not become difficult.

上述のように、この発明は、上記構成の採用により、転がり軸受の軌道輪を軸又はハウジングである相手部材にすきま嵌めした軸受装置において、転がり軸受に負荷されるラジアル荷重の方向と溝部の位置が一致しない場合であっても軌道輪の溝部でクリープ抑制を図れるようにしつつ、軌道輪の強度低下を抑えることができる。 As described above, the present invention provides a bearing device in which a bearing ring of a rolling bearing is loosely fitted into a mating member such as a shaft or a housing by employing the above configuration, in which the direction of the radial load applied to the rolling bearing and the position of the groove portion are fixed. Even if they do not match, creep can be suppressed in the grooves of the bearing ring, and a decrease in the strength of the bearing ring can be suppressed.

この発明の実施形態に係る軸受装置を示す正面図A front view showing a bearing device according to an embodiment of the invention 図1のII-II線の断面図Cross-sectional view taken along line II-II in Figure 1 実施形態に係る転がり軸受の全体を示す斜視図A perspective view showing the entire rolling bearing according to the embodiment. 図2の溝部付近の軌道輪の拡大図Enlarged view of the bearing ring near the groove in Figure 2

この発明の一例としての実施形態に係る軸受装置を添付図面に基づいて説明する。 A bearing device according to an exemplary embodiment of the present invention will be described based on the accompanying drawings.

図1、図2に示すように、この発明の実施形態に係る軸受装置は、軸1と、軸1を取り囲むハウジング2と、軸1とハウジング2との間に介在する転がり軸受3とを備える。 As shown in FIGS. 1 and 2, a bearing device according to an embodiment of the present invention includes a shaft 1, a housing 2 surrounding the shaft 1, and a rolling bearing 3 interposed between the shaft 1 and the housing 2. .

以下、転がり軸受3の設計上の回転中心線と軸1の回転中心線とが一致する理想的な状態において、その回転中心に沿った方向のことを「軸方向」という。また、その回転中心線回りに一周する円周に沿った方向のことを「円周方向」という。また、その回転中心線に直交する方向のことを「径方向」という。 Hereinafter, in an ideal state where the designed rotation center line of the rolling bearing 3 and the rotation center line of the shaft 1 coincide, the direction along the rotation center will be referred to as the "axial direction." Further, the direction along the circumference that goes around the center line of rotation is referred to as the "circumferential direction." Further, the direction perpendicular to the center line of rotation is referred to as the "radial direction."

軸1は、ハウジング2に対して相対的に回転する。軸1は、例えば、自動車のトランスミッションに備わる伝達軸である。 The shaft 1 rotates relative to the housing 2. The shaft 1 is, for example, a transmission shaft included in an automobile transmission.

軸1は、円周方向に延びる嵌め合い面1aを有する。この嵌め合い面1aは、軸1の回転中心線と同心の円筒面状に形成されている。 The shaft 1 has a fitting surface 1a extending in the circumferential direction. This fitting surface 1a is formed into a cylindrical surface concentric with the rotation center line of the shaft 1.

ハウジング2は、軸1に対して静止し、転がり軸受3を径方向に支持する。ハウジング2は、例えば、自動車のトランスミッションケースの一部として形成された隔壁である。 The housing 2 is stationary with respect to the shaft 1 and supports the rolling bearing 3 in the radial direction. The housing 2 is, for example, a bulkhead formed as a part of a transmission case of an automobile.

ハウジング2は、円周方向に延びる嵌め合い面2aを有する。この嵌め合い面2aは、軸1の嵌め合い面1aを外方から取り囲む円筒面状に形成されている。嵌め合い面2aの中心線は、軸1の回転中心線と同心に設定されている。 The housing 2 has a fitting surface 2a that extends in the circumferential direction. The fitting surface 2a is formed into a cylindrical shape that surrounds the fitting surface 1a of the shaft 1 from the outside. The center line of the fitting surface 2a is set to be concentric with the rotation center line of the shaft 1.

転がり軸受3は、ハウジング2に対して軸1を回転自在に支持する。この軸受装置の運転中、軸1の嵌め合い面1aとハウジング2の嵌め合い面2a間で転がり軸受3にラジアル荷重Fが負荷される。 The rolling bearing 3 rotatably supports the shaft 1 relative to the housing 2. During operation of this bearing device, a radial load F is applied to the rolling bearing 3 between the fitting surface 1a of the shaft 1 and the fitting surface 2a of the housing 2.

図1~図3に示すように、転がり軸受3は、軸1に取り付けられた内方の軌道輪4と、ハウジング2に取り付けられた外方の軌道輪5と、これら両軌道輪4、5間に介在する複数の転動体6と、これら転動体6間の円周方向の間隔を保つ保持器7とを備える。 As shown in FIGS. 1 to 3, the rolling bearing 3 includes an inner raceway 4 attached to the shaft 1, an outer raceway 5 attached to the housing 2, and both of these races 4, 5. It includes a plurality of rolling elements 6 interposed between them, and a retainer 7 that maintains a circumferential interval between these rolling elements 6.

転がり軸受3は、転動体6が玉からなる深溝玉軸受になっている。 The rolling bearing 3 is a deep groove ball bearing in which the rolling elements 6 are balls.

内方の軌道輪4は、外周側で円周方向に延びる軌道面4aを有し、内周側で円周方向に延びる嵌め合い面4bを有する環状の軸受部品である。軌道面4aは、内方の軌道輪4の表面のうち、転動体6が転がる走路となり、かつ転がり軸受3に負荷されたラジアル荷重Fを支持する部分である。軌道面4aは、円周方向全周において転動体6と呼び接触角0°で接触可能になっている。その嵌め合い面4bは、軸1の嵌め合い面1aと同心の円筒面状に形成されている。その嵌め合い面4bの幅(軸方向長さ)は、円周方向全周で一定である。 The inner bearing ring 4 is an annular bearing component having a raceway surface 4a extending in the circumferential direction on the outer circumferential side and a fitting surface 4b extending in the circumferential direction on the inner circumferential side. The raceway surface 4 a is a part of the surface of the inner raceway ring 4 that serves as a running path for the rolling elements 6 to roll and supports the radial load F applied to the rolling bearing 3 . The raceway surface 4a is called a rolling element 6 and can be contacted at a contact angle of 0° over the entire circumference in the circumferential direction. The fitting surface 4b is formed into a cylindrical surface concentric with the fitting surface 1a of the shaft 1. The width (axial length) of the fitting surface 4b is constant throughout the circumferential direction.

内方の軌道輪4の嵌め合い面4bと軸1の嵌め合い面1a間の嵌め合いは、締め代をもったしまり嵌めに設定されている。内方の軌道輪4は、そのしまり嵌めにより、軸1と一体に回転するように固定されている。 The fit between the fitting surface 4b of the inner bearing ring 4 and the fitting surface 1a of the shaft 1 is set to be a close fit with an interference margin. The inner bearing ring 4 is fixed to rotate integrally with the shaft 1 by an interference fit.

外方の軌道輪5は、内周側で円周方向に延びる軌道面5aを有し、外周側で円周方向に延びる嵌め合い面5bを有する環状の軸受部品である。軌道面5aは、外方の軌道輪5の表面のうち、転動体6が転がる走路となり、かつ転がり軸受3に負荷されたラジアル荷重Fを支持する部分である。軌道面5aは、円周方向全周において転動体6と呼び接触角0°で接触可能になっている。 The outer bearing ring 5 is an annular bearing component having a raceway surface 5a extending in the circumferential direction on the inner circumferential side and a fitting surface 5b extending in the circumferential direction on the outer circumferential side. The raceway surface 5a is a portion of the surface of the outer raceway ring 5 that serves as a running path for the rolling elements 6 to roll and supports the radial load F applied to the rolling bearing 3. The raceway surface 5a is called a rolling element 6 and can be contacted at a contact angle of 0° around the entire circumference.

外方の軌道輪5は、軸1とハウジング2のうちのいずれか一方である相手部材としてのハウジング2とすきま嵌めされている。 The outer bearing ring 5 is loosely fitted with the housing 2 as a mating member, which is either one of the shaft 1 and the housing 2.

外方の軌道輪5の嵌め合い面5bは、内方の軌道輪4の嵌め合い面4b及びハウジング2の嵌め合い面2aと同心の仮想円に沿った曲面状に形成されている。その嵌め合い面5bは、外方の軌道輪5の外径を規定する。その嵌め合い面5bの径寸は、ハウジング2の嵌め合い面2aの直径よりも小径である。外方の軌道輪5の嵌め合い面5bと、ハウジング2の嵌め合い面2aとは、軸1から転がり軸受3に負荷されるラジアル荷重Fによって接触させられる。 The fitting surface 5b of the outer bearing ring 5 is formed in a curved shape along an imaginary circle concentric with the fitting surface 4b of the inner bearing ring 4 and the fitting surface 2a of the housing 2. The mating surface 5b defines the outer diameter of the outer raceway 5. The diameter of the fitting surface 5b is smaller than the diameter of the fitting surface 2a of the housing 2. The fitting surface 5b of the outer bearing ring 5 and the fitting surface 2a of the housing 2 are brought into contact by the radial load F applied to the rolling bearing 3 from the shaft 1.

外方の軌道輪5は、その外周側に円周方向に延びる溝部5cを有する。溝部5cは、軌道面5aから径方向に直下の位置で円周方向に有限の長さに形成されている。 The outer bearing ring 5 has a groove 5c extending in the circumferential direction on its outer circumferential side. The groove portion 5c is formed to have a finite length in the circumferential direction at a position directly below the raceway surface 5a in the radial direction.

外方の軌道輪5は、円周方向一箇所にだけ溝部5cを有する。このため、嵌め合い面5bは、溝部5cのない円周方向領域では一定の幅をもって円周方向に連続し、溝部5cのある円周方向領域では溝部5cによって軸方向に二等分されている。 The outer bearing ring 5 has a groove 5c only at one location in the circumferential direction. Therefore, the fitting surface 5b is continuous in the circumferential direction with a constant width in the circumferential region without the groove 5c, and is divided into two equal parts in the axial direction by the groove 5c in the circumferential region where the groove 5c is present. .

溝部5cは、嵌め合い面5bから径方向深さδをもっている。溝部5cの溝底面は、軸方向及び円周方向に沿った円弧面状になっている。嵌め合い面5bに対する溝部5cの径方向深さδは、実質的に溝部5cの全長で一定になっている。 The groove portion 5c has a radial depth δ from the fitting surface 5b. The groove bottom surface of the groove portion 5c has an arcuate shape along the axial direction and the circumferential direction. The radial depth δ of the groove 5c with respect to the fitting surface 5b is substantially constant over the entire length of the groove 5c.

溝部5cの円周方向長さは、軸1の回転中心線回りの角度αで規定することができる。軸1の回転中心線回りの転動体ピッチをθとしたとき、溝部5cの円周方向長さに対応の角度αは、0<α≦2θに設定することができる。ここで、転動体ピッチθは、円周方向に隣り合う転動体6間の円周方向間隔を規定する角度であり、保持器7が円周方向に転動体6を均等に配置する間隔で決まる。 The length of the groove portion 5c in the circumferential direction can be defined by the angle α around the rotation center line of the shaft 1. When the rolling element pitch around the rotational center line of the shaft 1 is θ, the angle α corresponding to the circumferential length of the groove portion 5c can be set to 0<α≦2θ. Here, the rolling element pitch θ is an angle that defines the circumferential interval between the rolling elements 6 adjacent to each other in the circumferential direction, and is determined by the interval at which the cage 7 arranges the rolling elements 6 evenly in the circumferential direction. .

図示例では、ラジアル荷重Fによる軌道輪5のたわみ、応力を抑えた形状にするため、溝部5cの円周方向長さに対応の角度αは、0.5θ≦α≦θの範囲内に設定されている。 In the illustrated example, in order to suppress the deflection and stress of the bearing ring 5 due to the radial load F, the angle α corresponding to the circumferential length of the groove portion 5c is set within the range of 0.5θ≦α≦θ. has been done.

図1、図4に示すように、溝部5cの幅Wを軸方向に二等分する幅中央の位置は、軌道面5aの幅Wを軸方向に二等分する幅中央の位置から径方向に直下の位置にある。溝部5cの幅Wは、軌道面5aの幅W以下に設定されている。これは、溝部5cの両側に嵌め合い面5bの幅を確保し、また、溝部5cの溝底面や溝部5cの両側の嵌め合い面5b部分においてラジアル荷重Fによる過剰な変形を抑えるためである。 As shown in FIGS. 1 and 4, the position of the width center that bisects the width W 1 of the groove portion 5c in the axial direction is from the position of the width center that bisects the width W 2 of the raceway surface 5a in the axial direction. Located directly below in the radial direction. The width W1 of the groove portion 5c is set to be less than or equal to the width W2 of the raceway surface 5a. This is to ensure the width of the fitting surfaces 5b on both sides of the groove 5c and to suppress excessive deformation due to the radial load F at the groove bottom of the groove 5c and the fitting surfaces 5b on both sides of the groove 5c.

さらに、転がり軸受3に負荷されるラジアル荷重Fの範囲内で最大のラジアル荷重Fを負荷された場合の軌道面5aと転動体6の接触楕円の長径Laを考えた時、溝部5cの幅Wは、接触楕円の長径La以上に設定されている。これは、前述のラジアル荷重Fが作用する領域を溝部5cの溝底面上に十分に位置させるためである。 Furthermore, when considering the long axis La of the contact ellipse between the raceway surface 5a and the rolling elements 6 when the maximum radial load F is applied within the range of the radial load F applied to the rolling bearing 3, the width W of the groove portion 5c 1 is set to be greater than or equal to the major axis La of the contact ellipse. This is to ensure that the region on which the aforementioned radial load F acts is sufficiently located on the bottom surface of the groove portion 5c.

ここで、最大のラジアル荷重Fは、この軸受装置の運転中に転がり軸受3に負荷されるラジアル荷重Fの変動範囲内で最も大きなラジアル荷重Fである。また、接触楕円の長径Laは、解析的にはHertzの弾性接触理論に基づいて求められ、実測的には、転動体6からのラジアル荷重Fによって軌道面5aに僅かな塑性変形として生じる接触痕の存在する軸方向領域の幅として求められる。なお、図4においては、接触楕円の長径Laを示すため、軌道面5a上の接触楕円を紙面に投影して模式的に描いた。 Here, the maximum radial load F is the largest radial load F within the variation range of the radial load F applied to the rolling bearing 3 during operation of this bearing device. In addition, the major axis La of the contact ellipse is analytically determined based on Hertz's elastic contact theory, and actually measured as a contact mark caused by slight plastic deformation on the raceway surface 5a due to the radial load F from the rolling elements 6. It is determined as the width of the axial region where . In addition, in FIG. 4, in order to show the major axis La of the contact ellipse, the contact ellipse on the raceway surface 5a is projected onto the paper surface and schematically drawn.

図2に示すように、外方の軌道輪5の軌道面5aと嵌め合い面5b間で径方向に最小の肉厚を外輪肉厚Hとしたとき、溝部5cの径方向深さδは、0.005H≦δ≦0.1Hに設定することができる。ラジアル荷重Fによる外方の軌道輪5のたわみ、応力を抑えた形状にするため、溝部5cの最大の径方向深さδは、0.01H≦δ≦0.05Hに設定することが好ましい。 As shown in FIG. 2, when the minimum wall thickness in the radial direction between the raceway surface 5a and the fitting surface 5b of the outer raceway ring 5 is the outer ring wall thickness H, the radial depth δ of the groove portion 5c is: It can be set to 0.005H≦δ≦0.1H. In order to suppress the deflection and stress of the outer bearing ring 5 due to the radial load F, the maximum radial depth δ of the groove portion 5c is preferably set to 0.01H≦δ≦0.05H.

溝部5cは、軌道輪5の外周に形成すればよいので、軌道輪5の外周に対するエンドミル加工又は放電加工によって簡単に形成することが可能である。ここで、エンドミル加工は、フライス工具のうち、工具の一端面と外周面に切れ刃を持つエンドミルを用いた加工のことをいう。また、放電加工は、電極と被加工物との間に短い周期で繰り返されるアーク放電によって被加工物表面の一部を除去する機械加工のことをいう。 Since the groove portion 5c may be formed on the outer periphery of the bearing ring 5, it can be easily formed by end milling or electric discharge machining on the outer periphery of the bearing ring 5. Here, end mill processing refers to processing using an end mill among milling tools that has cutting edges on one end surface and the outer peripheral surface of the tool. Further, electrical discharge machining refers to machining in which a part of the surface of a workpiece is removed by arc discharge repeated at short intervals between an electrode and the workpiece.

転がり軸受3を軸1とハウジング2間に組み込むと、図1、図2に示すように、外方の軌道輪5の外周とハウジング2の嵌め合い面2aとの間には、溝部5cによる径方向隙間gが生じる。 When the rolling bearing 3 is assembled between the shaft 1 and the housing 2, as shown in FIGS. A directional gap g is created.

転がり軸受3のうち、ラジアル荷重Fを受ける荷重負荷圏は、転がり軸受3の略半周に及ぶ。その荷重負荷圏の円周方向中央部は、そのラジアル荷重Fの荷重方向に対応の位置となる(図1においてラジアル荷重Fの矢線方向延長上の位置に相当)。外方の軌道輪5は、その荷重負荷圏において転動体6を介してラジアル荷重Fを軌道面5aで受けるため、弾性変形を生じる。このとき、転がり軸受3の荷重負荷圏においては、外方の軌道輪5の嵌め合い面5bや溝部5c(特に軌道面5aの直下の部位)が波状に変形することになる。その波状の径方向高さは、その荷重負荷圏の円周方向中央部で最大となり、その円周方向中央部から遠くなる程に小さくなる。 The load area of the rolling bearing 3 that receives the radial load F extends approximately half the circumference of the rolling bearing 3. The circumferential center of the load area corresponds to the load direction of the radial load F (corresponds to the position on the extension of the radial load F in the arrow direction in FIG. 1). The outer raceway ring 5 receives a radial load F on its raceway surface 5a via the rolling elements 6 in its load bearing area, so that it undergoes elastic deformation. At this time, in the load area of the rolling bearing 3, the fitting surface 5b and groove portion 5c (particularly the portion immediately below the raceway surface 5a) of the outer raceway ring 5 are deformed in a wave-like manner. The radial height of the wave is maximum at the circumferential center of the load area, and becomes smaller as the distance from the circumferential center increases.

溝部5cの径方向深さδは、最大のラジアル荷重Fを負荷された場合の転がり軸受3の荷重負荷圏において、前述の波状の最大の径方向高さよりも大きく設定されている。なお、径方向隙間g、径方向深さδは、その大きさを誇張して描いている。実際に生じる軌道輪5の波状変形では、嵌め合い面5bに対する波状の比高が最大でも数μmのオーダーになることが一般的である。 The radial depth δ of the groove portion 5c is set to be larger than the maximum radial height of the waveform described above in the load range of the rolling bearing 3 when the maximum radial load F is applied. Note that the radial gap g and the radial depth δ are illustrated with their sizes exaggerated. In the wave-like deformation of the raceway ring 5 that actually occurs, the relative height of the wave-like shape with respect to the fitting surface 5b is generally on the order of several μm at most.

溝部5cは、前述の径方向深さδ、円周方向長さに対応の角度α及び幅Wの設定により、転がり軸受3に最大のラジアル荷重Fを負荷された場合の荷重負荷圏で溝部5cの溝底面とハウジング2の嵌め合い面2aとの間に径方向隙間gを残せるように形成されている。 By setting the radial depth δ, the angle α corresponding to the circumferential length, and the width W1 described above, the groove 5c forms a groove in the load range when the maximum radial load F is applied to the rolling bearing 3. It is formed so that a radial gap g can be left between the bottom surface of the groove 5c and the fitting surface 2a of the housing 2.

この軸受装置の運転中、軸1とハウジング2間で転がり軸受3に最大のラジアル荷重Fが負荷された場合の転がり軸受3の荷重負荷圏において、外方の軌道輪5は、転がり軸受3の荷重負荷圏において嵌め合い面5bと、ハウジング2の嵌め合い面2aとの接触部において径方向に支持される。このとき、その荷重負荷圏に位置する外方の軌道輪5の外周部分が波状に変形しても、溝部5cの溝底面がハウジング2の嵌め合い面2aと接触できず、嵌め合い面5bが僅かな波状変形による進行波を嵌め合い面2aに伝えるかもしれないが、僅かな波状変形を受ける嵌め合い面2aからの反力は軌道輪5をクリープさせる程の力にならない。 During operation of this bearing device, in the load area of the rolling bearing 3 when the maximum radial load F is applied to the rolling bearing 3 between the shaft 1 and the housing 2, the outer raceway 5 is It is supported in the radial direction at the contact portion between the fitting surface 5b and the fitting surface 2a of the housing 2 in the load bearing area. At this time, even if the outer circumferential portion of the outer bearing ring 5 located in the load area deforms into a wave shape, the groove bottom surface of the groove portion 5c cannot contact the fitting surface 2a of the housing 2, and the fitting surface 5b Although a traveling wave due to a slight wave-like deformation may be transmitted to the fitting surface 2a, the reaction force from the fitting surface 2a undergoing the slight wave-like deformation does not become a force sufficient to cause the raceway ring 5 to creep.

図1~図4に示すこの軸受装置は、上述のようなものであり、転がり軸受3に負荷されるラジアル荷重Fの方向と溝部5cの位置が図1に示すように一致する場合、ラジアル荷重Fによる軌道輪5の波状変形が進行波として相手部材であるハウジング2側に伝わることを溝部5cで抑えて、軌道輪5のクリープを抑制することができる。また、軸1からの変動荷重や誤組立てによってラジアル荷重Fの方向と溝部5cの位置が一致しない場合であっても、軌道輪5がクリープすれば(最大でも一周)、やがてラジアル荷重Fの方向と溝部5cの位置が一致する状態になるので、クリープ抑制を図ることができる。 This bearing device shown in FIGS. 1 to 4 is as described above, and when the direction of the radial load F applied to the rolling bearing 3 and the position of the groove portion 5c match as shown in FIG. The groove portion 5c suppresses the wave-like deformation of the bearing ring 5 caused by F from being transmitted as a traveling wave to the housing 2 side, which is a mating member, and thereby the creep of the bearing ring 5 can be suppressed. Furthermore, even if the direction of the radial load F does not match the position of the groove 5c due to a fluctuating load from the shaft 1 or incorrect assembly, if the bearing ring 5 creeps (one revolution at most), the direction of the radial load F will eventually Since the positions of the groove portions 5c and the groove portions 5c coincide with each other, creep can be suppressed.

また、この軸受装置は、溝部5cが円周方向に有限長に形成されているので、全周に溝部を形成する場合に比して軌道輪5の強度低下を抑えることができる。 Further, in this bearing device, since the groove portion 5c is formed to have a finite length in the circumferential direction, a decrease in the strength of the raceway ring 5 can be suppressed compared to a case where the groove portion is formed all around the circumference.

このように、この軸受装置は、転がり軸受3の軌道輪5を相手部材であるハウジング2にすきま嵌めした状態において、転がり軸受3に負荷されるラジアル荷重Fの方向と溝部5cの位置が一致しない場合であっても軌道輪5の溝部5cでクリープ抑制を図れるようにしつつ、軌道輪5の強度低下を抑えることができる。 In this way, in this bearing device, when the bearing ring 5 of the rolling bearing 3 is loosely fitted into the housing 2, which is a mating member, the direction of the radial load F applied to the rolling bearing 3 does not match the position of the groove 5c. Even in such a case, the groove portion 5c of the bearing ring 5 can suppress creep while suppressing a decrease in the strength of the bearing ring 5.

特に、この軸受装置は、溝部5cが転がり軸受3に負荷されるラジアル荷重Fの範囲内で最大のラジアル荷重Fを負荷された場合の荷重負荷圏で相手部材であるハウジング2との間に径方向隙間gを残せるように形成されているので、溝部5cの溝底面の波状変形が相手部材の嵌め合い面2aに接触することがなく、溝底面の摩耗が生じず、軌道面5aと溝部5c間の肉厚減少を避けることができる。 In particular, this bearing device has a diameter between the groove portion 5c and the housing 2, which is a mating member, in the load range when the maximum radial load F is applied within the range of the radial load F applied to the rolling bearing 3. Since it is formed to leave a directional gap g, the wave-like deformation of the groove bottom surface of the groove portion 5c does not come into contact with the fitting surface 2a of the mating member, and wear of the groove bottom surface does not occur, and the raceway surface 5a and the groove portion 5c It is possible to avoid a decrease in wall thickness between the two.

また、この軸受装置は、転動体6が玉からなり、溝部5cの幅Wの中央が軌道面5aの幅Wの中央から径方向に直下の位置にあり、溝部5cの幅Wが軌道面5aの幅W以下であって、転がり軸受3に負荷されるラジアル荷重Fの範囲内で最大のラジアル荷重Fを負荷された場合の軌道面5aと転動体6の接触楕円の長径La以上に設定されているので、ラジアル荷重Fによる波状変形を溝部5cの溝底面で生じさせ、溝部5cの両側にある軌道輪5の嵌め合い面5b部分と相手部材(ハウジング2)の嵌め合い領域でラジアル荷重Fを受けて軌道輪5の過剰な波状変形を避けつつ、溝部5cでクリープ抑制を図ることができる。 Further, in this bearing device, the rolling elements 6 are made of balls, the center of the width W1 of the groove portion 5c is located directly below the center of the width W2 of the raceway surface 5a in the radial direction, and the width W1 of the groove portion 5c is The width W of the raceway surface 5a is 2 or less, and the major axis La of the contact ellipse between the raceway surface 5a and the rolling elements 6 when the maximum radial load F is applied within the range of the radial load F applied to the rolling bearing 3. Since the above settings are made, wave-like deformation due to the radial load F is caused on the groove bottom surface of the groove portion 5c, and the fitting area between the fitting surface 5b portion of the raceway ring 5 on both sides of the groove portion 5c and the mating member (housing 2) While avoiding excessive wave-like deformation of the bearing ring 5 under the radial load F, creep can be suppressed by the groove portion 5c.

また、この軸受装置は、軌道輪5の軌道面5aと嵌め合い面5b間で径方向に最小の軌道輪肉厚をHとし、前記溝部の最大の径方向深さをδとしたとき、0.005H≦δ≦0.1Hに設定されているので、ラジアル荷重Fによる軌道輪5の溝部5c付近のたわみ、応力を抑えた形状にすることができる。 Further, in this bearing device, when the minimum thickness of the bearing ring in the radial direction between the raceway surface 5a and the fitting surface 5b of the bearing ring 5 is H, and the maximum radial depth of the groove portion is δ, 0 Since it is set to .005H≦δ≦0.1H, it is possible to form a shape in which deflection and stress near the groove portion 5c of the bearing ring 5 due to the radial load F are suppressed.

また、この軸受装置は、溝部5cが軌道輪5の円周方向一箇所にだけ形成されており、溝部5cの円周方向長さを規定する角度をαとし、転動体ピッチを規定する角度をθとしたとき、0.5θ≦α≦θに設定されているので、溝部5cによるクリープ抑制を有効に図りつつ、軌道輪5の強度低下を特に抑えることができる。 Further, in this bearing device, the groove portion 5c is formed only at one location in the circumferential direction of the bearing ring 5, and the angle that defines the length of the groove portion 5c in the circumferential direction is α, and the angle that defines the pitch of the rolling elements is α. Since θ is set to 0.5θ≦α≦θ, it is possible to particularly suppress a decrease in the strength of the raceway ring 5 while effectively suppressing creep by the groove portions 5c.

また、この軸受装置は、軌道輪5とすきま嵌めした相手部材がハウジング2からなるので、軌道輪5の外周側に溝部を形成するだけで済み、ハウジング2の内周にアンダーカットの溝部加工が不要になり、ハウジングの製造が困難にならない。例えば、トランスミッションケースの一部としてハウジング2が形成される場合、ハウジング2が型で成形される。ハウジング2の内周に溝部を形成する場合、その溝部がアンダーカットとなり、ハウジングの製造が困難となるが、この軸受装置の場合、軌道輪5側の簡易な工夫でクリープ抑制を図ることができ、ハウジング2の製造が困難にならない。 In addition, in this bearing device, since the bearing ring 5 and the mating member that is loosely fitted are the housing 2, it is only necessary to form a groove on the outer circumference of the bearing ring 5, and an undercut groove is machined on the inner circumference of the housing 2. It becomes unnecessary and the manufacturing of the housing does not become difficult. For example, when housing 2 is formed as part of a transmission case, housing 2 is molded with a mold. When a groove is formed on the inner circumference of the housing 2, the groove becomes an undercut, making it difficult to manufacture the housing. However, in the case of this bearing device, creep can be suppressed by a simple device on the bearing ring 5 side. , manufacturing of the housing 2 does not become difficult.

この軸受装置では、外方の軌道輪5のみに溝部5cを形成したが、溝部の形状や配置は、軸受装置の荷重条件、ラジアル荷重の方向性、最大のラジアル荷重Fの大きさ、荷重負荷圏において軌道輪の嵌め合い面と相手部材の嵌め合い面との接触で軌道輪に与えられる回転力等を考慮して適宜に決定すればよい。例えば、軸と内方の軌道輪とをすきま嵌めする場合、内方の軌道輪の内周に溝部を形成すればよい。 In this bearing device, the groove portion 5c is formed only in the outer raceway ring 5, but the shape and arrangement of the groove portion are determined by the load conditions of the bearing device, the directionality of the radial load, the magnitude of the maximum radial load F, and the load load. It may be appropriately determined in consideration of the rotational force applied to the bearing ring due to contact between the fitting surface of the bearing ring and the fitting surface of the mating member in the area. For example, when the shaft and the inner raceway are fitted with a clearance, a groove may be formed on the inner periphery of the inner raceway.

また、この軸受装置では、溝部5cの径方向深さδを溝部5cの略全長で一定にしているが、溝部の径方向深さを一定にする必要はない。例えば、溝部の円周方向長さを大きくする場合、軌道輪の過剰な変形を防ぐため、溝部の径方向深さを溝部の円周方向中央部から円周方向に遠い位置である程に小さくした形状にしてもよい。 Further, in this bearing device, the radial depth δ of the groove portion 5c is constant over substantially the entire length of the groove portion 5c, but the radial depth of the groove portion does not need to be constant. For example, when increasing the circumferential length of the groove, in order to prevent excessive deformation of the bearing ring, the radial depth of the groove should be made smaller as the position is further circumferentially from the circumferential center of the groove. It may be made into a shape.

また、この軸受装置では、玉軸受を例示したが、この発明はころ軸受に適用することも可能である。 Further, although a ball bearing is illustrated in this bearing device, the present invention can also be applied to a roller bearing.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Therefore, the scope of the present invention is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.

1 軸
2 ハウジング(相手部材)
2a 嵌め合い面
3 転がり軸受
5 外方の軌道輪(軌道輪)
5a 軌道面
5b 嵌め合い面
5c 溝部
6 転動体
1 Shaft 2 Housing (mating member)
2a Fitting surface 3 Rolling bearing 5 Outer bearing ring (bearing ring)
5a Raceway surface 5b Fitting surface 5c Groove portion 6 Rolling element

Claims (5)

軸と、前記軸を取り囲むハウジングと、前記軸と前記ハウジングとの間に介在する転がり軸受とを備え、前記転がり軸受が、複数の転動体と、前記軸と前記ハウジングのうちのいずれか一方である相手部材とすきま嵌めされた軌道輪とを有し、前記軌道輪が、前記転動体の走路となる軌道面を有し、前記軌道輪と前記相手部材が、円周方向に延びる嵌め合い面を有する軸受装置において、
前記軌道輪が、前記軌道面から径方向に直下の位置で前記嵌め合い面から径方向深さをもって円周方向に延びる溝部を有し、前記溝部が、円周方向に有限の長さに形成されており、
前記溝部が、前記軌道輪の円周方向一箇所にだけ形成されており、前記溝部の円周方向
長さを規定する角度をαとし、転動体ピッチを規定する角度をθとしたとき、0.5θ≦
α≦θに設定されていることを特徴とする軸受装置。
A shaft, a housing surrounding the shaft, and a rolling bearing interposed between the shaft and the housing, wherein the rolling bearing has a plurality of rolling elements, and one of the shaft and the housing. The bearing ring has a bearing ring that is loosely fitted to a certain mating member, the bearing ring has a raceway surface that serves as a running path for the rolling elements, and the bearing ring and the mating member have a fitting surface that extends in a circumferential direction. In a bearing device having
The raceway ring has a groove portion extending in the circumferential direction from the fitting surface with a radial depth at a position directly below the raceway surface, and the groove portion is formed to have a finite length in the circumferential direction. has been
The groove portion is formed only at one location in the circumferential direction of the bearing ring, and
When the angle that defines the length is α and the angle that defines the rolling element pitch is θ, 0.5θ≦
A bearing device characterized in that α≦θ .
前記溝部が、前記転がり軸受に負荷されるラジアル荷重の範囲内で最大のラジアル荷重を負荷された場合の荷重負荷圏で前記相手部材との間に径方向隙間を残せるように形成されている請求項1に記載の軸受装置。 The groove portion is formed so as to leave a radial gap with the mating member in a load range when a maximum radial load is applied within a range of radial loads applied to the rolling bearing. The bearing device according to item 1. 前記転動体が、玉からなり、
前記溝部の幅中央が、前記軌道面の幅中央から径方向に直下の位置にあり、前記溝部の幅が、前記軌道面の幅以下であって、前記転がり軸受に負荷されるラジアル荷重の範囲内で最大のラジアル荷重を負荷された場合の前記軌道面と前記転動体の接触楕円の長径以上に設定されている請求項1又は2に記載の軸受装置。
The rolling element is made of balls,
The width center of the groove portion is located directly below the width center of the raceway surface in the radial direction, the width of the groove portion is less than or equal to the width of the raceway surface, and the range of the radial load applied to the rolling bearing. The bearing device according to claim 1 or 2, wherein the bearing device is set to be larger than or equal to the major axis of a contact ellipse between the raceway surface and the rolling element when a maximum radial load is applied thereto.
前記軌道面と前記軌道輪の嵌め合い面間で径方向に最小の軌道輪肉厚をHとし、前記溝部の径方向深さをδとしたとき、0.005H≦δ≦0.1Hに設定されている請求項1から3のいずれか1項に記載の軸受装置。 When the minimum raceway ring thickness in the radial direction between the raceway surface and the fitting surface of the raceway ring is H, and the radial depth of the groove portion is δ, set to 0.005H≦δ≦0.1H. The bearing device according to any one of claims 1 to 3, wherein: 前記相手部材がハウジングからなる請求項1からのいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 4 , wherein the mating member comprises a housing.
JP2019095626A 2019-05-22 2019-05-22 bearing device Active JP7353067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095626A JP7353067B2 (en) 2019-05-22 2019-05-22 bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095626A JP7353067B2 (en) 2019-05-22 2019-05-22 bearing device

Publications (2)

Publication Number Publication Date
JP2020190283A JP2020190283A (en) 2020-11-26
JP7353067B2 true JP7353067B2 (en) 2023-09-29

Family

ID=73454423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095626A Active JP7353067B2 (en) 2019-05-22 2019-05-22 bearing device

Country Status (1)

Country Link
JP (1) JP7353067B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322579A (en) 2005-05-20 2006-11-30 Jtekt Corp Rolling bearing
JP2009019738A (en) 2007-07-13 2009-01-29 Jtekt Corp Rolling bearing fixing structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634785B2 (en) * 2015-11-16 2020-01-22 株式会社ジェイテクト Rolling bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322579A (en) 2005-05-20 2006-11-30 Jtekt Corp Rolling bearing
JP2009019738A (en) 2007-07-13 2009-01-29 Jtekt Corp Rolling bearing fixing structure

Also Published As

Publication number Publication date
JP2020190283A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US10047796B2 (en) Rolling Bearing
US10054164B2 (en) Rolling bearing
EP2811188B1 (en) Ball bearing
JP6501823B2 (en) Bearing seal structure, pulley bearing, and method of designing bearing seal
WO2012099120A1 (en) Roller bearing
EP2128471A2 (en) Rotation urging mechanism and pulley device
WO2012165395A1 (en) Friction drive-type wave transmission
JP6790555B2 (en) Rolling bearing
EP2700834B1 (en) Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
WO2020059695A1 (en) Bearing device
US11149787B2 (en) Thrust roller bearing
JP7353067B2 (en) bearing device
JP3684642B2 (en) Roller bearing cage
JP2011052814A (en) Retainer for rolling bearing and rolling bearing
JP4920238B2 (en) Tapered roller bearing
US20180112715A1 (en) Rolling Bearing
JP4025949B2 (en) Roller bearing
JP5272737B2 (en) Crown type cage and ball bearing
JP6694288B2 (en) Roller bearing
JP2017137965A (en) Constant velocity joint
JP7245711B2 (en) bearing device
JP2020190290A (en) Bearing device
JP2006214533A (en) Thrust cylindrical roller bearing
JP7033518B2 (en) Angular contact ball bearings and their cages
JP4577125B2 (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7353067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150