JP4465781B2 - Polymer electrolyte and battery using the same - Google Patents

Polymer electrolyte and battery using the same Download PDF

Info

Publication number
JP4465781B2
JP4465781B2 JP2000054107A JP2000054107A JP4465781B2 JP 4465781 B2 JP4465781 B2 JP 4465781B2 JP 2000054107 A JP2000054107 A JP 2000054107A JP 2000054107 A JP2000054107 A JP 2000054107A JP 4465781 B2 JP4465781 B2 JP 4465781B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
glycol
weight
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000054107A
Other languages
Japanese (ja)
Other versions
JP2001243835A (en
Inventor
宏幸 園部
仁 天野倉
秀秋 上原
敏彦 伊藤
裕昭 平倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000054107A priority Critical patent/JP4465781B2/en
Publication of JP2001243835A publication Critical patent/JP2001243835A/en
Application granted granted Critical
Publication of JP4465781B2 publication Critical patent/JP4465781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は高分子電解質及びそれを用いた電池に関する。
【0002】
【従来の技術】
電子技術の進歩により、電子機器の性能が向上し、小型、ポータブル化が進み、電源として高エネルギー密度の電池が望まれている。従来の二次電池として、鉛電池、ニッケル−カドミウム電池が挙げられるが、エネルギー密度を得るという点では未だ不十分である。そこで、これらの電池に替わるものとして、高エネルギー密度のリチウム二次電池が開発され、急速に普及している。
【0003】
リチウム二次電池は、一般に3V以上の高電圧が得られ、且つ、軽量・高容量であるため、様々な用途に応用されている。このようなリチウム二次電池は、正極にコバルト酸リチウム、負極に炭素材料を活物質に用いたものが多かったが、最近、より高容量化するために活物質に関する研究開発が盛んに行われている。また、電解質の開発も積極的に展開されており、イオン伝導度や耐電圧などの改善が試みられている。
【0004】
リチウムイオン二次電池をはじめ、ほとんどのリチウム二次電池の電解質には非水電解液が使用されている。実際の電池では、これをポリプロピレン微多孔膜などのセパレータに含浸させて、正/負極間のイオン伝導路を確保する。
【0005】
しかし、リチウム二次電池でしばしば問題となるのが負極から正極方向に生長するリチウムのデンドライト状析出による内部ショートであり、非水電解液系では特にこのデンドライト析出によるショート事故の制御が特に困難である。非水電解液自身は流動体であり、本質的にデンドライトの生長を抑制することができない。
【0006】
また、セパレータを用いた場合、正/負極間に流れる電流は限定されたイオン伝導路であるセパレータの細孔部に集中するため、結果としてリチウムデンドライトの生長がセパレータの細孔部で集中的に促進される。
【0007】
このような状況を打破するため、高分子電解質を利用する電池系が考案され、現在、研究開発が盛んに行われている。この高分子電解質は、ポリマーにアルカリ金属塩を均一に固溶させたイオン伝導体である。これはセパレータフリーの固体電解質として機能し、且つ、電解質全面に電流が均一に流れるため、リチウムデンドライトの発生・生長を抑制することが可能であると言われている。
【0008】
近年、ポリエチレンオキシド成分を有する高分子電解質の研究が盛んに行われている。例えば、特許第1898067号公報に記載されているようなエチレンオキシドとプロピレンオキシドの共重合物の両末端を架橋させる方法や、特開平2−7935号公報に記載されているようなポリエチレングリコール成分を有するモノマーとウレタン基を有するモノマーを、重合して高分子量化あるいは三次元架橋化させることにより、機械強度を向上させ、反面、結晶化に伴うイオン伝導度の低下をも防止し、実用性のあるポリマーを得ようとしている。
【0009】
しかしながら、ポリエチレンオキシド成分を多く含むポリマー類は、本質的に吸水性が高く、リチウム電池に要求される非水系化レベルの含水量とすることが著しく困難である上、得られるポリマーフィルムの機械強度は、非結晶性を前提とする限り、低いものにならざるを得ない。また、そのイオン伝導度は室温で10-5S/cm程度であり、非水電解液と比較して2桁以上低いという問題がある。
【0010】
また、マトリックスポリマーに非水電解液を保持させたゲル状の高分子電解質の検討もなされている。例えば米国特許第5603982号明細書及び第5609974号明細書に記載されているような三次元架橋型のアクリル樹脂は、数種類のアクリルモノマーと架橋剤である2官能アクリルモノマーを非水電解液に溶かし、熱あるいは光により架橋反応させてゲル状の高分子電解質を調製している。しかしこの方法は、アクリルモノマーの反応率向上が望めず、機械強度を強くするのは困難である。
【0011】
一方、特表平8−507407号公報に記載されているようなポリフッ化ビニリデンを非水電解液で膨潤させることにより、イオン伝導度を向上させたゲル状の高分子電解質がある。しかし、ポリフッ化ビニリデンは、非水電解液による膨潤性が低く、高いイオン伝導度を発現させるのは困難である。
【0012】
このような低いイオン伝導度の高分子電解質を二次電池に適用すると、電池の内部抵抗が高くなり、充放電時の発熱や高放電レートでの放電時の効率低下といった問題が起こる。
【0013】
【発明が解決しようとする課題】
本発明の目的は、従来の高分子電解質よりもイオン伝導度が高く、機械強度に優れた高分子電解質を提供することにある。
【0014】
本発明の他の目的は、製造に用いるアクリル樹脂の合成が簡便で、イオン伝導度及び機械強度に優れた高分子電解質を提供することにある。
【0015】
本発明の他の目的は、上記の発明に加え、さらにイオン伝導度に優れた高分子電解質を提供することにある。
【0016】
本発明の他の目的は、従来の高分子電解質を用いたリチウム二次電池よりも、優れた特性を有するポリマーリチウム二次電池を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、(A)(メタ)アクリレートに由来する構造単位40〜89.9重量%と(B)アクリロニトリルに由来する構造単位10〜50重量%及び(C)側鎖に二重結合を有する構造単位0.1〜10重量%からなる重量平均分子量が5000〜500000であるアクリル樹脂に、(D)熱あるいは光反応が可能な架橋用モノマーを加えて架橋させたマトリックスポリマーと(E)アルカリ金属塩を溶解した(F)非水電解液とを含んでいることを特徴とする高分子電解質に関する。
【0018】
また、本発明は、(A)、(B)及び(C)の構造単位からなるアクリル樹脂が、(A)成分モノマーと(B)成分モノマー及び(C′)水酸基を有する(メタ)アクリレートモノマーでポリマー主骨格を構築した後、(C′)成分と同モル数の(C″)イソシアネート基を有する(メタ)アクリレートモノマーをポリマー主骨格の水酸基と反応させて側鎖に(メタ)アクリロイル基を有するように合成したものである前記高分子電解質に関する。
【0019】
また、本発明は、(E)成分のアルカリ金属塩が、LiClO4、LiBF4、LiPF6及びLiN(CF3SO22からなる群から選択された少なくとも1種である前記高分子電解質に関する。
【0020】
また、本発明は、前記の高分子電解質を用いた電池に関する。
【0021】
【発明の実施の形態】
以下、本発明について詳述する。
【0022】
本発明に用いる(A)(メタ)アクリレート((メタ)アクリレートはアクリレート及びメタクリレートを意味する。)としては、特に制限はないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸アルキルエステル又は、(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸エチレングリコールメチルエーテル、(メタ)アクリル酸ジエチレングリコールメチルエーテル、(メタ)アクリル酸ポリエチレングリコールメチルエーテル等の(メタ)アクリル酸ポリエチレングリコールアルキルエーテル、(メタ)アクリル酸アミノメチル、(メタ)アクリル酸N−メチルアミノメチル、(メタ)アクリル酸N,N−ジエチルアミノエチル等の(メタ)アクリル酸アミノアルキル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸オリゴエチレンオキシド、(メタ)アクリル酸オリゴプロピレンオキシド、(メタ)アクリル酸メトキシポリプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、メタクリル酸、アクリル酸などが挙げられる。これらの(A)成分は、単独で又は2種類以上組み合わせて使用される。
【0023】
本発明に用いる、アクリル樹脂の側鎖に二重結合を有する構造単位を形成させるためには、アクリル樹脂合成時に次の(C)成分モノマーを共重合させることにより行うことができる。(C)成分モノマーとしては、特に制限はないが、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物が挙げられる。しかしこの方法では、反応の制御が困難であり、ゲル化する可能性がある。そこで以下のような方法を用いることにより、簡便にアクリル樹脂の側鎖に二重結合を有する構造単位を形成させることができる。
【0024】
まず(A)成分モノマーと(B)成分モノマー及び(C′)水酸基を有する(メタ)アクリレートモノマーでポリマー主骨格を構築する。その後(C′)成分と同モル数の(C″)イソシアネート基を有する(メタ)アクリレートモノマーをポリマー主骨格の水酸基と反応させて側鎖に(メタ)アクリロイル基を導入するというものである。
【0025】
(C′)成分モノマーとしては、特に制限はないが、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
【0026】
(C″)成分モノマーとしては、特に制限はないが、2−イソシアネートエチル(メタ)アクリレートなどが挙げられる。
【0027】
本発明における(A)成分の使用量は、前記(A)、(B)、(C){(C′)+(C″)}成分の総量に対して40〜89.9重量%であり、50〜84.5重量%とすることが好ましく、57〜79重量%とすることがより好ましい。この使用量が40重量%未満では柔軟性が乏しくなり、89.9重量%を超えると電池を作製した時に電極界面抵抗を増大させる皮膜が形成され易くなり、電池のサイクル特性を低下させる。
【0028】
本発明における(B)成分の使用量は、前記(A)、(B)、(C){(C′)+(C″)}成分の総量に対して10〜50重量%であり、15〜45重量%とすることが好ましく、20〜40重量%とすることがより好ましい。この使用量が10重量%未満では、必要な屈曲性が得られず、50重量%を超えると屈曲性がなくなる。
【0029】
本発明における(C)あるいは(C″)成分の使用量は、前記(A)、(B)、(C){(C′)+(C″)}成分の総量に対して0.1〜10重量%であり、0.5〜5重量%とすることが好ましく、1〜3重量%とすることがより好ましい。この使用量が0.1重量%未満では、必要な機械強度が得られず、10重量%を超えるとゲル状高分子電解質が脆くなる。
【0030】
本発明に用いられるアクリル樹脂の合成法は特に限定されるものではないが、好ましくは、前記(A)、(B)、(C){(C′)+(C″)}成分からなるモノマー溶液を公知のラジカル重合法等によって溶液重合することにより得られる。この場合、有機溶剤としてメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド等の含窒素系極性溶剤が使用できる。また、重合開始剤としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド、t−ブチルパーオキシベンゾエート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾビス系化合物が使用できる。重合開始剤の使用量は、(A)、(B)、(C){(C′)+(C″)}成分の総量に対して0.01〜0.1重量部である。なお、得られたアクリル樹脂は、使用したモノマーと同一の割合のモノマーに由来する構造単位を含有している。
【0031】
本発明のアクリル樹脂の重量平均分子量は、5,000〜500,000が好ましく、10,000〜400,000がより好ましく、50,000〜300,000が特に好ましい。この重量平均分子量が5,000未満では必要な機械強度が得られない傾向があり、500,000を超えるとイオン伝導度が低下する傾向がある。重量平均分子量は、ゲルパーミエイションクロマトグラフィー法(GPC)により標準ポリスチレンによる検量線を用いて測定される。
【0032】
本発明に用いる(D)架橋用モノマーとしては、特に制限はないが、酢酸ビニル、アルキル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート等の単官能化合物、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ビスフェノールA EO変性ジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,2−ビス[4−((メタ)アクリロキシ・ジエトキシ)フェニル]プロパン等の2官能化合物、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、イソシアヌール酸EO変性トリ(メタ)アクリレート等の3官能化合物、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能化合物、ジペンタエリスリトールペンタ及びヘキサ(メタ)アクリレート等の5〜6官能化合物、1〜6官能のメラミン(メタ)アクリレート等が挙げられる。これらの架橋用モノマー成分は、単独で又は2種類以上組み合わせて使用される。
【0033】
本発明における(D)成分の配合量は、(A)、(B)、(C){(C′)+(C″)}成分から成るアクリル樹脂100重量部に対して1〜30重量部が好ましく、3〜20重量部がより好ましく、5〜15重量部が特に好ましい。0.1重量部未満では、良好な機械強度が得られない傾向があり、30重量部を超えるとイオン伝導度が低下する傾向がある。
【0034】
本発明における(E)アルカリ金属塩は、特に制限はないが、実用的な観点から、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiCF3SO3、LiC29SO3、LiN(CF3SO22などのリチウム化合物が好ましい。これらのリチウム化合物は、単独で又は2種類以上を組み合わせて用いられ、これらの塩のうちで特に好ましい塩はLiClO4、LiBF4、LiPF6及びLiN(CF3SO22である。
【0035】
本発明における(E)成分の配合量は、(A)、(B)、(C){(C′)+(C″)}、(D)、(E)、及び(F)成分の総量中1〜40重量%とすることが好ましく、3〜30重量%とすることがより好ましく、5〜20重量%とすることが特に好ましい。(E)成分の配合量が1重量%未満あるいは40重量%を超えると、イオン伝導度が低下する傾向がある。
【0036】
本発明における(F)アルカリ金属塩を溶解可能な非水溶媒は、化学的に安定で非水系であれば特に制限はないが、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート化合物、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ポリエチレンオキシド等のエーテル化合物、γ−ブチロラクトン、プロピロラクトン等のラクトン化合物等が挙げられる。これらの非水溶媒は単独で又は2種類以上を組み合わせて使用される。
【0037】
本発明における(F)成分の配合量は、(A)、(B)、(C){(C′)+(C″)}、(D)、(E)及び(F)成分の総量中10〜95重量%とすることが好ましく、20〜90重量%とすることがより好ましく、30〜85重量%とすることが特に好ましい。(F)成分の割合が10重量%未満では、イオン伝導度が低下する傾向がある。また、95重量%を超えると、機械強度が低下する傾向がある。
【0038】
また、本発明におけるアクリル樹脂と架橋用モノマーの熱重合を行う場合の熱重合開始剤としては、例えば過酸化ベンゾイル及びその誘導体、ヒドロパーオキシド及びその誘導体、クミルパーオキシド及びその誘導体等のジアルキル(アリル)パーオキシド類、ジアセチルパーオキシド及びその誘導体等のジアシルパーオキシド類、パーオキシケタール類、パーオキシエステル類、パーオキシカーボネート類等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等の化合物が挙げられる。
【0039】
また、本発明におけるアクリル樹脂と架橋用モノマーの光重合を行う場合の光重合開始剤としては、例えばジメチルアミノ安息香酸類、ベンゾフェノン及びその誘導体、ベンジルジメチルケタール等のベンジル及びその誘導体、2,2−ジエトキシアセトフェノン等のアセトフェノン誘導体、ベンゾフェノン誘導体、ベンゾインメチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体、α−ヒドロキシイソブチルフェノン等のブチルフェノン誘導体、チオキサントン及びその誘導体、アジド基を有する化合物、クマリン誘導体、フェニルケトン誘導体等の化合物が挙げられる。これらの熱重合開始剤または光重合開始剤は、単独で又は2種類以上組み合わせて使用される。
【0040】
本発明におけるアクリル樹脂と架橋用モノマーの熱あるいは光重合開始剤の配合量は、(A)、(B)、(C){(C′)+(C″)}成分からなるアクリル樹脂100重量部に対して0.005〜10重量部が好ましく、0.01〜5重量部がより好ましく、0.05〜3重量部が特に好ましい。熱あるいは光重合開始剤の割合が、0.005重量部未満あるいは10重量部を超えると機械強度が低下する傾向がある。
【0041】
本発明の高分子電解質の製法を2例記す。1つ目の方法は、(A)成分、(B)成分、(C){(C′)+(C″)}成分から調製されたアクリル樹脂と(D)成分の架橋用モノマーを、所望の有機溶剤に溶解させて、離形性に優れる基板に所望の形状にコーティングした後、熱あるいは光反応させることによりポリマーフィルムを得ることができる。このポリマーフィルムを(E)アルカリ金属塩の溶解した(F)非水電解液で膨潤させて高分子電解質を作製するというものである。
【0042】
2つ目の方法は、(A)成分、(B)成分、(C){(C′)+(C″)}成分から調製されたアクリル樹脂と(D)成分の架橋用モノマー、及び熱あるいは光重合開始剤を、(E)アルカリ金属塩の溶解した(F)非水電解液に溶解させ、この溶液を所望の厚さのスペーサーを設けたガラス基板上に塗布する。その後、別のガラス基板を被せて完全に密封し、熱あるいは光反応させて高分子電解質を作製するというものである。
【0043】
本発明の高分子電解質は、光照射又は加熱によりアクリル樹脂を架橋モノマーを加えて架橋させたマトリックスポリマーを含有する。光照射の際用いられる活性光線としては、例えばカーボンアーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ、メタルハライド等が挙げられる。露光量は、5mJ/cm2以上であることが好ましく、15mJ/cm2以上であることがより好ましく、25mJ/cm2以上であることが特に好ましい。露光量が5mJ/cm2未満の場合は、光硬化が十分に進行せず、膜強度が低下する傾向にある。加熱温度は、20℃以上であることが好ましく、30℃以上であることがより好ましく、40℃以上であることが特に好ましい。加熱が20℃未満の場合は、熱硬化や熱による不溶化が十分に進行せず、膜強度が低下する傾向にある。加熱時間は、5分以上であることが好ましい。加熱時間が5分未満の場合は、熱硬化や熱による不溶化が十分に進行せず、膜強度が低下する傾向にある。
【0044】
本発明の高分子電解質は、負極に黒鉛等の層間化合物を用いたリチウムイオン二次電池、負極にリチウム金属を用いたリチウム二次電池、リチウム一次電池、電気二重層キャパシタ、酵素センサ用電極材料等の電気化学的デバイスの電解質として用いることができる。特に電池の電解質として好ましく用いられる。
【0045】
本発明の高分子電解質を用いた電池は、携帯電話、PHS、ノート型パソコン、携帯端末等の小型電子機器の主電源またはバックアップ用電源として用いることができ、さらに、据え置き型のロードレベリング用電源、停電時のバックアップ用電源、電気自動車用電池等に広く用いることができる。
【0046】
本発明の高分子電解質を用いた電池を得る方法の一つを例示する。例えば、まず、上記に示した2つの作製法のどちらかで作製したフィルム状の本発明の高分子電解質を、通常の電解液型リチウムイオン二次電池で用いる正極集電体シート上に正極材料をキャスティングした正極シート、及び負極集電体シート上に負極材料をキャスティングした負極シートで挟み、熱または加圧することによって正極シートと本発明の高分子電解質と負極シートを密着させて電池の電池反応を起こす部分を作製する。その後、得られた電池反応を起こす部分を大気中の湿気や酸素や窒素等と隔離するために例えばアルミニウム製の絶縁された入れ物等で密封するが、この際、正極シート及び負極シートに形成された電極を通じて充電及び放電が可能なように、電極部分はアルミニウム製の絶縁された入れ物の外部に露出させておく。こうして得られた本発明の高分子電解質を用いた電池は充電と放電を交互に行うことが可能な二次電池となる。
【0047】
上記正極集電体シートは、例えば、アルミニウム箔、ニッケル箔、金箔、銀箔、チタン箔等が挙げられるが、高電位に対する安定性の見地からはアルミニウム箔であることが好ましい。
【0048】
前記正極材料としては、例えば、Li1-xCoO2、Li1-xNiO2、Li1-xMn24、Li1-xMO2、(0<X<1、MはCo、Ni、Mn、Fe等の複合体)、Li2-yMn24(0<y<2)、Li1-x25(0<X<1)、Li2-y25(0<y<2)、Li1-x Nb25(0<X′<1.2)等の酸化物、Li1-XTiS2、Li1-XMoS2、Li1-XNbSe2、Li1-ZNbSe3(0<Z<3)等の金属カルコゲナイド、ジチオール誘導体、ジスルフィド誘導体などの有機化合物などが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。
【0049】
前記負極集電体シートとしては、例えば、銅箔、ニッケル箔、金箔、銀箔等が挙げられ、良好な電子導電性、及び廉価性の見地からは銅箔であることが好ましい。
【0050】
前記負極材料としては、例えば、金属リチウム、アルミ・リチウム合金、マグネシウム・アルミ・リチウム合金等の金属リチウム、グラファイト、非晶質炭素、低温焼成高分子等の炭素材料、AlSb、Mg2Ge、N系材料、SnM′系酸化物(M′はSi、Ge、Pb等を示す)、Si1-YM″YZ(M″はW、Sn、Pb、B等を示す)等の複合酸化物、酸化チタン、酸化鉄などの金属酸化物のリチウム固溶体、Li7MnN4、Li3FeN4、Li3-XCoXN、Li3-XNiN、Li3-XCuXN、Li3BN2、Li3AlN2、Li3SiN3等の窒化物などのセラミックスなどが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。
【0051】
【実施例】
以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例で得られた高分子電解質の評価方法を以下に示す。
<イオン伝導度>
イオン伝導度の測定は、25℃において高分子電解質をステンレス鋼電極で挟み込むことで電気化学セルを構成し、電極間に交流を印加して抵抗成分を測定する交流インピーダンス法を用いて行い、コール・コールプロットの実数インピーダンス切片から計算した。
<機械強度>
レオメータにより引張速度2cm/min.で1cm×4cm(チャック間長さ:2cm)、厚さ100μmの高分子電解質の破断強度及び引張弾性率を測定して機械強度を評価した。
<アクリル樹脂A〜Dの製造方法>
混合機及び冷却器を備えた反応器に表1に示す配合物(I)を入れ、90〜95℃に加熱し、表1に示す配合物(II)を添加し、2〜5時間保温する。次に表1に示す配合物(III)を2時間で滴下し、更に3〜6時間保温する。冷却後、メチルエチルケトンを固形分が約30%になるように加えてポリマーを溶解する。このポリマー溶液に表1に示す配合物(IV)を加えて70〜75℃に加熱し、6〜12時間保温する。冷却後、メタノールを加えて重合物を沈降させ、吸引濾過、真空乾燥により有機溶媒を除去してアクリル樹脂A〜Dを得る。
【0052】
この重合体A〜Dの重量平均分子量は、以下に示す方法で測定した。
[重量平均分子量の測定方法]
ゲルパーミエイションクロマトグラフィー法(GPC)により標準ポリスチレンによる検量線を用いて測定する。
〈GPC条件〉
使用機器:日立635型HPLC〔(株)日立製作所〕
カラム :ゲルパックR440、R450、R400M
〔日立化成工業(株)製商品名〕溶離液 :テトラヒドロフラン
測定温度:40℃
流量 :2.0ml/min.
検出器 :示差屈折計
測定結果は表1に示す。なお、ガラス転移温度は、計算値である。(参考データ:塗料用合成樹脂入門:北岡協三)
1.高分子電解質の作製
実施例1
アクリル樹脂Aのメチルエチルケトン溶液に、架橋用モノマーとしてトリエチレングリコールジメタクリレート(新中村化学工業社製)を、アクリル樹脂の固形分重量100重量部に対して5重量部及び熱重合開始剤として過酸化ベンゾイルを0.1重量部加え攪拌溶解した後、テフロン製の基板上にアプリケーターで塗布し、80℃で20分間乾燥を行い、次いで真空下、100℃で3時間熱重合反応させて、膜厚が50μmのポリマーフィルムを作製した。このポリマーフィルムを1mol/l LiPF6のエチレンカーボネートとジメチルカーボネート(体積比:1/1)の混合系電解液により膨潤させて実施例1による高分子電解質を得た。得られた実施例1による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0053】
実施例2
架橋用モノマーとしてトリメチロールプロパントリメタクリレート((新中村化学工業社製)に代えた以外は、実施例1と同様にして実施例2による高分子電解質を得た。得られた実施例2による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0054】
実施例3
実施例2で作製したポリマーフィルムを、1mol/l LiBF4のエチレンカーボネートとジメチルカーボネート(体積比:1/1)の混合系電解液により膨潤させて実施例3による高分子電解質を得た。得られた実施例3による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0055】
実施例4
実施例2で作製したポリマーフィルムを、1mol/l LiN(CF3SO22のエチレンカーボネートとジメチルカーボネート(体積比:1/1)の混合系電解液により膨潤させて実施例4による高分子電解質を得た。得られた実施例4による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0056】
実施例5
実施例2で作製したポリマーフィルムを、1mol/l LiPF6のγ−ブチロラクトンの電解液により膨潤させて実施例5による高分子電解質を得た。得られた実施例5による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0057】
実施例6〜8
アクリル樹脂としてB〜Dを用いる以外は実施例2と同様にして実施例6〜8の高分子電解質を得た。得られた実施例6〜8による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0058】
実施例9
アクリル樹脂A100重量部と架橋用モノマーとしてトリメチロールプロパントリメタクリレート5重量部及び熱重合開始剤として過酸化ベンゾイル0.1重量部を、1mol/l LiBF4のγ−ブチロラクトン電解液500重量部に溶解させ、この溶液を厚さ100μmのシリコーンゴムスペーサーを設けたガラス基板上に注ぎ、そこに別のガラス基板を被せて完全に密封して、アルゴン雰囲気下、100℃で3時間熱反応させて厚さ100μmの実施例9による高分子電解質を得た。得られた実施例9による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0059】
実施例10
アクリル樹脂A100重量部と架橋用モノマーとしてトリメチロールプロパントリメタクリレート5重量部及び光重合開始剤としてベンゾフェノン1重量部を、1mol/l LiBF4のγ−ブチロラクトン電解液500重量部に溶解させ、この溶液を厚さ100μmのシリコーンゴムスペーサーを設けたガラス基板上に注ぎ、そこに別のガラス基板を被せて完全に密封して、アルゴン雰囲気下、1J/cm2の紫外線を照射して厚さ100μmの実施例10による高分子電解質を得た。得られた実施例10による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0060】
比較例1
平均分子量500,000のポリエチレングリコール(和光純薬工業社製)1gとLiPF6 0.23gとをアセトニトリル6.4gに溶解し、マグネティックスターラーで均一に撹拌した。この溶液をガラス基板上にアプリケーターで塗布し、常圧下アルゴン雰囲気中2時間放置した後、真空下100℃で12時間熱処理してアセトニトリルを除去し、膜厚が40μmのシート状の高分子電解質を得た。得られた比較例1による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
【0061】
比較例2
ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合物(エルフ・アトケム社製)1gを、アセトン5gに溶解した。この溶液を、ガラス基板上にアプリケーターで塗布し、常圧下アルゴン雰囲気中2時間放置した後、真空下60℃で12時間乾燥してアセトンを除去し、膜厚が40μmのポリマーフィルムを得た。このポリマーフィルムを1mol/l LiPF6のエチレンカーボネートとジメチルカーボネート(体積比:1/1)の混合系電解液により膨潤させて比較例2による高分子電解質を得た。得られた比較例2による高分子電解質のイオン伝導度、破断強度、引張弾性率を評価した結果を表2に示す。
2.電池の作製
実施例11
コバルト酸リチウム(日本化学工業社製)と黒鉛(日本黒鉛社製)とポリフッ化ビニリデン(呉羽化学工業社製)とを、80:10:10体積%の割合で混合し、N−メチル−2−ピロリドンに投入混合して、スラリー状の溶液を作製した。厚さ20μmのアルミニウム箔にこの溶液を塗布、乾燥した。合剤塗布量は、289g/m2であった。合剤かさ密度が3.6g/cm3になるようにプレスし、1cm×1cmに切断して正極シートを作製した。負極シートには金属リチウムを用いた。上記のようにして作製した正極シートと負極シートの間に、実施例2で作製した高分子電解質を0.098MPaの荷重をかけて挟み込み、空気が入らない密閉構造の電池を作製した。20℃において、充電電流0.5mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した後、放電電流0.5mAで放電終止電圧3.5Vに至るまで定電流放電を行った。この条件での充電・放電を1サイクルとして、初回放電容量の70%以下に至るまで充放電を繰り返し、その繰り返し回数をサイクル寿命とした。得られた実施例11による電池のサイクル寿命を評価した結果を表3に示す。
【0062】
実施例12
実施例9で作製した高分子電解質を用いる以外は、実施例11と同様にして電池を作製した。得られた実施例12による電池のサイクル寿命を評価した結果を表3に示す。
【0063】
実施例13
平均粒径20μmの非晶質炭素(呉羽化学工業社製)とポリフッ化ビニリデン(呉羽化学工業社製)とを90:10体積%の割合で混合し、N−メチル−2−ピロリドンに投入混合して、スラリー状の溶液を作製した。厚さ10μmの銅箔にこの溶液を塗布、乾燥した。合剤塗布量は、65g/m2であった。合剤かさ密度が1.0g/cm3になるようにプレスし、1.2cm×1.2cmに切断して負極シートを作製した。この負極シートと実施例11で作製した正極シートの間に、実施例3で作製した高分子電解質を0.098MPaの荷重をかけて挟み込み、空気が入らない密閉構造の電池を作製した。20℃において、充電電流0.5mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した時点で定電圧充電に切り替え、さらに全充電時間が10時間になるまで充電を続けた後、放電電流0.5mAで放電終止電圧2.5Vに至るまで定電流放電を行った。この条件での充電・放電を1サイクルとして、初回放電容量の70%以下に至るまで充放電を繰り返し、その繰り返し回数をサイクル寿命とした。得られた実施例13による電池のサイクル寿命を評価した結果を表3に示す。
【0064】
実施例14
実施例10で作製した高分子電解質を用いる以外は、実施例13と同様にして電池を作製した。得られた実施例14による電池のサイクル寿命を評価した結果を表3に示す。
【0065】
比較例3
比較例1で作製した高分子電解質を用いる以外は、実施例11と同様にして電池を作製した。得られた比較例3による電池のサイクル寿命を評価した結果を表3に示す。
【0066】
比較例4
比較例2で作製した高分子電解質を用いる以外は、実施例13と同様にして電池を作製した。得られた比較例4による電池のサイクル寿命を評価した結果を表3に示す。
【0067】
表2に示されるように、実施例1〜10の高分子電解質は、25℃において高いイオン伝導度を有し、破断強度及び引張弾性率にも優れていることが分かる。
【0068】
これに対し、比較例1の高分子電解質は、実施例1〜10の高分子電解質と比べてイオン伝導度が低く、破断強度及び引張弾性率も同等あるいは劣っていることが分かる。また、比較例2の高分子電解質は、実施例1〜10の高分子電解質と比べて破断強度及び引張弾性率は優れるが、イオン伝導度が劣っていることが分かる。
【0069】
また、表3に示されるように、実施例11〜14の高分子電解質を用いた電池は、充電、放電容量とも非水電解液と同等であり、サイクル寿命にも優れていることが分かる。
【0070】
これに対し、比較例3の高分子電解質を用いた電池は、常温で充放電評価ができなかった。また比較例4の高分子電解質を用いた電池は、実施例11〜14の高分子電解質を用いた電池と比べてサイクル寿命に劣ることが分かる。
【0071】
【表1】

Figure 0004465781
【0072】
【表2】
Figure 0004465781
【0073】
【表3】
Figure 0004465781
【0074】
【発明の効果】
本発明の高分子電解質は、イオン伝導度及び機械強度が優れる。
【0075】
本発明の高分子電解質は、用いるアクリル樹脂の合成が簡便で、イオン伝導性及び機械強度に優れる。
【0076】
本発明の高分子電解質は、上記の発明の効果を奏し、さらにイオン伝導度が優れる。
【0077】
本発明の電池は、サイクル寿命が優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte and a battery using the same.
[0002]
[Prior art]
Advances in electronic technology have improved the performance of electronic devices, making them smaller and more portable, and high energy density batteries are desired as power sources. Examples of conventional secondary batteries include lead batteries and nickel-cadmium batteries, which are still insufficient in terms of obtaining energy density. Therefore, as an alternative to these batteries, high energy density lithium secondary batteries have been developed and are rapidly spreading.
[0003]
Lithium secondary batteries generally have a high voltage of 3 V or more, and are lightweight and have a high capacity, and thus are applied to various applications. Many of these lithium secondary batteries use lithium cobaltate for the positive electrode and a carbon material for the negative electrode as the active material. Recently, active research and development has been actively conducted to increase the capacity. ing. In addition, the development of electrolytes has been actively deployed, and attempts have been made to improve ion conductivity, withstand voltage, and the like.
[0004]
Non-aqueous electrolytes are used for the electrolytes of most lithium secondary batteries, including lithium ion secondary batteries. In an actual battery, this is impregnated in a separator such as a polypropylene microporous membrane to secure an ion conduction path between the positive and negative electrodes.
[0005]
However, a problem that often arises in lithium secondary batteries is an internal short circuit due to dendrite-like precipitation of lithium that grows from the negative electrode to the positive electrode, and it is particularly difficult to control a short-circuit accident due to this dendrite precipitation in non-aqueous electrolyte systems. is there. The non-aqueous electrolyte itself is a fluid and essentially cannot suppress dendrite growth.
[0006]
In addition, when a separator is used, the current flowing between the positive and negative electrodes concentrates in the pores of the separator, which is a limited ion conduction path. As a result, the growth of lithium dendrite is concentrated in the pores of the separator. Promoted.
[0007]
In order to overcome such a situation, a battery system using a polymer electrolyte has been devised, and research and development are currently being actively conducted. This polymer electrolyte is an ionic conductor in which an alkali metal salt is uniformly dissolved in a polymer. This functions as a separator-free solid electrolyte, and the current flows uniformly over the entire surface of the electrolyte, so that it is said that the generation and growth of lithium dendrite can be suppressed.
[0008]
In recent years, research on polymer electrolytes having a polyethylene oxide component has been actively conducted. For example, a method of crosslinking both ends of a copolymer of ethylene oxide and propylene oxide as described in Japanese Patent No. 1898067 and a polyethylene glycol component as described in Japanese Patent Laid-Open No. 2-7935 By polymerizing the monomer and the monomer having a urethane group to increase the molecular weight or three-dimensionally cross-linking, the mechanical strength is improved. On the other hand, the decrease in ionic conductivity due to crystallization is prevented, and it is practical. Trying to get a polymer.
[0009]
However, polymers containing a large amount of polyethylene oxide components are inherently highly water-absorbing, making it extremely difficult to achieve a water content at a non-aqueous level required for lithium batteries, and the mechanical strength of the resulting polymer film As long as it is non-crystalline, it must be low. Its ionic conductivity is 10 at room temperature.-FiveThere is a problem that it is about S / cm and is two orders of magnitude lower than that of the non-aqueous electrolyte.
[0010]
Further, a gel polymer electrolyte in which a non-aqueous electrolyte is held in a matrix polymer has been studied. For example, a three-dimensional cross-linking acrylic resin as described in US Pat. Nos. 5,603,982 and 5,609,974 has several acrylic monomers and a bifunctional acrylic monomer as a cross-linking agent dissolved in a non-aqueous electrolyte. The gel polymer electrolyte is prepared by crosslinking reaction with heat or light. However, this method cannot improve the reaction rate of the acrylic monomer, and it is difficult to increase the mechanical strength.
[0011]
On the other hand, there is a gel-like polymer electrolyte whose ion conductivity is improved by swelling polyvinylidene fluoride as described in JP-A-8-507407 with a non-aqueous electrolyte. However, polyvinylidene fluoride has low swellability due to the non-aqueous electrolyte, and it is difficult to express high ionic conductivity.
[0012]
When such a polymer electrolyte having a low ion conductivity is applied to a secondary battery, the internal resistance of the battery increases, causing problems such as heat generation during charge / discharge and reduced efficiency during discharge at a high discharge rate.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide a polymer electrolyte having higher ionic conductivity and superior mechanical strength than conventional polymer electrolytes.
[0014]
Another object of the present invention is to provide a polymer electrolyte that is simple in the synthesis of an acrylic resin used for production and excellent in ionic conductivity and mechanical strength.
[0015]
Another object of the present invention is to provide a polymer electrolyte excellent in ion conductivity in addition to the above-described invention.
[0016]
Another object of the present invention is to provide a polymer lithium secondary battery having characteristics superior to those of a lithium secondary battery using a conventional polymer electrolyte.
[0017]
[Means for Solving the Problems]
The present invention has (A) 40 to 89.9% by weight of structural units derived from (meth) acrylate, (B) 10 to 50% by weight of structural units derived from acrylonitrile, and (C) has a double bond in the side chain. (D) A matrix polymer obtained by adding a crosslinking monomer capable of heat or photoreaction to an acrylic resin having a weight average molecular weight of 5,000 to 500,000 consisting of 0.1 to 10% by weight of a structural unit and (E) an alkali The present invention relates to a polymer electrolyte comprising (F) a nonaqueous electrolytic solution in which a metal salt is dissolved.
[0018]
The present invention also relates to a (meth) acrylate monomer in which the acrylic resin comprising the structural units (A), (B) and (C) has (A) component monomer, (B) component monomer and (C ′) hydroxyl group. After the polymer main skeleton is constructed with (C ′) component, (meth) acrylate monomer having the same mole number of (C ″) isocyanate group is reacted with the hydroxyl group of the main polymer skeleton to form a (meth) acryloyl group on the side chain. It is related with the said polymer electrolyte synthesize | combined so that it may have.
[0019]
In the present invention, the alkali metal salt of component (E) is LiClO.Four, LiBFFour, LiPF6And LiN (CFThreeSO2)2The polymer electrolyte is at least one selected from the group consisting of:
[0020]
The present invention also relates to a battery using the polymer electrolyte.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0022]
(A) (meth) acrylate ((meth) acrylate means acrylate and methacrylate) used in the present invention is not particularly limited, but methyl (meth) acrylate, ethyl (meth) acrylate, (meth (Meth) acrylic acid alkyl ester such as butyl acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, or (meth) acrylic acid (Meth) acrylic acid polyethylene glycol alkyl ethers such as cycloalkyl esters, (meth) acrylic acid ethylene glycol methyl ether, (meth) acrylic acid diethylene glycol methyl ether, (meth) acrylic acid polyethylene glycol methyl ether, (meth) acrylic Aminomethyl, (meth) acrylic acid N-methylaminomethyl, (meth) acrylic acid N, N-diethylaminoethyl and other (meth) acrylic acid aminoalkyl, (meth) acrylic acid glycidyl, (meth) acrylic acid oligoethylene oxide, Examples include (meth) acrylic acid oligopropylene oxide, (meth) acrylic acid methoxypolypropylene glycol, (meth) acrylic acid methoxypolyethylene glycol, methacrylic acid, and acrylic acid. These (A) components are used individually or in combination of 2 or more types.
[0023]
In order to form the structural unit having a double bond in the side chain of the acrylic resin used in the present invention, it can be carried out by copolymerizing the following component (C) monomer during the synthesis of the acrylic resin. (C) Component monomer is not particularly limited, but ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di Examples include di (meth) acrylate compounds such as (meth) acrylate. However, in this method, it is difficult to control the reaction and there is a possibility of gelation. Therefore, by using the following method, a structural unit having a double bond in the side chain of the acrylic resin can be easily formed.
[0024]
First, a polymer main skeleton is constructed with the (A) component monomer, the (B) component monomer, and the (C ′) hydroxyl group-containing (meth) acrylate monomer. Thereafter, the (meth) acrylate monomer having the same mole number of (C ″) isocyanate group as the component (C ′) is reacted with the hydroxyl group of the polymer main skeleton to introduce a (meth) acryloyl group into the side chain.
[0025]
Although there is no restriction | limiting in particular as (C ') component monomer, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc. are mentioned.
[0026]
Although there is no restriction | limiting in particular as (C ") component monomer, 2-isocyanate ethyl (meth) acrylate etc. are mentioned.
[0027]
The amount of component (A) used in the present invention is 40 to 89.9% by weight based on the total amount of components (A), (B) and (C) {(C ′) + (C ″)}. 50 to 84.5% by weight, and more preferably 57 to 79% by weight.If the amount used is less than 40% by weight, the flexibility is poor, and if it exceeds 89.9% by weight, the battery When the is manufactured, a film that increases the electrode interface resistance is easily formed, and the cycle characteristics of the battery are deteriorated.
[0028]
The amount of component (B) used in the present invention is 10 to 50% by weight based on the total amount of components (A), (B), (C) {(C ′) + (C ″)}, and 15 It is preferable to be -45% by weight, and more preferably 20-40% by weight.If the amount used is less than 10% by weight, the necessary flexibility cannot be obtained, and if it exceeds 50% by weight, the flexibility is increased. Disappear.
[0029]
In the present invention, the amount of the component (C) or (C ″) used is 0.1 to the total amount of the components (A), (B), (C) {(C ′) + (C ″)}. 10% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight. If the amount used is less than 0.1% by weight, the required mechanical strength cannot be obtained, and if it exceeds 10% by weight, the gel polymer electrolyte becomes brittle.
[0030]
The method for synthesizing the acrylic resin used in the present invention is not particularly limited, but is preferably a monomer comprising the components (A), (B), (C) {(C ′) + (C ″)}. It can be obtained by solution polymerization by a known radical polymerization method, etc. In this case, as an organic solvent, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ester solvents such as ethyl acetate and butyl acetate, N-methyl Nitrogen-containing polar solvents such as 2-pyrrolidone and N, N-dimethylacetamide can be used, and polymerization initiators include benzoyl peroxide, dicumyl peroxide, dibutyl peroxide, t-butyl peroxybenzoate, etc. Organic peroxides, azobis isobutyronitrile, azobis valeronitrile, etc. The polymerization initiator can be used in an amount of 0.01 to 0.1 weight based on the total amount of the components (A), (B), (C) {(C ′) + (C ″)}. Part. In addition, the obtained acrylic resin contains the structural unit derived from the monomer of the same ratio as the used monomer.
[0031]
The weight average molecular weight of the acrylic resin of the present invention is preferably 5,000 to 500,000, more preferably 10,000 to 400,000, and particularly preferably 50,000 to 300,000. If the weight average molecular weight is less than 5,000, the required mechanical strength tends to be not obtained, and if it exceeds 500,000, the ionic conductivity tends to decrease. The weight average molecular weight is measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
[0032]
The crosslinking monomer (D) used in the present invention is not particularly limited, but vinyl acetate, alkyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, lauryl (meth) acrylate, stearyl Monofunctional compounds such as (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, bisphenol A EO-modified di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2,2-bis [4- Bifunctional compounds such as ((meth) acryloxy / diethoxy) phenyl] propane, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO modified tri (meth) acrylate, trimethylolpropane PO modified Trifunctional compounds such as tri (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, tetrafunctional compounds such as pentaerythritol tetra (meth) acrylate, dipentaerythritol penta and hexa (meth) acrylate, etc. 5-6 functional compound, 1-6 functional melamine (meth) acrylate, etc. are mentioned. These crosslinking monomer components are used alone or in combination of two or more.
[0033]
The blending amount of the component (D) in the present invention is 1 to 30 parts by weight with respect to 100 parts by weight of the acrylic resin comprising the components (A), (B), (C) {(C ′) + (C ″)}. 3 to 20 parts by weight is more preferable, and 5 to 15 parts by weight is particularly preferable.If the amount is less than 0.1 part by weight, there is a tendency that good mechanical strength cannot be obtained. Tends to decrease.
[0034]
The (E) alkali metal salt in the present invention is not particularly limited, but from a practical viewpoint, for example, LiClO.Four, LiBFFour, LiPF6, LiAsF6, LiCFThreeSOThree, LiC2F9SOThree, LiN (CFThreeSO2)2Lithium compounds such as are preferred. These lithium compounds are used alone or in combination of two or more, and among these salts, a particularly preferable salt is LiClO.Four, LiBFFour, LiPF6And LiN (CFThreeSO2)2It is.
[0035]
The blending amount of the component (E) in the present invention is the total amount of the components (A), (B), (C) {(C ′) + (C ″)}, (D), (E), and (F). The content is preferably from 1 to 40% by weight, more preferably from 3 to 30% by weight, particularly preferably from 5 to 20% by weight. If it exceeds wt%, the ionic conductivity tends to decrease.
[0036]
The non-aqueous solvent capable of dissolving the alkali metal salt (F) in the present invention is not particularly limited as long as it is chemically stable and non-aqueous. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl Examples include carbonate compounds such as carbonate, ether compounds such as tetrahydrofuran, dioxane, dimethoxyethane, and polyethylene oxide, and lactone compounds such as γ-butyrolactone and propyrolactone. These non-aqueous solvents are used alone or in combination of two or more.
[0037]
The blending amount of the component (F) in the present invention is the total amount of the components (A), (B), (C) {(C ′) + (C ″)}, (D), (E) and (F). The content is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, and particularly preferably 30 to 85% by weight. When the amount exceeds 95% by weight, the mechanical strength tends to decrease.
[0038]
In the present invention, the thermal polymerization initiator for the thermal polymerization of the acrylic resin and the crosslinking monomer includes, for example, dialkyl (benzoyl peroxide and derivatives thereof, hydroperoxide and derivatives thereof, cumyl peroxide and derivatives thereof ( Allyl) peroxides, diacyl peroxides such as diacetyl peroxide and derivatives thereof, peroxyketals, peroxyesters, organic peroxides such as peroxycarbonates, azobisisobutyronitrile, azobisisovalero Examples include nitrile compounds.
[0039]
Examples of the photopolymerization initiator in the case of performing photopolymerization of the acrylic resin and the crosslinking monomer in the present invention include dimethylaminobenzoic acids, benzophenone and derivatives thereof, benzyl and derivatives thereof such as benzyldimethyl ketal, 2,2- Acetophenone derivatives such as diethoxyacetophenone, benzophenone derivatives, benzoin derivatives such as benzoin methyl ether and benzoin isobutyl ether, butylphenone derivatives such as α-hydroxyisobutylphenone, thioxanthone and its derivatives, compounds having an azido group, coumarin derivatives, phenyl ketone And compounds such as derivatives. These thermal polymerization initiators or photopolymerization initiators are used alone or in combination of two or more.
[0040]
In the present invention, the blending amount of the acrylic resin and the crosslinking monomer in the heat or photopolymerization initiator is 100 weights of the acrylic resin comprising the components (A), (B), (C) {(C ′) + (C ″)}. The amount is preferably 0.005 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and particularly preferably 0.05 to 3 parts by weight with respect to parts by weight. If it is less than 10 parts by weight or more than 10 parts by weight, the mechanical strength tends to decrease.
[0041]
Two methods for producing the polymer electrolyte of the present invention will be described. In the first method, an acrylic resin prepared from the component (A), the component (B), the component (C) {(C ′) + (C ″)} and a monomer for crosslinking the component (D) are desired. It is possible to obtain a polymer film by dissolving it in an organic solvent and coating it in a desired shape on a substrate having excellent releasability, and then subjecting this polymer film to (E) dissolution of an alkali metal salt. (F) A polymer electrolyte is produced by swelling with a non-aqueous electrolyte.
[0042]
The second method consists of an acrylic resin prepared from the component (A), the component (B), the component (C) {(C ′) + (C ″)}, a monomer for crosslinking the component (D), and heat. Alternatively, the photopolymerization initiator is dissolved in (E) a non-aqueous electrolyte solution in which (E) an alkali metal salt is dissolved, and this solution is applied on a glass substrate provided with a spacer having a desired thickness. A polymer substrate is produced by covering the glass substrate and completely sealing it, and by reacting with heat or light.
[0043]
The polymer electrolyte of the present invention contains a matrix polymer obtained by crosslinking an acrylic resin by adding a crosslinking monomer by light irradiation or heating. Examples of the actinic ray used in the light irradiation include a carbon arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, and a metal halide. Exposure amount is 5mJ / cm2Or more, preferably 15 mJ / cm2More preferably, it is 25 mJ / cm.2The above is particularly preferable. Exposure amount is 5mJ / cm2If it is less than 1, photocuring does not proceed sufficiently and the film strength tends to decrease. The heating temperature is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and particularly preferably 40 ° C. or higher. When heating is less than 20 ° C., thermosetting and insolubilization by heat do not proceed sufficiently, and the film strength tends to decrease. The heating time is preferably 5 minutes or longer. When the heating time is less than 5 minutes, thermosetting or heat insolubilization does not proceed sufficiently, and the film strength tends to decrease.
[0044]
The polymer electrolyte of the present invention includes a lithium ion secondary battery using an intercalation compound such as graphite for the negative electrode, a lithium secondary battery using lithium metal for the negative electrode, a lithium primary battery, an electric double layer capacitor, and an electrode material for an enzyme sensor. It can be used as an electrolyte for electrochemical devices such as. In particular, it is preferably used as a battery electrolyte.
[0045]
The battery using the polymer electrolyte of the present invention can be used as a main power source or a backup power source for small electronic devices such as mobile phones, PHS, notebook computers, mobile terminals, and the like, and a stationary load leveling power source It can be widely used as a backup power source in case of a power failure, a battery for electric vehicles, and the like.
[0046]
One example of a method for obtaining a battery using the polymer electrolyte of the present invention is illustrated. For example, first, the film-like polymer electrolyte of the present invention produced by one of the above-described two production methods is used as a positive electrode material on a positive electrode current collector sheet used in an ordinary electrolyte type lithium ion secondary battery. The positive electrode sheet and the negative electrode current collector sheet are sandwiched between the negative electrode sheet and the positive electrode sheet, the polymer electrolyte of the present invention, and the negative electrode sheet are brought into close contact with each other by heating or pressurizing, and the battery reaction of the battery Create the part that causes After that, in order to isolate the obtained battery reaction part from moisture, oxygen, nitrogen, etc. in the atmosphere, it is sealed with an insulated container made of, for example, aluminum. At this time, it is formed on the positive electrode sheet and the negative electrode sheet. The electrode portion is exposed outside the insulated container made of aluminum so that charging and discharging can be performed through the electrode. The battery using the polymer electrolyte of the present invention thus obtained is a secondary battery that can be charged and discharged alternately.
[0047]
Examples of the positive electrode current collector sheet include an aluminum foil, a nickel foil, a gold foil, a silver foil, and a titanium foil. From the viewpoint of stability against a high potential, an aluminum foil is preferable.
[0048]
Examples of the positive electrode material include Li1-xCoO2, Li1-xNiO2, Li1-xMn2OFour, Li1-xMO2, (0 <X <1, M is a composite of Co, Ni, Mn, Fe, etc.), Li2-yMn2OFour(0 <y <2), Li1-xV2OFive(0 <X <1), Li2-yV2OFive(0 <y <2), Li1-x Nb2OFiveOxides such as (0 <X ′ <1.2), Li1-XTiS2, Li1-XMoS2, Li1-XNbSe2, Li1-ZNbSeThreeExamples thereof include metal chalcogenides such as (0 <Z <3), organic compounds such as dithiol derivatives and disulfide derivatives. These may be used alone or in combination of two or more.
[0049]
Examples of the negative electrode current collector sheet include copper foil, nickel foil, gold foil, silver foil, and the like, and copper foil is preferable from the viewpoint of good electronic conductivity and low cost.
[0050]
Examples of the negative electrode material include metallic lithium such as metallic lithium, aluminum / lithium alloy, magnesium / aluminum / lithium alloy, carbon material such as graphite, amorphous carbon, and low-temperature fired polymer, AlSb, Mg 2 Ge, and N-based material. SnM′-based oxide (M ′ represents Si, Ge, Pb, etc.), Si1-YM ″YOZ(M ″ represents W, Sn, Pb, B, etc.) and the like, lithium solid solutions of metal oxides such as titanium oxide and iron oxide, Li7MnNFour, LiThreeFeNFour, Li3-XCoXN, Li3-XNiN, Li3-XCuXN, LiThreeBN2, LiThreeAlN2, LiThreeSiNThreeAnd ceramics such as nitrides. These may be used alone or in combination of two or more.
[0051]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples. The evaluation method of the polymer electrolyte obtained in this example is shown below.
<Ionic conductivity>
The ionic conductivity is measured using an alternating current impedance method in which an electrochemical cell is constructed by sandwiching a polymer electrolyte between stainless steel electrodes at 25 ° C., and an alternating current is applied between the electrodes to measure the resistance component. -Calculated from real impedance intercept of Cole plot.
<Mechanical strength>
A tensile speed of 2 cm / min. The mechanical strength was evaluated by measuring the breaking strength and tensile modulus of a polymer electrolyte having a size of 1 cm × 4 cm (length between chucks: 2 cm) and a thickness of 100 μm.
<Method for producing acrylic resins A to D>
The compound (I) shown in Table 1 is put into a reactor equipped with a mixer and a condenser, heated to 90 to 95 ° C., added with compound (II) shown in Table 1, and kept warm for 2 to 5 hours. . Next, the compound (III) shown in Table 1 is dripped in 2 hours, and it heat-retains for 3 to 6 hours. After cooling, methyl ethyl ketone is added so that the solid content is about 30% to dissolve the polymer. The formulation (IV) shown in Table 1 is added to this polymer solution, heated to 70 to 75 ° C., and kept warm for 6 to 12 hours. After cooling, methanol is added to precipitate the polymer, and the organic solvent is removed by suction filtration and vacuum drying to obtain acrylic resins A to D.
[0052]
The weight average molecular weights of the polymers A to D were measured by the method shown below.
[Method for measuring weight average molecular weight]
It is measured by a gel permeation chromatography method (GPC) using a standard polystyrene calibration curve.
<GPC conditions>
Equipment used: Hitachi 635 HPLC [Hitachi, Ltd.]
Column: Gel pack R440, R450, R400M
[Product name, manufactured by Hitachi Chemical Co., Ltd.] Eluent: Tetrahydrofuran
Measurement temperature: 40 ° C
Flow rate: 2.0 ml / min.
Detector: Differential refractometer
The measurement results are shown in Table 1. The glass transition temperature is a calculated value. (Reference data: Introduction to synthetic resins for paints: Kyozo Kitaoka)
1. Preparation of polymer electrolyte
Example 1
In a methyl ethyl ketone solution of acrylic resin A, triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) as a crosslinking monomer, 5 parts by weight with respect to 100 parts by weight of the solid content of the acrylic resin, and peroxidation as a thermal polymerization initiator After 0.1 parts by weight of benzoyl is added and dissolved by stirring, it is coated on a Teflon substrate with an applicator, dried at 80 ° C. for 20 minutes, and then subjected to a thermal polymerization reaction at 100 ° C. for 3 hours under vacuum. Produced a 50 μm polymer film. This polymer film is 1 mol / l LiPF.6The polymer electrolyte according to Example 1 was obtained by swelling with a mixed electrolyte of ethylene carbonate and dimethyl carbonate (volume ratio: 1/1). Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 1.
[0053]
Example 2
A polymer electrolyte according to Example 2 was obtained in the same manner as in Example 1 except that trimethylolpropane trimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) was used as the crosslinking monomer. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the molecular electrolyte.
[0054]
Example 3
The polymer film produced in Example 2 was 1 mol / l LiBF.FourThe polymer electrolyte according to Example 3 was obtained by swelling with a mixed electrolyte of ethylene carbonate and dimethyl carbonate (volume ratio: 1/1). Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 3.
[0055]
Example 4
The polymer film produced in Example 2 is 1 mol / l LiN (CFThreeSO2)2The polymer electrolyte according to Example 4 was obtained by swelling with a mixed electrolyte of ethylene carbonate and dimethyl carbonate (volume ratio: 1/1). Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 4.
[0056]
Example 5
The polymer film produced in Example 2 was 1 mol / l LiPF.6The polymer electrolyte according to Example 5 was obtained by swelling with an electrolyte solution of γ-butyrolactone. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 5.
[0057]
Examples 6-8
Polymer electrolytes of Examples 6 to 8 were obtained in the same manner as Example 2 except that B to D were used as acrylic resins. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolytes obtained in Examples 6 to 8.
[0058]
Example 9
1 mol / l LiBF containing 100 parts by weight of acrylic resin A, 5 parts by weight of trimethylolpropane trimethacrylate as a crosslinking monomer and 0.1 part by weight of benzoyl peroxide as a thermal polymerization initiatorFourOf γ-butyrolactone was dissolved in 500 parts by weight of an electrolyte solution, poured onto a glass substrate provided with a silicone rubber spacer having a thickness of 100 μm, covered with another glass substrate, and completely sealed. The polymer electrolyte according to Example 9 having a thickness of 100 μm was obtained by heat reaction at 100 ° C. for 3 hours. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 9.
[0059]
Example 10
1 mol / l LiBF containing 100 parts by weight of acrylic resin A, 5 parts by weight of trimethylolpropane trimethacrylate as a crosslinking monomer, and 1 part by weight of benzophenone as a photopolymerization initiatorFourOf γ-butyrolactone was dissolved in 500 parts by weight of an electrolyte solution, poured onto a glass substrate provided with a silicone rubber spacer having a thickness of 100 μm, covered with another glass substrate, and completely sealed. 1J / cm2The polymer electrolyte according to Example 10 having a thickness of 100 μm was obtained. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Example 10.
[0060]
Comparative Example 1
1 g of polyethylene glycol having an average molecular weight of 500,000 (Wako Pure Chemical Industries) and LiPF6  0.23 g was dissolved in 6.4 g of acetonitrile, and stirred uniformly with a magnetic stirrer. This solution was applied on a glass substrate with an applicator and left in an argon atmosphere under normal pressure for 2 hours, and then heat-treated at 100 ° C. for 12 hours under vacuum to remove acetonitrile, and a sheet-like polymer electrolyte having a film thickness of 40 μm was obtained. Obtained. Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Comparative Example 1.
[0061]
Comparative Example 2
1 g of polyvinylidene fluoride-hexafluoropropylene copolymer (manufactured by Elf Atchem) was dissolved in 5 g of acetone. This solution was applied onto a glass substrate with an applicator and allowed to stand in an argon atmosphere under normal pressure for 2 hours, and then dried at 60 ° C. for 12 hours under vacuum to remove acetone to obtain a polymer film having a film thickness of 40 μm. This polymer film is 1 mol / l LiPF.6The polymer electrolyte according to Comparative Example 2 was obtained by swelling with a mixed electrolyte of ethylene carbonate and dimethyl carbonate (volume ratio: 1/1). Table 2 shows the results of evaluating the ionic conductivity, breaking strength, and tensile modulus of the polymer electrolyte obtained in Comparative Example 2.
2. Battery fabrication
Example 11
Lithium cobaltate (manufactured by Nippon Kagaku Kogyo Co., Ltd.), graphite (manufactured by Nippon Graphite Co., Ltd.) and polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd.) were mixed at a ratio of 80:10:10 vol%, and N-methyl-2 -A mixture of pyrrolidone was added to prepare a slurry solution. This solution was applied to an aluminum foil having a thickness of 20 μm and dried. The coating amount of the mixture is 289 g / m2Met. The bulk density of the mixture is 3.6 g / cmThreeAnd was cut into 1 cm × 1 cm to prepare a positive electrode sheet. Metal lithium was used for the negative electrode sheet. The polymer electrolyte produced in Example 2 was sandwiched between the positive electrode sheet and the negative electrode sheet produced as described above under a load of 0.098 MPa to produce a battery having a sealed structure in which air did not enter. At 20 ° C., constant current charging is performed up to 4.2 V at a charging current of 0.5 mA. After the voltage reaches 4.2 V, constant current discharging is performed at a discharging current of 0.5 mA until reaching a final discharge voltage of 3.5 V. It was. Charging / discharging under these conditions was taken as one cycle, and charging / discharging was repeated until it reached 70% or less of the initial discharge capacity, and the number of repetitions was defined as the cycle life. The results of evaluating the cycle life of the battery according to Example 11 are shown in Table 3.
[0062]
Example 12
A battery was produced in the same manner as in Example 11 except that the polymer electrolyte produced in Example 9 was used. The results of evaluating the cycle life of the battery according to Example 12 are shown in Table 3.
[0063]
Example 13
Amorphous carbon with an average particle size of 20 μm (manufactured by Kureha Chemical Industry Co., Ltd.) and polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd.) are mixed at a ratio of 90:10 vol%, and mixed into N-methyl-2-pyrrolidone. Thus, a slurry-like solution was prepared. This solution was applied to a copper foil having a thickness of 10 μm and dried. The mixture application amount is 65 g / m.2Met. The bulk density of the mixture is 1.0 g / cmThreeAnd was cut into 1.2 cm × 1.2 cm to prepare a negative electrode sheet. Between this negative electrode sheet and the positive electrode sheet produced in Example 11, the polymer electrolyte produced in Example 3 was sandwiched by applying a load of 0.098 MPa to produce a battery having a sealed structure in which air did not enter. At 20 ° C., constant current charging was performed up to 4.2 V at a charging current of 0.5 mA. When the voltage reached 4.2 V, switching to constant voltage charging was continued until the total charging time reached 10 hours. Thereafter, constant current discharge was performed at a discharge current of 0.5 mA until a discharge end voltage of 2.5 V was reached. Charging / discharging under these conditions was taken as one cycle, and charging / discharging was repeated until it reached 70% or less of the initial discharge capacity, and the number of repetitions was defined as the cycle life. Table 3 shows the results of evaluating the cycle life of the obtained battery according to Example 13.
[0064]
Example 14
A battery was produced in the same manner as in Example 13 except that the polymer electrolyte produced in Example 10 was used. The results of evaluating the cycle life of the battery according to Example 14 are shown in Table 3.
[0065]
Comparative Example 3
A battery was produced in the same manner as in Example 11 except that the polymer electrolyte produced in Comparative Example 1 was used. Table 3 shows the results of evaluating the cycle life of the battery obtained in Comparative Example 3.
[0066]
Comparative Example 4
A battery was produced in the same manner as in Example 13 except that the polymer electrolyte produced in Comparative Example 2 was used. Table 3 shows the results of evaluating the cycle life of the battery obtained in Comparative Example 4.
[0067]
As shown in Table 2, it can be seen that the polymer electrolytes of Examples 1 to 10 have high ionic conductivity at 25 ° C. and are excellent in breaking strength and tensile modulus.
[0068]
On the other hand, it can be seen that the polymer electrolyte of Comparative Example 1 has lower ionic conductivity and the same or inferior breaking strength and tensile modulus as compared with the polymer electrolytes of Examples 1-10. In addition, it can be seen that the polymer electrolyte of Comparative Example 2 is superior in breaking strength and tensile elastic modulus to the polymer electrolytes of Examples 1 to 10, but inferior in ionic conductivity.
[0069]
In addition, as shown in Table 3, it can be seen that the batteries using the polymer electrolytes of Examples 11 to 14 have the same charge and discharge capacities as the non-aqueous electrolyte and are excellent in cycle life.
[0070]
In contrast, the battery using the polymer electrolyte of Comparative Example 3 could not be charged / discharged at room temperature. Moreover, it turns out that the battery using the polymer electrolyte of the comparative example 4 is inferior in cycle life compared with the battery using the polymer electrolyte of Examples 11-14.
[0071]
[Table 1]
Figure 0004465781
[0072]
[Table 2]
Figure 0004465781
[0073]
[Table 3]
Figure 0004465781
[0074]
【The invention's effect】
The polymer electrolyte of the present invention is excellent in ionic conductivity and mechanical strength.
[0075]
The polymer electrolyte of the present invention is easy to synthesize an acrylic resin to be used, and is excellent in ion conductivity and mechanical strength.
[0076]
The polymer electrolyte of the present invention exhibits the effects of the above-described invention and is further excellent in ionic conductivity.
[0077]
The battery of the present invention has an excellent cycle life.

Claims (3)

(A)(メタ)アクリレートに由来する構造単位40〜89.9重量%と(B)アクリロニトリルに由来する構造単位10〜50重量%及び(C)側鎖に二重結合を有する構造単位0.1〜10重量%からなり、(A)成分モノマーと(B)成分モノマー及び(C′)水酸基を有する(メタ)アクリレートモノマーでポリマー主骨格を構築した後、(C′)成分と同モル数の(C″)イソシアネート基を有する(メタ)アクリレートモノマーをポリマー主骨格の水酸基と反応させて側鎖に(メタ)アクリロイル基を有するように合成した重量平均分子量が5000〜500000であるアクリル樹脂に、(D)熱あるいは光反応が可能な、酢酸ビニル、アルキル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ビスフェノールA EO変性ジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,2−ビス[4−((メタ)アクリロキシ・ジエトキシ)フェニル]プロパン、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、イソシアヌール酸EO変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ及びヘキサ(メタ)アクリレート並びに1〜6官能のメラミン(メタ)アクリレートからなる群から選択された少なくとも1種以上の架橋用モノマーを加えて架橋させたマトリックスポリマーと(E)アルカリ金属塩を溶解した(F)非水電解液とを含んでいることを特徴とする高分子電解質。(A) 40-89.9% by weight of structural units derived from (meth) acrylate, (B) 10-50% by weight of structural units derived from acrylonitrile, and (C) structural unit having a double bond in the side chain. 1 to 10 wt% Tona Ri, (a) 'after constructing the main polymer backbone having a hydroxyl group (meth) acrylate monomer, (C component monomer (B) component monomers and (C)' equimolar with) component Acrylic resin having a weight average molecular weight of 5,000 to 500,000 synthesized by reacting (meth) acrylate monomer having a number of (C ″) isocyanate groups with hydroxyl groups of the polymer main skeleton to have (meth) acryloyl groups in the side chain to, (D) heat or light reaction is possible, vinyl acetate, alkyl (meth) acrylate, methoxy diethylene glycol (meth) acrylate, Toxipolyethylene glycol (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, bisphenol A EO modified di (meth) acrylate, 1,3-butylene glycol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate 2,2-bis [4-((meth) acryloxy-diethoxy) phenyl] propane, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO modified tri (meth) acrylate, Trimethylolpropane PO modified tri (meth) acrylate, isocyanuric acid EO modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta and hexa (meth) acrylate and 1-6 functional melamine (meth) A matrix polymer cross-linked by adding at least one cross-linking monomer selected from the group consisting of acrylates, and (E) a non-aqueous electrolyte solution in which an alkali metal salt is dissolved. Do Molecular electrolyte. (E)成分のアルカリ金属塩が、LiClO4、LiBF4、LiPF6及びLiN(CF3SO22からなる群から選択された少なくとも1種である請求項1記載の高分子電解質。(E) an alkali metal salt of component, LiClO 4, LiBF 4, LiPF 6 and LiN (CF 3 SO 2) at least one kind of claim 1 Symbol placement polyelectrolyte selected from the group consisting of 2. 請求項1又は2に記載の高分子電解質を用いたリチウムイオン二次電池、リチウム二次電池又はリチウム一次電池。Claim 1 or a lithium ion secondary battery using the polymer electrolyte according to 2, the lithium secondary battery or a lithium primary battery.
JP2000054107A 2000-02-29 2000-02-29 Polymer electrolyte and battery using the same Expired - Lifetime JP4465781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054107A JP4465781B2 (en) 2000-02-29 2000-02-29 Polymer electrolyte and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054107A JP4465781B2 (en) 2000-02-29 2000-02-29 Polymer electrolyte and battery using the same

Publications (2)

Publication Number Publication Date
JP2001243835A JP2001243835A (en) 2001-09-07
JP4465781B2 true JP4465781B2 (en) 2010-05-19

Family

ID=18575401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054107A Expired - Lifetime JP4465781B2 (en) 2000-02-29 2000-02-29 Polymer electrolyte and battery using the same

Country Status (1)

Country Link
JP (1) JP4465781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767644B2 (en) * 2005-10-04 2011-09-07 日東電工株式会社 POLYMER ELECTROLYTE, ELECTROLYTE FILM AND ELECTROCHEMICAL DEVICE USING SAME
US10601076B2 (en) 2016-03-30 2020-03-24 Lg Chem, Ltd. Composition for gel polymer electrolyte and gel polymer electrolyte

Also Published As

Publication number Publication date
JP2001243835A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
KR101539819B1 (en) Electrode for secondary battery, and secondary battery
JP2896361B2 (en) Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte
KR100371954B1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JP2009102608A (en) Acrylic polymer, method for synthesizing the same, polymerizable resin composition and gelatinous polymer electrolyte
JPH11288738A (en) Solid electrolytic battery and its manufacture
KR101605582B1 (en) Positive electrode for secondary batterys, and secondary battery
KR100444134B1 (en) Polymer electrolyte and nonaqueous battery containing the same
JP4559587B2 (en) Solid lithium polymer battery
US20040029016A1 (en) Polymer electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2009256570A (en) Acrylic polymer, its synthetic method, polymerizable resin composition using the same, and gelled polymer electrolyte
JP4163295B2 (en) Gel-like solid electrolyte battery
JP4781547B2 (en) Polymer gel electrolyte and battery
JP4402192B2 (en) Composition for forming polymer electrolyte
US6406816B2 (en) Polymeric gel electrolyte
JP2003331838A (en) Lithium secondary battery
JP4465781B2 (en) Polymer electrolyte and battery using the same
JP2001313074A (en) Gel-like ionic-conduction nature electrolyte, cell and electrochemical device using it
JP2000331713A (en) Manufacture of polymer solid electrolyte, polymer solid electrolyte, and electrochemical device using the same
JP2003197262A (en) Polyelectrolyte and battery using the same
JPWO2007086396A1 (en) Acrylic polymer and method for producing the same
JP2008285668A (en) Acrylic polymer, method for synthesizing the same, polymerizable resin composition using the same, gel-like polymer electrolyte
JP2008285666A (en) Acrylic polymer, method for synthesizing the same, and polymerizable resin composition using the same, gel-like polymer electrolyte
JP3614658B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
WO2023284760A1 (en) Copolymer electrolyte, preparation method thereof and solid-state lithium secondary batteries
JP2004134172A (en) Polyelectrolyte and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3