JP4465559B2 - Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same - Google Patents

Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same Download PDF

Info

Publication number
JP4465559B2
JP4465559B2 JP2007336589A JP2007336589A JP4465559B2 JP 4465559 B2 JP4465559 B2 JP 4465559B2 JP 2007336589 A JP2007336589 A JP 2007336589A JP 2007336589 A JP2007336589 A JP 2007336589A JP 4465559 B2 JP4465559 B2 JP 4465559B2
Authority
JP
Japan
Prior art keywords
pair
solenoid
solenoids
shutter
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007336589A
Other languages
Japanese (ja)
Other versions
JP2008118156A (en
Inventor
一夫 土倉
伊藤  誠
忠久 塩野
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP2007336589A priority Critical patent/JP4465559B2/en
Publication of JP2008118156A publication Critical patent/JP2008118156A/en
Application granted granted Critical
Publication of JP4465559B2 publication Critical patent/JP4465559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electromagnets (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電素子の周波数調整装置、及び周波数調整方法に関するものであり、特に複数個の圧電素子の周波数調整を同時に行う装置及び方法に関する。   The present invention relates to a frequency adjustment device for a piezoelectric element and a frequency adjustment method, and more particularly to an apparatus and method for simultaneously adjusting the frequency of a plurality of piezoelectric elements.

[図12]に、イオンガンを用いた従来の周波数調整装置の概略構成図を示す。真空槽50内部は主に、表面に電極を形成した圧電素子52と、前記圧電素子へのイオンビーム照射を行うイオンガン51と、素子52を露出させる窓を有する遮蔽板53と、前記窓の遮蔽及び開放を行うシャッタ54により構成される。シャッタ54は駆動源55に接続される。同図中のBはイオンビームを表す。   FIG. 12 shows a schematic configuration diagram of a conventional frequency adjusting device using an ion gun. The inside of the vacuum chamber 50 mainly includes a piezoelectric element 52 having an electrode formed on its surface, an ion gun 51 for irradiating the piezoelectric element with an ion beam, a shielding plate 53 having a window exposing the element 52, and shielding of the window And a shutter 54 for opening. The shutter 54 is connected to a drive source 55. B in the figure represents an ion beam.

[図13]に駆動源55であるソレノイドを示す。ソレノイドは真空槽外部に設置され、中空洞を有するボビン60と、ボビンに巻かれた巻き線61と、巻き線の両端を連結する形で覆うヨーク62と、ボビンの中空洞内を移動可能な可動鉄芯63と、可動鉄芯に設けられたフランジ部65とガイド64の間に配置されるスプリング66により構成される。   FIG. 13 shows a solenoid that is the drive source 55. The solenoid is installed outside the vacuum chamber, and is movable within the bobbin's inner cavity, a bobbin 60 having an inner cavity, a winding 61 wound around the bobbin, a yoke 62 that covers both ends of the winding. The movable iron core 63 is constituted by a spring 66 disposed between a flange portion 65 provided on the movable iron core and a guide 64.

電磁巻線61に通電を行うことで、可動鉄芯63が吸引され、吸引によりフランジ部65がスプリング66を押し縮める。通電を停止するとスプリング66の反発力で可動鉄芯63のフランジ部65を押し上げ可動鉄芯63が押し戻される。可動鉄芯63はシャッタ54に接続され、ソレノイドを駆動させることによりシャッタ54の開閉を行っていた。   By energizing the electromagnetic winding 61, the movable iron core 63 is attracted, and the flange portion 65 compresses the spring 66 by the attraction. When energization is stopped, the flange portion 65 of the movable iron core 63 is pushed up by the repulsive force of the spring 66, and the movable iron core 63 is pushed back. The movable iron core 63 is connected to the shutter 54, and the shutter 54 is opened and closed by driving a solenoid.

同図に示す周波数調整装置は、特開2000-323442号公報並びに特開2001-257549号公報に開示される様に圧電素子の電極をイオンビームエッチングする方法を用い、周波数計測を行いながら周波数調整を行い、所望の周波数となる時点でシャッタを閉じ調整を終了させていた。   The frequency adjustment apparatus shown in the figure uses a method of performing ion beam etching on the electrode of the piezoelectric element as disclosed in Japanese Patent Application Laid-Open No. 2000-323442 and Japanese Patent Application Laid-Open No. 2001-257549, and frequency adjustment while performing frequency measurement. And the adjustment was completed by closing the shutter when the desired frequency was reached.

上述の従来例では、周波数計測を行いながら素子の周波数調整を1個づつ行うため、高精度の周波数調整が可能なものの、周波数調整時間が長くなりその生産性と言う面で課題があった。生産性を向上させるためには、複数の素子を同時に調整可能な大型のイオンガンが必要であるが、実用に耐える電流密度等を備えたイオンビームを得ようとすると、プラズマから入射する荷電粒子、及び熱陰極からの輻射熱等により遮蔽電極及び加速電極に歪みを生じる等の問題があった。   In the above-described conventional example, the frequency adjustment of the element is performed one by one while performing the frequency measurement. Therefore, although the frequency adjustment with high accuracy is possible, the frequency adjustment time becomes long and there is a problem in terms of productivity. In order to improve productivity, a large ion gun capable of simultaneously adjusting a plurality of elements is required. However, if an ion beam having a current density that can withstand practical use is obtained, charged particles incident from plasma, In addition, there is a problem that the shielding electrode and the acceleration electrode are distorted by radiation heat from the hot cathode.

そこで、本願出願人は、電流密度10mA/cm2以上の高密度、イオンビームの均一性±3%以内、イオンビーム電流密度の再現性±1%以内という高精度の要求を満たしながら、複数素子を同時にエッチングして周波数調整を行うことが可能な大口径のイオンガンを提案し、圧電素子の生産性を大きく向上させた。かかる発明は、特開2002-75232号公報に開示されている。 Therefore, the applicant of the present application satisfies the high accuracy requirements of high density of current density of 10 mA / cm 2 or higher, uniformity of ion beam within ± 3%, and reproducibility of ion beam current density within ± 1%. A large-diameter ion gun capable of adjusting the frequency by etching at the same time was proposed, and the productivity of piezoelectric elements was greatly improved. Such an invention is disclosed in JP-A-2002-75232.

上記の様なイオンガンを用いて複数の圧電素子を同時に周波数調整する方法は、特開2001-36370号公報に開示されている。同公報に開示される周波数調整装置は、遮蔽板の窓から露出する複数の素子に対応する開口の組み合わせを全て備えたパターン板を含むことを特徴とする。[図14]及び[図15]を参照に、円板型のパターン板72を備えた従来の周波数調整装置を説明する。[図14]は装置の概略構成図であり、[図15]は6素子に対応するパターン板72の斜視図である。圧電基板上に形成された複数の圧電素子70は搬送キャリア71上に並べられ、キャリア71ごと搬送される。パターン板72は、搬送キャリア71上の素子列に対してその半径方向を平行に配置される。パターン板72を2セット対向して配置する事より、同図に示すパターン板72では1つのイオンガン73で同時に12個の素子の周波数調整が行われる(1セットのパターン板で6個の素子を同時に調整)。   A method of simultaneously adjusting the frequency of a plurality of piezoelectric elements using an ion gun as described above is disclosed in JP-A-2001-36370. The frequency adjusting device disclosed in the publication includes a pattern plate including all combinations of openings corresponding to a plurality of elements exposed from the window of the shielding plate. With reference to [FIG. 14] and [FIG. 15], a conventional frequency adjusting device including a disc-shaped pattern plate 72 will be described. [FIG. 14] is a schematic configuration diagram of the apparatus, and [FIG. 15] is a perspective view of a pattern plate 72 corresponding to six elements. A plurality of piezoelectric elements 70 formed on the piezoelectric substrate are arranged on a transport carrier 71 and are transported together with the carrier 71. The pattern plate 72 is arranged in parallel to the element row on the transport carrier 71 in the radial direction. By arranging two sets of pattern plates 72 so as to face each other, in the pattern plate 72 shown in the figure, the frequency of 12 elements is adjusted simultaneously by one ion gun 73 (6 elements are set by one set of pattern boards). Adjust at the same time).

素子の同時処理数が6素子の場合26=64通りのパターン列を用意する事になるが、図に示すパターン板72は、パターン列を削減する為に円板を2枚に重ね、3素子と3素子に分割し、それぞれの円板に23=8通りのパターン列を用意している。それぞれの円板にはダミー開口75を設け、一方の板72aの開口パターンと他方の板72bのダミー開口75が重なり合うように配置する。2軸の回転駆動系によって円板72a、72bを個別に回転させることにより、6素子全ての開閉の組み合わせを実現できるようにしている。回転駆動系にはサーボモーター74が使用されている。 If the number of elements simultaneously processed is 6 elements, 2 6 = 64 pattern rows will be prepared, but the pattern plate 72 shown in the figure has two circular plates stacked to reduce the number of pattern rows, 3 It is divided into elements and 3 elements, and 2 3 = 8 patterns are prepared for each disk. Each circular plate is provided with a dummy opening 75, and the opening pattern of one plate 72a and the dummy opening 75 of the other plate 72b are arranged so as to overlap each other. A combination of opening and closing of all six elements can be realized by rotating the disks 72a and 72b individually by a two-axis rotational drive system. A servo motor 74 is used for the rotational drive system.

従来装置の動作について[図22]にフロー図を示す。まず同時に周波数調整を行う1列(A列)に並べられた複数の素子を所定位置にセットする(S30)。各素子は予め周波数測定を行っておき、各々必要なビーム照射時間が算出されている。次に調整の必要な素子のみ窓に露出するような開口パターンを選択し(S31)、イオンビーム照射を行う(S32)。露出した素子の中で最も調整時間の短い素子の調整が終了する時点で照射を中断させる(S33)。その時点で更に調整の必要な素子のみ露出する開口パターンを選択し(S31)、イオンビームを照射し(S32)、再び露出した素子の中で最も調整時間の短い素子の調整が終了する時点で照射を中断させる(S33)。この手順を繰り返し、1列の素子の調整が全て終了した時点で、搬送キャリア71を次列に移動し同様の作業を繰り返す。   A flowchart of the operation of the conventional apparatus is shown in FIG. First, a plurality of elements arranged in one row (A row) for frequency adjustment are set at predetermined positions (S30). Each element performs frequency measurement in advance, and a necessary beam irradiation time is calculated for each element. Next, an opening pattern is selected so that only elements that need adjustment are exposed to the window (S31), and ion beam irradiation is performed (S32). Irradiation is interrupted when the adjustment of the element with the shortest adjustment time is completed among the exposed elements (S33). At that time, select an opening pattern that exposes only the elements that need further adjustment (S31), irradiate the ion beam (S32), and when the adjustment of the element with the shortest adjustment time is completed among the exposed elements again Irradiation is interrupted (S33). This procedure is repeated, and when the adjustment of all the elements in one row is completed, the transport carrier 71 is moved to the next row and the same operation is repeated.

上記した従来のパターン板に用意されるパターンの数は2(n=素子の数)となり、同時処理数を増やす場合は列のピッチ間を狭密に配置するか円板径を大きくし対応せざるを得ない。[図15]に示すパターン板のように、円板を重ね合わせることによりパターン列を削減することも可能であるが、円板の積層枚数が増加すると回転駆動系の機構が複雑になるという問題や、回転駆動系の所有面積によりかえって装置が大型化するという問題が生じる。回転駆動系を考慮すると、円板の積層は2枚までが現実的である。例えば、2倍の12個の素子を同時処理する場合、円板を2枚積層してもそれぞれの円板には64列の開口パターンを用意する事となる。これを実現するには円板径を著しく大きく変更する必要があり現実的ではない。又、回転駆動系にはサーボモーターを使用している為、サーボモーターのレスポンスがそのまま円板型パターン板の動作時間に加算される。パターン板の回転動作と信号待ち時間等を合わせると約100ms程度の時間を必要とする。動作時間においても次の開口まで円板が移動する迄の時間が待ち時間となり生産性低下の要因となっていた。更に、調整時間の長い素子は、調整時間の短い素子の調整が終わる度に照射を中断される為、断続的な照射となり、同時間を連続で照射する場合に比べ調整精度が劣化するという問題もあった。 The number of patterns prepared on the conventional pattern plate described above is 2 n (n = number of elements). To increase the number of simultaneous processing, arrange the pitch between rows closely or increase the disc diameter. I have to. Like the pattern plate shown in [Fig. 15], it is possible to reduce the number of pattern rows by overlapping the disks, but the problem is that the mechanism of the rotary drive system becomes complicated as the number of stacked disks increases. In addition, there arises a problem that the apparatus is enlarged due to the possession area of the rotary drive system. Considering the rotational drive system, it is realistic to stack up to two disks. For example, in the case of simultaneously processing 12 elements that are twice as many, even if two disks are stacked, 64 rows of opening patterns are prepared for each disk. In order to realize this, it is necessary to change the disk diameter remarkably large, which is not realistic. In addition, since the servo motor is used for the rotational drive system, the response of the servo motor is added to the operation time of the disc-shaped pattern plate as it is. When the rotation of the pattern plate and the signal waiting time are combined, a time of about 100 ms is required. Even in the operation time, the time until the disk moves to the next opening becomes a waiting time, which causes a decrease in productivity. Furthermore, since the irradiation of an element with a long adjustment time is interrupted every time the adjustment of an element with a short adjustment time is completed, the irradiation is intermittent, and the adjustment accuracy is deteriorated compared to the case of continuously irradiating the same time. There was also.

上記の様な課題を解決する為には、各素子に対応した個別のシャッタが必要であるが、その為にはシャッタ数同様に駆動源を増やす必要が生じる。シャッタの駆動源であるソレノイドは、[図13]に示した様に一般的に大型でありかつ真空槽外部に設けられている為、シャッタ数を増やすことは装置を大型化し、かつ複雑化してしまうという問題があった。   In order to solve the problems as described above, individual shutters corresponding to the respective elements are necessary. For this purpose, it is necessary to increase the number of drive sources as well as the number of shutters. As shown in [Fig. 13], the solenoid that is the driving source of the shutter is generally large and is provided outside the vacuum chamber. Therefore, increasing the number of shutters increases the size and complexity of the device. There was a problem that.

特開2000-323442号公報JP 2000-323442 A 特開2001-257549号公報Japanese Patent Laid-Open No. 2001-257549 特開2002-75232号公報JP 2002-75232 A 特開2001-36370号公報JP 2001-36370 A

本発明は、力量を保ちながらも小型でかつ真空槽内部でも使用可能なソレノイドと、シャッタ枚数が増加しても他のシャッタ板の動作環境に影響を及ぼさない構造を備えた複数枚のシャッタ板を積層する事により、独立して駆動する複数枚のシャッタを備えた生産性の高い周波数調整装置を提供することを目的とする。すなわち本発明は、ベース板の窓より露出する素子と同数枚のシャッタ板を各素子に対応して配列し、各々独立に駆動させるものである。より具体的には、起動時と保持時の電圧を可変とする手段と、自身の冷却手段とを備えたソレノイドを対向して配置し、内部に一対の可動鉄芯を挿入し、前記一対の可動鉄芯のフランジ部に1枚のシャッタ板を挟持して連結し、シャッタ板のシャッタ開閉動作の支点となる開口部に、円盤状のワッシャーと、該シャッタ板の板厚より若干厚めのカラーを勘合して、各々個別のソレノイドに連結された複数枚のシャッタ板を積層し、ソレノイドを駆動することにより1つの支点で複数枚のシャッタ板を各々個別に駆動させ、シャッタの開閉を行わせようとするものである。   The present invention relates to a plurality of shutter plates having a solenoid that is small in size while being capable of being used and can be used inside a vacuum chamber, and a structure that does not affect the operating environment of other shutter plates even when the number of shutters increases. It is an object of the present invention to provide a highly productive frequency adjusting device including a plurality of shutters that are independently driven by laminating. That is, according to the present invention, the same number of shutter plates as the elements exposed from the window of the base plate are arranged corresponding to each element and driven independently. More specifically, a solenoid provided with a means for changing the voltage at the time of starting and holding and a cooling means of its own is arranged to face each other, a pair of movable iron cores are inserted therein, and the pair of A shutter plate is sandwiched and connected to the flange of the movable iron core, and a disc-shaped washer and a collar slightly thicker than the thickness of the shutter plate are installed in the opening that serves as a fulcrum for the shutter opening / closing operation of the shutter plate. In consideration of the above, a plurality of shutter plates connected to individual solenoids are stacked, and the solenoid is driven to drive each of the plurality of shutter plates individually at one fulcrum to open and close the shutter. It is about to try.

実施例の構成の説明
以下に、本発明の実施例を説明する。従来例と同様の部分には同符号を付与するものとする。[図1]は本発明装置の概略図である。本発明装置は主に、グリット5を介してイオンビームを照射するイオンガン73、周波数調整を行う複数の圧電素子70、同時処理を行う複数素子のみを露出する貫通穴を設けたベース板4、同時処理を行う複数素子と同数のシャッタ1、シャッタ間の隙間から洩れるアルゴンイオンを遮断する遮蔽板3、シャッタの駆動源となるソレノイド2により構成される。そして、これらの構成部品は全て真空槽内部に設置される。
Description of Configuration of Embodiment Hereinafter, an embodiment of the present invention will be described. The same parts as those in the conventional example are given the same reference numerals. [FIG. 1] is a schematic view of the apparatus of the present invention. The apparatus of the present invention mainly includes an ion gun 73 that irradiates an ion beam through a grit 5, a plurality of piezoelectric elements 70 that perform frequency adjustment, a base plate 4 provided with a through hole that exposes only a plurality of elements that perform simultaneous processing, The number of shutters 1 is the same as the number of elements to be processed, the shielding plate 3 blocks the argon ions leaking from the gaps between the shutters, and the solenoid 2 serves as the shutter drive source. And all these components are installed in a vacuum chamber.

[図2]はシャッタ1と圧電素子70の平面図である。イオンビームは、紙面に垂直に、紙面表面から裏面に向かって照射される。圧電基板上に形成された複数の圧電素子70を備えた搬送キャリア71は、複数枚のキャリアを搭載可能な図示しないマガジンにセットされる。搬送キャリア71は図の矢印方向に搬送され、キャリア上に充填された素子の周波数調整は列単位行われる。搬送キャリア71の先端にはイオンコレクター6が取り付けられる。イオンコレクター6は、複数個の貫通穴をキャリア内素子と同間隔に設けている。これにより同時処理を行う複数素子の各位置に対応したイオンビーム電流密度測定を行う。   FIG. 2 is a plan view of the shutter 1 and the piezoelectric element 70. The ion beam is irradiated perpendicularly to the paper surface from the front surface to the back surface. A transport carrier 71 including a plurality of piezoelectric elements 70 formed on a piezoelectric substrate is set in a magazine (not shown) on which a plurality of carriers can be mounted. The carrier 71 is conveyed in the direction of the arrow in the figure, and the frequency adjustment of the elements filled on the carrier is performed in units of columns. An ion collector 6 is attached to the tip of the transport carrier 71. The ion collector 6 is provided with a plurality of through holes at the same interval as the elements in the carrier. Thereby, the ion beam current density measurement corresponding to each position of a plurality of elements that perform simultaneous processing is performed.

各素子に対応したシャッタ1及びソレノイド2は1つのユニットとされる。このシャッタユニットを複数組配置することで同時処理を行う素子の数を調節する。図では6枚のシャッタ板を積層したシャッタユニットを4組配置することで、搬送キャリア71上に配列された素子2列、合計24個の圧電素子の同時周波数調整を1つのイオンガンで行う。   The shutter 1 and solenoid 2 corresponding to each element are made into one unit. By arranging a plurality of shutter units, the number of elements for simultaneous processing is adjusted. In the figure, four sets of shutter units in which six shutter plates are stacked are arranged, so that two elements arranged on the carrier carrier 71 and a total of 24 piezoelectric elements are simultaneously adjusted with one ion gun.

上記シャッタユニットは、1枚のベース板4に取り付けられる。[図3]を参照してベース板4について説明する。ベース板4はその貫通穴7により同時処理を行う複数素子のみを露出し、それ以外の素子へのビーム照射を遮蔽する。ビームのアルゴンイオンに晒される面にはエッチングから守る為の保護板8を装着する。保護板8には、スパッタ率の低い材質が求められる為、例えばカーボン板等を使用する。ベース板4にはシャッタ1と、シャッタ1の駆動源であるソレノイド2を複数個配列したソレノイド基板25が固定され、更にシャッタの先端部微調整機構として楕円型のストッパー11が用意される。シャッタ上面には遮蔽板3が配置され、特殊ねじ9により固定される。遮蔽板3は、各素子に対応した位置にのみビームを透過する為の貫通穴を設け、シャッタ1を掻い潜って漏洩するイオンビームを遮蔽する為の機能を併せ持つ。従って遮蔽板3には、スパッタ率の低い材質、例えばカーボン材等を使用する。   The shutter unit is attached to one base plate 4. The base plate 4 will be described with reference to FIG. The base plate 4 exposes only a plurality of elements that perform simultaneous processing through the through hole 7, and shields the beam irradiation to the other elements. A protective plate 8 is attached to the surface exposed to the argon ions of the beam to protect it from etching. Since a material with a low sputtering rate is required for the protective plate 8, for example, a carbon plate or the like is used. The base plate 4 is fixed with a shutter 1 and a solenoid substrate 25 on which a plurality of solenoids 2 that are driving sources of the shutter 1 are arranged, and an elliptical stopper 11 is prepared as a fine adjustment mechanism for the front end of the shutter. A shielding plate 3 is disposed on the upper surface of the shutter and is fixed by a special screw 9. The shielding plate 3 is provided with a through hole for transmitting the beam only at a position corresponding to each element, and also has a function for shielding the ion beam leaking through the shutter 1. Therefore, the shielding plate 3 is made of a material having a low sputtering rate, such as a carbon material.

[図4]はシャッタ1の構成図である。シャッタ板は、1枚の薄板を折り曲げ加工することにより作成され、イオンビームを遮断するシャッタ先端部13と、動作の支点となる軸部12と、2枚の爪より構成される連結部14を備えている。折り曲げ加工は積層を考慮し、その形状は何層目に配置されるシャッタ板であるかにより異なる。具体的には、先端部13が全て同一平面内に配置され、連結部14が全て軸部12から同距離となるように、積層の位置に応じて折り曲げ距離を調整する。   FIG. 4 is a configuration diagram of the shutter 1. The shutter plate is formed by bending one thin plate, and includes a shutter tip 13 that blocks an ion beam, a shaft portion 12 that serves as a fulcrum of operation, and a connecting portion 14 that includes two claws. I have. The bending process takes into account the lamination, and the shape differs depending on the number of layers of the shutter plate. Specifically, the folding distance is adjusted according to the position of the stack so that the tip portions 13 are all arranged in the same plane and the connecting portions 14 are all the same distance from the shaft portion 12.

シャッタ1は、限られたスペース内に複数枚積層される為、その板厚は極力薄く強度のある材質が求められる。又、シャッタ1の先端は10mA/cm2程度のイオンビームに晒される事により400℃程度まで温度が上昇することが考えられる為、熱歪みが少なく、又外的要因による変形に耐えうる、且つ導電性の材質が求められる。この2つの条件を満たす為に、本実施例では板厚0.4tのSUS631析出硬化材を採用した。又、積層による摺動抵抗の軽減並びに表面の削れ防止の為に表面にDLC膜等を塗布する。 Since a plurality of shutters 1 are stacked in a limited space, a material having a thin plate thickness as much as possible is required. Further, the tip of the shutter 1 may be heated to about 400 ° C. by being exposed to an ion beam of about 10 mA / cm 2, so that there is little thermal distortion and can withstand deformation due to external factors, and A conductive material is required. In order to satisfy these two conditions, a SUS631 precipitation hardening material having a thickness of 0.4 t was employed in this example. In addition, a DLC film or the like is applied to the surface to reduce sliding resistance due to lamination and to prevent surface abrasion.

シャッタ先端部13はアルゴンイオンに晒される事により短時間でエッチングされシャッタの役目を果たさなくなることから、シャッタ板が直接イオンビームに晒されないように保護材18を装着する。該保護材18にはスパッタ率が低く導電性である材質が求められるため、本実施例ではカーボンを使用した。[図5]に保護材18の一例を示す。保護材18には位置決め溝19が設けられ、シャッタ板先端部13に接合された固定爪17に着脱可能に装着される。   Since the shutter tip portion 13 is etched in a short time by being exposed to argon ions and does not serve as a shutter, a protective material 18 is attached so that the shutter plate is not directly exposed to the ion beam. Since the protective material 18 is required to be a conductive material having a low sputtering rate, carbon was used in this example. FIG. 5 shows an example of the protective material 18. The protective material 18 is provided with a positioning groove 19 and is detachably attached to the fixed claw 17 joined to the shutter plate tip portion 13.

シャッタ1の軸部12には、カラー15とワッシャー16が挟みこまれる。カラー15、及びワッシャー16には、摺動抵抗を軽減する為にDLC膜等を塗布する。このカラー15とワッシャー16は同内径であり、カラー15の外径は軸部12の内径よりも小さく、ワッシャー16の外径は軸部12の内径よりも大きい。シャッタ軸部12の内径よりも小さな外径のカラー15は、シャッタの板厚よりも高さ方向の厚みがある為、積層された上層のシャッタ板及びカラーの重さは、全てカラー15とワッシャー16が支える構造となる。これにより、シャッタ板には自重以外はかからない為、シャッタ間のクリアランスが確保されると共に、摺動抵抗が軽減される。更に積層による負担がシャッタ板にかからないため、積層枚数を容易に増減することができる。複数枚積層されたシャッタ板は、その軸部12と前記したカラー15とワッシャー16内部を貫通する、ねじ10によりベース板4に固定される。   A collar 15 and a washer 16 are sandwiched between the shaft portions 12 of the shutter 1. A DLC film or the like is applied to the collar 15 and the washer 16 in order to reduce sliding resistance. The collar 15 and the washer 16 have the same inner diameter, the outer diameter of the collar 15 is smaller than the inner diameter of the shaft portion 12, and the outer diameter of the washer 16 is larger than the inner diameter of the shaft portion 12. Since the collar 15 having an outer diameter smaller than the inner diameter of the shutter shaft portion 12 has a thickness in the direction higher than the thickness of the shutter plate, the weight of the upper shutter plate and the color of the stacked layers is the same as that of the collar 15 and the washer. The structure is supported by 16. Thus, since the shutter plate is not subject to any weight other than its own weight, the clearance between the shutters is ensured and the sliding resistance is reduced. Furthermore, since the burden due to the stacking is not applied to the shutter plate, the number of stacked layers can be easily increased or decreased. A plurality of laminated shutter plates are fixed to the base plate 4 by screws 10 that pass through the shaft portion 12, the collar 15 and the washer 16 inside.

[図6]にシャッタ1の駆動源であるソレノイド2を示す。ソレノイド2は主に、中空洞を有するボビン20と、ボビン20に巻かれた巻き線21と、巻き線21の両端を連結する形で覆うヨーク22と、ボビン20の中空洞内を移動可能な可動鉄芯23により構成される。ボビン材には通常樹脂が用いられるが、真空中では自己発熱による温度上昇から樹脂ボビンが変形する可能性がある為、熱伝導率の大きく加工の容易なクロム銅等の金属を用いる。ボビン20表面には巻き線21とのショートを防ぐ為に絶縁膜を塗布する。巻き線21は温度上昇により被覆樹脂が剥離する事が考えられる為、高温対策としてポリエステル、ポリイミド樹脂等の焼き付け温度の高い樹脂をコートした線材を使用する。ソレノイド2の配線は通常直接樹脂基板に装着されるが、ソレノイドを冷却する為、例えばアルミ板等の熱伝導率の高い冷却板24を介してリード線を配線する基板25に装着する。冷却板24にはリード線を通す為のスルーホール26が設けられる。冷却板24全面及びスルーホール26にはリード線が接触してもショートしない為の対策として絶縁処理を施す。例えば、アルミ板全面にアルマイト処理を施し、スルーホールをシリコンチューブで覆う等の対策を行う。また、断線対策として電源ラインをアースから浮かせる。ソレノイド2を固定した高熱伝導率の冷却板24を冷却することにより冷却板24を介してソレノイド内ボビン20、巻き線21、ヨーク22の冷却を行う事が可能となる。本実施例ではソレノイド基板25、及びシャッタ機構部を固定するベース板4を水冷パイプ32によって冷却することにより間接的にソレノイド2を冷却するが、この冷却機構はどこに設けてもよい。本実施例ではベース板4を冷却する事により、間接的にシャッタ1の冷却も行うことが出来る。これによりベース板4は、シャッタ1及びソレノイド基板25の取り付け板でありながら、シャッタ1及びソレノイド2の冷却板、更にイオンビームの遮蔽板ともなる為、装置の小型化にも大きく貢献している。   FIG. 6 shows a solenoid 2 that is a driving source of the shutter 1. The solenoid 2 is mainly movable within the bobbin 20 having a hollow, a winding 21 wound around the bobbin 20, a yoke 22 that covers both ends of the winding 21, and a bobbin 20. The movable iron core 23 is used. A resin is usually used for the bobbin material, but since the resin bobbin may be deformed due to a temperature rise due to self-heating in a vacuum, a metal such as chromium copper having a high thermal conductivity and easy to process is used. An insulating film is applied to the surface of the bobbin 20 in order to prevent a short circuit with the winding wire 21. Since it is conceivable that the coating resin is peeled off due to the temperature rise, a wire rod coated with a resin having a high baking temperature such as polyester or polyimide resin is used as a countermeasure against high temperature. Normally, the wiring of the solenoid 2 is directly attached to the resin substrate, but in order to cool the solenoid, it is attached to the substrate 25 on which the lead wire is wired via the cooling plate 24 having a high thermal conductivity such as an aluminum plate. The cooling plate 24 is provided with a through hole 26 for passing a lead wire. Insulation treatment is applied to the entire surface of the cooling plate 24 and the through hole 26 as a countermeasure against short-circuiting even if lead wires come into contact. For example, measures such as anodizing the entire surface of the aluminum plate and covering the through hole with a silicon tube are taken. Also, the power line is lifted from the ground as a measure against disconnection. By cooling the cooling plate 24 having a high thermal conductivity to which the solenoid 2 is fixed, the solenoid bobbin 20, the winding 21, and the yoke 22 can be cooled via the cooling plate 24. In this embodiment, the solenoid 2 is indirectly cooled by cooling the solenoid board 25 and the base plate 4 that fixes the shutter mechanism portion by the water cooling pipe 32, but this cooling mechanism may be provided anywhere. In this embodiment, the shutter 1 can be indirectly cooled by cooling the base plate 4. As a result, the base plate 4 serves as a mounting plate for the shutter 1 and the solenoid substrate 25, but also serves as a cooling plate for the shutter 1 and the solenoid 2, and further a shielding plate for the ion beam. .

ソレノイド2は、力量を保ちつつ温度上昇を防ぐ為に起動時と保持時の印加電圧を可変する構成とした。[図19]は、印加電圧を可変とするソレノイドの駆動回路図の一例である。スイッチをONにすることでコイルに瞬間的流れる大きな電圧を起動電圧として可動鉄芯を吸引し、その後低下した電圧を保持電圧として可動鉄芯の保持を行う。   The solenoid 2 is configured to vary the applied voltage at the time of starting and holding in order to prevent a temperature rise while maintaining the power. FIG. 19 is an example of a drive circuit diagram of a solenoid that makes the applied voltage variable. When the switch is turned on, the movable iron core is attracted using the large voltage instantaneously flowing in the coil as the starting voltage, and then the lowered voltage is held as the holding voltage.

[図23]を参照に本発明可動鉄芯23を説明する。通常可動鉄芯23は固定鉄芯34に接触する事により停止し保持される。[図23]上面に通常の可動鉄芯と固定鉄芯の接触を示すが、この場合、常に可動鉄芯23は動作完了時に固定鉄芯34に面及び点接触する為、次第に接触部35において変形が始まる。ボビン20と可動鉄芯23との間には決められたクリアランスが設けられており、可動鉄芯23の変形が始まり一定の径を超えた場合、急激に摩擦抵抗が増大し動作不良を誘発する。本発明では、[図23]下面斜線部に示すよう、可動鉄芯23にボビン20の内径よりも大きい径のガイド33を接合する。ガイド33は可動鉄芯23が固定鉄芯34に接触する直前にヨーク22に接触する位置に設置する。これにより、可動鉄芯23は動作完了時ヨーク22に接触する事で位置決めされ、この時可動鉄芯先端部35は固定鉄芯34に接触しない為先端部35の変形は発生せず長寿命を図る事が出来る。ガイド33は変形を考慮し、ガイド33とヨーク22の接触する面積は固定鉄芯34と可動鉄芯23の接触する面積よりも大きくする。   The movable iron core 23 of the present invention will be described with reference to [FIG. 23]. Usually, the movable iron core 23 is stopped and held by contacting the fixed iron core 34. [FIG. 23] The contact between the normal movable iron core and the fixed iron core is shown on the upper surface. In this case, however, the movable iron core 23 always makes surface and point contact with the fixed iron core 34 when the operation is completed. Deformation begins. A fixed clearance is provided between the bobbin 20 and the movable iron core 23. When the deformation of the movable iron core 23 starts and exceeds a certain diameter, the frictional resistance increases suddenly and induces malfunction. . In the present invention, [FIG. 23] A guide 33 having a diameter larger than the inner diameter of the bobbin 20 is joined to the movable iron core 23 as indicated by the hatched portion on the lower surface. The guide 33 is installed at a position where it contacts the yoke 22 immediately before the movable iron core 23 contacts the fixed iron core 34. As a result, the movable iron core 23 is positioned by contacting the yoke 22 when the operation is completed.At this time, the movable iron core tip 35 does not contact the fixed iron core 34, so the tip 35 is not deformed and has a long life. You can plan. The guide 33 takes into account deformation, and the contact area between the guide 33 and the yoke 22 is made larger than the contact area between the fixed iron core 34 and the movable iron core 23.

[図24]に可動鉄芯23の動作回数と可動鉄芯23の先端部35の外径寸法を示す。同図において(f)は、[図23]の上面に示す様に可動鉄芯23と固定鉄芯34を直接接触させ可動鉄芯23を保持する場合の連続動作における先端部35の外径寸法変化を示し、(e)は、本発明ガイド33を用いて、可動鉄芯23と固定鉄芯34を接触させずにガイド33とヨーク22を接触させることにより可動鉄芯23を保持する場合の連続動作における先端部35の外径寸法変化を示す。図より、本発明ガイド33を用いることにより、可動鉄芯先端部35の外径寸法が連続動作によって変形することなく、ボビン20と可動鉄芯23とのクリアランスが保たれる為、ソレノイド2の動作不良を軽減し、ソレノイドの寿命を飛躍的に延ばすことが可能となった事が判る。   FIG. 24 shows the number of operations of the movable iron core 23 and the outer diameter of the tip 35 of the movable iron core 23. In FIG. 23, (f) shows the outer diameter of the tip 35 in continuous operation when the movable iron core 23 and the fixed iron core 34 are held in direct contact with each other as shown on the upper surface of FIG. (E) shows a case in which the movable iron core 23 is held by bringing the guide 33 and the yoke 22 into contact with each other using the guide 33 of the present invention without bringing the movable iron core 23 and the fixed iron core 34 into contact with each other. The change in the outer diameter of the tip 35 in continuous operation is shown. From the figure, by using the guide 33 of the present invention, the clearance between the bobbin 20 and the movable iron core 23 is maintained without the outer diameter of the movable iron core tip 35 being deformed by continuous operation. It can be seen that it has become possible to reduce malfunctions and dramatically extend the life of the solenoid.

[図7]にソレノイド2によるシャッタ1の駆動を示す。前記ソレノイド2は2つを向かい合わせ、2つの可動鉄芯23を連結し、可動鉄芯23が1直線上で一体となって動作するように配置する。対向させた一対のソレノイドに1つの可動鉄芯を挿入し、各々のソレノイドを通電させる事により1つの可動鉄芯を動作させてもよいが、一対のソレノイドの位置がずれると可動鉄芯が動作しなくなる為、本実施例では可動鉄芯を2分割する。2つの可動鉄芯23のフランジ部27をシャッタ連結部14の2枚の爪で挟み、一対の可動鉄芯23と一枚のシャッタ板を連結する。   FIG. 7 shows the driving of the shutter 1 by the solenoid 2. The two solenoids 2 face each other, connect two movable iron cores 23, and are arranged so that the movable iron cores 23 operate integrally on one straight line. One movable iron core may be operated by inserting one movable iron core into a pair of opposed solenoids and energizing each solenoid. However, if the position of the pair of solenoids shifts, the movable iron core operates. In this embodiment, the movable iron core is divided into two parts. The flange portions 27 of the two movable iron cores 23 are sandwiched between the two claws of the shutter connecting portion 14, and the pair of movable iron cores 23 and one shutter plate are connected.

通常は1つのソレノイドとスプリングを使用し可動鉄芯を直線往復運動させるのが一般的であるが、本発明の場合、限られたスペースにソレノイドを配置する為、ソレノイドの外形寸法においても出来る限りの小型化が求められる。小型化を行った場合吸引力が低下し、スプリングにより吸引力が減殺され信頼性のある動作が困難となる。これを回避する為に本発明ではスプリングの代わりにソレノイド2を2つ向かい合わせ、可動鉄芯23の直線往復運動を行わせるものとした。   Normally, it is common to use a single solenoid and spring to move the movable iron core back and forth. However, in the case of the present invention, since the solenoid is arranged in a limited space, the outer dimensions of the solenoid are as much as possible. Downsizing is required. When the size is reduced, the suction force decreases, and the suction force is reduced by the spring, so that reliable operation becomes difficult. In order to avoid this, in the present invention, two solenoids 2 are opposed to each other instead of the spring, and the reciprocating motion of the movable iron core 23 is performed.

2つのソレノイド2に交互に通電を行い、可動鉄芯23を往復運動させることで、可動鉄芯23の往復運動がシャッタ1の回転運動に変換される。シャッタは軸部12に挿入されたカラー15を支点に回転運動を行い、これがシャッタ1の開閉動作となる。一方のソレノイド2aに通電することでシャッタ1は開動作を行い、もう一方のソレノイド2bに通電することでシャッタ1は閉動作を行う。シャッタ先端部開閉動作の微調整は、ベース板4に設けられた楕円型のストッパー11により行われる。   By alternately energizing the two solenoids 2 and reciprocating the movable iron core 23, the reciprocating movement of the movable iron core 23 is converted into the rotational movement of the shutter 1. The shutter performs a rotational motion with a collar 15 inserted in the shaft portion 12 as a fulcrum, and this is an opening / closing operation of the shutter 1. Energizing one solenoid 2a causes the shutter 1 to open, and energizing the other solenoid 2b causes the shutter 1 to close. Fine adjustment of the shutter tip opening / closing operation is performed by an elliptical stopper 11 provided on the base plate 4.

この様に本発明では、同時周波数調整する圧電素子の生産量の増減に併せて、シャッタ1とソレノイド2の数量を選択してシャッタユニットを作成する事が可能であると共に、現在の1イオンガン構成を2イオンガン構成にする事で飛躍的に生産効率を上げる事が可能と成る。   As described above, according to the present invention, it is possible to create a shutter unit by selecting the quantity of the shutter 1 and the solenoid 2 in accordance with the increase or decrease in the production amount of the piezoelectric element for adjusting the frequency simultaneously, and the current one-ion gun configuration. It becomes possible to drastically increase the production efficiency by making the 2 ion gun configuration.

次に本発明のイオンガングリットについて説明する。[図1]に示すグリット5は、同形状の複数のグリット孔31を有し、イオンビームの引き出しを行う。[図11]はグリット孔31の平面図である。図では圧電素子70の電極にグリットから引き出されたイオンビームの直線成分が照射される面積を黒色で塗りつぶしている。同図ではイオンビームは紙面の裏面から表面に向かって照射される。従って、圧電素子70の電極は紙面の表側に設置されているものとする。多孔式グリットにて圧電素子の電極をエッチングする場合、[図11]の(c)に示すように圧電素子の電極径がグリット孔径より大きければグリットの位置によるビーム電流密度のばらつきは発生しない。しかし、圧電素子の小型化により圧電素子の電極が小さくなり、ここに同時処理数を増やす為に複数の圧電素子を高密度に充填した場合、各素子の電極径がグリット孔径より小さくなり、[図11]の(b)に示すように従来のグリットではグリットから引き出される直線成分を持ったイオンビームが照射される面積が、素子の位置により変わってくる。これが個々の位置におけるビーム電流密度のばらつきとなる。本発明においては、[図11]の(a)に示すようにイオンガングリットの孔31の配列を圧電素子の配列と等しくし、イオンガンから引き出される直線成分を持ったイオンビームはどの素子も同一面積で照射されるようにする。   Next, the ion gangrit of the present invention will be described. A grit 5 shown in FIG. 1 has a plurality of grit holes 31 having the same shape, and extracts an ion beam. FIG. 11 is a plan view of the grit hole 31. In the figure, the area irradiated with the linear component of the ion beam drawn from the grit on the electrode of the piezoelectric element 70 is painted in black. In the figure, the ion beam is irradiated from the back surface to the front surface. Therefore, it is assumed that the electrodes of the piezoelectric element 70 are installed on the front side of the paper surface. When etching the electrode of the piezoelectric element with the porous grit, as shown in FIG. 11C, if the electrode diameter of the piezoelectric element is larger than the grit hole diameter, the beam current density does not vary depending on the position of the grit. However, when the piezoelectric element is reduced in size, the electrodes of the piezoelectric element become smaller, and when a plurality of piezoelectric elements are filled at a high density in order to increase the number of simultaneous processes, the electrode diameter of each element becomes smaller than the grit hole diameter. As shown in (b) of FIG. 11], in the conventional grit, the area irradiated with the ion beam having the linear component drawn from the grit varies depending on the position of the element. This is a variation in the beam current density at each position. In the present invention, as shown in FIG. 11 (a), the arrangement of the holes 31 of the ion gangrit is made equal to the arrangement of the piezoelectric elements, and the ion beam having the linear component drawn from the ion gun has the same area for all the elements. So that it can be irradiated.

[図11](a)、(b)に示すイオンガングリット孔を用いたイオンビーム電流密度の測定結果を[図25]に示す。同図において(a)は[図11](a)に示す本発明イオンガングリット孔を用いた場合の測定結果を示し、(b)は[図11](b)に示す従来のイオンガングリット孔を用いた場合の測定結果を示している。従来のイオンガングリット孔を用いた場合、イオンガンから引き出された直線成分を持ったイオンビームの照射する面積は各素子において違う為、これがそのままビーム電流密度のばらつきとなっている。本発明イオンガングリット孔を用いた場合、全ての素子がほぼ同等の直線成分を持ったイオンビームに照射される為、各素子におけるビーム電流密度のばらつきは小さくなっている。図より、本発明イオンガングリット孔を用いる事によって、個々の素子において均一性の高いビーム電流密度を得る事が可能となった事が判る。   [FIG. 11] FIG. 25 shows the measurement results of the ion beam current density using the ion ganglit holes shown in (a) and (b). In FIG. 11, (a) shows the measurement results in the case of using the ion gangrit hole of the present invention shown in FIG. 11 (a), and (b) shows the conventional ion gangrite hole shown in FIG. 11 (b). The measurement results when used are shown. When the conventional ion ganglit hole is used, the area irradiated with the ion beam having a linear component drawn from the ion gun is different in each element, and this is a variation in the beam current density as it is. When the ion ganglit hole of the present invention is used, all elements are irradiated with an ion beam having substantially the same linear component, so that variations in beam current density in each element are small. From the figure, it can be seen that it is possible to obtain a highly uniform beam current density in each element by using the ion ganglit hole of the present invention.

実施例の作用・動作の説明
本発明装置を用いた周波数調整を[図2]、[図10]及び[図16]〜[図19]を参照に説明する。[図10]は装置のシステム構成図であり、[図16]は調整手順の全体を示すゼネラルフロー図である。まず搬送キャリア71に搭載する圧電基板上に複数個充填された各素子の周波数測定を行い(S1)計測結果をPC29に入力する。搬送キャリア71を図示しないマガジンにセットし、真空槽に投入し真空排気する。次に周波数調整を行う搬送キャリア71を搬入し(S2)、その先端に設けたイオンコレクター6をビーム照射位置に配置する。所定の位置に停止した事を確認した後に電流密度測定を行う(S3)。
Description of Action and Operation of Embodiments Frequency adjustment using the device of the present invention will be described with reference to [FIG. 2], [FIG. 10] and [FIG. 16] to [FIG. [FIG. 10] is a system configuration diagram of the apparatus, and [FIG. 16] is a general flow diagram showing the entire adjustment procedure. First, the frequency of each element filled in a plurality of piezoelectric substrates mounted on the carrier carrier 71 is measured (S1), and the measurement result is input to the PC 29. The transfer carrier 71 is set in a magazine (not shown), put into a vacuum chamber, and evacuated. Next, the carrier 71 for adjusting the frequency is carried in (S2), and the ion collector 6 provided at the tip thereof is arranged at the beam irradiation position. After confirming that it has stopped at a predetermined position, the current density is measured (S3).

電流密度測定について[図17]にフロー図を示す。ここで、圧電基板上に形成された複数の圧電素子70は搬送キャリア71上に並べられ、周波数調整は列単位で行われる。従来装置では1列のみの同時周波数調整を行っていたが、本発明装置では複数列を同時に調整する事が可能となる為、電流密度測定も複数列行う。周波数調整を同時に行う列をA列及びB列とし、各列にはN個の素子が並べられるものとする。イオンコレクター6も各素子に対応し、1列にN個のビーム透過口を設けている。まずA/B列のシャッタ1を全て閉じた状態(S10)でビーム照射を行う(S11)。この状態で電流密度を測定する(S12)。次に、B列のシャッタを全て閉じた状態(S13)でA列n番目のシャッタのみを開とし(S14)A列n番目の電流密度を測定する(S15)。同様の手順で、A列N個の素子位置それぞれの電流密度を全て測定する。A列全ての測定を終了したら、B列の測定を同様に行う。各素子位置の電流密度測定結果はPC29に入力される。PC29は、入力された周波数及び電流密度の測定結果から各素子に対するイオンビーム照射時間を算出する(S4)。算出した結果はPLC30に転送し、PLC30内で2つのソレノイド2を互いに通電する為の時間を算出する。PLC30の算出結果に基づきソレノイド2をON/OFFする事により個別周波数調整を行う(S5)。   A flow diagram of current density measurement is shown in [Fig. 17]. Here, the plurality of piezoelectric elements 70 formed on the piezoelectric substrate are arranged on the carrier carrier 71, and the frequency adjustment is performed in units of columns. The conventional apparatus performs simultaneous frequency adjustment for only one column. However, since the present invention apparatus can adjust a plurality of columns simultaneously, current density measurement is also performed for a plurality of columns. It is assumed that the columns for which frequency adjustment is performed simultaneously are the A column and the B column, and N elements are arranged in each column. The ion collector 6 also corresponds to each element, and N beam transmission apertures are provided in one row. First, beam irradiation is performed (S11) in a state where all the shutters 1 in the A / B rows are closed (S10). In this state, the current density is measured (S12). Next, with all the shutters in the B row closed (S13), only the nth shutter in the A row is opened (S14), and the nth current density in the A row is measured (S15). In the same procedure, all the current densities at the N element positions in the A row are measured. When the measurement for all rows A is completed, the measurement for row B is performed in the same manner. The current density measurement result at each element position is input to the PC 29. The PC 29 calculates the ion beam irradiation time for each element from the input frequency and current density measurement results (S4). The calculated result is transferred to the PLC 30, and the time for energizing the two solenoids 2 in the PLC 30 is calculated. Based on the calculation result of PLC30, individual frequency adjustment is performed by turning solenoid 2 ON / OFF (S5).

個別周波数調整について[図18]にフロー図を示す。まずA/B列全ての素子のシャッタを閉じた状態(S20)でビームをONにする(S21)。次にPC29により算出されたビーム照射時間が0以外の素子に対応するシャッタ1を全て開き(S22)ビーム照射時間タイマーをスタートさせる(S23)。指定照射時間に達した素子に対応するシャッタ1から順に閉じ(S24)、全てのシャッタ1が閉じた時点でビームをOFFにする(S25)。ビーム照射時間タイマーをリセットし(S26)、次列へ移動する(S27)。   A flow chart for individual frequency adjustment is shown in [FIG. 18]. First, the beams are turned on (S21) with the shutters of all the elements in the A / B rows closed (S20). Next, all shutters 1 corresponding to elements whose beam irradiation time calculated by the PC 29 is other than 0 are opened (S22), and a beam irradiation time timer is started (S23). The shutters corresponding to the elements that have reached the specified irradiation time are sequentially closed from the shutter 1 (S24), and the beams are turned off when all the shutters 1 are closed (S25). Reset the beam irradiation time timer (S26) and move to the next row (S27).

同様に周波数調整を行い、搬送キャリア71に充填された全ての素子70の調整が終了した時点で、搬送キャリア71を搬出する(S6)。続いて周波数未調整の搬送キャリア71を搬入し(S2)、同様の作業を繰り返し、図示しないマガジンに搭載された全ての搬送キャリアの周波数調整を行う。[図22]に示す従来のフロー図と比較してみると、本発明によりイオンビームを同時照射する列数を増やした事と、イオンビームの照射を中断させることなく周波数調整を行う事が可能となったことが判る。   Similarly, the frequency adjustment is performed, and when the adjustment of all the elements 70 filled in the transport carrier 71 is completed, the transport carrier 71 is unloaded (S6). Subsequently, the carrier carrier 71 whose frequency is not adjusted is carried in (S2), and the same operation is repeated to adjust the frequency of all the carrier carriers mounted in a magazine (not shown). Compared with the conventional flow chart shown in [Fig. 22], according to the present invention, it is possible to increase the number of columns simultaneously irradiated with the ion beam and to adjust the frequency without interrupting the ion beam irradiation. It turns out that it became.

次に本発明ソレノイドの効果について説明する。本発明ソレノイドは、自身の冷却手段を備え、更に起動時と保持時の電圧を可変とすることで、力量を保ちつつ温度上昇を防ぎ、真空槽内部での連続動作を可能としている。   Next, the effect of the solenoid of the present invention will be described. The solenoid according to the present invention has its own cooling means, and furthermore, by making the voltage at the time of starting and holding variable, the temperature rise is prevented while maintaining the power, and the continuous operation inside the vacuum chamber is possible.

[図20]は、本発明の冷却及び電圧可変手段を用いずにソレノイドを駆動させ、その表面温度を計測した結果である。計測は、5Vの一定電圧で駆動したソレノイドを、真空中及び大気中で使用した状態で行った。力量を上げる為に駆動電圧は高い方が良いが真空中で動作させた場合、放熱による冷却が期待できない。5V一定電圧による真空動作では通電後数分間で140℃まで昇温する事が判る。実機に搭載する場合はイオンガンによりソレノイドを固定するベース板4が20℃程度上昇する為160℃として考える必用がある。この温度はリード線を被覆する絶縁材の溶射温度とほぼ同等であり、剥離等が考えられる為、真空槽内部に於ける動作はほぼ不可能であった。   [FIG. 20] is a result of measuring the surface temperature of the solenoid driven without using the cooling and voltage varying means of the present invention. The measurement was performed in a state where a solenoid driven at a constant voltage of 5 V was used in a vacuum and in the atmosphere. A higher drive voltage is better to increase the power, but when operated in a vacuum, cooling by heat dissipation cannot be expected. It can be seen that in a vacuum operation with a constant voltage of 5 V, the temperature rises to 140 ° C. within a few minutes after energization. When mounted on an actual machine, the base plate 4 for fixing the solenoid by the ion gun rises by about 20 ° C., so it is necessary to consider it as 160 ° C. This temperature is almost the same as the thermal spraying temperature of the insulating material covering the lead wire, and peeling or the like is considered, so that the operation inside the vacuum chamber is almost impossible.

[図21a]に本発明冷却手段を備えたソレノイドを5Vの一定電圧で駆動させた場合の、ソレノイド表面温度計測結果を示す。測定は本実施例に示す装置を用い、ソレノイドボビン材にクロム銅を、冷却板24にアルミ板を用い、冷却板24に接続されるベース板4を水冷パイプによって冷却することによりソレノイドの冷却を行いながら、イオンガンを稼動させ実負荷をかけた状態で行った。図にはベース板4の温度も示している。図より真空槽内部でイオンガンを稼動させた状態であるにも関わらず、大気中で使用する場合とほぼ同程度の温度上昇に押さえていることが判る。   [FIG. 21a] shows the result of measuring the solenoid surface temperature when the solenoid equipped with the cooling means of the present invention is driven at a constant voltage of 5V. For the measurement, the device shown in this example is used. The solenoid bobbin material is made of chrome copper, the cooling plate 24 is made of an aluminum plate, and the base plate 4 connected to the cooling plate 24 is cooled by a water cooling pipe to cool the solenoid. While performing, the ion gun was operated and the actual load was applied. The figure also shows the temperature of the base plate 4. From the figure, it can be seen that the temperature rise is suppressed to almost the same level as when used in the atmosphere despite the state in which the ion gun is operated inside the vacuum chamber.

[図21b]に上記測定で使用したソレノイドを更に[図19]に示す回路により駆動させた場合の、ソレノイド表面温度の測定結果を示す。測定は、[図21a]に示す測定と同条件で行い、起動時の電圧12V、保持時の電圧2.5Vを得る為、V1=12V、R=30Ω、C=470μFとした。5Vの一定電圧で駆動を行う場合に比べソレノイドの起動電圧は2.4倍の12Vとなるが、保持電圧を2.5Vにする事により、更に約30℃程度の温度低下を確認する事が出来る。[図20]と[図21b]を比較すると、本発明の冷却及び電圧可変手段を用いることで、駆動時の力量を上昇させながら真空中での使用を可能としたことが判る。   FIG. 21b shows the measurement result of the solenoid surface temperature when the solenoid used in the above measurement is further driven by the circuit shown in FIG. The measurement was performed under the same conditions as the measurement shown in [Fig. 21a]. In order to obtain a voltage of 12V at start-up and a voltage of 2.5V at hold, V1 = 12V, R = 30Ω, and C = 470 μF. Compared to driving with a constant voltage of 5V, the solenoid start-up voltage is 2.4V, 12V, but by setting the holding voltage to 2.5V, a further temperature drop of about 30 ° C can be confirmed. Comparing [FIG. 20] and [FIG. 21b], it can be seen that the use of the cooling and voltage varying means of the present invention enables use in a vacuum while increasing the driving force.

最後に本発明装置のメインテナンス性について説明する。シャッタ1およびソレノイド基板25は、1枚のベース板4に取り付ける事により、ユニット化されている。これにより外段取りにて位置調整作業が可能となる為、スペアを用意する事により設備のメインテナンス時間は大幅に短縮される。シャッタ先端部13に装着される保護材18はエッチングされることにより消耗が早いが、着脱可能に保持されることにより、容易に交換可能となり、メインテナンス時の作業性の向上を図ることが出来る。又、保護材18を装着することにより、シャッタ板の寿命を飛躍的に延ばすことが可能となり、コストダウンにも繋がる。遮蔽板3にはビームが透過するための穴を用意しているが、位置ずれがエッチング分布のばらつきをもたらす為、遮蔽板3とイオンコレクター6の位置出しは正確に行う必要がある。そこで本発明では、[図8]に示すピンゲージ28にて位置出し行う。遮蔽板3は[図9]に示す特殊ねじ9によって表裏両面から位置出し固定できるように構成されている。   Finally, the maintainability of the device of the present invention will be described. The shutter 1 and the solenoid substrate 25 are unitized by being attached to one base plate 4. As a result, position adjustment work can be performed by external setup, so that the maintenance time of the equipment can be greatly shortened by preparing a spare. The protective material 18 attached to the shutter tip 13 is consumed quickly by etching, but can be easily replaced by being detachably held, so that the workability during maintenance can be improved. Also, by attaching the protective material 18, it is possible to dramatically extend the life of the shutter plate, leading to cost reduction. Although a hole for allowing the beam to pass through is prepared in the shielding plate 3, since the positional deviation causes variation in the etching distribution, it is necessary to accurately position the shielding plate 3 and the ion collector 6. Therefore, in the present invention, positioning is performed by the pin gauge 28 shown in FIG. The shielding plate 3 is configured so that it can be positioned and fixed from both the front and back surfaces by a special screw 9 shown in FIG.

他の実施例の説明、他の用途への転用例の説明
上記実施例ではイオンガンを用いた周波数調整について説明したが、本発明は他のエッチング源或いは蒸着源を用いた周波数調整にも利用可能である。特に、本発明によりイオンビームを照射したままシャッタの開閉を行う事と、更にソレノイドを使用し駆動電圧を制御する事で約10ms程度でのシャッタ開閉動作が可能となった事により、シャッタに対して20ms以下と言う高精度の動作時間が要求される水晶振動子の周波数調整にも転用可能である。
Description of other embodiments, description of examples of diversion to other applications In the above embodiments, frequency adjustment using an ion gun has been described, but the present invention can also be used for frequency adjustment using other etching sources or vapor deposition sources. It is. In particular, according to the present invention, it is possible to open and close the shutter while irradiating the ion beam, and further, by using a solenoid to control the drive voltage, the shutter can be opened and closed in about 10 ms. Therefore, it can also be used for frequency adjustment of crystal units that require a high-accuracy operating time of 20 ms or less.

本発明で独立に駆動する複数枚のシャッタを各素子に対応して設けることにより、複数素子の周波数調整を短時間に行うことが可能となり、装置の生産性を著しく向上させることが可能となった。同時に、イオンガングリット孔の配列を圧電素子の配列に等しくした事で個々の素子に均一性の高いビームを照射する事が可能となった事、更に素子へのビーム照射を連続的に行う事が可能になった事により周波数調整精度を大きく向上させることが可能となった。又、枚数が増加しても他の板の動作環境に影響を及ぼさない構造を備えた複数枚のシャッタ板を提案する事により、周波数調整の同時処理数を容易に増減する事が可能となった。更に、本発明で力量を保ちながらも小型でかつ真空槽内部でも使用可能な駆動源を提案することにより、装置全体の小型化及び簡略化を図ることが可能となった。加えて、複数枚のシャッタ板及び駆動源を1枚の板に固定する事と、ビームに晒され消耗の早い部位に着脱可能な部品を設けることにより、メインテナンス時の作業向上及びコストダウンも可能となった。   By providing a plurality of shutters that are independently driven in the present invention corresponding to each element, the frequency of the plurality of elements can be adjusted in a short time, and the productivity of the apparatus can be remarkably improved. It was. At the same time, it is possible to irradiate individual elements with a highly uniform beam by making the array of ion ganglit holes equal to the array of piezoelectric elements, and it is possible to continuously irradiate the elements with beams. As a result, the frequency adjustment accuracy can be greatly improved. In addition, by proposing a plurality of shutter plates with a structure that does not affect the operating environment of other plates even if the number increases, the number of simultaneous processing of frequency adjustment can be easily increased or decreased. It was. Further, by proposing a drive source that is small and can be used even inside the vacuum chamber while maintaining the capability according to the present invention, the entire apparatus can be reduced in size and simplified. In addition, by fixing multiple shutter plates and drive sources to a single plate, and by installing removable parts on the parts that are exposed to the beam and are quickly consumed, it is possible to improve work and reduce costs during maintenance. It became.

本発明周波数調整装置概略図Schematic diagram of frequency adjusting device of the present invention 本発明シャッタと圧電素子平面図The present invention shutter and piezoelectric element plan view 本発明ベース板斜視図The base plate perspective view of the present invention 本発明シャッタ斜視図The present invention shutter perspective view 本発明保護材斜視図The present invention protective material perspective view 本発明ソレノイド斜視図The present invention solenoid perspective view 本発明ソレノイドとシャッタ説明図Solenoid and shutter explanatory drawing of the present invention 本発明遮蔽板とイオンコレクターの位置出し説明図Positioning explanatory diagram of the shielding plate and ion collector of the present invention 本発明特殊ねじ斜視図Special screw perspective view of the present invention 本発明装置のシステム構成図System configuration diagram of the device of the present invention 本発明グリット孔平面図The present invention grit hole plan view 従来の1素子対応周波数調整装置概略図Schematic diagram of conventional single-element frequency adjustment device 従来のソレノイド概略図Schematic diagram of conventional solenoid 従来の複数素子対応周波数調整装置構成図Conventional frequency adjustment device configuration diagram for multiple elements 従来のパターン板斜視図Conventional pattern board perspective view 本発明周波数調整ゼネラルフロー図The present invention frequency adjustment general flow diagram 本発明電流密度測定フロー図Current density measurement flow diagram of the present invention 本発明個別周波数調整フロー図Individual frequency adjustment flowchart of the present invention 本発明ソレノイド回路図Solenoid circuit diagram of the present invention 冷却手段及び電圧可変手段を用いない場合のソレノイド表面温度計測図Solenoid surface temperature measurement diagram when cooling means and voltage variable means are not used 本発明冷却手段を用いた場合のソレノイド表面温度計測図Solenoid surface temperature measurement diagram when using the cooling means of the present invention 本発明冷却手段及び電圧可変手段を用いた場合のソレノイド表面温度計測図Solenoid surface temperature measurement diagram when using cooling means and voltage variable means of the present invention 従来の個別周波数調整フロー図Conventional individual frequency adjustment flow chart 本発明ソレノイド内可動鉄芯説明図Illustration of movable iron core in solenoid of the present invention 本発明ソレノイドの動作回数と可動鉄芯先端部の外径寸法測定図Number of operations of the solenoid of the present invention and measurement of the outer diameter of the tip of the movable iron core 本発明及び従来のグリット孔に於ける電流密度分布図Current density distribution diagram in the present invention and conventional grit holes

符号の説明Explanation of symbols

1 シャッタ
2 ソレノイド
3 遮蔽板
4 ベース板
5 グリット
6 イオンコレクター
7 貫通穴
8 保護板
9 特殊ねじ
10 ねじ
11 ストッパー
12 軸部
13 先端部
14 連結部
15 カラー
16 ワッシャー
17 爪
18 保護材
19 位置決め溝
20 ボビン
21 巻き線
22 ヨーク
23 可動鉄芯
24 冷却板
25 基板
26 スルーホール
27 フランジ
28 ピンゲージ
29 PC
30 PLC
31 グリット孔
32 水冷パイプ
33 ガイド
34 固定鉄芯
35 先端部
50 真空槽
51 イオンガン
52 圧電素子
53 遮蔽板
54 シャッタ
55 駆動源
60 ボビン
61 巻き線
62 ヨーク
63 可動鉄芯
64 ガイド
65 フランジ部
66 スプリング
70 圧電素子
71 搬送キャリア
72 パターン板
73 イオンガン
74 サーボモーター
75 ダミー開口
1 Shutter
2 Solenoid
3 Shield plate
4 Base plate
5 grit
6 Ion collector
7 Through hole
8 Protection plate
9 Special screw
10 screw
11 Stopper
12 Shaft
13 Tip
14 Connecting part
15 colors
16 Washer
17 nails
18 Protective material
19 Positioning groove
20 bobbins
21 Winding
22 York
23 Movable iron core
24 Cold plate
25 substrate
26 Through hole
27 Flange
28 pin gauge
29 PC
30 PLC
31 Grit hole
32 Water cooling pipe
33 Guide
34 Fixed iron core
35 Tip
50 vacuum chamber
51 Ion Gun
52 Piezoelectric element
53 Shield plate
54 Shutter
55 Driving source
60 bobbins
61 Winding
62 York
63 Movable iron core
64 Guide
65 Flange
66 Spring
70 Piezoelectric element
71 Carrier
72 pattern board
73 Ion Gun
74 Servo motor
75 dummy opening

Claims (12)

真空槽内において圧電素子を露出及び遮蔽するシャッタ板を駆動するために該真空槽内に搭載される一対のソレノイドであって、
電圧が印加される巻線が巻かれた第1のボビン及び該第1のボビンに挿入される第1の可動鉄芯を備えた第1のソレノイド、及び
電圧が印加される巻線が巻かれた第2のボビン及び該第2のボビンに挿入される第2の可動鉄芯を備えた第2のソレノイド
からなり、
前記第1及び第2の可動鉄芯がそれぞれの一端に第1及び第2のフランジを有し、該第1及び第2のフランジが対向するように配置され、前記シャッタ板によって該第1及び第2のフランジが挟持され、該第1及び第2の可動鉄芯のそれぞれの他端側が前記第1及び第2のボビンにそれぞれ挿入された一対のソレノイド。
A pair of solenoids mounted in the vacuum chamber to drive a shutter plate that exposes and shields the piezoelectric elements in the vacuum chamber;
First solenoid having a first movable iron core to which a voltage is inserted into the first bobbin and said first bobbin winding is wound to be applied, and
Ri second solenoid <br/> Tona having a second movable iron core windings to which a voltage is applied is inserted into the second bobbin and said second bobbin wound,
The first and second movable iron cores have first and second flanges at respective one ends, and the first and second flanges are arranged so as to face each other, and the first and second flanges are arranged by the shutter plate. A pair of solenoids in which a second flange is sandwiched and the other end sides of the first and second movable iron cores are respectively inserted into the first and second bobbins .
請求項1記載の一対のソレノイドであって
前記第1及び第2のソレノイドが、前記第1及び第2のボビンの両端部をそれぞれ挟持する第1及び第2のヨークをさらに備え、
前記第1及び第2の可動鉄芯に前記第1及び第2のヨークの内径よりも大きい径の第1及び第2の鍔部(ガイド)がそれぞれ設けられ、該第1のガイドと該第1のヨークとの当接及び該第2のガイドと該第2のヨークとの当接により該第1及び第2の可動鉄芯の摺動範囲が制限される一対のソレノイド。
A pair of solenoids according to claim 1,
The first and second solenoids further comprise first and second yokes for sandwiching both end portions of the first and second bobbins, respectively.
Wherein the first and first and second flange portions of larger diameter than the inner diameter of the first and second yoke to the second movable iron core (guide) are respectively provided, said first guide and said second a pair of solenoids which the first and second sliding range of the movable iron core is limited by the abutment of the abutment and the second guide and the second yoke and the first yoke.
請求項記載の一対のソレノイドであって、該一対のソレノイドを冷却するための冷却板を備え、前記第1及び第2のヨークが該冷却板に固定された一対のソレノイド。
A pair of solenoid according to claim 2, further comprising a cooling plate for cooling said pair of solenoids, said first and second yokes a pair of solenoids which are fixed to the cooling plate.
請求項1記載の一対のソレノイドにおいて、前記第1及び第2のボビンが、表面に絶縁膜を塗布した金属製のボビンである一対のソレノイド。
In a pair of solenoid according to claim 1, wherein the first and second bobbin, a pair of solenoids which is metallic bobbin coated with insulating film on the surface.
請求項1記載の一対のソレノイドにおいて、前記巻線がポリエステル銅線又はポリイミド銅線からなる一対のソレノイド。
In a pair of solenoid according to claim 1, a pair of solenoids which the winding is made of polyester copper or polyimide copper wire.
請求項記載の一対のソレノイドであって、さらに、前記冷却板をさらに冷却するための水冷パイプを備えた一対のソレノイド。
A pair of solenoid according to claim 3, further, a pair of solenoids having a water cooling pipe for further cooling the cooling plate.
請求項記載の一対のソレノイドであって、前記冷却板が表面にアルマイト処理を施したアルミ板であり、前記巻線がシリコンチューブを貫通させた前記冷却板の穴を通して相対する側に設置された基板へ配線された一対のソレノイド。
The pair of solenoids according to claim 3 , wherein the cooling plate is an aluminum plate having an alumite treatment on a surface thereof, and the winding is installed on the opposite side through a hole in the cooling plate having a silicon tube penetrated. A pair of solenoids wired to the printed circuit board.
請求項1記載の一対のソレノイドであって、起動時には第1の電圧を、保持時には該第1の電圧よりも低い第2の電圧をソレノイドに印加する手段を備えた一対のソレノイド。
A pair of solenoid according to claim 1, a pair of solenoids a first voltage, when holding the having means for applying a second voltage lower than the first voltage to each solenoid at startup.
真空槽内において圧電素子を露出及び遮蔽するために該真空槽内に搭載されるシャッタ機構であって、請求項1から記載いずれか一項に記載一対のソレノイド、及び前記第1及び第2の可動鉄芯に一端が取り付けられたシャッタ板を備えたシャッタ機構。
A shutter mechanism mounted in the vacuum chamber for exposing and shielding the piezoelectric element in the vacuum chamber, the pair of solenoids according to any one of claims 1 to 8 , and the first and first A shutter mechanism comprising a shutter plate having one end attached to two movable iron cores.
請求項記載のシャッタ機構において、前記シャッタ板の他端が所定の支点に関して回転移動するよう構成されたシャッタ機構。
The shutter mechanism according to claim 9 , wherein the other end of the shutter plate is configured to rotate with respect to a predetermined fulcrum.
圧電素子の周波数調整装置であって、
真空槽内部に搭載されるイオン源、該イオン源に対向する位置において圧電素子基板を搬送する搬送キャリア、及び請求項又は10記載のシャッタ機構を備え、
前記シャッタ板の他端の移動によって、該イオン源からのイオンビームを圧電素子基板に対して選択的に通過させるよう構成された周波数調整装置。
A frequency adjustment device for a piezoelectric element,
An ion source mounted inside the vacuum chamber, a transport carrier for transporting the piezoelectric element substrate at a position facing the ion source, and the shutter mechanism according to claim 9 or 10 ,
A frequency adjusting device configured to selectively pass an ion beam from the ion source with respect to the piezoelectric element substrate by moving the other end of the shutter plate.
圧電素子の周波数調整装置であって、
真空槽内部に搭載される蒸発源、該蒸発源に対向する位置において圧電素子基板を搬送する搬送キャリア、及び請求項又は10記載のシャッタ機構を備え、
前記シャッタ板の他端の移動によって、該蒸発源からの蒸着材料を圧電素子基板に対して選択的に通過させるよう構成された周波数調整装置。
A frequency adjustment device for a piezoelectric element,
An evaporation source mounted inside the vacuum chamber, a transport carrier for transporting the piezoelectric element substrate at a position facing the evaporation source, and the shutter mechanism according to claim 9 or 10 ,
A frequency adjusting device configured to selectively pass a vapor deposition material from the evaporation source with respect to the piezoelectric element substrate by moving the other end of the shutter plate.
JP2007336589A 2007-12-27 2007-12-27 Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same Expired - Lifetime JP4465559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336589A JP4465559B2 (en) 2007-12-27 2007-12-27 Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336589A JP4465559B2 (en) 2007-12-27 2007-12-27 Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002210928A Division JP4138384B2 (en) 2002-07-19 2002-07-19 Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same

Publications (2)

Publication Number Publication Date
JP2008118156A JP2008118156A (en) 2008-05-22
JP4465559B2 true JP4465559B2 (en) 2010-05-19

Family

ID=39503796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336589A Expired - Lifetime JP4465559B2 (en) 2007-12-27 2007-12-27 Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same

Country Status (1)

Country Link
JP (1) JP4465559B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359113B2 (en) * 2008-08-22 2013-12-04 株式会社村田製作所 Operation detection method, operation detection apparatus, and frequency adjustment apparatus for shutter mechanism

Also Published As

Publication number Publication date
JP2008118156A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US20060086321A1 (en) Substrate-to-mask alignment and securing system with temperature control for use in an automated shadow mask vacuum deposition process
JP6500103B2 (en) Substrate holding apparatus and film forming apparatus
CN110791737B (en) Substrate-side deposition apparatus
WO2018142464A1 (en) Production method for vapor deposition mask, vapor deposition mask, and production method for organic semiconductor element
JP4138384B2 (en) Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same
KR100471630B1 (en) Linear motor and exposure apparatus using the same
US20130140372A1 (en) Temperature control of a mover with active bypass, predictive feedforward control, and phase change housing
JP6588125B2 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
KR20190087382A (en) Deposition system, magnetic part and manufacturing method of film
US20200052567A1 (en) Method of manufacturing magnet assembly, magnet assembly,vibrating motor, and haptic device
JP4465559B2 (en) Solenoid, shutter mechanism, and frequency adjustment method and apparatus for piezoelectric element using the same
JP2006222124A (en) Heat treatment apparatus
WO2011090076A1 (en) Plasma processing apparatus and method for processing substrate using the apparatus
TWI803534B (en) Electrostatic chuck device
US20190341280A1 (en) Waffer pedestal with heating mechanism and reaction chamber including the same
KR20110104427A (en) Apparatus for proximity exposure, method for controlling temperature of stage in apparatus for proximity exposure, and method for manufacturing display panel plate
US7232694B2 (en) System and method for active array temperature sensing and cooling
JP2008198500A (en) Manufacturing method and apparatus of organic el display
US4777909A (en) Carriage apparatus for indexing and accurately registering a selected stabilized mask of a plurality of stabilizing masks between a substrate and a source
US9778579B2 (en) System and method for controlling a temperature of a reaction assembly
KR20230004284A (en) Film forming apparatus, film forming method and evaporation source unit
JPH05198490A (en) Charged-particle beam exposure system
KR100952172B1 (en) Patten sputtering apparatus for direct patten forming and method for circuit forming of flexible printed circuit board
JP2020132967A (en) Sputtering cathode
KR102179671B1 (en) A substrate side deposition apparatus having a substrate mounting drum with improved cooling efficiency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4465559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term