JP4465344B2 - 環状燃焼器を備えた発電システム - Google Patents

環状燃焼器を備えた発電システム Download PDF

Info

Publication number
JP4465344B2
JP4465344B2 JP2006343581A JP2006343581A JP4465344B2 JP 4465344 B2 JP4465344 B2 JP 4465344B2 JP 2006343581 A JP2006343581 A JP 2006343581A JP 2006343581 A JP2006343581 A JP 2006343581A JP 4465344 B2 JP4465344 B2 JP 4465344B2
Authority
JP
Japan
Prior art keywords
rotor
bearing
fuel
lug
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006343581A
Other languages
English (en)
Other versions
JP2007170396A (ja
Inventor
ティーツ,ジェイ,マイケル
ティーツ,ジョン,ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elliott Energy Systems Inc
Original Assignee
Elliott Energy Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elliott Energy Systems Inc filed Critical Elliott Energy Systems Inc
Publication of JP2007170396A publication Critical patent/JP2007170396A/ja
Application granted granted Critical
Publication of JP4465344B2 publication Critical patent/JP4465344B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/142Fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03001Miniaturized combustion devices using fluid fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Supercharger (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Portable Power Tools In General (AREA)
  • Sawing (AREA)
  • Spark Plugs (AREA)

Description

本発明は、一般に、発電システムに関し、詳しくは、環状燃焼器と発電のためのタービンとを備えたコンパクトなシステムに関する。
環状燃焼器とタービンとを備えたコンパクトな発電システムが知られている。現在、これらのシステムは、25ないし50キロワットの電力を発電するのに使用されている。このようなシステムは、Capstone Turbine Corporation,Marbaix,Bowman Power Systems,Ltd.,Allied−Signal Corp.等のいくつかの会社によって製造されている。
上述の発電システムは、他の用途にも使用可能なものではあるが、その大半は戦場に於いて軍隊によって使用されるように構成されている。従って、それらは軍用仕様に従って構成されており、その結果、コスト高なものとなっている。
コンパクトな発電システムに対する軍需は減少したが、これらのシステムは、最近、非軍事用途、主として、コンピュータのバックアップ電源、として注目されている。しかしながら、その高いコストによって、これらのシステムの市場の受け入れはこれまで限定されたものであった。
従って、本発明の課題は、ディーゼル、ジェット、天然ガス、及びアルコールタイプの燃料等の炭化水素燃料を使用する環状燃焼器を備えた、安価、コンパクト、軽量、かつ、耐久性の高い発電システムを提供することにある。
通常、前記燃焼器から排出される(他のガスタービンの)排気ガスは、大気中に放出されるNOx放出量を制御するべく処理される。
従って、本発明の別の課題は、低NOxで総体的に低放出量の燃焼器を提供することにある。
更に、多くの用途に於いては、この種の発電システムは不連続的に使用されるが、これらのシステムのこのような使用法によって燃料ライン、燃焼器及び/又は燃料ポンプが詰まってしまうことがある。これらのシステムは、主として、一次電源のバックアップシステム及び/又は主電源として使用されるものである為、これらのシステムが必要な時に作動することが重要である。
従って、本発明の更に別の課題は、一貫した安定性で不連続作動が可能な信頼性の高い発電システムを提供することにある。
本体と、環状燃焼器と、タービンと、コンプレッサ・チャンバと、コンプレッサ・チャンバ内に配置されたコンプレッサとを有する発電システム。取り入れポートが前記コンプレッサ・チャンバと流体連通され、取り出しポートが、その間に燃焼器を介して、タービンと流体連通されている。複数のマグネットがロータに固定され、鉄等の磁気吸引性材から成るステータが前記本体に設けられている。前記ステータは、複数のマグネットの近傍に配置され、これによって、ロータが回転するとステータの周りの磁束が変化し、電気が発生する。燃料ポンプとオイルポンプとが設けられ、これらは共に一つのモータによって駆動される。燃料絞り弁が設けられ、これは、長手軸心に沿って延出するように構成されたプランジャを備えた比例ソレノイド弁を有する。前記ロータの一部を回転可能に受けるべく環状又は流体力学的形状のベアリングが設けられ、これは、ロック構造によって位置保持されている。コンプレッサ・ブレードとタービン・ブレードとは、これらコンプレッサ・ブレードからタービン・ブレードへ、又はその逆に直接にガスが流れることを防止するために、割りリングによって互いに分離されている。導入圧縮ガスを加熱し、流出排気ガスを冷却するために熱交換器が設けられている。換言すると、コンプレッサは、燃料消費を最小限にするために、燃焼器への供給の前に空気を排出する。
本発明は、更に、下記の工程を有する発電システムの運転方法にも関する。即ち、複数のコンプレッサ・ブレードを備えたロータとそれに取り付けられた複数のタービン・ブレードと、前記ロータの周りに配置された複数のマグネットとを回転させる工程、前記複数のマグネットはステータの近傍に配置され、これによって、前記ステータに電気が供給されて前記ロータの回転を起こす、
前記複数のコンプレッサ・ブレードを有するコンプレッサに空気を導入する工程、
前記コンプレッサによって導入された空気を圧縮する工程、
前記圧縮空気を燃焼チャンバに流す工程、
前記燃焼チャンバに流入する前記圧縮空気の少なくとも一部に燃料を混合し、燃料/空気混合物を作る工程、
前記燃料/空気混合物を前記燃焼チャンバ内で引火し、排気ガス又は熱エネルギを発生させる工程、
前記排気ガス又は熱エネルギと、前記圧縮空気の残りとを、前記複数のタービン・ブレードを有するタービンに通過させる工程、
前記排気ガス又は熱エネルギと、前記圧縮空気の残りとを排出する工程、
前記ロータが第1速度で回転する時に、前記ステータに供給される電気を停止する工程、そして
前記ステータと協動する前記ロータの周りに配置れた前記回転するマグネットによって電気を発生させる工程。
前記燃焼チャンバ内の燃料/空気混合物に点火することによって熱エネルギが発生し、これが前記タービンのホイールを駆動する。前記燃焼器内で発生した火炎は、タービンノズルと前記タービンホイールとを通過する時に、タービン入口温度を制御するべく希釈空気を受ける。
ここでの記載の目的の為に、「上方」、「下方」「右側」、「左側」、「後方」、「前方」、「垂直」、「水平」、という用語、及びそれらの派生語は、図面に於ける向きで本発明に係るものとする。しかしながら、本発明は、特に明記無き限り、様々な他の向き及び工程順序をとることが可能であると理解される。又、添付の図面に於いて図示され、下記の明細書に記載されている具体的な装置及びプロセスは、付随の請求項に定義された本発明の概念の、単なる例示的な実施例に過ぎないものであると理解される。従って、ここに開示されている実施例に関連する具体的寸法及びその他の物理的特徴は、請求項に明示的にそうではないと記載されていない限り、限定的なものと解釈されてはならない。
図1A及び1Bは、本発明に依る発電システム10を略示する図面である。該システム10は、燃焼のガス生成物が取り出しポート26を通って出る前に通過する燃焼チャンバを備えた環状燃焼器14を有する発電プラント12を備えている。二つの具体的な発電プラントの実施例が図18及び図19に図示されている。図面の図19に図示されている実施例は、排気ガス熱の一部を埋め合わせ、システムの全体の熱効率を改善する熱交換器を備える。図18に図示の実施例は、熱交換器を備えない。図面の図1Aに戻って、前記環状燃焼器14は、タービンロータ16に流体接続され、該タービンロータは、長手軸心周りで回転可能となるべくベアリング20及び21によって両端部が回転可能に支持されたロータ18を有する。電気ステータ22が、前記ロータ18と同軸状に配置され、前記タービンロータ16には熱交換器24が流体接続されている。空気取り入れポート28が設けられている。
暖房用オイル等の液体燃料が、燃料タンク30内に保持され、このタンクは、導管32によって前記環状燃焼器14に接続、及び流体連通されている。前記導管32は、燃料フィルタ34と、燃料ポンプ36と、圧力開放弁37と、燃料絞り弁38とに接続され、これらは前記環状燃焼器14に流体接続、又は、流体連通されている。前記導管32は、前記環状燃焼器14に設けられた複数の燃料噴射器40を提供している。図面の図2は、燃料パージ弁39を示し、これは前記燃料噴射器40と前記燃料絞り弁38との間の導管32に接続されている。導管41が、前記燃料パージ弁39を前記燃料タンク30に接続し、通常のエンジンのシャットダウン中に燃料を燃料リザーバにパージし、前記噴射器と燃料マニホルドの燃料をパージし、従って、燃料のコーキング/詰まりの傾向を防止する。
図面の図1A及び3を参照すると、導管44によって前記ベアリング20及び21に流体接続されたサンプ42から、前記ベアリング20、21に対する潤滑のために潤滑油が供給される。(図面の図3は、図1Aの別構成を図示し、図面の図1Aには図示されていない、潤滑油システムと協動するいくつかの外部エンジンコンポーネントを示している。図3の構造には、図1A及び1Bに図示した発電システムを備えさせることが可能である)。前記導管44は、オイルフィルタ46と、空気/オイル熱交換器48と、潤滑オイルポンプ50とに接続されている。前記ベアリング20及び21を通って流れた潤滑油は、前記オルタネータ・ステータ熱交換器24からのオイルと共に、前記サンプ42に戻る。オイル圧開放弁51が、前記導管44と流体接続、又は、流体連通されるとともに、前記サンプ42に流体連通されている。尚、ここで使用される「..に流体接続されている」という文言は、「..と流体連通されている」という文言と交換可能である。
再び図1A及び1Bを参照すると、燃料ポンプ36と潤滑油ポンプ50とは共に、24ボルト電気モータ52によって機械駆動される容積式ポンプである。潤滑油温度、潤滑油圧、燃料圧及びコンプレッサ取り出しポートガス圧、とをそれぞれ測定するためにトランスデューサー54,56,58及び60が設けられている。これらトランスデューサー54,56,58及び60は、マイクロプロセッサ制御エンジンコントローラ62に電気的に接続されている。タービン排気ガスの温度を測定するために、前記タービンの下流側の取り出しポート26には、熱電対64が配置されている。この熱電対64は、前記エンジンコントローラ62に電気接続されている。
前記エンジンコントローラ62は、出力インバータ68とスタートインバータ70を含むインバータ構成66に電気接続されている。この構成は、本件と同時出願で、ここに参考文献として合体させる、スレッシュ・イー・グプタ(Suresh E.Gupta)、ダグラス・アール・バーナム(Douglas R.Burnham)、ジョン・ダブリュ・ティーツ(Jon W.Teets)、ジェイ・マイケル・ティーツ(J.Michael Teets)、ブレイ・バルガヴァ(Brij Bhargava)を発明者とする「共通軸上のタービン/オルタネータ用の電気システム」と称するPCT出願に開示されている。前記始動用インバータ70は、24ボルトDCバッテリ72に電気接続されるとともに、更に入力ライン74によって前記エンジンコントローラ62に電気接続されている。前記出力ライン76は、前記エンジンコントローラ62を前記出力インバータ68に電気接続している。前記出力インバータ68は、ライン79によって顧客電気サプライ83に電気を供給するか、若しくは、コンピュータ等の電気コンポーネントに電気を供給するように構成されている。
図4は、前記燃料ポンプ36と前記潤滑油ポンプ50とに機械接続された前記電気モータ52を示している。好ましくは、この電気モータ52は、ブラシレス電気モータである。前記両ポンプ36、50は、それぞれ、回転駆動軸又は電気モータ軸78及び80によって前記電気モータ52に作動接続又は連結されている。前記電気モータ50を作動させることによって、前記両駆動軸78、80がそれぞれの長手軸心81回りで回転する。
前記両ポンプ36、50は、容積式ポンプであり、好ましくは、gerotorタイプポンプである。図5−7を参照すると、各燃料ポンプ36は、ケーシング86内に配置された外側ロータ84内に配置された内側ロータ82を有する。前記ケーシング86には、弓形取り入れポート88と弓形取り出しポート90とが形成されている。電気モータ軸78は、この軸の前記長手軸心81周りでの回転によって、前記内側ロータ82が前記外側ロータ84に対して回転するように前記内側ロータ82に接続されている。前記外側ロータ84は、複数(N)のポンプチャンバ92と、前記内側ロータ82に形成されるとともに当該技術に於いて周知の方法で前記ポンプチャンバ92に受けられた複数(N−1)の径方向延出ギア歯94を形成している。具体的には、前記内側ロータ82が前記外側ロータ84とケーシング86周りで回転又は移動すると、液体(潤滑油)が、前記ポンプチャンバ92、取り出しポート90及び排出管96を通って、前記ケーシング86を通り吸入管95から取り入れポート88へポンプ供給される。前記潤滑油ポンプ50は、これは前記電気モータ軸80によって駆動されることを除いて前記燃料ポンプ36と同様に作動し、ここでこれ以上の説明は省略する。前記燃料ポンプは、メタン等の加圧ガス燃料が使用される場合には、不要である。メタンの流れは、電子−機械式弁によって制御することができる。
このオイルポンプ/燃料ポンプモータ構成の利点は、前記潤滑油ポンプ50が故障すると(これは、通常は、前記内側ロータ82がジャミングして長手軸心81周りで回転出来ないことを意味する)、前記電気モータ52が停止して、これによって両駆動軸78及び80が回転することを防止することにある。更に、もしも前記電気モータ又は燃料ポンプが故障すると、安全のためにシャットダウンが発生する。これによつて、前記電気モータ軸78及び80によって駆動される燃料ポンプ36によって前記環状燃焼器14に燃料が供給されないことから、システムが「シャットダウン」する。従って、回転するシステムパーツへの潤滑油の不適切な供給に依るシステムコンポーネントへのダメージが防止される。前記潤滑油ポンプ50及び/又は電気モータ52は、燃料が環状燃焼器14に供給可能となる前に、修復されなければならない。
図1A,8A,8B及び9を参照すると、燃料は燃料ポンプ36によってポンプ供給され、そのエンジンへの流量は、前記燃料絞り弁38によって変えられる。好ましくは、前記燃料絞り弁38は、バネ付勢式閉じ比例ソレノイド弁である。該ソレノイド弁の位置は、前記燃料絞り弁38を通って流れる燃料の流量を変化させるソレノイドを通過する電流の関数として変化する。
図8A(開放位置)と図8B(閉鎖位置)とは、前記燃料絞り弁38の一実施例を図示し、ここで、前記弁は、Vとして示されている。該弁Vは、比例ソレノイドSと、プランジャ凹部を形成した弁本体Bとを有する。長手軸心に沿って延出する長手方向に移動可能な筒状プランジャPは、前記長手軸心に対して変化する直径可変先端部Tを有する。前記弁本体Bには、中心に位置するオリフィス又は穴Oを備えるオリフィスプレート又は流動プレートFが配設されている。(或いは、前記オリフィスOと協動するべく、前記筒状プランジャPのみを使用することも可能である)。前記オリフィスプレートFは、前記弁本体Bを、流入チャンバと流出チャンバとに分割している。燃料流入ラインFIが、前記流入チャンバに設けられた燃料流入口に接続され、燃料流出ラインFOが前記流出チャンバに設けられた燃料流出口に接続されている。前記ソレノイドSの作動によって、筒状プランジャPと先端部Tとが長手方向に移動する。前記先端部Tは、図8Aに図示されているように、前記オリフィスプレートFのオリフィスOと協動して、それを通じて流れる燃料を許容する前記オリフィスOのサイズを変化させる。図8Bは、前記先端部TがオリフィスOを閉じて流入チャンバと流出チャンバとの間の燃料の流れを防止している状態を示している。従って、前記先端部TのオリフィスプレートFに対する位置によって、前記環状燃焼器14への燃料の流れが制御される。図8A及び8Bから理解されるように、前記先端部Tは、前記オリフィスOの直径よりも小さな直径から、該オリフィスOの直径よりも大きな直径に変化し、これによって、前記筒状プランジャPは、第1長手方向と第2長手方向との両方に移動可能に構成されている。前記筒状プランジャPは、前記オリフィスOを通って延出し、前記オリフィスプレートFに接触して、前記筒状プランジャPが前記第1長手方向に於いて第1距離だけ移動する時、阻止位置に於いて、前記オリフィスプレートFを介した流れを阻止する。前記筒状プランジャPがこの阻止位置から前記第2方向に移動する時、前記先端部Tは、前記オリフィスプレートFから離間して位置し、オリフィスプレートFを通る流れは、先端部Tの長手方向位置の関数として変化する。
図9は、前記燃料絞り弁38の別実施例を示し、ここで、この弁はV’として示されている。この弁V’は、比例ソレノイドS’と、プランジャ凹部を形成した弁本体B’とを有する。長手軸心に沿って延出するように構成された長手方向に移動可能な筒状プランジャP’が設けられ、これは、前記弁本体B’の前記プランジャ凹部内に延出している。前記筒状プランジャP’は、マニホルド又は先端部Mに固定された前記筒状プランジャPから成る。燃料は、前記弁本体B’に形成された流入口を通って燃料流入ラインFIから、前記筒状プランジャP’周りの連続リングR1である筒状プランジャP’の筒状チャンバに流入する。燃料の流れは、リングR1から、流出口を形成する軸穴H2に接続された流入口を形成する接続軸穴H2を通って、穴通路H3を介して前記弁本体B’によって形成された流出口FOに至り、その後、環状リングR2を介して燃料流出ラインFOから出る。前記穴H1,H2及びH3は、前記流入口と流体連通された、前記流出口への流路を形成している。
前記閉鎖位置とは、図9に図示されているように、前記筒状プランジャP’が、完全に左側に位置する位置である。これによって、リングR2が燐料流出ラインFOから閉じられる。燃料の絞りは、リングR2を燃料流出ラインFO側に位置させることによって起こる。逃がしラインVE1,VE2も、前記プランジャの移動領域の端部に於いて前記凹部に接続されている。
前記絞り弁の作動に於いて、図9に示されているように、前記比例ソレノイドS’が作動されて、前記筒状プランジャP’を、前記弁本体b’の凹部内で第1長手位置に移動させる。前記筒状プランジャP2’(リングR2を位置決めする)は、次に、前記流入ラインFIから燃料流入ラインFOへの流れを阻止するか、もしくは、燃料がそれを通ることを許容するべく、位置決めされる。燃料の流量は、燃料ポンプ圧が一定のままであるとすると、リングR2の燃料流出ラインFOに対する長手方向の位置によって決まる。前記絞り弁への燃料ポンプ圧は、圧力開放弁によって維持される。前記リングR1及びR2は、前記筒状プランジャPに取り付けられたマニホルドMに形成されている。これらリングR1及びR2を形成している前記マニホルドMの外側部分は、前記燃料流入ラインFIと燃料流出ラインFOとの一方又は両方を通過する流れを阻止又は変化させる阻止部材として作用する。従って、前記マニホルドMを長手方向に移動することによって、前記流入口と流出口と阻止部材とが、前記流入口と流出口と協動して流入口から流出口へと弁本体B’を通る流れを変化させる。
再び図1A及び2を参照すると、導管41内に位置する前記燃料パージ弁39は、24ボルトDC双方向N.C.ソレノイド弁等の、常時閉鎖ソレノイド弁である。その作動に於いて、該燃料パージ弁39は、(絞り弁を介した)エンジンへの燃料が閉じられている時に一定の時間のみ開放される。前記ロータ速度が、電気モータ52の停止するゼロRPM(毎分回転数)に達するまでは、電気モータ52は動き続ける。これによって、前記燃料噴射器40又は、これに関連するマニホルド内に残っているすべての残留燃料が燃焼器圧によって燃料タンク30へと吹き出すことが可能となる。このパージ作業によって、燃料配給に於いて問題を起こす可能性のある、燃料のコーキング、詰まり、或いは、燃料噴射器40の目詰まりが最小限化/防止される。
図10は、前記環状燃焼器14の一部の一部断面を示している。この環状燃焼器14は、コンプレッサ/タービン構成100に接続されている。このコンプレッサ/タービン構成100は、エンジンロータ又は回転駆動軸106周りに配置されたコンプレッサ・ブレード102とタービン・ブレード104とを有する。アウトボードベアリングから片持ち支持された状態で、前記エンジンロータ106は、長手Z軸心周りで回転するように構成され、図1Aに略示されているベアリング20,21によって支持されている。
環状外側ハウジング壁108が設けられ、これは、コンプレッサ・ブレード102の近傍に配置された吸気通路110を形成している。外側燃焼器ライナ壁112と、前方ハウジング壁又は内側ハウジング壁114とは、環状燃焼チャンバ116を形成する。前記前方ハウジング壁114と、前記外側ハウジング壁108の前方部分とは、前記環状燃焼チャンバ116と流体連通されたディフューザー出口の近傍から始まる、コンプレッサ/ディフューザー空気路又は通路118を形成する。この通路118にはコンプレッサディフューザーCDが設けられている。前記環状燃焼チャンバ116と、前記タービンと、前記空気路118とは互いに流体連通されている。環状冷却領域119が、前記前方ハウジング壁114の遠端部120と、前記外側燃焼器ライナ壁112の前方端部とによって形成されている。この環状冷却領域119は、冷却空気を環状タービンノズル128へと向ける。環状空気希釈ダクト又は空気希釈ノズル122が、前記外側燃焼器ライナ壁112の終端部に形成されている。前記空気希釈ダクト122には、波形揺動(wiggle)片124を設けてもよい。或いは、前記揺動片124を省略して、これを、前記外側燃焼器ライナ壁112に形成され、図中破線で示された穴Hによって、又は、外側燃焼器ライナ壁112を図中破線で示された、タービンノズル壁126’に近接させることによって、そして、前記環状燃焼チャンバ116内の火炎を希釈するために、前記外側燃焼器ライナ壁112に形成された、図中破線で示された複数の穴H及びT’を設けることによって、置き換えることができる。第2空気サプライに入る空気の量を制御し、これによって、火炎温度とNOx放出を一定に維持するべく、前記穴T’の断面領域を調節するべくリング(図示せず)を設けることが好ましい。
前記外側燃焼器ライナ壁112は、たとえば二つ等の、複数のボルトBOによって前記外側ハウジングに固定されている。これらボルトBOの内の一つは、液体燃料用の燃料システムを始動させるべく構成された点火装置GPを受取るべく構成された穴を形成している。前記点火装置GPは、前記各ボルトBOを通過して、前記環状燃焼チャンバ116内へと延出している。上方延出湾曲タービンノズル壁126が、空気希釈ノズル122から離間配置されている。或いは、前記タービンノズル壁126を、図中破線で図示され、126’として示されているように直線状に形成することも可能である。前記タービンノズル壁126と、前記前方ハウジング壁114とは、前記タービンを形成する前記タービン・ブレード104と流体連通された前記環状タービンノズル128を形成している。前記外側ハウジング壁108と前記外側燃焼器ライナ壁112との間には、空気流路又は通路129が形成されている。
複数の予混合チャンバ又は2次予混合チャンバ130が、前記環状燃焼チャンバ116の後方壁の近傍で前記外側燃焼器ライナ壁112の周りで周方向に互いに離間配置されるとともに、この壁に固定されている。複数の周方向に分配され径方向又は接線方向に配置された燃料噴射器又はノズル132が、図11Aの1次予混合チャンバ、流入領域又は第1端部138へ燃料を供給するべく、前記外側ハウジング壁108を通過して、前記空気流路129内へと延出している。
図11A及び11Bを参照すると、前記燃料噴射器132は、前記外側ハウジング壁108を通過して、前記空気流路129内で終端している。複数の1次予混合導管134が、前記環状燃焼チャンバ116の後壁136の近傍で前記外側燃焼器ライナ壁112の周りで周方向に延出している。これら1次予混合導管134の流入領域138は前記燃料噴射器132の終端部の近傍で、かつ、これら終端部と流体連通されて配置されるとともに、これら流域は、矢印140の流れ方向に向くように、互いに角度を有して配置されている。前記1次予混合導管134のそれぞれには、燃料の気化と1次予混合導管134への液体燃料の分散を促進するべく、スワラ142が設けられている。或いは、これらスワラ142は省略することも可能である。1次予混合導管134は、前記環状燃焼チャンバ116の前方ハウジング壁114に向けて燃焼混合用の空気が追加される1次予混合チャンバ130内に於いて、主要周方向に出口又は第2端部から濃厚な(非燃焼性混合物)燃料/空気混合物を向けるべく、前記燃料噴射器132の流出端部に対して配置されている。前記点火装置GPは、前記外側燃焼器ライナ壁112に設けられ、前記燃料/空気混合物を点火して自立火炎を作り出すべく、前記環状燃焼チャンバ116内に延出している。前記燃料噴射器132は、図11Aに図示されているように、前記流入領域138から、距離をもって離間配置されなければならない。図11Aは、角度を有する流入端部を備えた流入領域138と、前記外側ハウジング壁108に対して垂直に配置された前記燃料噴射器132とを図示している。1次予混合導管134’及び燃料噴射器132’として、その他の構成、たとえば、図11Aに於いて破線で示されたもの、も使用可能である。
次に、図10、11A及び11Bを参照しながら、前記燃焼器の作動について説明する。前記エンジンロータ106が回転されて、コンプレッサ・ブレード102を前記Z軸心周りで回転させる。空気が前記取り入れポート110に吸引されて、圧縮されて、矢印140の方向に前記空気路118と空気流路129とを流れる。この案内された圧縮空気は、前記冷却ダクト119と、空気希釈ノズル122と穴Hとを通って前記環状燃焼チャンバ116に流れ込む。圧縮空気は、更に、前記1次予混合導管134の流入端部138にも入る。空気は、更に、各予混合チャンバ130の流入端部Eと流体連通している2次空気供給穴143にも入る。加圧燃料は、前記燃料噴射器132の端部を出て、前記圧縮空気によって(前記燃焼器ライナの両側に発生された差圧により)、前記1次予混合導管134の流入端部138に運ばれ、同時に濃厚な燃料/空気混合物を形成する。この燃料/空気混合物は、前記オプションとして設けられたスワラ142を通過して、高温壁燃料気化を促進し、一旦火炎が発生すると、これを、スワールさせる。又、濃厚な燃料/空気混合物の滞留時間を長くするべく、より長い1次予混合導管134を設けることも可能である。しかし、この構成でも、良好な気化と均一な燃料/空気混合を提供するのに十分である。図12は、前記1次予混合導管134内に配置されたノズル132を備えたスワラ142を有する別実施例を図示している。図10及び11Aに戻って、この濃厚燃料/空気混合物は、前記1次予混合導管134から予混合チャンバ130へと流れ、ここで、空気混合物が追加されて、燃焼用の希薄な燃料/空気混合物が生成され、流出端部を出て、火炎面へ向かう主要周方向に於いて前記環状燃焼チャンバ116に流れ込む。最初、前記点火装置GPは、前記混合物に点火して、これが燃焼して電力用のエネルギを発生させる。点火後、前記点火装置GPはオフし続ける。前記空気希釈ノズル122の下流側で、このノズルの手前側に於いて、希釈空気は火炎に入り、燃焼産物の温度を低下させる。これらの排出ガスは、次に、前記希釈空気が混合された後、発生された火炎を通過し、前記タービンノズルに流入し、これを通過して、前記タービン・ブレード104を介して関連するタービンホイール電力取り出しのための速度を作り出し、これが、図18及び19に図示されているように、前記コンプレッサ・ブレード102とオルタネータとを駆動する。
図13A,13B,13C及び13Dは、前述した予混合チャンバ130の別の構成を図示している。具体的には、図13Aを参照すると、各1次予混合導管134は、燃焼前の2次予混合を促進するべく、捩じれローブ燃料2次予混合チャンバ150内に導かれている。各ローブ152は、燃料/空気混合物をスワールさせるべく捩じれ形状を有している。2次空気導管154が設けられ、前記空気流路129と流体連通された前記2次予混合チャンバ150の両端部の中間で各2次予混合チャンバ150に接続された排出端部を有する。前記外側燃焼器壁112に固定されている前記2次空気導管154の流入端部は、前記空気流路129内に位置している。図13Bに図示された構成は、図13Aに図示された構成と類似しており、類似のパーツを示すのに類似の参照番号が使用されている。具体的には、1次予混合導管134と、2次予混合導管154とが、捩じれローブ構成とは反対に、筒状の2次予混合チャンバ150に入り込んでいる。図13Cに図示されているように各1次予混合導管134、2次空気導管154及び前記2次予混合チャンバ150の接続部分に、これら導管134及び154からの流出物を混合するべく、混合ブロック156が配置されている。該混合ブロック156は、大きな質量を提供し、前記燃焼器ライナに取り付けられ、これに応じて、低減されたライナ加熱及び典型的な変形傾向を提供する。図13Dは、図13Bに図示された構成に類似しており、類似のパーツは類似の参照番号によって示されている。具体的には、前記1次予混合導管134及び2次空気導管154は、拡散2次予混合チャンバ150”へと入り込んでいる。
図13E及び13Fは、前述したように、複数の周方向に離間配置された穴Hと、1次予混合導管134と、2次予混合チャンバ150”と、2次空気導管とを備え、更に、前記空気流路129からの圧縮空気をそれを通して流れさせ、前記外側燃焼器ライナ壁112周りで周方向で前記環状燃焼チャンバ116へと流入させるように構成された補助2次空気供給導管157とを有する、外側燃焼器ライナ壁112の別実施例を図示している。この構造は、火炎面の圧力パルスの分割(break up)を促進する。
その作動に於いて、本発明によれば、低NOxが達成され、全体の放出種が減少する。
10ppm以下の低NOx(NO+NO2)が燃焼器に於いて望ましいが、これは、低火炎温度で低酸化環境(燃料/空気が、前記1次予混合チャンバ内で長滞留時間留まる)とし、短い滞留時間で2次希薄燃料/空気混合物が燃焼した後、低いNOx火炎温度が発生することによって達成可能である。火炎の安定性を高めるために水素分子を放出させるために、窒素原子を最小限の酸素とともに放出させるべく1次予混合に於ける滞留時間を長くすることが好ましい(濃厚燃料/空気混合物、長滞留1次予混合)。酸化1次火炎領域温度が低すぎると、UHC(未燃焼炭化水素)とCO(一酸化炭素)とが過剰となる。従って、非火炎1次予混合が好ましい。低温度域火炎は、均一、希薄気化、予混合段階作業によって達成される。低火炎温度は、燃料濃厚又は燃料希薄条件によって達成可能であるが、後者は、COとUHCとを増加させるため好ましくない。
好ましくは、華氏2500°以下の低火炎温度と、低放出量とするべくたとえば、燃焼の前に、希薄燃料/空気比を達成するために、火炎無しの濃厚燃料/空気予混合予気化1次混合システムの後に、2次混合システムが行われる。前記濃厚燃料/空気比(非燃焼)混合物は、燃焼前に、長い滞留時間の2次希薄化工程を通過し、これによって、化学量論的火炎状態とこれに関連する高いNOx放出とが避けられる。周方向混合と、1次濃厚気化予混合と組み合わせた燃焼と、その後の、燃焼前の2次予混合チャンバ、希薄燃料/空気とによって、低い放出量の燃焼が提供される。低火炎温度によつて、図14に図示されているように低いNOx放出が提供される。前記燃焼器を介した圧力又は圧力降下(ΔP)と組み合わされた濃厚燃料/空気1次予混合段階での放出水素によって、前記希薄2次チャンバでの短い滞留時間によって達成される希薄火炎の安定性が高められる。
最初、作動時に於いて、前記エンジンロータは、バッテリ電力によって駆動され、この間に、同時に燃料が前記燃焼チャンバに供給され、前記点火装置が作動される。空気は、徐々に接線方向に於いて前記コンプレッサディフューザーから出て、前記1次噴射混合管の方向に移動するが、ここで、一定量の空気が、低圧液体燃料と共に前記混合管又は1次予混合導管134の入口に注入される。単純な凹状スワラによって、燃料が二つの領域で受けられ、これによつて、一つ噴射燃料サプライからの均一な混合を促進する。燃料は、前記燃焼器ライナの前後の圧力変化によって、前記混合チャンバに流し込まれる。前記燃料は(もしもスワラが組み込まれている場合)には、前記1次混合管の内径壁で遠心回転され、ここで一旦火炎が発生されると気化される。次に、前記濃厚気化燃料/空気混合物は、前記2次予混合領域に入り、燃料/空気混合物は、前記点火装置、及び/又は前記燃料/空気混合物の通路の火炎領域に入る前に希薄化されて、前記混合物を点火する。前記管の外部で一旦火炎が発生すると、その熱によって前記管内に於いて燃料/空気混合物の気化が起こる。
前記2次チャンバで希薄化される、前記1次領域のこの濃厚な燃料/空気混合物は、エンジン動作速度に依存して濃度と火炎温度が変化するが、その温度は、NOxを最小限に抑制するため、華氏2700°から1500°の範囲である。
前記2次予混合領域後の燃焼は、高い希薄火炎温度と、低い当量比とを有し、低い温度による低い放出量と、低いNOx値を維持するための低い火炎温度のためにCO放出量を好ましくは0.6ないし0.9φ(当量比)の間に低下させる(CO+OH=CO2+H)の化学反応変化のためにより高い酸素反応を提供する。
前記燃焼生成物は、力学的エネルギ方向を、通常、前記燃料噴射器から流出する方向に維持しながら、前記燃焼器を周方向/接線方向に通過する。火炎は、希釈領域に入り、ここで、追加のコンプレッサ排出空気が前記燃焼器生成物と混合して、火炎温度を所定のタービン流入温度にまで低下させる。前記燃料/空気比は、所要電力と、空気流量とに依存するが、後者は、一定とすることができる。燃料流量は、前記タービンロータにかかる負荷によって変化する。その作動に於いて、前記エンジンロータ速度は、可変でもよいし、あるいは一定であってもよい。
図14は、燃焼前の燃料/空気比に依存するいくつかの作動範囲を図示しており、ここで華氏3800°の火炎温度の化学量論的温度は、過剰なNOxを生成するであろう。好ましくは、前記作動温度は、華氏1500°ないし2700°であり、より好ましくは、華氏2600°以下であり、その範囲では、0.4ないし0.6φのより低いレベルが最も好ましい。形状寸法(geometry)の変化が無い場合、φは、必要電力に依存する。燃焼によって作り出されたエネルギの50%が、前記コンプレッサを駆動するのに使用され、そのエネルギの50%が電気を発生するのに使用されると考えられている。排気ガス温度熱電対64は、排出ガスの温度を測定する。この情報に基づくと、燃焼温度は、燃料流量に基づいて測定可能であると考えられる。好ましくは、NOxの発生は200ppm以下に制限されるべきである。
本発明のもう一つの重要な態様は、前記タービンロータを、100,000RPMを超える速度で支持する前記ベアリングである。図15、図16A−16D及び図17は、ベアリング20を示している。そのベアリングは、流体力学のオイル制振ベアリングであって、図18に示す前記タービンロータ16を回転自在且つ摺動自在に支持する。図17は、エンジンメインケース263と、潤滑シール261と、Oリング198と、スナップリング又はロック部材216とを有する前記コンプレッサ/タービン構成100の一部を図示している。
特に図16A−16Dを参照すると、図17に図示されている前記ベアリング20は、エラストマ材から成るOリング198を受ける二つの凹部196を有する、環状ワンピースパッド又は傾斜パッド支持部材20’を有している。前記ベアリング部材20’は、該ベアリング部材20’によって形成された環状部によって、前記ロータ18の筒状部分を回転可能に受ける。前記ベアリング部材20’の一つの端部面には、軸心方向に延出するネジ穴が設けられている。前記ベアリング部材20’は、前記発電プラントの本体に固定された前記タービンエンジンハウジング202に配置されたベアリングハウジング200に形成された筒状穴に受けられている。前記ベアリング部材20’は、下記のロック構造203によって前記ハウジングに固定されている。前記ベアリングハウジング200の一端部から、軸心方向に二つの互いに離間した弓形リップ204が延出している。弓形溝又はスナップリング凹部206(その内の一つのみが図示されている)が、これらリップ204の内側周面に形成されている。これらリップ204の端部によって、互いに離間したラグ受け入れ凹部208が形成されており、前記ベアリングハウジング200の外側面に沿って形成された終端ポイントで終端している。前記ネジ穴を有する前記ベアリング部材20’の端部に近接して、環状保持ラグ(lugged)リング210が設けられている。互いに180°離間した二つのラグ212が、前記ベアリング部材20’の前記環状部から離間して、前記保持リング210から径方向に延出し、ネジ受け穴が前記保持リング210に配置されている。これは、前記保持リング210を、該保持リング210の前記穴を通って前記ベアリング部材20’の前記端部の穴まで通過するネジ214によって、前記ベアリング部材20’の前記端部に固定するためである。次に、ベアリング部材20’は、前記ラグ212が前記ラグ受け入れ凹部208内に位置してベアリング部材20’が前記ベアリングハウジング200に対して長手軸心周りで回転することを防止する状態で、前記ベアリングハウジング200に受け入れられる。前記スナップリング216が、前記ベアリングハウジング200の前記弓形溝206に挿入されて、前記ラグ216を保持し、これによつて、前記保持リング210が、前記スナップリング206とベアリングハウジング200との間に保持される。好ましくは、前記ベアリングハウジング200と、ベアリング部材20’の外径との間には僅かなクリアランスが設けられる。前記Oリング198は、前記ベアリング部材20’の外面と、前記ベアリングハウジング200の内面との間に挟持され、ダンパ及びシールとして作用する。この構成によれば、前記スナップリング216がベアリングを位置保持することから、ネジが緩む問題なく、完全に邪魔されないベアリング・フロートが提供される。前記スナップリング216は、更に、このスナップリング216と前記終端ポイントとが、前記ベアリング部材20’を、前記ベアリングハウジング200の軸心方向に於いて、更に、前記保持リング210と前記ラグ212との協動によって前記ベアリングハウジング200に対して規制しながら、ベアリング部材20’の制御された、又は規制された軸心及び周方向の移動を可能にする。
図18及び19は、前述した部材の多くを利用した二つの発電プラント構成12’及び12”の側面図である。具体的には、これら発電プラント12’及び12”のそれぞれは、前記環状燃焼器14と、前記取り出しポート26と、前記空気取り入れポート28とを備えている。前記タービンロータ16のそれぞれは、ベアリング20及び21によって回転可能に支持されたロータ18を備えるそれぞれのタービンロータ16に流体接続されている。
図18を参照すると、ここには、前記環状燃焼器を含む本体159と、ロータと、前記ロータに固定されるとともに前記燃焼器に流体連通された複数のブレードから成るタービンと、前記燃焼器に流体接続され、その内部に配置されたロータに固定された複数のコンプレッサ・ブレードを有するコンプレッサ・チャンバと、前記コンプレッサ・チャンバに流体接続された空気取り入れポートと、前記タービンに流体接続された取り出しポートと、前記ロータに固定された複数のマグネットと、前記本体に設けられた磁気吸引性材から成り、前記複数のマグネットの近傍に配置されたステータコイルを有するステータとを有し、これによって、前記ロータの回転によつて、前記ステータ周りでの磁束が変化し、前記ステータコイルに電流を誘導することによって電気が発生される。流入空気は、前記空気吸引ポート28から、流路160に沿って前記コンプレッサ・ブレード102へと流れる。前記流路160は、外側囲い板162と図1A及び3に示されている前記サンプ42との間に形成されている。図18に図示された実施例に於いて、外気温度空気が、前記空気取り入れポート28から、流路160に沿って前記サンプ42の周りに引き込まれる。前記外気温度空気は、昇温オイル温度によってわずかに加熱され、これによって、前記サンプ42内のオイルが冷却される。次に、空気は前記コンプレッサ・ブレード102によって圧縮される。この圧縮空気は、前述したように、前記環状燃焼器14に流れ込み、燃焼生成物とガスとが取り出しポート26から排出される。後述のシールプレートアセンブリ400が、前記コンプレッサ・ブレード102と前記タービン・ブレード104との間に配置され、ヒートシールドとして作用する。筒状スリーブ169が設けられ、これは、カーボンファイバを含有する耐高温性ポリマ樹脂から成る。前記筒状スリーブ169は、前記複数のマグネットの周囲に配置され、これらマグネットを保持している。これらマグネットと前記筒状スリーブ169とは、前記ロータに固定されて、前記エンジンロータ500に機械取り付けされたオルタネータロータを形成している。前記スリーブ169中のカーボンファイバによって、このスリーブ169は、高回転速度によって発生する力に耐えることができる。
図18に類似し、類似の部材が類似の参照番号によって示されている図19を参照すると、ここには、熱交換器170が図示されている。この熱交換器170は、外側囲い板172と、流入路174と、流出路176とを備えている。前記流入路174は、前記流出路176の近傍に位置して、流入空気が前記コンプレッサ内のコンプレッサ・ブレード102を通過した後、共通の壁を共有している。その後、流入空気は、前記流出路176を通過する複数の流管178を通って、前記環状燃焼チャンバ116に流入する。前記環状燃焼チャンバ116からの排出ガスは、前記タービン領域に流入し、ここで、排出ガスは、前記タービン・ブレード104を通過して、流入空気を加熱する前記流管178周りの流出領域180を有する熱交換器170に流入する。次に、これら排出ガスは、前記流出路176に流入するが、この流出路176は、該流出路176を通過する排気ガスからの熱が、前記流入路174を通過する圧縮空気へと流れて、これによって前記排出ガスを冷却するとともに、流入空気を加熱することができるように、前記流入路174の近傍に配置されている。その後、排出ガスは、前記取り出しポート26を通って出る。前記高温の排出ガスによって流入ガスが予備加熱され、前記発電プラント12”の効率が高まる。
図20に図示された磁気プリロードシステムが提供されている。普通のオイル潤滑式ボールベアリングシステムは、ロータのスピン中に於ける相対的スリップと、本来的な材料の剥離ダメージとを防止するべく、ボールと、インナーレース及びアウターレースとの接触を確実なものにするために、軽い「プリロード」を必要とする。ガスタービンエンジンでは、通常、約30%の設計ロータ速度でのエンジン作動圧によって安全なベアリング・スラスト負荷が発生するが、その時点までに於いては、ボールは、「剥離」ダメージをもたらす可能性のあるなんらかのレベルのスリップに晒される。小型のガスタービンの中には、機械スピンドルのように互いにプリロードされたボールベアリングバネ組を備えたものも存在するが、ガスタービンは、その他の問題を引き起こす本来的なロータ設計の不良によって、損なわれる可能性がある。
本実施例は、そのそれぞれの重心が互いに約2%軸心方向にオフセットされ、鉄を含むステータ303に対するロータ302の本来的な軸心方向前方への磁気吸引を作り出す、ロータ302とステータ303とを有するエンジンロータシステム300を備える一体式オルタネータを有する。これによって、オルタネータの電気出力を損なうことなく、しかも、一つのボールベアリングのみを組み込むことによって、ボールベアリングに対して好適なプリロード条件が提供される。
具体的には、前記ロータ302は、前記ステータ303の近傍に配置された複数の周方向に配置された永久マグネットMG(その内の一つのみが図示されている)を有する。前記ロータ302とステータ303のこれらのマグネットMGは、距離Aだけオフセットされた質量中心M1,M2を有する。前記ロータ302は、エンジンロータ301(図1のロータ18に対応する)に取り付けられている。前記ロータ302のベアリング受け部材を形成する前記エンジンロータ301の端部にボールベアリング304(前述のベアリング21に対応する)が設けられている。このボールベアリング304は、前記エンジンロータ301に固定された環状インナーレース306と、前記環状インナーレース306と同軸状に配置されるとともに前記本体のステータハウジング307に固定された環状アウターレース305とを有している。これら環状インナーレース306と環状アウターレース305との間に形成されたボール受け凹部に、ボール308が受けられている。質量中心M1,M2によって表わされる方向に於ける前記ステータ303のロータ302に対する磁気吸引によって、剥離の防止に役立つ前記ボールベアリング304に対する連続的なプリロードが付与されるとともに、前記環状アウターレース305と環状インナーレース306との間の相対的な軸心方向のオフセットが提供される。
図21及び22は、本発明の別実施例を図示している。具体的には、図21は、図11Aに図示した外側燃焼器ライナ壁112の後方部分に類似のライナ壁310の一部を示している。類似の参照番号によって類似の部材が示されている。前記ライナ壁310の一部は、図11Aに図示した構成の類似の複数の周方向に離間配置された予混合チャンバ312を備えた後壁を有してるが、但し、図11Aに図示されたものでは直線状であったのに対して、前記予混合チャンバ312の出口領域又は端部314は発散している。図22は、これら予混合チャンバ312をより詳細に図示している。前記発散出口領域314は、前記環状燃焼チャンバ116へ流入する燃料/空気混合物のガス流出速度を低下させる。前記燃料/空気混合物は、周方向に発散する方向に前記環状燃焼チャンバに流入する。これら予混合チャンバ312の発散構成は、火炎安定性を高める火炎ホルダとして作用する。
図23は、前記コンプレッサ/タービン構成100の一部をより詳細に図示している。このコンプレッサ/タービン構成100は、前記複数のタービン・ブレード104から離間した複数のコンプレッサ・ブレード102を備える一体構成である。前記コンプレッサ・ブレード102及びタービン・ブレード104は、タービンディスクとコンプレッサディスクとを介して前記回転駆動軸106に固定されており、前記コンプレッサ・ブレード102は、タービン・ブレード104よりも低温のガスに晒され、これらコンプレッサ・ブレード102は、もしも、タービン・ブレード104に接触してくる高温ガスに晒されたならば故障する可能性がある。従って、タービンノズル401とディフューザー403との間の後方位置に、又は、前記複数のコンプレッサ・ブレード102及び複数のタービン・ブレード104と回転駆動軸106の間の凹部分又はリング受け空間402に、シールプレートアセンブリ400が保持されている。
図24に示されているように、前記シールプレートアセンブリ400は、実質的に円形形状で、二つの半円部分404から成る割りリングである。好ましくは、前記二つの半円部分404のそれぞれは、耐熱材から形成されている。シールプレートアセンブリ400のこれら半円部分404は、図19及び23に示されているように、前記ディフューザー403と、前記本体に固定されたタービンノズル401との間の凹部フィットによって位置保持されている。図23を参照すると、各半円部分404の断面は、傾斜部分408と、該傾斜部分408に接続されたカップ部分410と、該カップ部分410に接続されたリップ部分412とを有する。前記タービンノズル401は、シールリップ部412に当接して、前記シールプレートアセンブリ400を位置保持している。前記シールプレートセンブリ400は、貫通穴416を通過する前記リング受け空間402に近接して配置された前記回転駆動軸106の直径とほぼ等しいが、これよりも大きな外径を有する穴416を形成している。前記シールプレートアセンブリ400の傾斜部分は、前記コンプレッサ・ブレード102によって形成されるコンプレッサホイール411の近傍に位置する。前記複数のコンプレッサ・ブレード102の縁部は、図19に示されているように、軸心V”から測定した角度αに沿って延出し、かつ、前記傾斜部分408の近傍に配置されている。前記傾斜部408の表面420と前記カップ部410とによって空気又はガスギャップ418が形成されている。より具体的には、前記表面420とカップ部410とは、前記ガスギャップ418を形成する前記環状燃焼チャンバ116と流体連通された二つの互いに離間された壁を有する。前記シールプレートアセンブリ400は、前記コンプレッサ・ブレード102をタービン・ブレード104から分離し、タービン・ブレードからコンプレッサ・ブレードへ、又は、その逆方向にガスが直接に流れることを防止する。HASTALLOY−X(登録商標)材の低い熱伝導性と、前記ガスギャップ418と、前記複数のタービン・ブレード104の近傍に形成された開口部を有する前記リップ部412の小さな接触面積との組み合わせによって、複数のコンプレッサ・ブレード102に対して優れた断熱作用が提供される。前記シールプレートアセンブリ400は、HASTALLOY−X(登録商標)材の代りに、セラミック材やその他の断熱性が低く高耐酸化性の材料によって形成可能であると考えられる。
一般に、上述した発電システムを運転する方法は以下の通りである。先ず、前記ステータに対して、電気、即ち、バッテリからの電流、を供給することによってロータを回転させる。これによって、コンプレッサに空気が取り込まれ、圧縮空気となる。この圧縮空気は、前記燃焼チャンバに流入し、少なくともその一部が燃料と混合されて、燃料/空気混合物が生成される。この燃料/空気混合物が燃焼チャンバで点火されて排気ガスが発生する。これら排気ガスと、前記圧縮ガスの残りの部分とは、前記タービンのタービンノズルを通過して、ここから出る。前記ロータが、前記ステータと協動する前記ロータの周囲に配置された回転マグネットによって電気が発生される第1速度で回転する時、前記ステータに対して供給されていた電気を止める。好ましくは、前記ロータベアリングは、潤滑油によって潤滑され、この潤滑油と燃料とは、一つのモータによって駆動される複数のポンプから供給される。好ましくは、前記燃料/空気混合物は、分岐ノズルを通って前記燃焼チャンバに導入され、圧縮空気は排気ガスによって予熱される。
再び図1Aと1Bを参照して、前記発電システム10は以下の好適方法で運転される。先ず、DCバッテリ72からエネルギを取り出すことによって前記発電システム10が始動され、電子機械式燃料弁が開放される。これを始動作業と称する。或いは、前記DCバッテリ72に代えて、AC電源を使用することも可能である。この弁は常時開放で、燃料供給を停止しなければならない緊急状況に於いてのみ閉じられる。次に、前記点火装置が作動される。前記DCバッテリ72からのバッテリ電力が点火装置にパルス供給される。このバッテリ電力によつて前記コンプレッサ軸が回転し、導入空気が前記環状燃焼器14へと流れる。前記燃料パージ弁39は、閉じ状態に維持され、シャットダウン時にのみコンプレッサの背圧によって燃料噴射器40から供給タンク30に燃料をパージするための期間、開放される。
次に、前記電気モータ52が作動される。このモータは、前記潤滑油ポンプ50と燃料ポンプ36とを駆動する。前記ガスタービンエンジンオルタネータ/モータは、油圧が所定の最低値に達するまでは作動されない。前記油圧トランスデューサーは、油圧をモニタし、油圧が所定レベル以下に低下した場合に、緊急シャットダウン条件であると判断する。前記燃料ポンプ36は、同時に制御された燃料供給圧を提供する。
上述の順序により、前記エンジンステータはエンジン回転を開始1し、空気をエンジンへと流す。
設計ロータ速度の約5%では、点火は継続して行われ、エンジンロータは、設計ロータ速度の約10%になった時に、燃料がコンプレッサに供給される。前記点火装置GPが、前記環状燃焼器14内の燃料/空気混合物に点火する。前記設計ロータ速度の約40%の時、前記点火装置とスタータの作動は停止される。エンジンは前記設計ロータ速度にまで加速し続ける。緩やかな燃料/空気混合物点火を許容するべく、この混合物の点火が早めに起こることが重要である。前記燃焼器に流れる燃料の最初の量は、前記比例ソレノイド燃料絞り弁38をセットするのに使用される導入及び排出排気ガス温度に基づいて設定される。前記初期点火と十分な火炎エネルギ後に、ロータの速度は、設計ロータ速度にまで加速する。ロータの速度は、排気ガス温度に依存する。もしも排気温度が4秒間以上、所定の最高温度を上回った場合、前記電気モータ52は停止される。
本システムは、約2,000ポンド超の重量の現在の最新式ディーゼル発電機に置き換わるものであると考えられる。更に、本発明によって製造されたガスタービンによって動力供給される45キロワットの発電機は、約350ポンドの重量となり、30ppm以下のNOxを放出するものと考えられる。更に、本発明は、可変速度で効率的に作動可能であるが、一定速度で作動することが好ましい。
より詳しくは、前記システムのパワー/初期化中に於いて、24ボルトのバッテリからエネルギが取り出される。電子機械式燃料バルブが開放される。次に、スパークプラグにパルス電力(.25ないし.34ボルトの電気エネルギを2500Vで、毎秒4ない5回のスパーク)を供給することによって、点火装置が作動される。これは、システムが「冷間始動」されるか、又は、「熱間始動」されるかによるが、「冷間始動」は、コンプレッサが長時間に渡って作動されていない場合に行われ、「熱間始動」は、コンプレッサが最近に作動された場合に行われる。コンプレッサ導入温度又は残留排気温度は、過剰温度状態を避けるための、初期燃料流量に影響する。燃料流量は、比例ソレノイド弁設定によって制御される。上述したバネ付勢パージ弁は、常時閉鎖式であって、シャットダウン時に、コンプレッサの背圧によって残留燃料を燃料タンクにパージするべく1分間だけ開放される。前記オイルポンプは、前記gerotorタイプオイルポンプと燃料ポンプへの前記電気モータによって前記燃料ポンプと共に作動される。前記ガスタービンエンジン電気モータは、油圧が最低圧レベルとなるまでは、スプールアップのために作動されない。もしも油圧が最低値を下回った時の緊急シャットダウン用に、油圧トランスデューサーも使用される。24ボルトモータによって駆動される自動式燃料ポンプによって、所定値に設定された前記比例ソレノイド絞り弁に対して、65ないし75psigの規制された燃料供給圧が提供される。好ましくは、前記オイルポンプと前記燃料ポンプとは同じモータによって駆動される。次に、前記ガスタービンロータが、電気モータによって回転され、ここで前記発電機は始動モータとして作用する。前記モータをスプールアップするのに必要なエネルギの量は、以下に基づいて予想される。1)前記コンプレッサを通る流量及び圧力、そして2)前記タービンを通して膨張する高温ガスから取り出されるエネルギ、これは、20%ないし50−60%の速度及び/又は温度の設定ロータ速度の関数として増加する。前記設計ロータ速度の約40%の時、前記電気モータエネルギは停止され、前記ロータは自立運転状態となる。前記燃焼器への燃料流は、前記100%の設計ロータ速度の5%(たとえば、100,000RPMシステムの場合5,000RPM)で開始される。点火が早く起こる(着火時間)ことが重要である。これによって緩やかな点火が可能となる。前記燃焼器へ流れる燃料の初期量は前記比例ソレノイド弁を適切に設定するための入口温度及び残留排気ガス温度に基づいて設定される。前記ロータがその設計ロータ速度の100%で回転するまで、燃焼器への燃料が増加される。前記初期着火後、制御システムは、華氏1000°以上の排気ガス温度をモニタし、前記ロータ速度の加速度を、前記設計ロータ速度の約90%に制御する。この時点に於いて、排気温度が華氏500°ないし1000°、より好ましくは、華氏500°ないし700°の範囲内となるように、燃料の制御が行われる。100%設計ロータ速度までの始動時間は、10秒間以内とすることができる。もしも排気温度が数秒間に渡って設定値を超えた場合に、燃料供給を停止するべく、過剰温度シャットオフスイッチが前記排気口の近傍に配置されている。前記単位ロータ速度の90%設計ロータ速度に於いて、前記システムは、100%設計ロータ速度を維持するべく閉鎖ルートループによって制御される。従って、燃料流量は、100%設計ロータ速度を維持するために必要な負荷に応じて変化する。好ましくは、100%設計ロータ速度での前記速度制御ルーブは、前記点火装置を停止し、システムから動力を除去することによって維持される。前記排気ガス温度は電力需要に応じて変化する。
本発明は、負荷及び無負荷状態中で100%設計ロータ速度を維持する能力を有し、総タービン動力の約50%が、前記コンプレッサを負荷状態で駆動するのに必要であると考えられる。更に、前記エンジンコントローラは、システムをモニタし、燃料ポンプ、オイルポンプ、又はこれらのポンプを駆動する電気モータ52に故障が発生したか否かを判断する。
以上、本発明の好適な実施例について説明したが、添付の請求項の範囲内に於いてのその他の構成も実施可能であると理解される。
本発明に依る発電システムの略図である。 本発明に依る発電システムの略図である。 図1Aに図示した発電システム用の液体燃料供給システムの略図である。 図1Aに図示した発電システム用の代替オイルシステムの略図である。 図1Aに図示した発電システムに使用されている、モータ、燃料ポンプ及びオイルポンプ構成の平面図である。 図4に図示した燃料ポンプの一部のエンド・ビューである。 図5に図示した燃料ポンプの側面図である。 図5及び図6に図示した燃料ポンプの一部の平面図である。 本発明に依る絞り弁の一部断面図である。 図8Aに図示した絞り弁の一部断面図である。 本発明に依る絞り弁の別実施例の一部断面図である。 図1Aに図示した発電システムの燃焼器の一部の断面図である。 図10のXIA−XIA線に沿った一部断面図である。 図10に図示した外側燃焼器ライナ壁の上方斜視図である。 図10に図示した燃焼器に類似の燃焼器の別実施例の一部の一部断面、上方斜視図である。 図10に図示した燃焼器の1次/2次予混合チャンバの別構成の斜視図である。 図10に図示した燃焼器の1次/2次予混合チャンバの別構成の斜視図である。 図10に図示した燃焼器の1次/2次予混合チャンバの別構成の斜視図である。 図10に図示した燃焼器の1次/2次予混合チャンバの別構成の斜視図である。 外側燃焼器ライナ壁の上方斜視図の別実施例である。 図13EのXIIIF−XIIIF線に沿った一部断面図である。 火炎温度対燃料空気混合物のグラフである。 本発明に依る前記タービンの一部分の一部長手方向断面図である。 本発明の前記タービンに使用されているベアリング保持システムの分解図である。 図16Aに図示したベアリング保持リングとベアリングとの一部の前方平面図である。 図16AのXVIC−XVIC線に沿った断面図である。 図16Bに図示したベアリング保持リングとベアリングとの一部分の別の前方平面図である。 図16Aに図示されたベアリング保持システムを含む前記タービンの一部分の分解斜視図である。 図1Aに略示された発電プラントの一部断面側面図である。 熱交換器を組み込んだ図1Aに図示した発電プラントの別の実施例の一部断面側面図である。 本発明に依って構成された、磁気プリロード・ボールベアリングシステムの一部の一部断面側面図である。 本発明の別実施例のライナ壁の一部のエンド・ビューである。 図21に図示した2次混合チャンバの断面図である。 回転駆動軸周りに配設されたコンプレッサ・ブレードとタービン・ブレードと、割りリング構造とを含むコンプレッサ/タービン構造の一部を断面図である。 図23に図示した割りリング構造の前面図である。

Claims (7)

  1. 本体と
    前記本体に設けられた燃焼器
    ロータに固定された複数のタービン・ブレードから成り、前記本体に設けられ、かつ、前記燃焼器と流体連通されたタービン
    前記本体に設けられ、かつ、前記燃焼器と流体連通されたコンプレッサ・チャンバ
    前記コンプレッサ・チャンバ内に配置され、前記ロータに固定された複数のコンプレッサ・ブレード
    前記コンプレッサ・チャンバと流体連通された空気取り入れポート
    前記タービンと流体連通された取り出しポート
    前記ロータに固定された複数のマグネット
    前記本体に設けられ、前記複数のマグネットの近傍に配置され、磁気吸引性材から成るステータと、
    前記本体に固定され、環状部が形成され、前記環状部によって前記ロータの筒状部を回転可能に受ける環状ベアリング
    前記ベアリングを前記本体に固定するロック構成とを有し、
    前記ベアリングは、前記ロータが長手方向軸心周りで回転可能となるべく前記ロータを支持するように構成され、
    前記ロック構成は、前記ベアリングに近接して設けられる環状保持リングから径方向に延出するラグ、前記本体に形成されて前記ベアリングを受ける筒状ベアリング受け穴と、前記本体に形成され、前記ラグを受け、前記ベアリングが前記本体に対して前記長手方向軸心周りで回転することを防止するラグ受け凹部と、前記保持リングを前記本体との間に保持するスナップリングとを有し、
    前記ラグ受け凹部は、終端ポイントに於いて前記本体で終端し、
    前記スナップリングと前記終端ポイントとは、前記保持リングと前記ラグとの協動で、前記ベアリングの前記本体に対する長手軸心方向の規制された移動を可能にし、
    前記ロータの回転によって前記ステータ周りの磁束が変化し、電気が発生する、
    発電システム。
  2. 二つのラグ受け凹部が一対の互いに離間した弓形リップによって形成され、前記弓形リップのそれぞれは、開放向きラグ受け凹部を形成し、前記ラグ受け凹部は互いに離間し、二つの径方向に延出するラグを備えた環状保持ラグリングが、前記ベアリングに固定され、前記ラグがこれら各ラグ受け凹部によって受けられ、前記スナップリングは、前記弓形リップに形成されたスナップリング凹部内に受けられる、
    請求項1に記載の発電システム。
  3. 前記ベアリングの外面と前記本体との間にクリアランスが設けられ、前記クリアランス内に配置された円環状のダンパを有する、
    請求項1又は請求項2に記載の発電システム。
  4. 本体と
    前記本体に設けられた燃焼器
    ロータに固定された複数のタービン・ブレードから成り、前記本体に設けられ、かつ、前記燃焼器と流体連通されたタービン
    前記本体に設けられ、かつ、前記燃焼器と流体連通されたコンプレッサ・チャンバ
    前記コンプレッサ・チャンバ内に配置され、前記ロータに固定された複数のコンプレッサ・ブレード
    前記コンプレッサ・チャンバと流体連通された空気取り入れポート
    前記タービンと流体連通された取り出しポート
    前記ロータに固定された複数のマグネット
    前記本体に設けられ、前記複数のマグネットの近傍に配置され、磁気吸引性材から成るステータと、
    前記本体に固定され、環状部が形成され、前記環状部によって前記ロータの筒状部を回転可能に受ける環状ベアリング
    前記ベアリングに近接して設けられる環状保持リングから径方向に延出するラグと、前記本体に形成され、前記ラグを受けるラグ受け凹部と、前記保持リングを前記本体との間に保持するスナップリングと、
    前記ベアリングの外面と前記本体との間に配置されたダンパとを有し、
    前記ベアリングは、前記ロータが長手方向軸心周りで回転可能となるべく前記ロータを支持するように構成され、
    前記ラグ受け凹部は、終端ポイントに於いて前記本体で終端し、
    前記ラグは前記ラグ受け凹部内に位置して前記ベアリングが前記本体に対して前記長手方向軸心周りで回転することを防止し、
    前記スナップリングと前記終端ポイントとは、前記保持リングと前記ラグとの協動で、前記ベアリングの前記本体に対する長手軸心方向及び前記長手方向軸心周りの規制された移動を可能にし、
    前記ロータの回転によって前記ステータ周りの磁束が変化し、電気が発生する、
    発電システム。
  5. 前記ダンパは、エラストマ材から成るOリングである
    請求項3又は請求項4に記載の発電システム。
  6. 前記ロータは、100,000RPMを超える速度で回転可能である、
    請求項4に記載の発電システム。
  7. 前記ロータのベアリング支持部を有し、前記マグネットの質量中心と前記ステータの質量中心とは、軸心方向にオフセットされ、前記ステータと前記マグネットの磁気吸引に依り、前記ベアリングに対してプリロードを提供する、
    請求項1ないし請求項6のいずれか1項に記載の発電システム。
JP2006343581A 1996-12-03 2006-12-20 環状燃焼器を備えた発電システム Expired - Lifetime JP4465344B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3209096P 1996-12-03 1996-12-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52574598A Division JP2002518987A (ja) 1996-12-03 1997-12-03 環状燃焼器を備えた発電システム

Publications (2)

Publication Number Publication Date
JP2007170396A JP2007170396A (ja) 2007-07-05
JP4465344B2 true JP4465344B2 (ja) 2010-05-19

Family

ID=21863050

Family Applications (2)

Application Number Title Priority Date Filing Date
JP52574598A Ceased JP2002518987A (ja) 1996-12-03 1997-12-03 環状燃焼器を備えた発電システム
JP2006343581A Expired - Lifetime JP4465344B2 (ja) 1996-12-03 2006-12-20 環状燃焼器を備えた発電システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP52574598A Ceased JP2002518987A (ja) 1996-12-03 1997-12-03 環状燃焼器を備えた発電システム

Country Status (13)

Country Link
US (1) US6314717B1 (ja)
EP (1) EP0943069B1 (ja)
JP (2) JP2002518987A (ja)
KR (1) KR20000069289A (ja)
CN (1) CN1122148C (ja)
AT (1) ATE251739T1 (ja)
AU (1) AU5689298A (ja)
BR (1) BR9714776A (ja)
CA (1) CA2273221A1 (ja)
DE (1) DE69725463D1 (ja)
ID (1) ID22740A (ja)
RU (1) RU2243383C2 (ja)
WO (1) WO1998025082A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453658B1 (en) * 2000-02-24 2002-09-24 Capstone Turbine Corporation Multi-stage multi-plane combustion system for a gas turbine engine
US6810677B2 (en) 2001-08-27 2004-11-02 Elliot Energy Systems, Inc. Method for gas turbine light-off
US6786049B2 (en) 2002-05-22 2004-09-07 Hamilton Sundstrand Fuel supply control for a gas turbine including multiple solenoid valves
US6836720B2 (en) * 2002-09-13 2004-12-28 Elliott Energy Systems, Inc. Offload control of turboalternator with rich burn quick quench lean burn combustor to prevent blowout of combustor
US6834226B2 (en) * 2002-09-13 2004-12-21 Elliott Energy Systems, Inc. Multiple control loop acceleration of turboalternator after reaching self-sustaining speed previous to reaching synchronous speed
US6819999B2 (en) * 2002-09-13 2004-11-16 Elliott Energy Systems, Inc. Multiple control loop acceleration of turboalternator previous to self-sustaining speed
US7574867B2 (en) * 2003-04-02 2009-08-18 Tma Power, Llc Hybrid microturbine for generating electricity
US6942451B1 (en) 2003-06-03 2005-09-13 Hamilton Sundstrand Corporation Damping system for an expendable gas turbine engine
US7194866B1 (en) 2003-06-20 2007-03-27 Hamilton Sundstrand Corporation Static structure for an expendable gas turbine engine
US8438858B1 (en) 2003-08-20 2013-05-14 Hamilton Sundstrand Corporation Rotational system for an expendable gas turbine engine
EP1528343A1 (de) * 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
FR2878286B1 (fr) * 2004-11-25 2009-05-22 Snecma Moteurs Sa Turbomachine comportant un generateur de courant electrique integre
US7211906B2 (en) * 2005-04-04 2007-05-01 Tma Power, Llc Rankine—microturbine for generating electricity
US7574853B2 (en) * 2005-10-17 2009-08-18 Tma Power, Llc Microturbine with CHP system having a distillation apparatus
US7836698B2 (en) * 2005-10-20 2010-11-23 General Electric Company Combustor with staged fuel premixer
US7726112B2 (en) 2006-04-24 2010-06-01 Pratt & Whitney Canada Corp. Fuel system of gas turbine engines
US7626892B2 (en) * 2006-05-01 2009-12-01 Tai-Her Yang Timing device with power winder
US7908072B2 (en) * 2007-06-26 2011-03-15 General Electric Company Systems and methods for using a combustion dynamics tuning algorithm with a multi-can combustor
WO2010132439A1 (en) 2009-05-12 2010-11-18 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US8866334B2 (en) 2010-03-02 2014-10-21 Icr Turbine Engine Corporation Dispatchable power from a renewable energy facility
US20110265438A1 (en) * 2010-04-29 2011-11-03 Ryan William R Turbine engine with enhanced fluid flow strainer system
US8915088B2 (en) * 2010-06-11 2014-12-23 Hamilton Sundstrand Corporation Fuel control method for starting a gas turbine engine
FR2962491B1 (fr) * 2010-07-07 2014-04-04 Snecma Procedure d'allumage pour une chambre de combustion de turbomachine
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
EP2612009B1 (en) 2010-09-03 2020-04-22 ICR Turbine Engine Corporatin Gas turbine engine
US8395275B2 (en) 2010-11-09 2013-03-12 Hamilton Sundstrand Corporation Integrated permanent magnet alternator and cooling fan
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
WO2013023147A1 (en) * 2011-08-11 2013-02-14 Beckett Gas, Inc. Combustor
US10634354B2 (en) 2011-08-11 2020-04-28 Beckett Gas, Inc. Combustor
KR101232054B1 (ko) * 2011-08-12 2013-02-15 국방과학연구소 마이크로 터빈용 연소기의 성능 평가 장치 및 그 성능 평가 방법
EP2594766B1 (en) * 2011-11-18 2014-06-18 Hamilton Sundstrand Corporation A gas turbine engine comprising a permanent magnet alternator with integrated cooling fan
US10113434B2 (en) 2012-01-31 2018-10-30 United Technologies Corporation Turbine blade damper seal
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
EP2762687A1 (en) 2013-02-01 2014-08-06 Siemens Aktiengesellschaft Method for starting a combustion system
WO2014123850A1 (en) 2013-02-06 2014-08-14 United Technologies Corporation Gas turbine engine component with upstream-directed cooling film holes
EP2954261B1 (en) 2013-02-08 2020-03-04 United Technologies Corporation Gas turbine engine combustor
US10914470B2 (en) 2013-03-14 2021-02-09 Raytheon Technologies Corporation Combustor panel with increased durability
US9347378B2 (en) * 2013-05-13 2016-05-24 Solar Turbines Incorporated Outer premix barrel vent air sweep
US20150115781A1 (en) * 2013-10-25 2015-04-30 Michael L Luparello Electrical Generator
CN104153827B (zh) * 2014-07-07 2016-03-02 桐庐福瑞太阳能科技有限公司 一种一体式风洞型汽轮发电设备
US10274201B2 (en) * 2016-01-05 2019-04-30 Solar Turbines Incorporated Fuel injector with dual main fuel injection
US20190002117A1 (en) * 2017-06-30 2019-01-03 General Electric Company Propulsion system for an aircraft
RU182859U1 (ru) * 2018-05-28 2018-09-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Сферический генератор
US20200340409A1 (en) * 2019-04-24 2020-10-29 Viettel Group System and method for gas turbine engine control
US11788464B2 (en) 2019-05-30 2023-10-17 Joseph Michael Teets Advanced 2-spool turboprop engine
US20220332168A1 (en) * 2021-03-23 2022-10-20 Luther J. Worthington, Jr. Apparatus for cooling and/or heating the interior of an environment and methods of using same
FR3135114A1 (fr) * 2022-05-02 2023-11-03 Safran Procede d’injection de melange hydrogene-air pour bruleur de turbomachine
US11970977B2 (en) 2022-08-26 2024-04-30 Hamilton Sundstrand Corporation Variable restriction of a secondary circuit of a fuel injector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187188A (en) * 1959-07-21 1965-06-01 Curtiss Wright Corp High speed turbo-generator
FR1304701A (fr) 1961-08-16 1962-09-28 Machine génératrice de courant à turbomoteur
US3613360A (en) 1969-10-30 1971-10-19 Garrett Corp Combustion chamber construction
US4486147A (en) * 1982-04-20 1984-12-04 The Garrett Corporation Turbocharger and rotor shaft assembly
US4619588A (en) * 1984-04-25 1986-10-28 Facet Enterprises, Incorporated Wet motor gerotor fuel pump with vapor vent valve and improved flow through the armature
US4928479A (en) 1987-12-28 1990-05-29 Sundstrand Corporation Annular combustor with tangential cooling air injection
US5140807A (en) 1988-12-12 1992-08-25 Sundstrand Corporation Air blast tube impingement fuel injector for a gas turbine engine
US5129222A (en) 1990-06-21 1992-07-14 Sundstrand Corporation Constant air/fuel ratio control system for EPU/IPU combustor
US5180034A (en) * 1990-12-06 1993-01-19 General Electric Co. Adaptive lubrication oil system
US5237817A (en) * 1992-02-19 1993-08-24 Sundstrand Corporation Gas turbine engine having low cost speed reduction drive
JP2943544B2 (ja) 1992-12-11 1999-08-30 トヨタ自動車株式会社 ガスタービン発電装置
US5497615A (en) 1994-03-21 1996-03-12 Noe; James C. Gas turbine generator set
US5697848A (en) 1995-05-12 1997-12-16 Capstone Turbine Corporation Compound shaft with flexible disk coupling
US5685156A (en) * 1996-05-20 1997-11-11 Capstone Turbine Corporation Catalytic combustion system

Also Published As

Publication number Publication date
CN1255190A (zh) 2000-05-31
EP0943069A1 (en) 1999-09-22
US6314717B1 (en) 2001-11-13
CN1122148C (zh) 2003-09-24
DE69725463D1 (de) 2003-11-13
CA2273221A1 (en) 1998-06-11
AU5689298A (en) 1998-06-29
ATE251739T1 (de) 2003-10-15
JP2002518987A (ja) 2002-06-25
EP0943069B1 (en) 2003-10-08
ID22740A (id) 1999-12-09
KR20000069289A (ko) 2000-11-25
WO1998025082A1 (en) 1998-06-11
EP0943069A4 (en) 2001-04-11
JP2007170396A (ja) 2007-07-05
RU2243383C2 (ru) 2004-12-27
BR9714776A (pt) 2000-10-03

Similar Documents

Publication Publication Date Title
JP4465344B2 (ja) 環状燃焼器を備えた発電システム
WO1998025082A9 (en) Electricity generating system having an annular combustor
KR102046455B1 (ko) 연료 노즐, 이를 포함하는 연소기 및 가스 터빈
US9631559B2 (en) Fuel control method and fuel control apparatus for gas turbine and gas turbine
JP6285807B2 (ja) ガスタービン燃焼器
JPH06323160A (ja) ガスターボグループ
IL145349A (en) Rocket engine
JP2021127861A (ja) ガスタービンの燃焼器
EP1671065B1 (en) Auxiliary power unit having a rotary fuel slinger
US11466857B2 (en) Self-pumping fuel injector for a gas turbine engine and method of operation
EP4019841B1 (en) Combustor nozzle for a gas turbine
US5069031A (en) Gas turbine engine stored energy combustion system
EP1380740A2 (en) Fuel supply system for an electricity generating system
US20190137103A1 (en) Co-axial dual swirler nozzle
MXPA99005170A (es) Sistema generador de electricidad con combustor anular
JP7193962B2 (ja) 燃焼器及びこれを備えたガスタービン
US10174673B2 (en) Portable green power systems
CN115875693A (zh) 燃气轮机头部一体化燃烧室和燃气轮机发电系统
CN115989383A (zh) 用于燃气涡轮机的燃烧器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term