JP4463342B2 - Hydrophilization of fluororesin porous material - Google Patents

Hydrophilization of fluororesin porous material Download PDF

Info

Publication number
JP4463342B2
JP4463342B2 JP09647399A JP9647399A JP4463342B2 JP 4463342 B2 JP4463342 B2 JP 4463342B2 JP 09647399 A JP09647399 A JP 09647399A JP 9647399 A JP9647399 A JP 9647399A JP 4463342 B2 JP4463342 B2 JP 4463342B2
Authority
JP
Japan
Prior art keywords
laser light
ethanol
water
porous body
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09647399A
Other languages
Japanese (ja)
Other versions
JP2000290407A (en
Inventor
正信 西井
俊一 河西
忠玄 田中
清貴 宮外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP09647399A priority Critical patent/JP4463342B2/en
Publication of JP2000290407A publication Critical patent/JP2000290407A/en
Application granted granted Critical
Publication of JP4463342B2 publication Critical patent/JP4463342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、化学的および物理的に不活性なフッ素樹脂製多孔質体の親水化法に関する。
【0002】
【従来の技術】
フッ素樹脂は他の樹脂類に比べて、耐熱性、耐薬品性において優れているために、多様な用途を有しているが、その不活性な表面に起因して、接着性や親水性が乏しい欠点がある。
【0003】
このような問題の解決策として種々の方法が提案されている。例えば、(i)金属ナトリウムとナフタリンのテトラヒドロフラン溶液から調製される錯化合物溶液を用いて処理する方法[ネルソン(E.R.Nelson)ら、Ind.Eng.Chem.、第50巻、第329頁(1958年)参照]、(ii)グロー放電を利用する方法[角田ら、工業材料、第29巻(第2号)、第105頁(1981年)参照]、(iii)低圧下での高周波スパッタエッチングによって処理する方法(特公昭53−22108号公報参照)、(iv)B(CH3)3やAl(CH3)3等の特殊なガス雰囲気中において、レーザー光を照射する方法(特開平2−196834号公報参照)、(v)エキシマレーザー光を直接照射する方法(特公平3−57143号公報参照)、(vi)低温プラズマスパッタエッチングによって処理する方法(特公昭58−21928号、特開平2−127442号および特公平3−58375号公報参照)、(vii)光吸収性物質を予め混練した後、紫外レーザー光を照射する方法(特開平5−125208号公報参照)、(viii)無機珪素化合物の存在下で紫外レーザー光を照射する方法(特願平4−327822号明細書参照)、(ix)紫外線吸収性化合物およびフッ素系界面活性剤を含有する水性前処理液を付着させ、乾燥後、紫外レーザー光を照射する方法(特願平5−258087号明細書参照)、(x)水、酸またはアルコール等の水素化合物中に浸漬したフッ素樹脂にArFエキシマレーザー光を照射する方法(第54回応用物理学会学術講演会(1993年9月28日)、講演予稿集、第3分冊、第608頁参照)および(xi)水または過酸化水素水の液中または液面上のフッ素系樹脂フィルムにエキシマレーザー光を照射する方法(特開平5−306346号公報参照)等が挙げられる。
【0004】
しかしながら、これらの改質法には次の様な問題点がある。方法(i)の場合には、処理中に引火の危険があり、処理液も不安定なために、作業衛生上問題があるだけでなく、太陽光や高温にさらされると、改質表面の接着性等が大幅に低下するという欠点がある。方法(ii)には、ポリエチレン等のフッ素不含ポリマーに比べて、表面改質効果が著しく低いという難点がある。方法(iii)の場合には、処理速度が遅く、エッチングされた樹脂分が高価で大型の真空系処理装置内部に付着するだけでなく、樹脂表面に形成される易摩損性凹凸が、低流動性の接着剤や塗料等に対して十分な接着性や塗装性等をもたらさないという問題がある。方法(iv)の場合には、処理速度が遅く、また、毒性の強いガスと高価で大型の真空処理装置を必要とするという問題がある。方法(v)の場合には、フッ素樹脂表面の接着性と濡れ性を十分に改良できないという難点がある。さらに、方法(vi)の場合には、処理面の化学組成が変化しないために、高い接着強度が得難く、比較的高い接着強度が得られる方法(i)の場合と同等の接着性を得るためには、狭い範囲の処理条件下において長期間の処理をおこなわなければならず、工業的処理技術としては不十分である。方法(vii)の場合には、光吸収性物質を含まないフッ素樹脂成形体の表面改質には適用できないという難点がある。また、方法(viii)においては、多孔質体の表面改質をおこなう場合には、無機珪素化合物が微孔内に残留するという問題がある。方法(ix)の場合には、接着性はかなり改良されるが、濡れ性が十分に改良されないという欠点がある。さらにまた、方法(x)および(xi)においては、多孔質体の多孔質内壁面の改質をおこなう場合には、浸漬液による光の散乱や吸収等によって、微孔内部までの十分な親水化が困難であるという問題がある。このため該方法によって表面改質された多孔質体、例えばPTFE膜を用いて水性薬液を効率よく濾過することはできない。
【0005】
上記問題を解決するため、本発明者らは先に、フッ素樹脂製多孔質体の親水化方法として、該多孔質体に予め表面張力の低い水溶性溶剤を含浸させ、これを過酸化水素水および/または水溶性有機溶剤の水溶液で置換し、紫外レーザー光を照射することを特徴とする方法を開示した(特開平7−304888号)。しかしながら、この先行技術には、予め含浸させた低表面張力有機溶剤を、本願の処理剤にて置換する際の水溶液として、過酸化水素と特定量の水溶性有機溶剤とを混合した際に、いずれか一方のみで置換する場合に比べて相乗効果が得られることについては何ら開示していない。
【0006】
【発明が解決しようとする課題】
この発明は、フッ素樹脂製多孔質体表面の微孔内部までも十分に親水化し得る方法を提供するためになされたものである。
【0007】
【課題を解決するための手段】
即ち本発明は、フッ素樹脂製多孔質体に予め表面張力の低い水溶性溶剤を含浸させ、これを過酸化水素水および0.5〜30重量%の水溶性有機溶剤を含有する水溶液で置換し、紫外レーザー光を照射することを特徴とするフッ素樹脂製多孔質体の親水化法を提供する。
【0008】
本発明の適用対象となるフッ素樹脂製多孔質体は、含フッ素有機高分子化合物から製造される多孔質成形体、例えば、膜、シート、パイプ、編物、織物、不織布およびその他の任意の形態を有する多孔質成形体である。該成形体の基材樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルコキシエチレン三元共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、トリフルオロクロロエチレン−エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、およびこれらの任意の2種以上混合樹脂が例示される。特に、ポリテトラフルオロエチレン、ポリフッ化ビニリデンの処理に好適である。
【0009】
本発明においては、まず、フッ素樹脂製多孔質体に予め表面張力の低い水溶性溶剤を含浸させる。ここで表面張力の低い溶剤を使用するのは、表面張力が高い場合、フッ素樹脂多孔質内に溶剤が入らない、又は入りにくいためである。表面張力の低い水溶性溶剤としては、低級アルコール、例えばメタノール、エタノール、イソプロピルアルコール、エーテル類、例えばジブチルエーテル、ジプロピルエーテル、またはノルマルヘキサン等が例示される。
【0010】
次いで、多孔質体に含浸させた表面張力の低い水溶性有機溶剤を、過酸化水素水および特定量の水溶性有機溶剤を含有する水溶液と置換する。
水溶性有機溶剤と過酸化水素水両者を含む水溶液は、該水溶液の紫外レーザー光の発振波長における吸光度(leg(ε/mol-1dm3cm-1))が0.05〜5.0、好ましくは0.5〜1.5となる濃度とする。
水溶液中の過酸化水素の濃度は上記範囲を満足するものであれば特に限定的ではないが、0.001〜1.0程度であり、例えば紫外レーザー光としてKrFエキシマレーザー光を用いる場合は、およそ0.3重量%とするのが好ましい。
水溶性有機溶剤としては、沸点が50〜150℃の水溶性有機溶剤を用いるのが、紫外レーザー照射による親水化処理効率と処理後の溶剤除去の観点から好ましい。
【0011】
本発明に使用し得る水溶性有機溶剤としては、エーテル類(例えば、テトラヒドロフラン、1,4−ジオキサン、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールモノアルキルエーテルおよびジエチレングリコールジアルキルエーテル等)、ケトン類(例えば、アセトン、メチルエチルケトン、シクロヘキサノン、ジアセチルおよびアセチルアセトン等)、アルコール類(メタノール、エタノール、プロパノール、ヘキシルアルコール、エチレングリコール、イソプロピルアルコール、ブタノール、エチレンクロロヒドリンおよびグリセリン等)、アルデヒド類(例えば、アセトアルデヒド、プロピオンアルデヒド等)、アミン類(例えば、トリエチルアミン、ピペリジン等)およびエステル類(例えば、酢酸メチル、酢酸エチル等)等が挙げられる。
【0012】
本発明においては使用するレーザー発振波長における吸収の少ない物質が特に好ましく、上記のうちアルコール類(メタノール、エタノール、プロパノール、ヘキシルアルコール、エチレングリコール、イソプロピルアルコール、ブタノール、エチレンクロロヒドリンおよびグリセリン等)、が好適に用いられる。特に好ましくは、低級アルコール類、例えばメタノール、エタノール、およびイソプロピルアルコール等である。
【0013】
水溶性有機溶剤は、水溶液中に濃度が0.5〜30重量%、好ましくは1〜20重量%、より好ましくは1〜10重量%、さらに好ましくは2〜10重量%となるよう添加する。この特定濃度の水溶性有機溶剤を過酸化水素水と併用することによって、従来知られていなかった相乗的な効果が得られる。
【0014】
上記水溶液をフッ素樹脂製多孔質体に含浸させる方法は特に限定的ではなく、浸漬法、噴霧法および塗布法等を該多孔体の形態や寸法等に応じて適宜採用すればよいが、浸漬法が一般的である。フッ素樹脂製多孔質体へ予め表面張力の低い水溶性有機溶剤を含浸させた後、処理液の槽へ浸漬する、あるいは処理液を適当な線流速、例えば1cm/sec.にてオーバーフローさせている槽へ浸漬するのが好ましい。
予め含浸させた水溶性有機溶剤を処理液で置換する際の処理温度は、多孔質体微孔内への水溶液の拡散速度の観点から40〜70℃が好ましい。
【0015】
上記の含浸処理に付したフッ素樹脂製多孔質体は以下の紫外レーザー光照射処理に付される。紫外レーザー光としては、波長が190nm〜400nm以下のものが望ましく、アルゴンイオンレーザー光、クリプトンイオンレーザー光、N2レーザー光、色素レーザー光、およびエキシマレーザー光等が例示されるが、エキシマレーザー光が好適である。特に、高出力が長時間にわたって安定して得られるKrFエキシマレーザー光(波長:248nm)、ArFエキシマレーザー光(波長:193nm)およびXeClエキシマレーザー光(308nm)が好ましい。エキシマレーザー光照射は、通常、室温、大気中でおこなうが、窒素雰囲気中でおこなうのが好ましい。また、エキシマレーザー光の照射条件は、フッ素樹脂の種類および所望の表面改質の程度によって左右されるが、一般的な照射条件は次の通りである。
フルエンス:約10mJ/cm2/パルス以上
入射エネルギー:約0.1J/cm2以上
【0016】
特に好適なKrFエキシマレーザー光、ArFエキシマレーザー光およびXeClエキシマレーザー光の常用される照射条件は次の通りである。
KrF
フルエンス:100〜500mJ/cm2/パルス
入射エネルギー:1.0〜10.0J/cm2
ArF
フルエンス:25〜500mJ/cm2/パルス
入射エネルギー:0.1〜10.0J/cm2
XeCl
フルエンス:100〜600mJ/cm2/パルス
入射エネルギー:10.0〜100J/cm2
【0017】
【実施例】
以下、本発明を実施例によって説明する。
PTFE製多孔質膜(平均孔径:0.1μm、厚み:0.05mm)をエタノール中へ1時間浸漬して、多孔質膜内にエタノールを浸漬させた。この膜をそれぞれ
1)水
2)0.3重量%過酸化水素水溶液
3)0.3重量%過酸化水素および表1に示した量のエタノールを含む水溶液
を線流速1cm/sec.にてオーバーフローさせている槽内へ6時間置き、各処理液にて置換した。次いで引きあげた多孔質膜の上方からKrFエキシマレーザー光(248nm)、フルエンス200mJ/m2/pulse,照射量1J/cm2および3J/cm2を照射した。
照射処理した多孔質膜の濡れ性は、純水で十分洗浄し、乾燥させた後、JISK6768に規定された濡れ指数標準液で測定した。即ち、表面張力が順を追って変化する一連の混合液を該多孔質膜に順次滴下してゆき、該多孔質膜を濡らすと判定される混合液の最高の表面張力を濡れ指数として評価した。結果を表1及び図1に示す。
【0018】
【表1】

Figure 0004463342
水単独で置換した場合の濡れ指数は、紫外レーザー光を照射しないPTFE製多孔質膜の値(31dyn/cm未満)と同様、装置の測定限界に達しない31dyn/cm未満であった。これに対して表1および図1で示されるように、0.3%過酸化水素水を含む水溶液では、32dyn/cm(1J/cm2)、33dyn(3J/cm2)に濡れ指数が向上した。過酸化水素水に加えてエタノールを濃度が0.5〜30重量%となるよう添加した場合は、親水化に相乗的な効果が得られ、この相乗効果はエタノールが1〜20重量%、特に1〜10重量%、さらに2〜10重量%の場合に顕著であった。照射量が3J/cm2の場合にも同じ傾向が認められた。さらに、電子微鏡観察の結果、多孔質膜組織に破壊や変形は見られなかった。
【0019】
【発明の効果】
本発明によれば、フッ素樹脂の特性である優れた耐熱性、耐薬品性等を損なうことなく、化学的および物理的に不活性なフッ素樹脂製多孔質体の微孔内部までも十分に親水化させることができ、これによって、フッ素樹脂製多孔質体の付加価値は一層増大する。本発明によって従来知られている方法と比して、相乗的な親水化効果が得られる。
本発明の親水性多孔質体は、例えば水溶液の濾過に好適であり、更に優れた機能性を生かして透析膜などの生体関連材料等今後広範囲な分野での用途が期待できる。
【図面の簡単な説明】
【図1】 実施例1の結果を示す図である。[0001]
[Industrial application fields]
The present invention relates to a method for hydrophilizing a chemically and physically inert fluororesin porous body.
[0002]
[Prior art]
Fluororesin is superior in heat resistance and chemical resistance compared to other resins, so it has a variety of uses, but due to its inert surface, it has adhesiveness and hydrophilicity. There are poor shortcomings.
[0003]
Various methods have been proposed as solutions to such problems. For example, (i) a method using a complex compound solution prepared from a sodium metal and naphthalene tetrahydrofuran solution [ER Nelson, et al., Ind. Eng. Chem., 50, 329] (1958)], (ii) a method using glow discharge [see Kakuda et al., Industrial Materials, Vol. 29 (No. 2), page 105 (1981)], (iii) high frequency under low pressure A method of processing by sputter etching (see Japanese Patent Publication No. 53-22108), (iv) A method of irradiating laser light in a special gas atmosphere such as B (CH 3 ) 3 or Al (CH 3 ) 3 (See Kaihei 2-19634), (v) a method of directly irradiating excimer laser light (see Japanese Patent Publication No. 3-57143), (vi) a method of processing by low-temperature plasma sputter etching (Japanese Patent Publication No. 58-21928, JP-A-2-127442 and No. 3-58375), (vii) a method in which a light-absorbing substance is previously kneaded and then irradiated with ultraviolet laser light (see JP-A-5-125208), (viii) in the presence of an inorganic silicon compound Method of irradiating with ultraviolet laser light (see Japanese Patent Application No. 4-327822), (ix) An aqueous pretreatment liquid containing an ultraviolet absorbing compound and a fluorosurfactant is adhered, dried, and then irradiated with ultraviolet laser light (X) Method of irradiating ArF excimer laser light to a fluororesin immersed in a hydrogen compound such as water, acid or alcohol (54th Applied Physics) Academic academic conference (September 28, 1993), Proceedings of the lecture, 3rd volume, page 608) and (xi) Excimer in fluororesin film in or on the surface of water or hydrogen peroxide Laser irradiation method ( Unexamined see JP 5-306346) and the like.
[0004]
However, these reforming methods have the following problems. In the case of method (i), there is a risk of ignition during treatment, and the treatment liquid is also unstable, which is not only a problem for occupational hygiene, but also when the modified surface is exposed to sunlight or high temperatures. There exists a fault that adhesiveness etc. fall significantly. The method (ii) has a drawback that the surface modification effect is remarkably low as compared with a fluorine-free polymer such as polyethylene. In the case of the method (iii), the processing speed is slow, the etched resin component is not only expensive and adheres to the inside of a large vacuum processing apparatus, but also the easily wearable unevenness formed on the resin surface has a low flow rate. There is a problem that sufficient adhesiveness, paintability, etc. are not brought about for adhesives and paints. In the case of the method (iv), there is a problem that the processing speed is slow, and a toxic gas and an expensive and large vacuum processing apparatus are required. In the case of the method (v), there is a drawback that the adhesion and wettability of the fluororesin surface cannot be sufficiently improved. Furthermore, in the case of method (vi), since the chemical composition of the treated surface does not change, it is difficult to obtain high adhesive strength, and the same adhesiveness as in method (i) in which relatively high adhesive strength is obtained is obtained. For this purpose, a long-term treatment must be performed under a narrow range of treatment conditions, which is insufficient as an industrial treatment technique. In the case of the method (vii), there is a problem that it cannot be applied to the surface modification of a fluororesin molded article not containing a light absorbing substance. Further, the method (viii) has a problem that the inorganic silicon compound remains in the micropores when the surface of the porous body is modified. In the case of the method (ix), the adhesion is considerably improved, but the wettability is not sufficiently improved. Furthermore, in the methods (x) and (xi), when the porous inner wall surface of the porous body is modified, sufficient hydrophilicity to the inside of the micropores is obtained by light scattering or absorption by the immersion liquid. There is a problem that it is difficult to realize. For this reason, an aqueous chemical solution cannot be efficiently filtered using a porous material whose surface is modified by the method, for example, a PTFE membrane.
[0005]
In order to solve the above problem, the present inventors first impregnated the porous body with a water-soluble solvent having a low surface tension as a method for hydrophilizing the fluororesin porous body. And / or a method of replacing with an aqueous solution of a water-soluble organic solvent and irradiating with ultraviolet laser light (Japanese Patent Laid-Open No. 7-304888). However, in this prior art, when the low surface tension organic solvent impregnated in advance is replaced with the treatment agent of the present application, hydrogen peroxide and a specific amount of the water-soluble organic solvent are mixed. There is no disclosure that a synergistic effect can be obtained as compared with the case where only one of them is substituted.
[0006]
[Problems to be solved by the invention]
This invention is made in order to provide the method which can fully hydrophilize even the inside of the micropores on the surface of a fluororesin porous body.
[0007]
[Means for Solving the Problems]
That is, in the present invention, a fluororesin porous body is impregnated with a water-soluble solvent having a low surface tension in advance, and this is replaced with an aqueous solution containing hydrogen peroxide and 0.5 to 30% by weight of a water-soluble organic solvent. The present invention provides a method for hydrophilizing a fluororesin porous body characterized by irradiating ultraviolet laser light.
[0008]
The fluororesin porous body to which the present invention is applied is a porous molded body produced from a fluorine-containing organic polymer compound, such as a membrane, a sheet, a pipe, a knitted fabric, a woven fabric, a non-woven fabric, and other arbitrary forms. It is a porous molded body having. As the base resin of the molded product, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene -Hexafluoropropylene-perfluoroalkoxyethylene terpolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), trifluorochloroethylene-ethylene copolymer (ECTFE) ), Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and a mixed resin of any two or more thereof. In particular, it is suitable for the treatment of polytetrafluoroethylene and polyvinylidene fluoride.
[0009]
In the present invention, first, a fluororesin porous body is impregnated with a water-soluble solvent having a low surface tension in advance. The reason why a solvent having a low surface tension is used is that when the surface tension is high, the solvent does not enter or hardly enters the fluororesin porous material. Examples of the water-soluble solvent having a low surface tension include lower alcohols such as methanol, ethanol, isopropyl alcohol, ethers such as dibutyl ether, dipropyl ether, and normal hexane.
[0010]
Next, the water-soluble organic solvent having a low surface tension impregnated in the porous body is replaced with an aqueous solution containing hydrogen peroxide and a specific amount of the water-soluble organic solvent.
The aqueous solution containing both the water-soluble organic solvent and the hydrogen peroxide solution has an absorbance (leg (ε / mol −1 dm 3 cm −1 )) at the oscillation wavelength of the ultraviolet laser light of the aqueous solution of 0.05 to 5.0, The concentration is preferably 0.5 to 1.5.
The concentration of hydrogen peroxide in the aqueous solution is not particularly limited as long as it satisfies the above range, but is about 0.001 to 1.0. For example, when KrF excimer laser light is used as ultraviolet laser light, It is preferably about 0.3% by weight.
As the water-soluble organic solvent, it is preferable to use a water-soluble organic solvent having a boiling point of 50 to 150 ° C. from the viewpoint of hydrophilization treatment efficiency by ultraviolet laser irradiation and solvent removal after the treatment.
[0011]
Examples of water-soluble organic solvents that can be used in the present invention include ethers (for example, tetrahydrofuran, 1,4-dioxane, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, diethylene glycol monoalkyl ether, and diethylene glycol dialkyl ether), ketones, and the like. (E.g., acetone, methyl ethyl ketone, cyclohexanone, diacetyl and acetylacetone), alcohols (methanol, ethanol, propanol, hexyl alcohol, ethylene glycol, isopropyl alcohol, butanol, ethylene chlorohydrin, glycerin, etc.), aldehydes (e.g., acetaldehyde) , Propionaldehyde etc.), amines (e.g. triethylamine, piperidine etc.) and esters (e.g. If, methyl acetate, ethyl acetate, etc.) and the like.
[0012]
In the present invention, a substance having low absorption at the laser oscillation wavelength to be used is particularly preferable. Among the above, alcohols (such as methanol, ethanol, propanol, hexyl alcohol, ethylene glycol, isopropyl alcohol, butanol, ethylene chlorohydrin, and glycerin), Are preferably used. Particularly preferred are lower alcohols such as methanol, ethanol and isopropyl alcohol.
[0013]
The water-soluble organic solvent is added so that the concentration in the aqueous solution is 0.5 to 30% by weight, preferably 1 to 20% by weight, more preferably 1 to 10% by weight, and still more preferably 2 to 10% by weight. By using this water-soluble organic solvent having a specific concentration in combination with hydrogen peroxide solution, a synergistic effect that has not been conventionally known can be obtained.
[0014]
The method for impregnating the fluororesin porous body with the aqueous solution is not particularly limited, and an immersion method, a spraying method, a coating method, and the like may be appropriately employed depending on the form and dimensions of the porous body. Is common. A fluororesin porous body is impregnated with a water-soluble organic solvent having a low surface tension in advance and then immersed in a bath of processing liquid, or the processing liquid is overflowed at an appropriate linear flow rate, for example, 1 cm / sec. It is preferable to immerse in a bath.
The treatment temperature when replacing the water-soluble organic solvent impregnated in advance with the treatment liquid is preferably 40 to 70 ° C. from the viewpoint of the diffusion rate of the aqueous solution into the porous micropores.
[0015]
The fluororesin porous body subjected to the above impregnation treatment is subjected to the following ultraviolet laser light irradiation treatment. As the ultraviolet laser light, those having a wavelength of 190 nm to 400 nm or less are desirable, and examples include argon ion laser light, krypton ion laser light, N 2 laser light, dye laser light, and excimer laser light. Is preferred. In particular, KrF excimer laser light (wavelength: 248 nm), ArF excimer laser light (wavelength: 193 nm) and XeCl excimer laser light (308 nm), which can stably obtain a high output for a long time, are preferable. Excimer laser light irradiation is usually performed at room temperature in the air, but is preferably performed in a nitrogen atmosphere. The irradiation conditions of excimer laser light depend on the type of fluororesin and the desired degree of surface modification, but the general irradiation conditions are as follows.
Fluence: approx. 10 mJ / cm2 / pulse or more Incident energy: approx. 0.1 J / cm 2 or more
Particularly suitable irradiation conditions for KrF excimer laser light, ArF excimer laser light, and XeCl excimer laser light are as follows.
KrF
Fluence: 100 to 500 mJ / cm 2 / Pulse incident energy: 1.0 to 10.0 J / cm 2
ArF
Fluence: 25 to 500 mJ / cm 2 / pulse incident energy: 0.1 to 10.0 J / cm 2
XeCl
Fluence: 100 to 600 mJ / cm 2 / pulse incident energy: 10.0 to 100 J / cm 2
[0017]
【Example】
Hereinafter, the present invention will be described by way of examples.
A PTFE porous membrane (average pore size: 0.1 μm, thickness: 0.05 mm) was immersed in ethanol for 1 hour, and ethanol was immersed in the porous membrane. Each of these membranes was overflowed with an aqueous solution containing 1) water, 2) 0.3 wt% hydrogen peroxide solution, 3) 0.3 wt% hydrogen peroxide and the amount of ethanol shown in Table 1 at a linear flow rate of 1 cm / sec. It was placed in the tank for 6 hours and replaced with each treatment solution. Next, KrF excimer laser light (248 nm), fluence 200 mJ / m 2 / pulse, irradiation dose 1 J / cm 2 and 3 J / cm 2 were irradiated from above the pulled porous film.
The wettability of the irradiated porous membrane was measured with a wetting index standard solution defined in JISK6768 after thoroughly washing with pure water and drying. That is, a series of mixed liquids whose surface tension changed in order was dropped onto the porous film sequentially, and the highest surface tension of the mixed liquid determined to wet the porous film was evaluated as a wetting index. The results are shown in Table 1 and FIG.
[0018]
[Table 1]
Figure 0004463342
The wetting index when replaced with water alone was less than 31 dyn / cm, which did not reach the measurement limit of the apparatus, as was the case with the porous PTFE membrane not irradiated with ultraviolet laser light (less than 31 dyn / cm). On the other hand, as shown in Table 1 and FIG. 1, in the aqueous solution containing 0.3% hydrogen peroxide, the wetting index is improved to 32 dyn / cm (1 J / cm 2 ) and 33 dyn (3 J / cm 2 ). did. When ethanol is added to the hydrogen peroxide solution so as to have a concentration of 0.5 to 30% by weight, a synergistic effect is obtained for hydrophilization, and this synergistic effect is 1 to 20% by weight of ethanol. It was remarkable in the case of 1 to 10% by weight and further 2 to 10% by weight. The same tendency was observed when the irradiation dose was 3 J / cm 2 . Furthermore, as a result of electron microscopic observation, the porous membrane structure was not broken or deformed.
[0019]
【The invention's effect】
According to the present invention, the inside of the microporous body of a fluororesin porous body that is chemically and physically inert is sufficiently hydrophilic without impairing the excellent heat resistance and chemical resistance that are the characteristics of the fluororesin. This can further increase the added value of the fluororesin porous body. Compared with a conventionally known method, a synergistic hydrophilizing effect is obtained by the present invention.
The hydrophilic porous body of the present invention is suitable for, for example, filtration of an aqueous solution, and can be expected to be used in a wide range of fields such as biological materials such as dialysis membranes by taking advantage of its superior functionality.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of Example 1. FIG.

Claims (8)

フッ素樹脂製多孔質体にメタノール、エタノール、イソプロピルアルコール、ジブチルエーテル、ジプロピルエーテルおよびノルマルヘキサンからなる群から選択される表面張力の低い水溶性溶剤を含浸させ、これを過酸化水素水および1〜10重量%のメタノール、エタノール、およびイソプロピルアルコールから選択される低級アルコールを含有する水溶液で置換し、紫外レーザー光を照射することを特徴とするフッ素樹脂製多孔質体の親水化法。 Methanol fluororesin porous body, ethanol, isopropyl alcohol, dibutyl ether, impregnated low water solubility solvent having a surface tension which is selected from the group consisting of dipropyl ether and n-hexane, which aqueous hydrogen peroxide and 1 A method of hydrophilizing a fluororesin porous body, wherein the fluororesin porous body is substituted with an aqueous solution containing a lower alcohol selected from 10% by weight of methanol, ethanol, and isopropyl alcohol and irradiated with ultraviolet laser light. 過酸化水素水および低級アルコールを含有する水溶液の吸光度(log(ε/mol-1dm3cm-1))が使用する紫外レーザー光の波長において0.05〜5.0である請求項1記載の方法。The absorbance (log (ε / mol -1 dm 3 cm -1 )) of an aqueous solution containing hydrogen peroxide and a lower alcohol is 0.05 to 5.0 at the wavelength of the ultraviolet laser light used. the method of. 過酸化水素水および低級アルコールの水溶液の含浸温度が40〜70℃である請求項1または2に記載の方法。The method according to claim 1 or 2, wherein the impregnation temperature of an aqueous solution of hydrogen peroxide and a lower alcohol is 40 to 70 ° C. 低級アルコールを2〜10重量%含有する、請求項3記載の方法。The method according to claim 3, comprising 2 to 10% by weight of a lower alcohol . 低級アルコールがエタノールである、請求項1から4いずれかに記載の方法。The method according to any one of claims 1 to 4, wherein the lower alcohol is ethanol . 表面張力の低い水溶性溶剤がメタノール、エタノール、イソプロピルアルコールからなる群から選択される、請求項1から5何れかに記載の方法。The method according to any one of claims 1 to 5, wherein the water-soluble solvent having a low surface tension is selected from the group consisting of methanol, ethanol and isopropyl alcohol. 表面張力の低い水溶性溶剤がエタノールである、請求項6に記載の方法。The method according to claim 6, wherein the water-soluble solvent having a low surface tension is ethanol. 紫外レーザー光の波長が190nm〜400nmである請求項1から6いずれかに記載の方法。  The method according to any one of claims 1 to 6, wherein the wavelength of the ultraviolet laser light is 190 nm to 400 nm.
JP09647399A 1999-04-02 1999-04-02 Hydrophilization of fluororesin porous material Expired - Fee Related JP4463342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09647399A JP4463342B2 (en) 1999-04-02 1999-04-02 Hydrophilization of fluororesin porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09647399A JP4463342B2 (en) 1999-04-02 1999-04-02 Hydrophilization of fluororesin porous material

Publications (2)

Publication Number Publication Date
JP2000290407A JP2000290407A (en) 2000-10-17
JP4463342B2 true JP4463342B2 (en) 2010-05-19

Family

ID=14166024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09647399A Expired - Fee Related JP4463342B2 (en) 1999-04-02 1999-04-02 Hydrophilization of fluororesin porous material

Country Status (1)

Country Link
JP (1) JP4463342B2 (en)

Also Published As

Publication number Publication date
JP2000290407A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
EP0321241B1 (en) Membranes from uv-curable resins
EP2001666B1 (en) Atmospheric pressure microwave plasma treated porous membranes
EP0498414B1 (en) Porous hollow fiber membrane of polypropylene and production thereof
JPH05301033A (en) Composite membrane containing separation membrane
JP3149970B2 (en) Air diffuser and gas diffusion method using the same
US4678813A (en) Hydrophilized porous polyolefin membrane and production process thereof
KR100249920B1 (en) A process for modifying the molded materials made of fluorine resins
EP3124101B1 (en) Hydrophilizing ptfe membranes
WO1994021715A1 (en) Solid surface modifying method and apparatus
US5352511A (en) Hydrophilic compositions with increased thermal resistance
JP2999365B2 (en) Method for hydrophilizing porous body made of fluororesin
KR20090133100A (en) Hydrophilizing method for water-treatment membrane and water-treatment membrane
JP4463342B2 (en) Hydrophilization of fluororesin porous material
JPH05115760A (en) Antibacterial hydrophilic porous membrane and production thereof
JPH05131124A (en) Production of hydrophilic fluoroplastic porous membrane
JP3942704B2 (en) Hydrophilization method for fluororesin porous membrane
JPH0765270B2 (en) Method for functionalizing hollow fiber membranes
JPH04139237A (en) Hydrophilic porous fluororesin material
JPH0317531B2 (en)
JP3176740B2 (en) Surface modification method of fluororesin using ultraviolet laser light
JP2983438B2 (en) Modification method of fluororesin molding surface
JP2009183804A (en) Manufacturing method of hydrophilic fine porous membrane
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JPH03193125A (en) Heat-resistant porous membrane and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees