JP4461288B2 - Filtration membrane abnormality detection method and apparatus - Google Patents

Filtration membrane abnormality detection method and apparatus Download PDF

Info

Publication number
JP4461288B2
JP4461288B2 JP2004254833A JP2004254833A JP4461288B2 JP 4461288 B2 JP4461288 B2 JP 4461288B2 JP 2004254833 A JP2004254833 A JP 2004254833A JP 2004254833 A JP2004254833 A JP 2004254833A JP 4461288 B2 JP4461288 B2 JP 4461288B2
Authority
JP
Japan
Prior art keywords
pipe
membrane
filtration membrane
inner diameter
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004254833A
Other languages
Japanese (ja)
Other versions
JP2006068634A (en
Inventor
昭範 川満
康史 三塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2004254833A priority Critical patent/JP4461288B2/en
Publication of JP2006068634A publication Critical patent/JP2006068634A/en
Application granted granted Critical
Publication of JP4461288B2 publication Critical patent/JP4461288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

この発明は、水処理装置に用いられるUF膜、MF膜などのろ過膜の異常を検知する方法およびその方法に用いられる装置に関する。また、前記ろ過膜の異常を検知する拡散流量試験法を応用して、より簡単に、しかもより信頼性が向上されるろ過膜の異常を検知する方法およびその方法に用いられる装置に関する。さらには、本発明はろ過膜の一次側から加圧空気を圧入し、押し出される水の量を測定することにより、より簡便な、しかも信頼性が向上されるろ過膜の異常を検知する方法およびその方法に用いられる装置に関する。 The present invention relates to a method for detecting an abnormality in a filtration membrane such as a UF membrane or an MF membrane used in a water treatment device, and an apparatus used in the method. In addition, the present invention relates to a method for detecting an abnormality of a filtration membrane that is easier and more reliable by applying the diffusion flow rate test method for detecting an abnormality of the filtration membrane, and an apparatus used for the method. Furthermore, the present invention is a method for detecting an abnormality of a filtration membrane that is easier and more reliable by measuring the amount of water to be pushed out by injecting pressurized air from the primary side of the filtration membrane, and The present invention relates to an apparatus used for the method.

浄水分野において、原水(以下、被処理水ということがある)中の微生物、懸濁物質を除去する膜ろ過システムとして、ろ過膜にUF(限外ろ過)膜、MF(精密ろ過)膜を用いたシステムがある。これらは、従来の凝集沈殿・砂ろ過・塩素消毒で除去することができない、クリプトスポリジウムなどの病原性微生物の除去に非常に有効なシステムである。
現在、膜ろ過システムは、病原性微生物の除去を主目的に浄水分野に普及し始めているため、膜が破れた場合など膜の異常が生じているにもかかわらずその膜を使用して浄水を提供すると、前記主目的をかなえることができないのであるから、確実にその異常を検出する技術が必要である。
In the water purification field, UF (ultrafiltration) membranes and MF (microfiltration) membranes are used as filtration membranes as membrane filtration systems to remove microorganisms and suspended solids in raw water (hereinafter also referred to as treated water). There was a system that was. These are very effective systems for removing pathogenic microorganisms such as Cryptosporidium that cannot be removed by conventional coagulation sedimentation, sand filtration, and chlorine disinfection.
Currently, membrane filtration systems are beginning to spread in the water purification field with the primary purpose of removing pathogenic microorganisms, so even if there is an abnormality in the membrane, such as when the membrane is broken, the membrane is used to purify the water. If provided, the main purpose cannot be achieved, so a technique for reliably detecting the abnormality is required.

これまでに知られている検出技術の一つにろ過水の微粒子や濁度を測定し、ろ過膜の異常を知る方法がある。この方法は連続的な監視が可能となるものの、膜の二次側の膜ろ過水内に存在する膜孔より小さな微粒子が配管内で集まって形成された微粒子等のため、検出感度には限界がある。その点、原水濁度に依存することなく、ろ過水の微粒子や濁度を測定する方法の10倍以上の検出感度であり、信頼性の高い方法として、拡散流量試験(エアフロー試験)がある(非特許文献1)。この試験法は、濡れた状態のMF膜やUF膜の細孔を空気が通過するには、細孔の毛管吸引力以上の圧力(バブルポイント以上の圧力)を必要とすることを利用した試験で、膜の一次側に、バブルポイント以下に加圧した空気(例えば、約100kPa)を注入し、一定の圧力を維持するのに必要な空気の流量、即ち、膜の二次側に抜けて行く空気の量を測定する試験方法である。
破断が無いなど異常さを見出せない膜(正常膜)であれば、加圧された空気は、水中に空気が拡散する以外は、膜の細孔を通り抜けることはない。したがって、膜の一次側の圧力を一定に維持するのに必要な空気の流量は少量で済む。
一方、破断があるなどの異常膜(破断膜)の場合、破断した箇所から空気が膜の二次側に噴出するため、膜の一次側にかかる圧力を一定に維持するためには、大量の空気を供給しつづけなければならない。
One of the detection techniques known so far is a method of measuring filtration water particulates and turbidity to know abnormalities in the filtration membrane. Although this method enables continuous monitoring, the detection sensitivity is limited due to particles formed by collecting particles in the pipe that are smaller than the membrane holes present in the membrane filtered water on the secondary side of the membrane. There is. In that respect, the detection sensitivity is more than 10 times that of the method of measuring fine particles and turbidity of filtered water without depending on the turbidity of raw water, and a diffusion flow test (air flow test) is a highly reliable method ( Non-patent document 1). This test method utilizes the fact that in order for air to pass through the pores of a wet MF membrane or UF membrane, a pressure greater than the capillary suction force of the pores (pressure above the bubble point) is required. Injecting air (e.g., about 100 kPa) pressurized below the bubble point to the primary side of the membrane, the flow rate of air necessary to maintain a constant pressure, i.e., exiting to the secondary side of the membrane It is a test method that measures the amount of air going.
In the case of a film (normal film) in which no abnormality is found such as no breakage, the pressurized air does not pass through the pores of the film except that the air diffuses into the water. Therefore, a small amount of air flow is required to keep the pressure on the primary side of the membrane constant.
On the other hand, in the case of abnormal membranes (ruptured membranes) such as when there is a rupture, air is ejected from the ruptured location to the secondary side of the membrane. You must continue to supply air.

図3は従来の膜破断検知機能付き膜ろ過装置のフロー図である。
通常のろ過装置の運転では、被処理水注入弁3と処理水排水弁4とを開にして、膜モジュール1に、被処理水を、被処理水注入弁3を介して流入させ、ろ過水を処理水排水弁4より取り出す。
そして、空気を膜に注入して膜の破断を検出する従来法のうち、注入した空気の流量を測定する方法としては、次の2つがある。
(1) 図3で、コンプレッサー8から減圧弁9を介し、空気注入弁10を通って、膜モジュール1の一次側から注入される加圧空気の流量を、膜モジュール1の一次側の空気注入管11上に配置した空気用流量計12で測定する方法(非特許文献3)。
(2) 図3で、上記と同様の手順で、膜モジュール1の一次側から注入される空気の流量を、膜モジュール1の二次側に排水弁15を介して接続されている排水管16上に配置した水用流量計17により、膜モジュール1の二次側に漏れた空気により押し出される水の量を測定する方法(非特許文献2)。
このうち、空気用流量計12を設置し、空気流量を測定する上記(1)の場合、流れている空気量は、膜モジュール1の二次側に抜けている量を測定しているのか、膜モジュール1の一次側の圧力を上昇させるために注入されている空気量を測定しているのかが判別できない欠点がある。
FIG. 3 is a flowchart of a conventional membrane filtration apparatus with a membrane breakage detection function.
In the normal operation of the filtration device, the treated water injection valve 3 and the treated water drain valve 4 are opened, and the treated water is caused to flow into the membrane module 1 via the treated water injection valve 3. Is taken out from the treated water drain valve 4.
Of the conventional methods of injecting air into the membrane and detecting the breakage of the membrane, there are the following two methods for measuring the flow rate of the injected air.
(1) In FIG. 3, the flow rate of pressurized air injected from the primary side of the membrane module 1 through the air injection valve 10 from the compressor 8 through the pressure reducing valve 9 is changed to the air injection on the primary side of the membrane module 1. A method of measuring with an air flow meter 12 arranged on a pipe 11 (Non-patent Document 3).
(2) In FIG. 3, the drain pipe 16 connected to the secondary side of the membrane module 1 via the drain valve 15 is connected with the flow rate of the air injected from the primary side of the membrane module 1 in the same procedure as described above. A method of measuring the amount of water pushed out by the air leaked to the secondary side of the membrane module 1 with the water flow meter 17 disposed above (Non-patent Document 2).
Among these, in the case of the above (1) in which the air flow meter 12 is installed and the air flow rate is measured, whether the flowing air amount is the amount that is missing on the secondary side of the membrane module 1, There is a drawback that it cannot be determined whether the amount of air injected to increase the pressure on the primary side of the membrane module 1 is measured.

一方、水用流量計17を設置する上記(2)の方法では、非圧縮性流体である水の流量を測定するため、測定対象は漏洩する空気量であることが保証される利点がある。しかし、この方法にも、以下に述べるような問題がある。この問題点について、図4〜図6により説明する。
これらの図では、中空糸膜を横に配置した構成を例としており、中空糸膜のストロー状の中央穴へ、被処理水を注入し、外側で膜ろ過水が得られる場合を例としている。
先ず図4は、膜一次側19と、膜の一次側(中空糸膜内側)20と、膜の二次側(中空糸膜外側)21とも水で満たされた拡散流量試験前の状態である。
次いで、加圧空気を注入する前に、図5に示すように、膜一次側19の水を一次側ドレイン弁14から排水する。このとき、膜の一次側(中空糸膜内側)20に、多くの水が残留する。これは、中空糸膜を縦置きにしても、膜の内径が小さい場合に起こり得る。
On the other hand, in the method (2) in which the water flow meter 17 is installed, the flow rate of water that is an incompressible fluid is measured. However, this method also has the following problems. This problem will be described with reference to FIGS.
In these drawings, the configuration in which the hollow fiber membranes are arranged side by side is taken as an example, and the case where the treated water is injected into the straw-shaped central hole of the hollow fiber membranes and membrane filtrate water is obtained on the outside is taken as an example. .
First, FIG. 4 shows the state before the diffusion flow rate test in which the membrane primary side 19, the membrane primary side (hollow fiber membrane inner side) 20, and the membrane secondary side (hollow fiber membrane outer side) 21 are filled with water. .
Next, before injecting the pressurized air, the water on the membrane primary side 19 is drained from the primary drain valve 14 as shown in FIG. At this time, much water remains on the primary side (hollow fiber membrane inner side) 20 of the membrane. This can occur when the hollow fiber membrane is placed vertically but the inner diameter of the membrane is small.

そして、この水が残った状態で、図6に示すように、膜の一次側(中空糸膜内側)20に加圧空気を注入する。このとき、空気に押されて、膜の一次側(中空糸膜内側)20の水が膜の二次側(中空糸膜外側)21にろ過されるので、排水口18に至るラインには、大量の水が流れることになることがある。そこで、膜の一次側(中空糸膜内側)20の水が完全に押し出されるまで、一定の時間待たなければならない。
ここで問題となるのは、排水口18に至る配管された管(以下、配管ということがある)の太さである。この配管が十分に太い場合、排水終了までは例えば数分程度しかかからない。しかし、用いられたろ過膜が異常のない膜の場合、膜の一次側(中空糸膜内側)20の水が完全に押し出された後、空気が膜の二次側(中空糸膜外側)21に漏洩することにより流れる水の量は例えば数十〜数百ml/minと、非常に少ない。これを流量計で測定するためには、配管の太さが、直径数mm程度にする必要がある。
しかし、これだけ配管が細いと、最初に膜の一次側(中空糸内側)20の残留水を排水するのに例えば数十分という長い時間が必要となり、実用的ではない。
And in the state which this water remained, as shown in FIG. 6, pressurized air is inject | poured into the primary side (hollow fiber membrane inner side) 20 of a film | membrane. At this time, the water on the primary side of the membrane (inside the hollow fiber membrane) 20 is pushed by the air and is filtered to the secondary side (outside of the hollow fiber membrane) 21 of the membrane. A large amount of water may flow. Therefore, it is necessary to wait for a certain time until the water on the primary side (inside the hollow fiber membrane) 20 of the membrane is completely pushed out.
The problem here is the thickness of a pipe (hereinafter also referred to as a pipe) that reaches the drain port 18. If this pipe is sufficiently thick, it takes only a few minutes until drainage is completed. However, when the filtration membrane used is a membrane with no abnormality, after the water on the primary side (inside the hollow fiber membrane) 20 of the membrane has been completely extruded, the air becomes the secondary side (outside the hollow fiber membrane) 21 of the membrane. The amount of water that flows due to leakage is very small, for example, several tens to several hundreds ml / min. In order to measure this with a flow meter, the thickness of the pipe must be about several millimeters in diameter.
However, when the piping is so thin, it takes a long time, for example several tens of minutes, to drain the residual water on the primary side (inside the hollow fiber) 20 of the membrane, which is not practical.

「水道における膜ろ過法Q&A」(社)水道浄水プロセス協会:(参照:p139)拡散流量試験"Membrane Filtration Method Q & A in Waterworks" Corporation Water Purification Process Association: (Reference: p139) Diffusion flow test EPA 815-D03-008 「Membrane Filtration Guidance Manual」4-29〜4-37ページ4-33〜4-37ページ、米国環境保護庁(EPA):(http://www.epa.gov/safewater/lt2/guides.html で入手可能))EPA 815-D03-008 “Membrane Filtration Guidance Manual”, pages 4-29 to 4-37, pages 4-33 to 4-37, US Environmental Protection Agency (EPA): (http://www.epa.gov/safewater/ available at lt2 / guides.html)) 「全量ろ過方式における膜破断検知実験」(第54回全国水道研究発表会講演集 平成15.5 p186)"Membrane rupture detection experiment in total filtration system" (Proceedings of the 54th National Waterworks Research Presentation, 15.5 p186)

そこで、本発明の課題は、膜の一次側(中空糸膜内側)の水が膜の二次側(中空糸膜外側)にろ過される比較的多量の水を長い時間をかけずに排水でき、しかも空気が膜の二次側(中空糸膜外側)に漏洩することにより流れ出る比較的少ない水の量を正確に測定することができる方法を提供することにある。また、その方法に使用する装置を提供することにある。   Accordingly, an object of the present invention is to drain a relatively large amount of water that is filtered from the primary side of the membrane (inside the hollow fiber membrane) to the secondary side of the membrane (outside the hollow fiber membrane) without taking a long time. Furthermore, it is an object of the present invention to provide a method capable of accurately measuring a relatively small amount of water that flows out when air leaks to the secondary side of the membrane (outside of the hollow fiber membrane). Moreover, it is providing the apparatus used for the method.

本発明者らは、上記課題を解決しようといろいろと工夫をする最中、空気が膜の二次側に漏洩することにより流れ出る比較的少ない水の量を正確に測定するには、比較的小さく適度の大きさの内径の管が必要であり、排水量が多いときには比較的内径の大きい管を使用するという、内径の異なる複数の管を利用して排水処理をすればよいこと、しかも、複数の管を使用するときには、排水量に応じてどちらの管を使用するか決める必要が生じるが、そのような煩わしさを避けるには、管をほぼ逆U字状に配管し、しかも内径のより太い管の排出口の高さを、内径がより細い管の排出口の高さよりも高くなるよう配管すると、上記課題を解決することができることに気付き、工夫を重ね、終に本発明に到達した。 In order to accurately measure the relatively small amount of water that flows out due to air leaking to the secondary side of the membrane during various efforts to solve the above problems, the present inventors are relatively small. It is necessary to use a plurality of pipes with different inner diameters, such as using a pipe with a relatively large inner diameter when a pipe with a moderately large inner diameter is required and having a large amount of drainage. When using pipes, it is necessary to decide which pipe to use according to the amount of drainage. To avoid such inconvenience, the pipes are arranged in an inverted U-shape and have a larger inner diameter. When the piping was made so that the height of the discharge port was higher than the height of the discharge port of the pipe having a thinner inner diameter, the above-mentioned problem could be solved, and the present invention was finally reached.

本発明の請求項1に係る発明は、ろ過膜内を液体で満たし、ろ過膜の一次側の液体を排出し、前記ろ過膜の一次側から加圧気体を注入し、前記ろ過膜の二次側から押し出され、配管内を流れる液体の量を測定することにより、ろ過膜の異常を検知する方法において、前記ろ過膜の二次側の管が、少なくとも1本の分岐管と、該分岐管の内径より大きい内径であって該分岐管が分岐される管から構成され、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられるとともに、前記分岐管の流量を測定することを特徴とするろ過膜の異常検知方法である。ここで、内径の大きい管は前記分岐管よりも高い位置まで立ち上げられるとは、内径の大きい管は前記分岐管よりも上方に設置されることでもある。
本発明の請求項2に係る発明は、上記発明において、上記分岐管内を流れる液体は内径が大きい管内を流れる液体よりも下方であることを特徴とし、請求項3に係る発明は、上記発明において、上記内径が大きい管からは排水されないときに上記分岐管からの排水量を測定することを特徴とし、
請求項4に係る発明は、上記発明において、上記内径が大きい管の排出口の高さが、分岐管の排出口より高い位置となるように設けると共に、上記分岐管及び上記内径の大きい管の一部あるいは全てが逆U字型となるように配管されることを特徴とする。
The invention according to claim 1 of the present invention fills the inside of the filtration membrane with a liquid, discharges the liquid on the primary side of the filtration membrane, injects pressurized gas from the primary side of the filtration membrane, In the method of detecting an abnormality of the filtration membrane by measuring the amount of liquid pushed out from the side and flowing in the piping, the secondary side tube of the filtration membrane has at least one branch pipe and the branch pipe The inner diameter of the branch pipe is increased to a position higher than the branch pipe, and the flow rate of the branch pipe is measured. It is a filtration membrane abnormality detection method. Here, the phrase “the pipe having a large inner diameter is raised to a position higher than that of the branch pipe” means that the pipe having a large inner diameter is installed above the branch pipe.
The invention according to claim 2 of the present invention is characterized in that, in the above invention, the liquid flowing in the branch pipe is lower than the liquid flowing in the pipe having a large inner diameter. , Characterized by measuring the amount of drainage from the branch pipe when not drained from the pipe having a large inner diameter,
According to a fourth aspect of the present invention, in the above invention, the height of the discharge port of the pipe having a large inner diameter is set to be higher than the discharge port of the branch pipe, and the branch pipe and the pipe having a large inner diameter are provided. It is characterized in that a part or all of the pipes are arranged in an inverted U shape.

本発明の請求項5に係る発明は、ろ過膜内を液体で満たす手段、ろ過膜の一次側の液体を排出する手段、ろ過膜の一次側から気体を注入する手段、および前記ろ過膜の二次側から押し出され、配管された管内を流れる液体の量を測定する手段を備えるろ過膜の異常を検知する装置において、前記ろ過膜の二次側から押し出される液体が流れる管が、少なくとも1本の分岐管と、該分岐管の内径より大きい内径であって該分岐管が分岐される管から構成され、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられるとともに、前記分岐管は流量を測定する管でもあることを特徴とするろ過膜の異常検知装置であり、
請求項6に係る発明は、上記発明において、上記分岐管内を流れる液体は内径が大きい管内を流れる液体よりも下方となるように、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられることを特徴とし、
請求項7に係る発明は、上記内径が大きい管の排出口の高さが、分岐管の排出口より高い位置となるように設けると共に、上記分岐管及び上記内径の大きい管の一部あるいは全てが逆U字型となるように配管されることを特徴とする。
The invention according to claim 5 of the present invention includes means for filling the inside of the filtration membrane with liquid, means for discharging the liquid on the primary side of the filtration membrane, means for injecting gas from the primary side of the filtration membrane, and two of the filtration membranes. In an apparatus for detecting an abnormality of a filtration membrane provided with a means for measuring the amount of liquid extruded from the secondary side and flowing through the piped pipe, at least one pipe through which the liquid extruded from the secondary side of the filtration membrane flows And a pipe having an inner diameter larger than the inner diameter of the branch pipe and from which the branch pipe is branched. The pipe having the larger inner diameter is raised to a position higher than the branch pipe, and the branch pipe Is a filtration membrane abnormality detection device characterized by being a pipe for measuring the flow rate,
According to a sixth aspect of the present invention, in the above invention, the pipe having a large inner diameter is raised to a position higher than the branch pipe so that the liquid flowing in the branch pipe is located below the liquid flowing in the pipe having a large inner diameter. It is characterized by
The invention according to claim 7 is provided such that the discharge port of the pipe having a large inner diameter is positioned higher than the discharge port of the branch pipe, and part or all of the branch pipe and the pipe having the large inner diameter. It is characterized by being piped so as to have an inverted U shape.

以下、本発明を詳細に説明する。
本発明のろ過膜は、代表的にはUF膜やMF膜等、浄水を得る際に用いられるろ過膜であるが、浄水を得る目的以外の膜でも適用可能である。本発明では上記UF膜やMF膜等のろ過膜を多数まとめて膜モジュールとして、浄水処理の際に理由する形態が一般的である。
その膜モジュールに被処理水(以下、原水ということがある)を膜の一次側から注入し、ろ過処理し、膜の二次側から配管された管内を通して処理水を取り出し、次の工程に送る方法が一般的に行われている。
Hereinafter, the present invention will be described in detail.
The filtration membrane of the present invention is typically a filtration membrane used when obtaining purified water, such as a UF membrane or an MF membrane, but membranes other than the purpose of obtaining purified water are also applicable. In the present invention, the above-described UF membranes, MF membranes, and other filtration membranes are generally combined into a membrane module, which is generally used for water purification treatment.
Water to be treated (hereinafter sometimes referred to as raw water) is injected into the membrane module from the primary side of the membrane, filtered, and the treated water is taken out from the secondary side of the membrane, and sent to the next step. The method is generally done.

本発明では、膜モジュール内のろ過膜の破断など、膜の異常を検知するときには、膜モジュールを水で満たした後、膜モジュールの一次側の排水を行なう。その後、加圧空気を膜の一次側から注入するが、バブルポイント以下とすることが好ましい。膜モジュール内の中空糸内部に水が残留しているため、膜モジュールの一次側の水が、加圧空気によって、二次側に押し出され、膜モジュールから排水用管を通して漏出水が大量に排水(以下、残留水ということがある)される。引続き、加圧空気を注入し続けると、排水用管を流れる漏出水量も低下する。
ほぼ全ての残留水が押し出された後は、膜の一次側から拡散によって膜の二次側に漏出した空気によって、膜の二次側の水が押し出され、排水されることとなる。
In the present invention, when a membrane abnormality such as a breakage of the filtration membrane in the membrane module is detected, the membrane module is filled with water, and then the primary drainage of the membrane module is performed. Then, although pressurized air is inject | poured from the primary side of a film | membrane, it is preferable to make it below a bubble point. Since water remains inside the hollow fiber in the membrane module, the water on the primary side of the membrane module is pushed out to the secondary side by pressurized air, and a large amount of leaked water is drained from the membrane module through the drain pipe. (Hereinafter sometimes referred to as residual water). If pressurized air is continuously injected, the amount of leaked water flowing through the drainage pipe also decreases.
After almost all of the residual water has been pushed out, the water leaked from the primary side of the membrane to the secondary side of the membrane by diffusion diffuses and drains the water on the secondary side of the membrane.

本発明では、この排水用管として少なくとも2種類以上の内径が異なる管を使用する。すなわち、排水用管から流出する漏出水が比較的大量のときには、短時間で排水できるよう、比較的内径の大きい管を利用する。一方、排水用管から流出する漏出水が比較的少量のときには、漏出水量を正確に測定できるよう、比較的内径の小さい管を利用する。ここで、内径の大きさは何ら限定されないのであり、排出される水の量により適宜決定すればよい。但し、内径が小さい管は漏出水が比較的少量でもその漏出水を正確に測定することが求められるような内径であることが必要である。また、漏出水の量が多ければ、その漏出水を排水するためにさらに排水用の管を増加させてもよい。この増加させた管の内径は前記漏出水を排水する管の内径と同じでもよいし、異なっていてもよい。   In the present invention, at least two kinds of pipes having different inner diameters are used as the drainage pipe. That is, when the leaked water flowing out from the drain pipe is relatively large, a pipe having a relatively large inner diameter is used so that the drain can be drained in a short time. On the other hand, when the amount of leaked water flowing out from the drainage pipe is relatively small, a pipe having a relatively small inner diameter is used so that the amount of leaked water can be accurately measured. Here, the size of the inner diameter is not limited at all, and may be appropriately determined depending on the amount of water to be discharged. However, a pipe having a small inner diameter needs to have an inner diameter that requires accurate measurement of the leaked water even if the leaked water is relatively small. If the amount of leaked water is large, the number of drainage pipes may be increased in order to drain the leaked water. The increased inner diameter of the pipe may be the same as or different from the inner diameter of the pipe that drains the leaked water.

さらに、本発明では排水用管の排出口近くの部分をほぼ逆U字型とする。ここで、ほぼ逆U字型とは、例えば図1あるいは図2に示されるように、管の一部の形状が逆U字の形状、あるいはそれに類似する形状を取る形を意味する。
そして、それぞれの排水用管の排出口の高さがほぼ同じか、異なるように設置する。とくに、内径が大きい排水用管の排出口の高さが、内径が小さい排水用管の排出口の高さよりも高くなるように設置することが好ましい。
このような構成としたので、漏出液が大量の時には全ての排水用管から漏出液が排水されるが、漏出液が次第に少なくなるにつれて、内径が小さい排水用管から漏出腋が排水されることになる。
Furthermore, in this invention, the part near the discharge port of the drainage pipe is made into a substantially inverted U shape. Here, the substantially inverted U shape means a shape in which a part of the tube has an inverted U shape or a similar shape, as shown in FIG. 1 or FIG.
And it installs so that the height of the discharge port of each drainage pipe may be almost the same or different. In particular, it is preferable that the outlet of the drainage pipe having a large inner diameter is set higher than the height of the outlet of the drainage pipe having a small inner diameter.
With such a configuration, when there is a large amount of leaked liquid, the leaked liquid is drained from all drainage pipes, but as the leaked liquid gradually decreases, the leaking soot is drained from the drainage pipe with a smaller inner diameter. become.

ろ過膜の異常の検知を開始する時期は、残留水の量が次第に減っていき、やがて細い管から排水される時期以降になる。 すなわち、ろ過膜の異常の有無を検知する時期は、ほぼ全ての残留水が押し出された後であって、内径が小さい管から排水される漏出液の量の変化率がほぼ0となったときとする。ここで、変化率がほぼ0とは、漏出液の量の1分間あたりの変化量が10mL以内のときをいう。異常なろ過膜のとは、ろ過膜の一部が破断したり、あるいは破損するなどして、本来捕捉することのできる微粒子や原虫などを捕捉することができなくなったろ過膜をいう。
なお、簡便法として、加圧開始時にセットしたタイマーを起動させ、設定時間がきたら、排水量により破断の有無を判断する測定を開始する。なお、この設定時間は、破断した中空糸からなる膜モジュールを用意し、その膜モジュールを使用して拡散流量試験をあらかじめ行い得られたデータに基づいて決定される。
The time when the detection of the abnormality of the filtration membrane is started is after the time when the amount of residual water gradually decreases and is eventually drained from the thin pipe. That is, the time for detecting the presence or absence of abnormality in the filtration membrane is after almost all of the residual water has been pushed out, and when the rate of change in the amount of leaked liquid drained from a pipe having a small inner diameter becomes almost zero. And Here, the rate of change is substantially 0 means that the amount of change per minute of the amount of leaked liquid is within 10 mL. An abnormal filtration membrane refers to a filtration membrane in which fine particles or protozoa that can be originally captured cannot be captured because a part of the filtration membrane is broken or broken.
As a simple method, a timer set at the start of pressurization is started, and when the set time comes, measurement for determining the presence or absence of breakage based on the amount of drainage is started. The set time is determined based on data obtained by preparing a membrane module made of a broken hollow fiber and performing a diffusion flow rate test in advance using the membrane module.

本発明により、ろ過膜の破断など膜の異常を比較的簡単な方法で、比較的短い時間で、しかも信頼性良く、検知することが可能となる。しかも、操作上の煩わしさもない。さらに、本発明の異常膜検知装置は、耐久性があり、コストの削減された装置であり、極めて実用的な発明である。 According to the present invention, it is possible to detect a membrane abnormality such as a filter membrane breakage with a relatively simple method in a relatively short time and with high reliability. Moreover, there is no troublesome operation. Furthermore, the abnormal film detection device of the present invention is a durable and cost-reduced device and is a very practical invention.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の実施の形態を、図を持って説明する。
図1は、本発明で用いる膜モジュール膜異常検知装置の一例(口径が大きい管と口径が小さい管の二つの管を使用)の要部を示す。
膜モジュール1の膜の一次側(中空糸膜内側)20および膜の二次側(中空糸膜外側)21の水は排水弁15を経て、排水用管22および16を通って,系外に排出される。配管から分岐された内径の小さい排水用管16には水用流量計17が備えられており、排水用管16を流れ去る排水量の測定を行う。排水用管22はその一部がほぼ逆U字状に配管されており、排水用管16もその一部がほぼ逆U字状に配管されている。排水用管22の排出口は排水用管16の排出口よりも高く設定され、望ましくは排水用管16の頂点を越えないように設定される。排出口の高さの差は5〜10cmの範囲内が望ましい。排水用管16の内径は、2〜20mmが好ましく、排水用管22の内径は、排水用管16の内径の約5〜10倍の大きさであることが望ましい。
なお、図に示されていないが、さらに排水管を増加することができる。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a main part of an example of a membrane module membrane abnormality detection device used in the present invention (using two tubes, a tube having a large diameter and a tube having a small diameter).
Water on the membrane primary side (hollow fiber membrane inner side) 20 and the membrane secondary side (hollow fiber membrane outer side) 21 passes through the drainage valve 15 and drainage pipes 22 and 16 to the outside of the system. Discharged. The drainage pipe 16 having a small inner diameter branched from the pipe is provided with a water flow meter 17 for measuring the amount of drainage flowing through the drainage pipe 16. A part of the drainage pipe 22 is piped in a substantially inverted U shape, and a part of the drainage pipe 16 is also piped in a substantially inverted U shape. The discharge port of the drainage pipe 22 is set higher than the discharge port of the drainage pipe 16 and is preferably set so as not to exceed the top of the drainage pipe 16. The difference in height between the discharge ports is preferably within a range of 5 to 10 cm. The inner diameter of the drainage pipe 16 is preferably 2 to 20 mm, and the inner diameter of the drainage pipe 22 is desirably about 5 to 10 times larger than the inner diameter of the drainage pipe 16.
Although not shown in the figure, the number of drain pipes can be further increased.

ここで、用いる管の太さは、一回に測定する膜モジュールの本数が少ない場合は細い管を、多い場合は太い管を選択する。また、さらに管の本数を増やしてもよい。
この選択は、膜の種類・形状・特性や、一回に測定する膜の本数、さらには全体の装置の形状などを勘案して決定しなければならない。最も簡単な決定方法は、実際に測定する装置を用いて、試作段階で数種類試し、最も測定し易い組合せを選ぶことである。
Here, as the thickness of the tube to be used, a thin tube is selected when the number of membrane modules to be measured at one time is small, and a thick tube is selected when the number is large. Further, the number of tubes may be increased.
This selection must be determined in consideration of the type, shape, and characteristics of the membrane, the number of membranes to be measured at one time, and the overall shape of the apparatus. The simplest determination method is to try several types at the trial production stage using an actually measuring device and select the combination that is most easily measured.

実際に図1で示される装置を用いてろ過膜の異常を検知すると、図2に示すような効果を得ることができる。すなわち、最初に膜モジュール1の膜の一次側(中空糸膜内側)20の水を排出している段階(2-(1))では、排水用管22および16から大量の水が排出される。排出が終了する頃には、押し出される水の量が減るので、2−(2)の状態になり、太い排水用管22からは殆ど排水が見られなくなり、やがて2−(3)のように、排水用管22からは排水されず、排水用管16から排水されることとなる。排水用管22の水頭は、排水用管16の排出口の高さとほぼ同じか、数cm高い位置に落ち着く。   When the abnormality of the filtration membrane is actually detected using the apparatus shown in FIG. 1, the effect shown in FIG. 2 can be obtained. That is, at the stage (2- (1)) where the water on the primary side (inside the hollow fiber membrane) 20 of the membrane of the membrane module 1 is first discharged, a large amount of water is discharged from the drainage pipes 22 and 16. . When the discharge is completed, the amount of water to be pushed out decreases, so the state of 2- (2) is reached, and almost no drainage is seen from the thick drainage pipe 22, and eventually, as shown in 2- (3) The drainage pipe 22 is not drained, but the drainage pipe 16 is drained. The head of the drainage pipe 22 settles at a position that is almost the same as the height of the discharge port of the drainage pipe 16 or a few centimeters higher.

このような構成とすることにより、下記のような利点がある。
サイホン効果を利用することにより、水の流量の変化によって自動的に最適な配管が選択され、その選択にバルブなどを使う必要が無い点、
配管の選択に機械部品が不要なため、装置の耐久性・信頼性が向上する点、
コストが削減できる点、
排水が迅速に行なわれるため、試験に使う時間を短縮できる点など。
Such a configuration has the following advantages.
By using the siphon effect, the optimum piping is automatically selected according to the change in the flow rate of water, and there is no need to use a valve for the selection.
Since machine parts are not required for the selection of piping, the durability and reliability of the equipment is improved.
The cost can be reduced,
Since drainage is performed quickly, the time used for testing can be shortened.

本発明は、上記の説明から、つぎのように記載することができる。
(1)UF膜やMF膜を用いて、膜の一次側から被処理水を注入して膜の二次側からろ過水を得ることで、被処理水の濁質を除去する膜処理装置の、膜の破断を検知する装置であって、前記膜の一次側から空気を注入し、前記膜の二次側に漏出するガスにより、前記膜の二次側の水が押し出されることを利用して、水量を測定することにより、膜の異常を検知する装置において、前記膜の二次側の水が流出する経路が、流量を測定する細い配管と、大量の水を排水する太い配管の、少なくとも2本が存在することを特徴とする膜の異常検知装置。
(2)請求項1の異常検知装置で、水の流出する経路となる配管が、逆U字型をしており、太い配管の排水口の高さが、細い配管の排水口より高い位置にあることを特徴とする膜の異常検知装置。
(3)ろ過膜内を液体で満たし、ろ過膜の一次側の液体を排出し、前記ろ過膜の一次側から加圧気体を注入し、前記ろ過膜の二次側から押し出され、管内を流れる液体の量を測定することによるろ過膜の異常検知方法において、前記液体が少なくとも内径の異なる1本の分岐管を設けた管内を流すようにすることを特徴とするろ過膜の異常検知方法。
From the above description, the present invention can be described as follows.
(1) A membrane treatment device that removes turbidity of treated water by injecting treated water from the primary side of the membrane using UF membrane or MF membrane and obtaining filtered water from the secondary side of the membrane. An apparatus for detecting the breakage of the membrane, utilizing the fact that air is injected from the primary side of the membrane and water on the secondary side of the membrane is pushed out by the gas leaking to the secondary side of the membrane. Then, in the device for detecting an abnormality of the membrane by measuring the amount of water, the path through which the water on the secondary side of the membrane flows out is a thin pipe for measuring the flow rate and a thick pipe for draining a large amount of water. An apparatus for detecting an abnormality of a film, characterized in that there are at least two.
(2) In the anomaly detection device according to claim 1, the pipe that becomes the path through which water flows out has an inverted U shape, and the height of the drain outlet of the thick pipe is higher than the outlet of the thin pipe. An apparatus for detecting an abnormality of a film characterized by being.
(3) Filling the inside of the filtration membrane with liquid, discharging the liquid on the primary side of the filtration membrane, injecting pressurized gas from the primary side of the filtration membrane, being pushed out from the secondary side of the filtration membrane, and flowing in the pipe An abnormality detection method for a filtration membrane by measuring the amount of liquid, wherein the liquid flows through a pipe provided with at least one branch pipe having a different inner diameter.

本発明の膜モジュール膜異常検知装置の要部。The principal part of the membrane module membrane abnormality detection apparatus of this invention. 本発明の膜モジュールの排水管の説明図。Explanatory drawing of the drain pipe of the membrane module of this invention. 従来の膜異常検知装置付き膜ろ過装置のフロー図。The flowchart of the conventional membrane filtration apparatus with a membrane abnormality detector. 従来の膜モジュール膜異常検知方法説明図。(実験前)Explanatory drawing of the conventional membrane module membrane abnormality detection method. (Before experiment) 従来の膜モジュール膜異常検知方法説明図。(一次側排水中)Explanatory drawing of the conventional membrane module membrane abnormality detection method. (During primary drainage) 従来の膜モジュール膜異常検知方法説明図。(加圧空気注入直後)Explanatory drawing of the conventional membrane module membrane abnormality detection method. (Immediately after pressurized air injection)

符号の説明Explanation of symbols

1.膜モジュール
2.ろ過ポンプ
3.被処理水注入弁
4.処理水排水弁
5.ろ過タンク
6.逆洗ポンプ
7.逆洗弁
8.コンプレッサー
9.減圧弁
10.空気注入弁
11.空気注入管
12.空気用流量計
13.空気開放弁
14.一次側ドレイン弁
15.排水弁
16.排水用管(測定用)
17.水用流量計
18.排水口
19.膜一次側
20.膜の一次側(中空糸膜内側)
21.膜の二次側(中空糸膜外側)
22.排水用管(初期排水用)







1. 1. Membrane module 2. Filtration pump 3. Water to be treated injection valve Treated water drain valve
5). Filtration tank
6). 6. Backwash pump Backwash valve
8). compressor
9. Pressure reducing valve
10. Air injection valve 11. Air injection tube 12. 12. Air flow meter Air release valve 14. Primary drain valve 15. Drain valve 16. Drain pipe (for measurement)
17. Water flow meter 18. Drain port 19. Membrane primary side 20. Primary side of membrane (inside hollow fiber membrane)
21. Secondary side of membrane (outside of hollow fiber membrane)
22. Drainage pipe (for initial drainage)







Claims (7)

ろ過膜内を液体で満たし、ろ過膜の一次側の液体を排出し、前記ろ過膜の一次側から加圧気体を注入し、前記ろ過膜の二次側から押し出され、管内を流れる液体の量を測定することによるろ過膜の異常検知方法において、前記ろ過膜の二次側の液体が流れる管が、少なくとも1本の分岐管と、該分岐管の内径より大きい内径であって該分岐管が分岐される管から構成され、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられるとともに、前記分岐管の流量を測定することを特徴とするろ過膜の異常検知方法。 Fill the filtration membrane with liquid, discharge the primary side liquid of the filtration membrane, inject the pressurized gas from the primary side of the filtration membrane, push out the secondary side of the filtration membrane, and the amount of liquid flowing in the pipe In the method for detecting an abnormality of a filtration membrane by measuring the flow rate, the pipe through which the liquid on the secondary side of the filtration membrane flows has at least one branch pipe and an inner diameter larger than the inner diameter of the branch pipe, and the branch pipe is An abnormality detection method for a filtration membrane, comprising: a branched pipe, wherein the pipe having a large inner diameter is raised to a position higher than the branch pipe, and the flow rate of the branch pipe is measured. 上記分岐管内を流れる液体は内径が大きい管内を流れる液体よりも下方であることを特徴とする請求項1記載のろ過膜の異常検知方法。 2. The filtration membrane abnormality detection method according to claim 1, wherein the liquid flowing in the branch pipe is below the liquid flowing in the pipe having a large inner diameter. 上記内径が大きい管からは排水されないときに上記分岐管からの排水量を測定することを特徴とする請求項1又は2記載のろ過膜の異常検知方法。 3. The filtration membrane abnormality detection method according to claim 1, wherein the amount of drainage from the branch pipe is measured when the pipe having a large inner diameter is not drained. 上記内径が大きい管の排出口の高さが、分岐管の排出口より高い位置となるように設けると共に、上記分岐管及び上記内径の大きい管の一部あるいは全てが逆U字型となるように配管されることを特徴とする請求項1〜3のいずれか記載のろ過膜の異常検知方法。 The discharge port of the pipe having a large inner diameter is provided so that the height of the discharge port is higher than the discharge port of the branch pipe, and part or all of the branch pipe and the pipe having the large inner diameter are inverted U-shaped. The filtration membrane abnormality detection method according to claim 1, wherein the filtration membrane abnormality detection method is provided. ろ過膜内を液体で満たす手段、ろ過膜の一次側の液体を排出する手段、ろ過膜の一次側から気体を注入する手段、および前記ろ過膜の二次側から押し出され、管内を流れる液体の量を測定する手段を備えるろ過膜の異常検知装置において、前記ろ過膜の二次側から押し出される液体が流れる管が、少なくとも1本の分岐管と、該分岐管の内径より大きい内径であって該分岐管が分岐される管から構成され、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられるとともに、前記分岐管は流量を測定する管でもあることを特徴とするろ過膜の異常検知装置。 Means for filling the inside of the filtration membrane with liquid, means for discharging the liquid on the primary side of the filtration membrane, means for injecting gas from the primary side of the filtration membrane, and liquid that is pushed out from the secondary side of the filtration membrane and flows in the pipe In the filtration membrane abnormality detection device comprising means for measuring the amount, the pipe through which the liquid pushed out from the secondary side of the filtration membrane has an inner diameter larger than the inner diameter of at least one branch pipe and the branch pipe. The branch pipe is constituted by a branch pipe, the pipe having a large inner diameter is raised to a position higher than the branch pipe, and the branch pipe is also a pipe for measuring a flow rate. Anomaly detection device. 上記分岐管内を流れる液体は内径が大きい管内を流れる液体よりも下方となるように、当該内径の大きい管は前記分岐管よりも高い位置まで立ち上げられることを特徴とする請求項5記載のろ過膜の異常検知装置。 6. The filtration according to claim 5, wherein the pipe having a larger inner diameter is raised to a position higher than the branch pipe so that the liquid flowing in the branch pipe is located below the liquid flowing in the pipe having a larger inner diameter. Membrane abnormality detection device. 上記内径が大きい管の排出口の高さが、分岐管の排出口より高い位置となるように設けると共に、上記分岐管及び上記内径の大きい管の一部あるいは全てが逆U字型となるように配管されることを特徴とする請求項5又は6記載のろ過膜の異常検知装置。 The discharge port of the pipe having a large inner diameter is provided so that the height of the discharge port is higher than the discharge port of the branch pipe, and part or all of the branch pipe and the pipe having the large inner diameter are inverted U-shaped. The filtration membrane abnormality detection device according to claim 5 or 6, wherein the filtration membrane abnormality detection device is piped.
JP2004254833A 2004-09-01 2004-09-01 Filtration membrane abnormality detection method and apparatus Active JP4461288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254833A JP4461288B2 (en) 2004-09-01 2004-09-01 Filtration membrane abnormality detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254833A JP4461288B2 (en) 2004-09-01 2004-09-01 Filtration membrane abnormality detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2006068634A JP2006068634A (en) 2006-03-16
JP4461288B2 true JP4461288B2 (en) 2010-05-12

Family

ID=36149787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254833A Active JP4461288B2 (en) 2004-09-01 2004-09-01 Filtration membrane abnormality detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4461288B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2480319A1 (en) 2009-09-24 2012-08-01 Gore Enterprise Holdings, Inc. Integrity test method for porous filters
CN103501880B (en) * 2011-04-28 2015-08-26 三菱丽阳株式会社 The integrity test method and test device of Porous hollow fiber film assembly
CN110280399A (en) * 2019-07-24 2019-09-27 江苏赛德力制药机械制造有限公司 A kind of centrifuge that can control charging and control disengaging time
CN114904397B (en) * 2021-02-09 2023-09-19 上海工程技术大学 Method for measuring pore diameter and pore diameter distribution of filter membrane

Also Published As

Publication number Publication date
JP2006068634A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
KR19980703054A (en) Filtration Monitoring and Control System
WO2001045829A1 (en) Method and apparatus for testing the integrity of filtering membranes
JP2001190938A (en) Method of detecting breakage of water treating membrane
JP2000510766A (en) Methods and equipment for in situ testing of membrane integrity.
JP2013513470A (en) Means for checking filter integrity in liquid purification systems
JP4461288B2 (en) Filtration membrane abnormality detection method and apparatus
KR101753453B1 (en) Hollow fiber membrane and method of detecting damage of membrane thereof
JP2008253888A (en) Membrane damage detecting method
JP3826041B2 (en) Membrane breakage detection device and detection method for membrane filtration device
JP2000342936A (en) Method and device for detecting membrane damage of hollow fiber membrane filter apparatus
JP3807552B2 (en) Membrane filtration method and apparatus for membrane damage detection
JP2007117904A (en) Membrane filtration apparatus
JP3243677B2 (en) Leak detector for membrane breakage in membrane filtration device
JP3401541B2 (en) Membrane separation device and its operation method
JP2005013992A (en) Safety testing method for hollow fiber membrane module
JP4591702B2 (en) Film processing apparatus and film damage detection method
JP2004237281A (en) Membrane separation apparatus, and state detecction method for the apparatus
JP2007245060A (en) Method for detecting and testing membrane damage of filtration membrane
JP2004188252A (en) Membrane filtration apparatus and its operating method
Johnson Automatic monitoring of membrane integrity in microfiltration systems
JP2000279769A (en) Membrane failure detection, apparatus therefor and membrane separator
JP4205984B2 (en) Membrane filtration device and operation method thereof
KR20110127011A (en) Method for membrane integrity test using reduction of surface tension
JP2006289309A (en) Membrane breakage diagnostic method of membrane filter and its apparatus
JP6457904B2 (en) Self-cleaning tank type membrane filtration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250