JP4205984B2 - Membrane filtration device and operation method thereof - Google Patents

Membrane filtration device and operation method thereof Download PDF

Info

Publication number
JP4205984B2
JP4205984B2 JP2003108178A JP2003108178A JP4205984B2 JP 4205984 B2 JP4205984 B2 JP 4205984B2 JP 2003108178 A JP2003108178 A JP 2003108178A JP 2003108178 A JP2003108178 A JP 2003108178A JP 4205984 B2 JP4205984 B2 JP 4205984B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003108178A
Other languages
Japanese (ja)
Other versions
JP2004313854A (en
Inventor
俊文 椋橋
一栄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2003108178A priority Critical patent/JP4205984B2/en
Publication of JP2004313854A publication Critical patent/JP2004313854A/en
Application granted granted Critical
Publication of JP4205984B2 publication Critical patent/JP4205984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、水道水の製造や産業用水の製造に使用する膜ろ過装置およびその運転方法に関する。
【0002】
【従来の技術】
従来、この種の膜ろ過装置としては、膜破断を検知する装置を設けることが知られている(例えば、特許文献1〜4参照)。
その一例を図5に示す。
先ず、膜ろ過装置1の構成を説明する。
原水をろ過する中空糸膜モジュール2には、弁5〜10が設けてある。ろ過時に弁5,6が開放し、洗浄時に弁7,8が開放し、ドレン時に弁8,9が開放するように構成されている。
【0003】
中空糸膜モジュール2の一次側には、弁5を備えた原水管11、弁8を備えた排気管14、弁9を備えた排水管15、弁10を備えた膜破断検知管16それぞれ取り付けている。
断検知管16には、光源17と受光素子18とを備えた膜破断検知装置3を取り付けている。膜破断検知装置3は、膜破断検知管16を通る空気を光源17と受光素子18で測定する構成となっている。
【0004】
中空糸膜モジュール2の二次側には、弁6を備えた膜ろ過水管12、弁7を備えた空気管13を取り付けている。
空気管13には、コンプレッサ4が連絡している。
次に、このように構成された従来の膜ろ過装置1について説明する。
従来の膜ろ過装置1の運転は、ろ過工程、洗浄工程、ドレン工程、満水工程、破断検知工程を繰り返し行っている。
【0005】
それぞれの水または空気の流れるラインは、下記の通りである。
先ず、ろ過工程では、原水管11→弁5→中空糸膜モジュール2→弁6→膜ろ過水管12の経路を経て、原水のろ過処理が為される。
次に、洗浄工程では、コンプレッサ4→空気管13→弁7→中空糸膜モジュール2→弁8→排気管14の経路を経て、中空糸膜モジュール2の洗浄処理が為される。
【0006】
次に、ドレン工程では、弁8→中空糸膜モジュール2→弁9→排水管15の経路を経て、洗浄工程で使用された洗浄水のドレン処理が為される。なお、ここでは、弁8は、ドレン排水時に空気を入れるために開とする。
次に、満水工程では、原水管11→弁5→中空糸膜モジュール2の経路を経て、中空糸膜モジュール2内を満水にする処理が為される。なお、ここでは、弁8は、中空糸膜モジュール2内部の空気を大気へ解放するため開とする。
【0007】
次に、破断検知工程では、空気管13→弁7→中空糸膜モジュール2→弁10→膜破断検知管1→膜破断検知装置3の経路を経て、中空糸膜モジュール2の破断検知処理が為される。
【特許文献1】
特開平11−311596号公報
【特許文献2】
特開2000−126563号公報
【特許文献3】
特開2000−342937号公報
【特許文献4】
特開2001−269551号公報
【0008】
【発明が解決しようとする課題】
しかし、図5に示す従来の膜ろ過装置1においては、膜破断検知装置3が、中空糸膜モジュール2の1つに対して1つ設置されているため、膜ろ過装置1が煩雑となっていた。
また、コンプレッサ4によって圧縮空気を中空糸膜モジュール2に送り、膜破断検知管16を通る空気を膜破断検出装置3内部の光源17と受光素子18で測定しているため、長期間の使用によって膜破断検出装置3の内部が汚れ、誤作動を起こすおそれがあった。
【0009】
この誤作動を防ぐためには、頻繁に膜破断検出装置3の内部を清掃する必要があった。
なお、特許文献1〜4においても、図5に示す従来の膜ろ過装置1と同様に、膜破断検知装置を中空糸膜モジュールの1つに対して1つ設置する必要があり、膜ろ過装置が煩雑となるという不具合があった。
【0010】
本発明は、斯かる従来の問題点を解決するため為されたもので、その目的は、膜破断検知を簡便に行うことが可能な膜ろ過装置およびその運転方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、原水をろ過する複数の中空糸膜モジュールと、前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける原水管と、前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける排気管と、前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける排水管と、前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける膜破断検知管と、水位の上昇速度を測定する水位計と、上昇度合が遅い場合あるいは上昇しない場合には、警報を発し膜破断を報知する手段とを備え、前記膜破断検知管に連絡する膜破断検知水槽と、前記複数の中空糸膜モジュールの二次側に、弁を介して取り付ける膜ろ過水管と、前記複数の中空糸膜モジュールの二次側に、弁を介して取り付ける空気管と、前記空気管に連絡するコンプレッサとを備え、前記複数の中空糸膜モジュールによるろ過時には、前記原水管と前記膜ろ過水管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの洗浄時には、前記空気管と前記排気管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記複数の中空糸膜モジュールの洗浄後の排水時には、前記排気管と前記排水管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの満水時には、前記原水管と排気管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの膜破断検出時には、前記空気管と前記膜破断検出管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記膜破断検出管を介して流出する水を前記膜破断検知水槽に貯留し、前記膜破断検知水槽の水位の上昇速度を測定し、前記上昇度合いが遅いまたは上昇しない場合に、前記複数の中空糸膜モジュールの膜破断有りと判断するように構成したことを特徴とする。
【0012】
請求項2に係る発明は、請求項1記載の膜ろ過装置において、前記中空糸膜モジュールの膜破断検出時に供給される前記圧縮空気の圧力は、バブルポイントより低い圧力であることを特徴とする。
請求項3に係る発明は、請求項1記載の膜ろ過装置において、前記膜破断検知水槽は、排水弁を備えた開放型の水槽であり、前記複数の中空糸膜モジュールの膜破断検出時だけ前記排水弁を閉じることを特徴とする。
【0013】
請求項4に係る発明は、請求項1記載の膜ろ過装置において、前記膜破断検知水槽は、排水弁を備えた密閉型の水槽であり、水位に伴って変動する前記水槽内部の圧力と、前記複数の中空糸膜モジュールの一次側の圧力とが平衡状態になろうとするときの水位を前記水位計で測定することを特徴とする。
請求項5に係る発明は、原水のろ過工程、前記複数の中空糸膜モジュールの洗浄工程、前記複数の中空糸膜モジュールのドレン工程、前記複数の中空糸膜モジュールの満水工程および前記複数の中空糸膜モジュールの膜破断検出工程を順に行う請求項1記載の膜ろ過装置の運転方法であって、前記原水のろ過工程では、前記原水管と前記膜ろ過水管とに設けた弁だけを開放し、原水供給源と前記複数の中空糸膜モジュールとの水位差により前記原水を前記中空糸膜モジュールに加圧送水してろ過水し、前記ろ過水を前記膜ろ過水管を介して導出し、前記複数の中空糸膜モジュールの洗浄工程では、前記空気管と前記排気管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記複数の中空糸膜モジュールのドレン工程では、前記排気管と前記排水管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの一次側の水を排出し、前記複数の中空糸膜モジュールの満水工程では、前記原水管と排気管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの膜破断検出工程では、前記空気管と前記膜破断検出管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記膜破断検出管を介して流出する水を前記膜破断検知水槽に貯留し、前記膜破断検知水槽の水位の上昇速度を測定し、前記上昇度合いが遅いまたは上昇しない場合に、前記複数の中空糸膜モジュールの膜破断有りと判断することを特徴とする。
【0014】
請求項に係る発明は、請求項5記載の膜ろ過装置の運転方法において、前記中空糸膜モジュールの膜破断検出工程に供給される前記圧縮空気の圧力は、バブルポイントより低い圧力であることを特徴とする
【0015】
【発明の実施の形態】
以下、本発明を図面に示す実施形態に基づいて説明する。
図1は、本発明の第一実施形態に係る膜ろ過装置50を示す(請求項1〜請求項に対応する)。
本実施形態に係る膜ろ過装置50は、膜破断検知管58に膜破断検知水槽64を設けた点で、図5に示す従来の膜ろ過装置1とは相違する。
本実施形態に係る膜ろ過装置50は、原水をろ過する複数の中空糸膜モジュール51を備えている。中空糸膜モジュール51は、例えば、孔径が2μm程度の外圧中空糸膜を収納した低圧中空糸膜モジュールである。
【0016】
各中空糸膜モジュール51の一次側51aには、弁53を備えた原水管52と、弁55を備えた排気管54と、弁57を備えた排水管56と、弁59を備えた膜破断検知管58とを取り付けている。
各中空糸膜モジュール51の二次側51bには、弁61を備えた膜ろ過水管60と、弁63を備えた空気管62とを取り付けている。
【0017】
膜破断検知管58は、水位計65および弁66を備えた開放型の膜破断検知水槽64に連絡している。
空気管62は、圧縮空気を供給するコンプレッサ67に連絡している。
次に、斯くして構成された本実施形態に係る膜ろ過装置50を用いて、原水のろ過工程、複数の中空糸膜モジュール51の洗浄工程、複数の中空糸膜モジュール51のドレン工程、複数の中空糸膜モジュール51の満水工程および複数の中空糸膜モジュール51の膜破断検出工程を順に行う運転方法について説明する(請求項〜請求項に対応する)。
【0018】
先ず、原水のろ過工程では、原水管52と膜ろ過水管60とに設けた弁53,61だけを開放し、その他の弁55,57,59,63を閉じる。
原水は、原水供給源と複数の中空糸膜モジュール51との水位差により中空糸膜モジュール51の一次側51aに加圧送水され、中空糸膜モジュール51の膜表面に空いた細孔によりろ過され、中空糸膜モジュール51の二次側51bにろ過水として流出し、膜ろ過水管60を介して任意の水槽などに貯水される。
【0019】
次に、原水管52に設けた弁53と膜ろ過水管60に設けた弁61を閉じた後、複数の中空糸膜モジュール51の洗浄工程に移行する。
ここでは、空気管62と排気管54とに設けた弁63,55だけを開放し、コンプレッサ67から空気管62を介して中空糸膜モジュール51の二次側51bに圧縮空気を供給し、中空糸膜モジュール51の二次側51bから一次側51aに圧縮空気を通して膜の逆洗を行う
【0020】
上述したように、中空糸膜モジュール51による膜ろ過では、膜表面に空いた細孔により原水をろ過してろ過水を得ることができる。この細孔を水などの液体で湿潤させ、中空糸膜モジュール51の二次側51bに、空気で圧力をかけると、ある圧力で細孔内の水が空気により押し出され、中空糸膜モジュール51の一次側51aに、空気が通過する。この圧力をバブルポイントという。バブルポイントは、低圧膜の場合30kPa程度である。
【0021】
したがって、中空糸膜モジュール51の二次側51bに、バブルポイントより低い圧力をかけた場合、中空糸膜モジュール51の一次側51aに、空気は通過しない。
しかし、膜に破断箇所がある場合、バブルポイントより低い圧力でも破断箇所から中空糸膜モジュール51の一次側51aに、空気が漏れる。
【0022】
また、洗浄時間は、例えば15秒程度である。
このような機能を利用して、複数の中空糸膜モジュール51の洗浄を行う。
次に、弁63を閉じた後、弁57を開放して複数の中空糸膜モジュール51の排水工程に移行する。
ここでは、弁57を開放することにより、排気管54を介して空気が複数の中空糸膜モジュール51の一次側51a内に導入され、複数の中空糸膜モジュール51の一次側51a内の水が排出される。
【0023】
次に、弁57を閉じた後、弁53を開放して複数の中空糸膜モジュール51の満水工程に移行する。
ここでは、原水管52を介して原水が複数の中空糸膜モジュール51内に流入し、複数の中空糸膜モジュール51内を原水で満たすことができる。
次に、弁53,55を閉じた後、弁59,63を開放し、コンプレッサ67から圧縮空気を複数の中空糸膜モジュール51の二次側51bに供給することにより、複数の中空糸膜モジュール51の膜破断検出工程に移行する。
【0024】
上述したように、中空糸膜モジュール51の二次側51bに、バブルポイントより低い圧力をかけた場合、中空糸膜モジュール51の一次側51aに、空気は通過しないので、膜破断検知管58には水のみが通過する。
しかし、膜に破断箇所がある場合、バブルポイントより低い圧力でも破断箇所から中空糸膜モジュール51の一次側51aに、空気が漏れるため、膜破断検知管58には空気と水の両方が流れる。
【0025】
このため、膜破断検知管58を流れる水量が異なり、膜を透過した水を膜破断検知水槽64に貯留したとき、水位上昇速度が異なる。この水位の上昇速度を水位計65で測定することにより、膜破断を検出する。
そして、膜破断検知水槽64の水位の上昇速度を水位計65により測定する。その結果を、図2に示す。上昇度合が遅い場合あるいは上昇しない場合には、警報を発し膜破断を確認できるようになされている。
【0026】
なお、膜破断検知水槽64に設けた弁66は、複数の中空糸膜モジュール51の膜破断検出工程の時だけ閉じておく。
以上のように、本実施形態によれば、複数の中空糸膜モジュール51に対して1つの膜破断検知水槽64を設置するだけでよいので、従来の膜ろ過装置に比して簡便となる。
【0027】
また、複数の中空糸膜モジュール51の二次側51bに、洗浄用のコンプレッサ67を利用して空気を送ることで、破断時には、膜破断検知水槽64の水位の上昇が通常に比べて遅い、または上昇せずとして現れるので、破断のチェックが可能となり、モジュール数が多い場合でも対応が可能である。
また、破断の検出に受光素子を用いないため、清掃不良などによる誤作動も起こらない。
【0028】
また、洗浄は一定サイクルで周期的に行われるために定期的に破断のチェックができる。
図3は、本発明の第二実施形態に係る膜ろ過装置70を示す(請求項1〜請求項、請求項に対応する)。
本実施形態に係る膜ろ過装置70は、膜破断検知水槽64を密閉型にした点で、第一実施形態に係る膜ろ過装置50とは相違する。
【0029】
本実施形態に係る膜ろ過装置70では、第一実施形態に係る膜ろ過装置50と同様に、複数の中空糸膜モジュール51の二次側51bに、バブルポイントより低い圧力をかけた場合、複数の中空糸膜モジュール51の一次側51aに、空気は通過しないので、膜破断検知管58には水のみが通過する。
この際、水位の上昇に伴って膜破断検知水槽64の内部の圧力は上昇して、供給した空気の圧力と平衡状態となり、水の通過は停止する。
【0030】
複数の中空糸膜モジュール51の膜に破断箇所がある場合は、バブルポイントより低い圧力でも破断箇所から複数の中空糸膜モジュール51の一次側51aに、空気が漏れるため、膜破断検知管58には空気と水の両方が流れる。
このため、膜破断検知水槽64の内部の圧力が上昇して、空気管62から送った空気の圧力と平衡状態となったときの水位は、図4に示すように、膜に破断箇所のない場合と比べて低くなる。
【0031】
このときの水位を水位計65で測定することにより、膜破断を検出する。または、水位の上昇速度を水位計65で測定する。もしくは、水位と水位の上昇速度の両方を測定する。
本実施形態においても、第一実施形態に係る膜ろ過装置50と同様の作用効果を奏することが可能となる。
【0032】
【発明の効果】
本発明によれば、複数の中空糸膜モジュールに対して1つの膜破断検知水槽を設置するだけで、複数の中空糸膜モジュールの膜破断を検出することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る膜ろ過装置を示す説明図である。
【図2】本発明の第一実施形態に係る膜ろ過装置における膜破断検出を示すグラフである。
【図3】本発明の第二実施形態に係る膜ろ過装置を示す説明図である。
【図4】本発明の第二実施形態に係る膜ろ過装置における膜破断検出を示すグラフである。
【図5】従来の膜ろ過装置を示す説明図である。
【符号の説明】
50、70 膜ろ過装置
51 中空糸膜モジュール
51a 中空糸膜モジュール51の一次側
51b 中空糸膜モジュール51の二次側
52 原水管
53、55、57、59、61、63、66 弁
54 排気管
56 排水管
58 膜破断検知管
60 膜ろ過水管
62 空気管
64 膜破断検知水槽
65 水位計
67 コンプレッサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane filtration device used for the production of tap water and industrial water, for example, and an operation method thereof.
[0002]
[Prior art]
Conventionally, as this type of membrane filtration device, it is known to provide a device for detecting membrane breakage (see, for example, Patent Documents 1 to 4).
An example is shown in FIG.
First, the configuration of the membrane filtration device 1 will be described.
Valves 5 to 10 are provided in the hollow fiber membrane module 2 for filtering raw water. The valves 5 and 6 are opened during filtration, the valves 7 and 8 are opened during cleaning, and the valves 8 and 9 are opened during drainage.
[0003]
On the primary side of the hollow fiber membrane module 2, a raw water pipe 11 provided with a valve 5, an exhaust pipe 14 provided with a valve 8, a drain pipe 15 provided with a valve 9, and a membrane breakage detection pipe 16 provided with a valve 10 , respectively. It is attached.
The membrane rupture detector tube 16, is attached to film breakage detection device 3 having a light source 17 and the light receiving element 18. The film breakage detection device 3 is configured to measure the air passing through the film breakage detection tube 16 with the light source 17 and the light receiving element 18.
[0004]
On the secondary side of the hollow fiber membrane module 2, a membrane filtration water pipe 12 provided with a valve 6 and an air pipe 13 provided with a valve 7 are attached.
The compressor 4 communicates with the air pipe 13.
Next, the conventional membrane filtration apparatus 1 configured as described above will be described.
The operation | movement of the conventional membrane filtration apparatus 1 has performed repeatedly the filtration process, the washing | cleaning process, the drain process, the full water process, and the fracture | rupture detection process.
[0005]
The lines through which each water or air flows are as follows.
First, in the filtration process, the raw water is filtered through the path of the raw water pipe 11 → the valve 5 → the hollow fiber membrane module 2 → the valve 6 → the membrane filtered water pipe 12.
Next, in the cleaning process, the cleaning process of the hollow fiber membrane module 2 is performed through the path of the compressor 4 → the air pipe 13 → the valve 7 → the hollow fiber membrane module 2 → the valve 8 → the exhaust pipe 14.
[0006]
Next, in the drain process, the cleaning water used in the cleaning process is drained through the path of the valve 8 → the hollow fiber membrane module 2 → the valve 9 → the drain pipe 15. Here, the valve 8 is opened to allow air to enter during drain drainage.
Next, in a full water process, the process which makes the inside of the hollow fiber membrane module 2 full through the path | route of the raw | natural water pipe | tube 11-> valve 5-> hollow fiber membrane module 2 is performed. Here, the valve 8 is opened to release the air inside the hollow fiber membrane module 2 to the atmosphere.
[0007]
Next, in the break detection step, the break detection process of the hollow fiber membrane module 2 is performed via the path of the air tube 13 → the valve 7 → the hollow fiber membrane module 2 → the valve 10 → the membrane break detection tube 16 → the membrane break detection device 3. Is done.
[Patent Document 1]
JP 11-311596 A [Patent Document 2]
JP 2000-126563 A [Patent Document 3]
JP 2000-342937 A [Patent Document 4]
Japanese Patent Laid-Open No. 2001-269551
[Problems to be solved by the invention]
However, in the conventional membrane filtration device 1 shown in FIG. 5, one membrane breakage detection device 3 is installed for one of the hollow fiber membrane modules 2, so the membrane filtration device 1 is not complicated. It was.
Further, since compressed air is sent to the hollow fiber membrane module 2 by the compressor 4 and the air passing through the membrane breakage detection tube 16 is measured by the light source 17 and the light receiving element 18 inside the membrane breakage detection device 3, There was a risk that the inside of the film breakage detection device 3 would become dirty and malfunction.
[0009]
In order to prevent this malfunction, it was necessary to frequently clean the inside of the film breakage detection device 3.
In Patent Documents 1 to 4, as with the conventional membrane filtration device 1 shown in FIG. 5, it is necessary to install one membrane breakage detection device for one of the hollow fiber membrane modules. There was a problem that became complicated.
[0010]
The present invention has been made to solve such conventional problems, and an object of the present invention is to provide a membrane filtration apparatus capable of easily detecting membrane breakage and an operation method thereof.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 includes a plurality of hollow fiber membrane modules for filtering raw water, a raw water pipe attached to a primary side of the plurality of hollow fiber membrane modules via a valve, and a primary of the plurality of hollow fiber membrane modules. An exhaust pipe attached to the side through a valve, a drain pipe attached to the primary side of the plurality of hollow fiber membrane modules via a valve, and attached to a primary side of the plurality of hollow fiber membrane modules via a valve A membrane breakage detection tube, a water level meter for measuring the rising speed of the water level, and a means for issuing a warning and notifying the membrane breakage when the rising rate is slow or not rising, and contacting the membrane breakage detection tube A membrane rupture detection water tank, a membrane filtration water pipe attached to a secondary side of the plurality of hollow fiber membrane modules via a valve, and an air pipe attached to a secondary side of the plurality of hollow fiber membrane modules via a valve; The air A compressor that communicates with the plurality of hollow fiber membrane modules, only the valves provided in the raw water pipe and the membrane filtration water pipe are opened at the time of filtration by the plurality of hollow fiber membrane modules, and the air at the time of washing the plurality of hollow fiber membrane modules Only the valves provided in the pipe and the exhaust pipe are opened, and compressed air is supplied from the compressor to the secondary side of the plurality of hollow fiber membrane modules through the air pipe, and the plurality of hollow fiber membrane modules When draining after washing, only the valves provided in the exhaust pipe and the drain pipe are opened, and when the plurality of hollow fiber membrane modules are full, only the valves provided in the raw water pipe and the exhaust pipe are opened. When the membrane breakage of the plurality of hollow fiber membrane modules is detected, only the valves provided in the air pipe and the membrane breakage detection pipe are opened, and the multiple pipes from the compressor through the air pipe are opened. The compressed air is supplied to the secondary side of the hollow fiber membrane module, and storing water flowing through the membrane rupture detection tube to the membrane rupture detection water tank, to measure the rate of rise of the water level of said membrane rupture detection aquarium When the degree of increase is slow or does not increase, the plurality of hollow fiber membrane modules are determined to have a membrane breakage .
[0012]
The invention according to claim 2 is the membrane filtration apparatus according to claim 1, wherein the pressure of the compressed air supplied at the time of detecting the membrane breakage of the hollow fiber membrane module is lower than the bubble point. .
The invention according to claim 3 is the membrane filtration device according to claim 1, wherein the membrane breakage detection water tank is an open water tank provided with a drain valve, and only when membrane breakage of the plurality of hollow fiber membrane modules is detected. The drain valve is closed .
[0013]
The invention according to claim 4 is the membrane filtration device according to claim 1, wherein the membrane breakage detection water tank is a sealed water tank provided with a drain valve, and the pressure inside the water tank that varies with the water level; The water level when the pressure on the primary side of the plurality of hollow fiber membrane modules is about to reach an equilibrium state is measured with the water level meter .
The invention according to claim 5 includes a raw water filtration step, a washing step for the plurality of hollow fiber membrane modules, a drain step for the plurality of hollow fiber membrane modules, a water filling step for the plurality of hollow fiber membrane modules, and the plurality of hollows. The membrane filtration device operating method according to claim 1, wherein the membrane breakage detection step of the yarn membrane module is sequentially performed, and in the raw water filtration step, only the valves provided in the raw water tube and the membrane filtration water tube are opened. The raw water is pressurized and fed to the hollow fiber membrane module due to a water level difference between the raw water supply source and the plurality of hollow fiber membrane modules, filtered, and the filtered water is led out through the membrane filtered water pipe, In the cleaning step of the plurality of hollow fiber membrane modules, only the valves provided in the air pipe and the exhaust pipe are opened, and the secondary of the plurality of hollow fiber membrane modules is passed from the compressor through the air pipe. In the drain process of the plurality of hollow fiber membrane modules, only the valves provided in the exhaust pipe and the drain pipe are opened, and the water on the primary side of the plurality of hollow fiber membrane modules is discharged. In the filling process of the plurality of hollow fiber membrane modules, only the valves provided in the raw water pipe and the exhaust pipe are opened, and in the membrane breakage detection process of the plurality of hollow fiber membrane modules, the air pipe and the membrane Only the valve provided on the breakage detection tube is opened, and compressed air is supplied from the compressor to the secondary side of the plurality of hollow fiber membrane modules via the air tube, and flows out via the membrane breakage detection tube. Water is stored in the membrane rupture detection water tank, the rate of rise of the water level of the membrane rupture detection water tank is measured, and when the degree of increase is slow or does not rise, it is determined that there is a membrane rupture of the plurality of hollow fiber membrane modules this is The features.
[0014]
The invention according to claim 6 is the operation method of the membrane filtration device according to claim 5, wherein the pressure of the compressed air supplied to the membrane breakage detecting step of the hollow fiber membrane module is lower than the bubble point. It is characterized by .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 shows a membrane filtration device 50 according to a first embodiment of the present invention (corresponding to claims 1 to 3 ).
The membrane filtration device 50 according to the present embodiment is different from the conventional membrane filtration device 1 shown in FIG. 5 in that a membrane rupture detection water tank 64 is provided in the membrane rupture detection tube 58 .
The membrane filtration device 50 according to the present embodiment includes a plurality of hollow fiber membrane modules 51 that filter raw water. The hollow fiber membrane module 51 is, for example, a low-pressure hollow fiber membrane module containing an external pressure hollow fiber membrane having a pore diameter of about 2 μm.
[0016]
On the primary side 51 a of each hollow fiber membrane module 51, a raw water pipe 52 provided with a valve 53, an exhaust pipe 54 provided with a valve 55, a drain pipe 56 provided with a valve 57, and a membrane break provided with a valve 59. A detection tube 58 is attached.
A membrane filtration water pipe 60 having a valve 61 and an air pipe 62 having a valve 63 are attached to the secondary side 51 b of each hollow fiber membrane module 51.
[0017]
The membrane breakage detection pipe 58 communicates with an open type membrane breakage detection water tank 64 having a water level meter 65 and a valve 66.
The air pipe 62 communicates with a compressor 67 that supplies compressed air.
Next, using the membrane filtration device 50 according to this embodiment thus configured, a raw water filtration step, a plurality of hollow fiber membrane module 51 washing steps, a plurality of hollow fiber membrane module 51 drain steps, a plurality of An operation method for sequentially performing the water filling step of the hollow fiber membrane module 51 and the membrane breakage detection step of the plurality of hollow fiber membrane modules 51 will be described (corresponding to claims 5 to 6 ).
[0018]
First, in the raw water filtration step, only the valves 53 and 61 provided in the raw water pipe 52 and the membrane filtration water pipe 60 are opened, and the other valves 55, 57, 59, and 63 are closed.
The raw water is pressurized and supplied to the primary side 51 a of the hollow fiber membrane module 51 due to the difference in water level between the raw water supply source and the plurality of hollow fiber membrane modules 51, and is filtered through pores vacated on the membrane surface of the hollow fiber membrane module 51. Then, it flows out as filtered water to the secondary side 51 b of the hollow fiber membrane module 51 and is stored in an arbitrary water tank or the like via the membrane filtered water pipe 60.
[0019]
Next, after closing the valve 53 provided in the raw | natural water pipe | tube 52 and the valve 61 provided in the membrane filtration water pipe | tube 60, it transfers to the washing | cleaning process of the some hollow fiber membrane module 51. FIG.
Here, only the valves 63 and 55 provided in the air pipe 62 and the exhaust pipe 54 are opened, compressed air is supplied from the compressor 67 to the secondary side 51b of the hollow fiber membrane module 51 through the air pipe 62, The membrane is backwashed by passing compressed air from the secondary side 51b of the yarn membrane module 51 to the primary side 51a.
[0020]
As described above, in the membrane filtration by the hollow fiber membrane module 51, the filtrate can be obtained by filtering the raw water through the pores vacant on the membrane surface. When the pores are wetted with a liquid such as water and a pressure is applied to the secondary side 51b of the hollow fiber membrane module 51 with air, the water in the pores is pushed out by the air at a certain pressure, and the hollow fiber membrane module 51 Passes through the primary side 51a. This pressure is called a bubble point. The bubble point is about 30 kPa in the case of a low-pressure membrane.
[0021]
Therefore, when a pressure lower than the bubble point is applied to the secondary side 51 b of the hollow fiber membrane module 51, air does not pass through the primary side 51 a of the hollow fiber membrane module 51.
However, when the membrane has a broken portion, air leaks from the broken portion to the primary side 51a of the hollow fiber membrane module 51 even at a pressure lower than the bubble point.
[0022]
The cleaning time is, for example, about 15 seconds.
Using such a function, the plurality of hollow fiber membrane modules 51 are cleaned.
Next, after closing the valve 63, the valve 57 is opened and the process proceeds to the draining process of the plurality of hollow fiber membrane modules 51.
Here, by opening the valve 57, air is introduced into the primary sides 51a of the plurality of hollow fiber membrane modules 51 through the exhaust pipe 54, and the water in the primary sides 51a of the plurality of hollow fiber membrane modules 51 is allowed to flow. Discharged.
[0023]
Next, after closing the valve 57, the valve 53 is opened, and the process proceeds to a water filling process for the plurality of hollow fiber membrane modules 51.
Here, the raw water flows into the plurality of hollow fiber membrane modules 51 through the raw water pipe 52, and the plurality of hollow fiber membrane modules 51 can be filled with the raw water.
Next, after closing the valves 53 and 55, the valves 59 and 63 are opened, and the compressed air is supplied from the compressor 67 to the secondary sides 51 b of the plurality of hollow fiber membrane modules 51. The process proceeds to the film breakage detection step 51.
[0024]
As described above, when a pressure lower than the bubble point is applied to the secondary side 51b of the hollow fiber membrane module 51, air does not pass through the primary side 51a of the hollow fiber membrane module 51. Only water passes through.
However, when there is a breakage point in the membrane, air leaks from the breakage point to the primary side 51a of the hollow fiber membrane module 51 even at a pressure lower than the bubble point, so that both air and water flow through the membrane breakage detection tube 58.
[0025]
For this reason, when the amount of water flowing through the membrane rupture detection tube 58 is different and the water that has permeated the membrane is stored in the membrane rupture detection water tank 64, the water level rising speed is different. Film breakage is detected by measuring the rising speed of the water level with a water level meter 65.
Then, the rising speed of the water level in the membrane rupture detection water tank 64 is measured by the water level meter 65. The result is shown in FIG. When the rate of increase is slow or does not increase, an alarm is issued so that film breakage can be confirmed.
[0026]
The valve 66 provided in the membrane rupture detection water tank 64 is closed only during the membrane rupture detection step of the plurality of hollow fiber membrane modules 51.
As described above, according to the present embodiment, it is only necessary to install one membrane breakage detection water tank 64 for a plurality of hollow fiber membrane modules 51, which is simpler than conventional membrane filtration devices.
[0027]
Further, by sending air to the secondary side 51b of the plurality of hollow fiber membrane modules 51 using the cleaning compressor 67, at the time of breakage, the rise in the water level of the membrane breakage detection water tank 64 is slower than usual. Or, since it does not rise, it is possible to check for breakage, and it is possible to cope with a large number of modules.
Further, since no light receiving element is used for detecting breakage, malfunction due to poor cleaning or the like does not occur.
[0028]
The cleaning is to be done periodically at a constant cycle, it is checked regularly broken.
FIG. 3 shows a membrane filtration device 70 according to a second embodiment of the present invention (corresponding to claims 1 to 2 and claim 4 ).
The membrane filtration device 70 according to this embodiment is different from the membrane filtration device 50 according to the first embodiment in that the membrane rupture detection water tank 64 is a sealed type.
[0029]
In the membrane filtration device 70 according to the present embodiment, as with the membrane filtration device 50 according to the first embodiment, when a pressure lower than the bubble point is applied to the secondary side 51b of the plurality of hollow fiber membrane modules 51, a plurality of Since no air passes through the primary side 51 a of the hollow fiber membrane module 51, only water passes through the membrane breakage detection tube 58.
At this time, as the water level rises, the pressure inside the membrane rupture detection water tank 64 rises, reaches an equilibrium state with the pressure of the supplied air, and the passage of water stops.
[0030]
If there are breaks in the membranes of the plurality of hollow fiber membrane modules 51, air leaks from the breaks to the primary side 51a of the plurality of hollow fiber membrane modules 51 even at a pressure lower than the bubble point. Both air and water flow.
For this reason, the water level when the internal pressure of the membrane rupture detection water tank 64 rises and is in equilibrium with the pressure of the air sent from the air pipe 62 is as shown in FIG. Lower than the case.
[0031]
A film break is detected by measuring the water level at this time with a water level meter 65. Alternatively, the rising speed of the water level is measured with a water level meter 65. Alternatively, measure both the water level and the rising speed of the water level.
Also in the present embodiment, it is possible to achieve the same effects as the membrane filtration device 50 according to the first embodiment.
[0032]
【The invention's effect】
According to the present invention, it is possible to detect membrane breakage of a plurality of hollow fiber membrane modules only by installing one membrane breakage detection water tank for the plurality of hollow fiber membrane modules.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a membrane filtration device according to a first embodiment of the present invention.
FIG. 2 is a graph showing membrane breakage detection in the membrane filtration device according to the first embodiment of the present invention.
FIG. 3 is an explanatory view showing a membrane filtration device according to a second embodiment of the present invention.
FIG. 4 is a graph showing membrane breakage detection in the membrane filtration device according to the second embodiment of the present invention.
FIG. 5 is an explanatory view showing a conventional membrane filtration device.
[Explanation of symbols]
50, 70 Membrane filtration device 51 Hollow fiber membrane module 51a Primary side 51b of hollow fiber membrane module 51 Secondary side 52 of hollow fiber membrane module 51 Raw water pipe 53, 55, 57, 59, 61, 63, 66 Valve 54 Exhaust pipe 56 Drainage pipe 58 Membrane breakage detection pipe 60 Membrane filtration water pipe 62 Air pipe 64 Membrane breakage detection water tank 65 Water level gauge 67 Compressor

Claims (6)

原水をろ過する複数の中空糸膜モジュールと、
前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける原水管と、
前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける排気管と、
前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける排水管と、
前記複数の中空糸膜モジュールの一次側に、弁を介して取り付ける膜破断検知管と、
水位の上昇速度を測定する水位計と、上昇度合が遅い場合あるいは上昇しない場合には、警報を発し膜破断を報知する手段とを備え、前記膜破断検知管に連絡する膜破断検知水槽と、
前記複数の中空糸膜モジュールの二次側に、弁を介して取り付ける膜ろ過水管と、
前記複数の中空糸膜モジュールの二次側に、弁を介して取り付ける空気管と、
前記空気管に連絡するコンプレッサとを備え、
前記複数の中空糸膜モジュールによるろ過時には、前記原水管と前記膜ろ過水管とに設けた弁だけを開放し、
前記複数の中空糸膜モジュールの洗浄時には、前記空気管と前記排気管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、
前記複数の中空糸膜モジュールの洗浄後の排水時には、前記排気管と前記排水管とに設けた弁だけを開放し、
前記複数の中空糸膜モジュールの満水時には、前記原水管と排気管とに設けた弁だけを開放し、
前記複数の中空糸膜モジュールの膜破断検出時には、前記空気管と前記膜破断検出管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記膜破断検出管を介して流出する水を前記膜破断検知水槽に貯留し、前記膜破断検知水槽の水位の上昇速度を測定し、前記上昇度合いが遅いまたは上昇しない場合に、前記複数の中空糸膜モジュールの膜破断有りと判断するように構成した
ことを特徴とする膜ろ過装置。
A plurality of hollow fiber membrane modules for filtering raw water;
A raw water pipe attached to a primary side of the plurality of hollow fiber membrane modules via a valve;
An exhaust pipe attached to a primary side of the plurality of hollow fiber membrane modules via a valve;
A drain pipe attached to a primary side of the plurality of hollow fiber membrane modules via a valve;
A membrane breakage detector tube attached to a primary side of the plurality of hollow fiber membrane modules via a valve;
A water level meter that measures the rate of rise of the water level, and when the rate of rise is slow or does not rise, it comprises means for issuing a warning and notifying membrane breakage, and a membrane breakage detection water tank that communicates with the membrane breakage detector tube,
A membrane filtration water pipe attached to the secondary side of the plurality of hollow fiber membrane modules via a valve;
An air pipe attached to the secondary side of the plurality of hollow fiber membrane modules via a valve;
A compressor communicating with the air pipe,
During filtration by the plurality of hollow fiber membrane modules, only the valves provided in the raw water pipe and the membrane filtration water pipe are opened,
When cleaning the plurality of hollow fiber membrane modules, only the valves provided in the air pipe and the exhaust pipe are opened, and from the compressor to the secondary side of the plurality of hollow fiber membrane modules through the air pipe Supply compressed air,
During drainage after washing the plurality of hollow fiber membrane modules, only the valves provided in the exhaust pipe and the drain pipe are opened,
When the plurality of hollow fiber membrane modules are full of water, only the valves provided in the raw water pipe and the exhaust pipe are opened,
At the time of detecting membrane breakage of the plurality of hollow fiber membrane modules, only the valves provided in the air pipe and the membrane breakage detection pipe are opened, and from the compressor via the air pipe, the plurality of hollow fiber membrane modules. Compressed air is supplied to the secondary side, the water flowing out through the membrane rupture detection tube is stored in the membrane rupture detection water tank, the rising speed of the water level in the membrane rupture detection water tank is measured, and the degree of increase is slow Alternatively , the membrane filtration device is configured to determine that the plurality of hollow fiber membrane modules have a membrane rupture when they do not rise .
請求項1記載の膜ろ過装置において、
前記中空糸膜モジュールの膜破断検出時に供給される前記圧縮空気の圧力は、バブルポイントより低い圧力である
ことを特徴とする膜ろ過装置。
The membrane filtration device according to claim 1,
The membrane filtration device according to claim 1, wherein the pressure of the compressed air supplied at the time of detecting the membrane breakage of the hollow fiber membrane module is lower than a bubble point .
請求項1記載の膜ろ過装置において、
前記膜破断検知水槽は、排水弁を備えた開放型の水槽であり、前記複数の中空糸膜モジュールの膜破断検出時だけ前記排水弁を閉じる
ことを特徴とする膜ろ過装置。
The membrane filtration device according to claim 1,
The membrane filtration detecting water tank is an open-type water tank equipped with a drain valve, and the drain valve is closed only when a membrane break of the plurality of hollow fiber membrane modules is detected .
請求項1記載の膜ろ過装置において、
前記膜破断検知水槽は、排水弁を備えた密閉型の水槽であり、水位に伴って変動する前記水槽内部の圧力と、前記複数の中空糸膜モジュールの一次側の圧力とが平衡状態になろうとするときの水位を前記水位計で測定する
ことを特徴とする膜ろ過装置。
The membrane filtration device according to claim 1,
The membrane rupture detection water tank is a sealed water tank equipped with a drain valve, and the pressure inside the water tank, which fluctuates with the water level, and the pressure on the primary side of the plurality of hollow fiber membrane modules are in an equilibrium state. A membrane filtration device characterized by measuring a water level when attempting to be measured with the water level gauge .
原水のろ過工程、前記複数の中空糸膜モジュールの洗浄工程、前記複数の中空糸膜モジュールのドレン工程、前記複数の中空糸膜モジュールの満水工程および前記複数の中空糸膜モジュールの膜破断検出工程を順に行う請求項1記載の膜ろ過装置の運転方法であって、
前記原水のろ過工程では、前記原水管と前記膜ろ過水管とに設けた弁だけを開放し、原水供給源と前記複数の中空糸膜モジュールとの水位差により前記原水を前記中空糸膜モジュールに加圧送水してろ過水し、前記ろ過水を前記膜ろ過水管を介して導出し、
前記複数の中空糸膜モジュールの洗浄工程では、前記空気管と前記排気管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜 モジュールの二次側に圧縮空気を供給し、
前記複数の中空糸膜モジュールのドレン工程では、前記排気管と前記排水管とに設けた弁だけを開放し、前記複数の中空糸膜モジュールの一次側の水を排出し、
前記複数の中空糸膜モジュールの満水工程では、前記原水管と排気管とに設けた弁だけを開放し、
前記複数の中空糸膜モジュールの膜破断検出工程では、前記空気管と前記膜破断検出管とに設けた弁だけを開放するとともに、前記コンプレッサから前記空気管を介して前記複数の中空糸膜モジュールの二次側に圧縮空気を供給し、前記膜破断検出管を介して流出する水を前記膜破断検知水槽に貯留し、前記膜破断検知水槽の水位の上昇速度を測定し、前記上昇度合いが遅いまたは上昇しない場合に、前記複数の中空糸膜モジュールの膜破断有りと判断する
ことを特徴とする膜ろ過装置の運転方法
Raw water filtration step, washing step of the plurality of hollow fiber membrane modules, draining step of the plurality of hollow fiber membrane modules, filling step of the plurality of hollow fiber membrane modules, and membrane breakage detection step of the plurality of hollow fiber membrane modules The operation method of the membrane filtration device according to claim 1, wherein
In the raw water filtration step, only the valves provided in the raw water pipe and the membrane filtration water pipe are opened, and the raw water is supplied to the hollow fiber membrane module by the difference in water level between the raw water supply source and the plurality of hollow fiber membrane modules. Pressurized water and filtered water, and the filtered water is led out through the membrane filtered water pipe,
In the washing step of the plurality of hollow fiber membrane modules, only the valves provided in the air pipe and the exhaust pipe are opened, and the secondary side of the plurality of hollow fiber membrane modules is passed from the compressor through the air pipe. Supply compressed air to
In the drain process of the plurality of hollow fiber membrane modules, only the valves provided in the exhaust pipe and the drain pipe are opened, and the water on the primary side of the plurality of hollow fiber membrane modules is discharged,
In the filling process of the plurality of hollow fiber membrane modules, only the valves provided in the raw water pipe and the exhaust pipe are opened,
In the membrane breakage detecting step of the plurality of hollow fiber membrane modules, only the valves provided in the air pipe and the membrane breakage detection pipe are opened, and the plurality of hollow fiber membrane modules are passed from the compressor via the air pipe. Compressed air is supplied to the secondary side of the gas, the water flowing out through the membrane breakage detection tube is stored in the membrane breakage detection water tank, the rising speed of the water level of the film breakage detection water tank is measured, and the degree of increase is A method of operating a membrane filtration device , characterized in that, when slow or not rising, it is determined that there is a membrane breakage of the plurality of hollow fiber membrane modules .
請求項5記載の膜ろ過装置の運転方法において、
前記中空糸膜モジュールの膜破断検出工程に供給される前記圧縮空気の圧力は、バブルポイントより低い圧力である
ことを特徴とする膜ろ過装置の運転方法。
In the operation method of the membrane filtration device according to claim 5,
The method for operating a membrane filtration device, wherein the pressure of the compressed air supplied to the membrane breakage detecting step of the hollow fiber membrane module is lower than a bubble point .
JP2003108178A 2003-04-11 2003-04-11 Membrane filtration device and operation method thereof Expired - Lifetime JP4205984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108178A JP4205984B2 (en) 2003-04-11 2003-04-11 Membrane filtration device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108178A JP4205984B2 (en) 2003-04-11 2003-04-11 Membrane filtration device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004313854A JP2004313854A (en) 2004-11-11
JP4205984B2 true JP4205984B2 (en) 2009-01-07

Family

ID=33469788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108178A Expired - Lifetime JP4205984B2 (en) 2003-04-11 2003-04-11 Membrane filtration device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4205984B2 (en)

Also Published As

Publication number Publication date
JP2004313854A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
ES2331809T3 (en) FILTRATION CONTROL AND MONITORING SYSTEM.
WO2001045829A1 (en) Method and apparatus for testing the integrity of filtering membranes
JP2001190938A (en) Method of detecting breakage of water treating membrane
US20110138936A1 (en) Means for testing filter integrity in a liquid purification system
JP2000510766A (en) Methods and equipment for in situ testing of membrane integrity.
CN101341389A (en) Method and device for testing the integrity of filtration membranes
WO2012060778A1 (en) A membrane sensor and method of detecting fouling in a fluid
JPH05137977A (en) Detection of separation membrane breakage for membrane filter
JP2001269551A (en) Method for detecting rupture of permeable membrane module for water cleaning/treatment device
JP4205984B2 (en) Membrane filtration device and operation method thereof
CN116457074A (en) Monitoring the integrity of ultrafiltration membranes during filtration operations
JP2000342937A (en) Device and method for detecting membrane damage of hollow fiber membrane filter apparatus
JP3243677B2 (en) Leak detector for membrane breakage in membrane filtration device
JP3826041B2 (en) Membrane breakage detection device and detection method for membrane filtration device
KR101753453B1 (en) Hollow fiber membrane and method of detecting damage of membrane thereof
JP4461288B2 (en) Filtration membrane abnormality detection method and apparatus
JP2007117904A (en) Membrane filtration apparatus
JP4728684B2 (en) Membrane filter diagnosis method and apparatus for membrane filtration
JP2004188252A (en) Membrane filtration apparatus and its operating method
JP2000342936A (en) Method and device for detecting membrane damage of hollow fiber membrane filter apparatus
JPH0975690A (en) Method and device for detecting damage of water treatment filter and water treatment apparatus equipped with the same
JP2008253888A (en) Membrane damage detecting method
JP2005296908A (en) Membrane filtering device and membrane breakage sensing method
JP2005013992A (en) Safety testing method for hollow fiber membrane module
JP2007152284A (en) Membrane treatment apparatus and membrane damage detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term