JP2006289309A - Membrane breakage diagnostic method of membrane filter and its apparatus - Google Patents

Membrane breakage diagnostic method of membrane filter and its apparatus Download PDF

Info

Publication number
JP2006289309A
JP2006289309A JP2005116703A JP2005116703A JP2006289309A JP 2006289309 A JP2006289309 A JP 2006289309A JP 2005116703 A JP2005116703 A JP 2005116703A JP 2005116703 A JP2005116703 A JP 2005116703A JP 2006289309 A JP2006289309 A JP 2006289309A
Authority
JP
Japan
Prior art keywords
membrane
pressure
hollow fiber
fiber membrane
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005116703A
Other languages
Japanese (ja)
Other versions
JP4728684B2 (en
Inventor
Kohei Inoue
公平 井上
Akinori Kawamitsu
昭範 川満
Makoto Fukuda
真 福田
Nobuyuki Motoyama
本山  信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005116703A priority Critical patent/JP4728684B2/en
Publication of JP2006289309A publication Critical patent/JP2006289309A/en
Application granted granted Critical
Publication of JP4728684B2 publication Critical patent/JP4728684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane breakage diagnostic method and apparatus of a membrane filter, in which the diagnostic of the membrane broken condition is easy to use and exact, and high in applicability even in case a shape of a hollow fiber membrane and a sealing volume sealing a pressurized gas are different without acquiring reference data in various conditions to judge the membrane breakage. <P>SOLUTION: In a method of diagnosing the membrane broken condition from the change with time of the pressure in a high-pressure space after sealing by introducing a pressurization gas inside the hollow fiber membrane, and stopping the introduction of the pressurization gas when the previously set pressure is attained to seal the pressurized side, the change with time in the pressure of the high-pressure space in case of assuming the broken condition of the hollow fiber membrane on trial is asked by a calculation, and the comparison of an actual measurement of the change with time in the pressure with the operational value produces the diagnosis of the broken condition of the hollow fiber membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、河川水や湖沼水等の表流水及び地下水等を、中空糸膜による精密ろ過膜あるいは限外ろ過膜で処理するための膜ろ過装置において、その中空糸膜の破損を診断する膜破損診断方法および装置に関する。   The present invention relates to a membrane filtration device for treating surface water such as river water and lake water and groundwater with a microfiltration membrane or an ultrafiltration membrane using a hollow fiber membrane, and a membrane for diagnosing breakage of the hollow fiber membrane. The present invention relates to a damage diagnosis method and apparatus.

水道原水である環境水に混入した塩素耐性原虫である、クリプトスポリジウム等の危険性が危惧されるようになってきた。クリプトスポリジウムの大きさは3〜5μm程度であるので、原水のクリプトスポリジウムを除去するためには、それより大きな微粒子成分を完全に除去すればよいが、現在は暫定の指針として水道水の濁度を0.1以下にするよう示されている。クリプトスポリジウム対策として、従来の砂ろ過法と比較して有効な方法が、精密ろ過膜や限外ろ過膜を用いた浄水処理方法である。この方法では、理論上、膜孔径より大きい成分は、ほぼ完全に取り除かれることとなる。   The danger of Cryptosporidium, which is a chlorine-resistant protozoa, mixed in environmental water, which is raw water for tap water, has become a concern. Since the size of Cryptosporidium is about 3 to 5 μm, in order to remove Cryptosporidium of raw water, it is sufficient to completely remove larger fine particle components. Is shown to be less than 0.1. As a countermeasure against Cryptosporidium, an effective method compared with the conventional sand filtration method is a water purification method using a microfiltration membrane or an ultrafiltration membrane. In this method, the component larger than the membrane pore diameter is theoretically removed almost completely.

しかしながら、何らかの原因により膜の一部が破損した場合には、その部分から漏洩が進み、処理水中に微粒子(クリプトスポリジウム等)が混入する可能性がある。このため膜処理においては、膜破損をいち早く検知し、対処することが重要となる。現在、膜破損の検知方法として普及しているのは、空気圧を用いる方法である(例えば、特許文献1参照)。   However, when a part of the film is broken for some reason, leakage proceeds from that part, and fine particles (such as Cryptosporidium) may be mixed in the treated water. For this reason, in membrane processing, it is important to quickly detect and deal with membrane breakage. Currently, a method using air pressure is widely used as a method for detecting film breakage (see, for example, Patent Document 1).

特許文献1は、その請求項1の記載を引用すれば、「中空糸膜ろ過装置の膜損傷検知方法であって、前記中空糸膜の外側に水を張り、内側から加圧空気を導入して、加圧空気による圧力注入時間と圧力変化率の関係から得られた一定の圧力注入時間を設定し、その設定時間から内側を加圧状態に保持して、中空糸膜の圧力保持率の経時変化を求めて、正常な状態の圧力保持率と膜損傷による状態の圧力保持率を比較して、中空糸膜の膜損傷を検知することを特徴とする中空糸膜ろ過装置の膜損傷検知方法。」を開示する。   Patent Document 1 refers to the description of claim 1, “It is a membrane damage detection method for a hollow fiber membrane filtration device, in which water is applied to the outside of the hollow fiber membrane and pressurized air is introduced from the inside. Then, a fixed pressure injection time obtained from the relationship between the pressure injection time by pressurized air and the pressure change rate is set, and the inside is maintained in a pressurized state from the set time, and the pressure holding rate of the hollow fiber membrane is determined. Membrane damage detection of a hollow fiber membrane filtration device characterized by detecting the membrane damage of the hollow fiber membrane by determining the change over time and comparing the pressure retention rate of the normal state with the pressure retention rate of the state due to membrane damage Method. "

即ち、特許文献1に記載の方法は、「中空糸膜の圧力保持率の経時変化を求めて、正常な圧力保持率との比較から、中空糸膜の膜損傷の有無を検知する方法」である。   That is, the method described in Patent Document 1 is a “method for obtaining the time-dependent change in the pressure retention rate of the hollow fiber membrane and detecting the presence or absence of membrane damage of the hollow fiber membrane from the comparison with the normal pressure retention rate”. is there.

しかしながら、上記特許文献1の方法の場合、下記のような問題があった。即ち、特許文献1の方法の場合、膜が正常な状態の圧力保持率と膜が損傷している状態の圧力保持率を比較して膜損傷の有無を検知するため、予め、基準となる前記両者のデータを取得する必要がある。また、例えば破損中空糸膜の本数や破損孔の径等の膜破損状態を診断する要請に応えるためには、膜破損状態の異なる様々な破損状態の中空糸膜を準備して、基準となる大量のデータを取得しなければならない。更には、中空糸膜の形状や加圧気体を封入した密閉容積が異なる場合、その都度、前記の基準データの取得が必要となる。   However, the method of Patent Document 1 has the following problems. That is, in the case of the method of Patent Document 1, in order to detect the presence or absence of film damage by comparing the pressure holding ratio in a state where the film is normal and the pressure holding ratio in a state where the film is damaged, It is necessary to acquire both data. In addition, in order to respond to a request for diagnosing a membrane breakage state such as the number of broken hollow fiber membranes and the diameter of a breakage hole, hollow fiber membranes having various breakage states with different membrane breakage states are prepared and used as a reference. You have to get a lot of data. Furthermore, when the shape of the hollow fiber membrane or the sealed volume filled with pressurized gas is different, it is necessary to acquire the reference data each time.

特に、クリプトスポリジウム等の危険性が危惧される原水の汚染度が高い場合には、クリプトスポリジウムの個数濃度を低減する観点から、破損孔径が小さい場合にも、その膜破損の程度の診断が必要となる。このような要請に応え、膜ろ過装置による処理水の水質が異常となる危険性をアラーム可能とすることは、上記特許文献1の方法によっては極めて困難である。以上の問題点をまとめると、従来の方法の場合、
1)膜損傷状態を判断する為の基準データの取得に多くの時間と手間を要する。
In particular, when the degree of contamination of raw water where there is a danger of Cryptosporidium or the like is high, diagnosis of the degree of membrane breakage is necessary even from a viewpoint of reducing the number concentration of Cryptosporidium, even when the pore diameter is small. Become. In response to such a request, it is extremely difficult to alarm the danger that the quality of the treated water by the membrane filtration apparatus will be abnormal depending on the method of Patent Document 1. To summarize the above problems, in the case of the conventional method,
1) It takes a lot of time and labor to acquire reference data for judging the film damage state.

2)膜損傷状態を判断する基準値に普遍性がない。
特開2000−342936号公報
2) There is no universality in the standard value for judging the film damage state.
JP 2000-342936 A

この発明は、上記のような問題点に鑑みてなされたもので、この発明の課題は、1)膜破損を判断する為の様々な条件における基準データを取得することなく、2)膜破損状態の診断が中空糸膜の形状や加圧気体を封入した密閉容積が異なる場合においても、簡便かつ正確で応用性の高い膜ろ過装置の膜破損診断方法および装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is 1) without acquiring reference data under various conditions for judging film breakage, and 2) film breakage state. It is an object of the present invention to provide a membrane breakage diagnosis method and apparatus for a membrane filtration device that is simple, accurate and highly applicable even when the shape of the hollow fiber membrane and the sealed volume filled with pressurized gas are different.

前述の課題を解決するため、この発明は、中空糸膜を有する膜ろ過装置における中空糸膜の内側に加圧気体を導入し、予め設定した圧力に到達した際に前記加圧気体の導入を停止して加圧側を密閉し、密閉後の高圧空間における圧力の経時変化から膜破損状態を診断する方法において、前記中空糸膜の破損状態を仮に想定した場合における前記高圧空間の圧力の経時変化を演算により求め、前記圧力の経時変化の実測値と前記演算値とを比較することにより、前記中空糸膜の破損状態を診断することを特徴とする(請求項1の発明)。   In order to solve the above-mentioned problems, the present invention introduces a pressurized gas into the inside of a hollow fiber membrane in a membrane filtration device having a hollow fiber membrane, and introduces the pressurized gas when a preset pressure is reached. In the method of diagnosing the membrane breakage state from the time-dependent change in pressure in the high-pressure space after stopping and sealing the pressure side, the time-dependent change in pressure in the high-pressure space when the breakage state of the hollow fiber membrane is assumed temporarily Is obtained by calculation, and the damage state of the hollow fiber membrane is diagnosed by comparing the measured value of the change with time of the pressure and the calculated value (invention of claim 1).

前記請求項1の発明の実施態様としては、下記請求項2ないし4の発明が好ましい。即ち、前記請求項1に記載の膜破損診断方法において、複数本の中空糸膜の内側空間を含む加圧空間を高圧貯気槽と仮定し、また中空糸膜を円管と仮定し、かつ膜破損孔を前記高圧貯気槽に設けたノズルと仮定し、さらに前記ノズルの孔径と数を仮定して複数種の中空糸膜の破損状態を想定し、前記貯気槽内加圧気体のノズルからの流出計算モデルに基づいて、貯気槽内加圧気体のエンタルピの経時変化を計算し、これにより、貯気槽内加圧気体の圧力の経時変化を、前記複数種の破損状態に対して演算により求め、この演算値と実測値とを比較することにより、前記中空糸膜の破損状態を診断する(請求項2の発明)。   As an embodiment of the invention of claim 1, the inventions of claims 2 to 4 below are preferable. That is, in the membrane breakage diagnosis method according to claim 1, it is assumed that the pressurized space including the inner space of the plurality of hollow fiber membranes is a high-pressure air reservoir, the hollow fiber membrane is assumed to be a circular tube, and Assuming that the membrane breakage hole is a nozzle provided in the high-pressure reservoir, and further assuming the hole diameter and number of the nozzle, and assuming the failure state of multiple types of hollow fiber membranes, the pressurized gas in the reservoir Based on the calculation model for the outflow from the nozzle, the time-dependent change in the enthalpy of the pressurized gas in the storage tank is calculated. On the other hand, the damage state of the hollow fiber membrane is diagnosed by calculating and comparing the calculated value and the actually measured value (invention of claim 2).

また、前記請求項2に記載の膜破損診断方法において、前記貯気槽内加圧気体の圧力Pの経時変化の演算は、下記数式(数1)に基づいて行なう(請求項3の発明)。   Further, in the membrane breakage diagnosis method according to claim 2, the calculation of the change with time of the pressure P of the pressurized gas in the gas storage tank is performed based on the following formula (Equation 1) (Invention of claim 3). .

Figure 2006289309
Figure 2006289309

前記数式(数1)において、各記号は以下のとおりとする。   In the equation (Equation 1), each symbol is as follows.

P:時間のときの貯気槽内圧力[kg/m2
1:ノズル流出口部(中空糸膜破断部)の外部圧力[kg/m2
1:ノズルの断面積(中空糸膜断面積)[m2
0:貯気槽内容積[m3]、t:時間[sec]
d:ノズルの相当直径(中空糸膜直径)[m]
ι:ノズルの長さ(中空糸膜破断部の長さ)[m]
ζ1:ノズル流入口部の損失係数、ζ2:ノズル流出口部の損失係数
λ:ノズル流路の摩擦係数、κ:気体の比熱比(空気の場合、1.4)
R:気体のガス定数(空気の場合、287[m2/s2K])、T1:気体の絶対温度
C:時間t=0としたとき決まる定数
さらに、前記請求項3に記載の膜破損診断方法において、前記貯気槽内加圧気体のノズルからの流出計算モデルは、貯気槽内加圧空気がノズル外部の水環境内に流出する場合と、貯気槽内加圧空気がノズル外部の空気環境内に流出する場合との2種類の計算モデルとし、各モデルに応じて前記貯気槽内加圧空気の圧力Pの経時変化の演算を行ない、前記いずれかの環境下の実測値と演算値とをそれぞれ比較する(請求項4の発明)。
P: Pressure inside the storage tank at time [kg / m 2 ]
P 1 : External pressure at the nozzle outlet (hollow fiber membrane fracture) [kg / m 2 ]
A 1 : Nozzle cross-sectional area (hollow fiber membrane cross-sectional area) [m 2 ]
V 0 : Volume inside the storage tank [m 3 ], t: Time [sec]
d: Equivalent diameter of nozzle (hollow fiber membrane diameter) [m]
ι: Length of nozzle (length of hollow fiber membrane fracture) [m]
ζ 1 : Loss coefficient at the nozzle inlet, ζ 2 : Loss coefficient at the nozzle outlet
λ: Friction coefficient of nozzle flow path, κ: Specific heat ratio of gas (1.4 for air)
R: Gas constant of gas (in the case of air, 287 [m 2 / s 2 K]), T 1 : Absolute temperature of gas
C: Constant determined when time t = 0 Further, in the method for diagnosing film breakage according to claim 3, the calculation model for the outflow of the pressurized gas in the storage tank from the nozzle is the compressed air in the storage tank. Two types of calculation models, the case where the air flows into the water environment outside the nozzle and the case where the pressurized air in the air storage tank flows out into the air environment outside the nozzle, and the inside of the air storage tank according to each model The time-dependent change of the pressure P of the pressurized air is calculated, and the actually measured value and the calculated value in any one of the environments are respectively compared (the invention of claim 4).

上記請求項1ないし4の発明によれば、各種演算結果から推定される高圧空間内の圧力の経時変化と実測した高圧空間内の圧力の経時変化とを比較照合することで膜破損状態が判断できるので、膜破損の判断に必要な様々な条件における基準データの取得が不要となる。また、中空糸膜の形状や加圧気体を封入する密閉容積が異なっても、簡便に応用できる。さらに、対象とする原水の水質や処理水の水質の要求レベルに応じて、膜破損状態の許容限度前にアラームを出すようにすれば、膜ろ過装置の適正かつリーズナブルな運転が実施できる。詳細は後述する。   According to the first to fourth aspects of the present invention, the film breakage state is determined by comparing and collating the time-dependent change in pressure in the high-pressure space estimated from various calculation results with the time-measured change in pressure in the high-pressure space. Therefore, it is not necessary to acquire reference data under various conditions necessary for determining the film breakage. Moreover, even if the shape of the hollow fiber membrane and the sealed volume in which the pressurized gas is enclosed are different, it can be easily applied. Furthermore, if an alarm is issued before the permissible limit of the membrane breakage state according to the required quality level of the raw water or the treated water, the membrane filtration apparatus can be appropriately and reasonably operated. Details will be described later.

また、上記請求項1の膜破損診断方法を実施するための膜破損診断装置の発明としては、下記請求項5の発明が好ましい。即ち、中空糸膜の内側に加圧気体を導入し予め設定した圧力にする加圧気体供給装置および圧力調整器と、中空糸膜内外の圧力および温度を測定する中空糸膜内側圧力計、中空糸膜外側圧力計および温度計と、前記中空糸膜の破損状態を仮に想定した場合における高圧空間の圧力の経時変化を演算により求めた結果を予め記憶・格納し、前記中空糸膜内外の圧力の実測値とを比較して中空糸膜の破損状態を判定する機能を有する記憶判定手段とを備えることを特徴とする(請求項5の発明)。   The invention of the film breakage diagnosis apparatus for carrying out the film breakage diagnosis method of claim 1 is preferably the invention of claim 5 below. That is, a pressurized gas supply device and a pressure regulator for introducing a pressurized gas into the hollow fiber membrane to obtain a preset pressure, a hollow fiber membrane inner pressure gauge for measuring the pressure and temperature inside and outside the hollow fiber membrane, A pressure gauge inside and outside the hollow fiber membrane is stored and stored in advance as a result of calculation of a temporal change in pressure in the high-pressure space in the case of assuming a broken state of the hollow fiber membrane. And a memory determination means having a function of determining the breakage state of the hollow fiber membrane by comparing with the actual measurement value of the invention (invention of claim 5).

この発明によれば、膜破損を判断する為の様々な条件における基準データを取得することなく、膜破損状態の診断が中空糸膜の形状や加圧気体を封入した密閉容積が異なる場合においても、簡便かつ正確で応用性の高い膜ろ過装置の膜破損診断方法および装置が提供できる。そのため、本発明に係る膜破損診断方法および装置は、膜ろ過装置の導入が予想される中・大規模の浄水施設においても、特に水の安定供給の観点から、より好適な維持管理手段として利用できる。   According to this invention, without obtaining reference data under various conditions for judging membrane breakage, even when the diagnosis of the membrane breakage state is different in the shape of the hollow fiber membrane and the sealed volume filled with pressurized gas A membrane breakage diagnosis method and apparatus for a membrane filtration device that is simple, accurate, and highly applicable can be provided. Therefore, the membrane breakage diagnosis method and apparatus according to the present invention is used as a more suitable maintenance management means, particularly from the viewpoint of stable water supply, even in medium and large-scale water purification facilities where introduction of membrane filtration devices is expected. it can.

図1ないし図4に基づき、本発明の実施の形態について以下に述べる。   An embodiment of the present invention will be described below with reference to FIGS.

図1は、本発明が適用される膜ろ過装置に設置された膜破損診断装置の模式的構成図である。図1において、1は加圧気体供給装置、2は圧力調整器、3は加圧気体入口弁、4は大気開放弁、5は中空糸膜内側圧力計、6は温度計、7は膜ユニット、8は中空糸膜外側圧力計、9はドレイン弁a、10はドレイン弁b、11は膜破損診断手段、12は記憶・判定回路部、51は原水、52は原水供給ポンプ、53はろ過入口弁、54はろ過出口弁、55は膜ろ過水、56は逆洗ポンプ、57は逆洗水入口弁を示している。また、図1中の破線は各種機器を結ぶ信号線で、信号の流れを示している。   FIG. 1 is a schematic configuration diagram of a membrane breakage diagnosis apparatus installed in a membrane filtration apparatus to which the present invention is applied. In FIG. 1, 1 is a pressurized gas supply device, 2 is a pressure regulator, 3 is a pressurized gas inlet valve, 4 is an air release valve, 5 is a hollow fiber membrane inner pressure gauge, 6 is a thermometer, and 7 is a membrane unit. , 8 is a hollow fiber membrane outer pressure gauge, 9 is a drain valve a, 10 is a drain valve b, 11 is a membrane breakage diagnosis means, 12 is a memory / determination circuit unit, 51 is raw water, 52 is raw water supply pump, 53 is filtration An inlet valve, 54 is a filtration outlet valve, 55 is membrane filtrate, 56 is a backwash pump, and 57 is a backwash water inlet valve. Also, the broken lines in FIG. 1 are signal lines that connect various devices and indicate the flow of signals.

まず、図1に示す膜ろ過装置のろ過工程と逆洗工程の流れについて説明する。ろ過工程においては、原水51を原水供給ポンプ52によりろ過入口弁53を介して膜ユニット7に圧送して膜ろ過水55を生成し、このろ過水は、ろ過出口弁54を介して膜ろ過装置外部へ排水される。このとき他の弁は閉じた状態である。また、ろ過工程を間欠的に停止させて行う逆洗工程においては、膜ろ過水55を逆洗ポンプ56により逆洗水入口弁57を介して膜ユニット7に圧送して、膜洗浄後の逆洗排水はドレイン弁a9を介して膜ろ過装置外部へ排水される。このとき他の弁は閉じた状態である。   First, the flow of the filtration process and backwashing process of the membrane filtration apparatus shown in FIG. 1 will be described. In the filtration step, the raw water 51 is pumped to the membrane unit 7 via the filtration inlet valve 53 by the raw water supply pump 52 to generate the membrane filtered water 55, and this filtered water is supplied to the membrane filtration device via the filtration outlet valve 54. Drained outside. At this time, the other valves are closed. Further, in the backwashing process performed by intermittently stopping the filtration process, the membrane filtrate 55 is pumped to the membrane unit 7 via the backwash water inlet valve 57 by the backwash pump 56, and the backwash after membrane washing is performed. The washing waste water is drained to the outside of the membrane filtration device through the drain valve a9. At this time, the other valves are closed.

次に、逆洗工程に引続き、加圧気体を用いた膜破損診断を行う流れを説明する。逆洗ポンプ56を停止し、逆洗水入口弁57とドレイン弁a9を閉じて逆洗工程を終了する。逆洗工程終了後、大気開放弁4とドレイン弁a9を開いて、膜ユニット7内の中空糸膜内側の水を水頭差により排水する。次に、大気開放弁4およびドレイン弁a9を閉じ、ドレイン弁b10および加圧気体入口弁3を開ける。ここで、中空糸膜外側は大気圧開放となる。この状態で、加圧気体供給装置1により出力され、圧力調整器2により所定圧力となった加圧気体を、膜ユニット7内の中空糸膜内側から導入する。   Next, following the backwash process, the flow of performing a film breakage diagnosis using pressurized gas will be described. The backwash pump 56 is stopped, the backwash water inlet valve 57 and the drain valve a9 are closed, and the backwash process is completed. After completion of the backwashing process, the air release valve 4 and the drain valve a9 are opened, and the water inside the hollow fiber membrane in the membrane unit 7 is drained by a water head difference. Next, the air release valve 4 and the drain valve a9 are closed, and the drain valve b10 and the pressurized gas inlet valve 3 are opened. Here, the outside of the hollow fiber membrane is opened to atmospheric pressure. In this state, the pressurized gas output from the pressurized gas supply device 1 and brought to a predetermined pressure by the pressure regulator 2 is introduced from the inside of the hollow fiber membrane in the membrane unit 7.

加圧気体導入後、中空糸膜の内側および細孔内に残存する水が、加圧気体により中空糸膜外径側へ押し出され、ドレイン弁b10より排水される。ドレイン弁b10からの水の流出が無くなった後、加圧気体供給装置1からの加圧気体の導入を停止するとともに加圧気体入口弁3を閉じ、この時点を起点として、中空糸膜内側圧力計5で測定した圧力と、中空糸膜外側圧力計8で測定した圧力と、温度計6で測定した圧力気体の温度とが、実時間(例えば、1秒周期)で膜破損診断手段11の内部にある記憶・判定回路部12に入力される。この場合、加圧気体を例えば空気とすると中空糸膜の内側および外側共に空気となるが、必要に応じて特許文献1に記載されたように、内側のみに加圧空気を貯めて外側を水環境(水張り状態)とするように構成することもできる。   After the introduction of the pressurized gas, the water remaining inside the hollow fiber membrane and in the pores is pushed out to the outer diameter side of the hollow fiber membrane by the pressurized gas and drained from the drain valve b10. After the outflow of water from the drain valve b10 has ceased, the introduction of the pressurized gas from the pressurized gas supply device 1 is stopped and the pressurized gas inlet valve 3 is closed. The pressure measured by the meter 5, the pressure measured by the hollow fiber membrane outer pressure meter 8, and the pressure gas temperature measured by the thermometer 6 are measured by the membrane breakage diagnosis means 11 in real time (for example, a cycle of 1 second). The data is input to the internal storage / determination circuit unit 12. In this case, if the pressurized gas is air, for example, both the inside and the outside of the hollow fiber membrane are air. However, as described in Patent Document 1, if necessary, the compressed air is stored only inside and the outside is watered. It can also be configured to be an environment (water filled state).

ここで、前記の圧力は両者の絶対圧力比に、温度は絶対温度にそれぞれ変換して記憶する。一方、記憶・判定回路部12には、中空糸膜の内側の絶対圧力Pと、中空糸膜の外側の絶対圧力P1との比が所定の値となる所要時間tを、予め設定した中空糸膜破損部の破損孔の面積A1と、図1の膜ろ過装置の設計図面から算出される高圧空間の容積V1と、さらに前記破損孔から流出する流れの損失係数、前記加圧気体の種類で決まる定数、前記加圧気体の絶対温度T1、時間t=0として決まる定数C等から、前記請求項3に記載した数式(数1)により演算した種々条件下のデータを予め記憶・格納しておく。 Here, the pressure is converted into the absolute pressure ratio of both, and the temperature is converted into the absolute temperature and stored. On the other hand, in the memory / determination circuit unit 12, a predetermined time t in which the ratio between the absolute pressure P inside the hollow fiber membrane and the absolute pressure P 1 outside the hollow fiber membrane becomes a predetermined value is set in advance. The area A 1 of the breakage hole in the thread membrane breakage part, the volume V 1 of the high-pressure space calculated from the design drawing of the membrane filtration device in FIG. 1, the loss factor of the flow flowing out from the breakage hole, and the pressurized gas The data under various conditions calculated by the mathematical formula (Equation 1) according to claim 3 is stored in advance based on a constant determined by the type of pressure, an absolute temperature T 1 of the pressurized gas, a constant C determined as time t = 0, and the like.・ Store it.

ここで、記憶・判定回路部12では、実測した絶対圧力比の時間変化データと計算で求めた各種の絶対圧力比の時間変化データとを照合して、前記数1により予め求めた演算結果に基づいて合致または近似の条件における膜の破損孔の面積を推定し、膜破損状態を判定する。また、膜破損診断手段11に、推定した膜の破損孔の面積に基づいた異常判別機能を持たせれば、膜異常時にアラームまたは動作信号を上位の制御機器に対して出力可能である。診断後は大気開放弁4を開けて圧力を抜き、膜に異常が無ければろ過工程に移行する。   Here, the memory / determination circuit unit 12 collates the time change data of the actually measured absolute pressure ratio with the time change data of various absolute pressure ratios obtained by calculation, and obtains the calculation result obtained in advance by the equation (1). Based on this, the area of the broken hole in the film under the matched or approximate condition is estimated, and the damaged state of the film is determined. Further, if the membrane breakage diagnosis means 11 has an abnormality determination function based on the estimated area of the membrane breakage hole, an alarm or an operation signal can be output to a higher-level control device when the membrane breaks down. After the diagnosis, the air release valve 4 is opened to release the pressure, and if there is no abnormality in the membrane, the process proceeds to the filtration process.

次に、図2および図3に基づき、前記数1の計算モデルおよび数式誘導経過の概要を述べる。図2は、貯気槽内加圧気体のノズルからの流出計算モデルの概念図であり、図3は貯気槽内加圧気体の経時変化のイメージ図である。図2は、複数本の中空糸膜の内側空間を含む加圧空間を高圧貯気槽と仮定し、また中空糸膜を円管と仮定し、かつ膜破損孔を前記高圧貯気槽に設けたノズルと仮定した場合のモデルを示し、図2に示す記号の一部は、前述の請求項3の発明に記載と同一であるので説明を省略する。前述において記載のない記号は下記のとおりである。   Next, based on FIG. 2 and FIG. 3, an outline of the calculation model of Equation 1 and the mathematical expression induction process will be described. FIG. 2 is a conceptual diagram of a calculation model of the outflow of pressurized gas in the storage tank from the nozzle, and FIG. 3 is an image diagram of the change over time of the pressurized gas in the storage tank. FIG. 2 assumes that the pressurized space including the inner space of a plurality of hollow fiber membranes is a high pressure reservoir, the hollow fiber membrane is assumed to be a circular tube, and a membrane breakage hole is provided in the high pressure reservoir. FIG. 2 shows a part of the model when it is assumed that the nozzle is assumed to be the same as that described in the third aspect of the invention. Symbols not described above are as follows.

0:時間=0のときの貯気槽内圧力[kg/m2
a:ノズル外部の圧力[kg/m2
ρ0:貯気槽内圧力P0のときの質量密度[kgs2/m4
ρ1:ノズル流出口部(中空糸膜破断部)圧力P1のときの質量密度[kgs2/m4
Q:ノズルからの流出流量 [m3/s]
1:ノズル流出口部の流速 [m/s]
図2の計算モデルにおいて、貯気槽内の気体のエンタルピー(熱エネルギー)は、ノズルから流出するエンタルピーによって減少する。このことを用いて、上記モデルにおける貯気槽内気体のエンタルピーの経時変化を計算することで、貯気槽内気体圧力の経時変化を求める演算式を導出した結果が数1である。また、数1における貯気槽内圧力P[kg/m2]と時間t(sec)との関係を模式的に図示したのが図3である。
P 0 : Pressure in the storage tank when time = 0 [kg / m 2 ]
P a : Pressure outside the nozzle [kg / m 2 ]
ρ 0 : Mass density [kgs 2 / m 4 ] when the pressure in the storage tank P 0
ρ 1 : Mass density [kgs 2 / m 4 ] at the nozzle outlet (hollow fiber membrane fracture) pressure P 1
Q: Outflow flow rate from nozzle [m 3 / s]
u 1 : Flow velocity at the nozzle outlet [m / s]
In the calculation model of FIG. 2, the enthalpy (thermal energy) of the gas in the storage tank is reduced by the enthalpy flowing out of the nozzle. Using this, by calculating the time-dependent change in the enthalpy of the gas in the storage tank in the above model, the result of deriving an arithmetic expression for obtaining the time-dependent change in the gas pressure in the storage tank is Equation 1. FIG. 3 schematically shows the relationship between the pressure P [kg / m 2 ] in the storage tank and the time t (sec) in Equation 1.

なお、数1において、ノズル流路の摩擦係数は、周知のように、管内が層流域の場合はλ=64/Re(Re:レイノルズ数)、乱流域の場合はλ=0.316Re-.25によって求める。上記Reはノズルの相当直径(中空糸膜直径)、気体の流速および動粘性係数によって異なる。 In Equation 1, as is well known, the friction coefficient of the nozzle channel is λ = 64 / Re (Re: Reynolds number) when the pipe is in a laminar flow region, and λ = 0.316 Re −.25 in a turbulent flow region. Ask for. The above Re varies depending on the equivalent diameter of the nozzle (hollow fiber membrane diameter), the gas flow velocity and the kinematic viscosity coefficient.

ところで、数1は、貯気槽内加圧気体がノズル外部の水環境内に流出する場合と、貯気槽内加圧気体がノズル外部の空気環境内に流出する場合との2種類の計算モデルに共通する一般式であるが、中空糸膜の寸法等の仕様や損失係数等の定数を決めて、加圧気体を空気(温度10℃)とし水環境内に流出する場合の演算式を導出した結果の一例を示すと、下記の数2のとおりである。   By the way, Equation 1 has two types of calculations: the case where the pressurized gas in the storage tank flows out into the water environment outside the nozzle and the case where the pressurized gas in the storage tank flows out into the air environment outside the nozzle. This is a general formula common to the model, but the formula for determining the specifications such as the dimensions of the hollow fiber membrane and the constants such as the loss factor, and letting the pressurized gas flow into the water environment as air (temperature 10 ° C) An example of the derived result is shown in the following formula 2.

Figure 2006289309
Figure 2006289309

また、同様に、加圧気体を空気(温度10℃)とし空気環境内に流出する場合の演算式を導出した結果の一例は、下記の数3のとおりである。   Similarly, an example of a result of deriving an arithmetic expression when the pressurized gas is air (temperature: 10 ° C.) and flows out into the air environment is as shown in the following equation (3).

Figure 2006289309
Figure 2006289309

次に、図4により実施例について述べる。図4は、本発明に基づき演算推定した結果の信頼性について、実規模の膜ろ過装置に中空糸膜1本を切断した破損膜エレメントを装着して比較検証した結果を示す。参考までに、中空糸膜2本切断と破損孔径1.5mmの場合の計算結果、正常膜における実測値も併記して示す。なお、図4において、圧力の経時変化は、中空糸膜内外の圧力比で示す。ここで、使用した膜は、内径1.5mmの中空糸膜6000本、膜面積40m2である。また、加圧気体および外部環境は空気で、初期圧力は50kPaで行った。図4から、計算値(図4中の▲を結ぶ点線)と実測値(図2中の実線)はよく一致することがわかる。これにより、本発明による計算結果が高信頼性を有し実用的であることを確認された。 Next, an embodiment will be described with reference to FIG. FIG. 4 shows the result of comparative verification of the reliability of the result of calculation and estimation based on the present invention by attaching a broken membrane element obtained by cutting one hollow fiber membrane to a real scale membrane filtration device. For reference, the calculation results in the case of cutting two hollow fiber membranes and a broken hole diameter of 1.5 mm and the actual measurement values in a normal membrane are also shown. In FIG. 4, the change in pressure with time is shown by the pressure ratio inside and outside the hollow fiber membrane. Here, the membrane used is 6000 hollow fiber membranes having an inner diameter of 1.5 mm and a membrane area of 40 m 2 . The pressurized gas and the external environment were air, and the initial pressure was 50 kPa. From FIG. 4, it can be seen that the calculated value (dotted line connecting ▲ in FIG. 4) and the measured value (solid line in FIG. 2) agree well. As a result, it was confirmed that the calculation result according to the present invention is highly reliable and practical.

本発明に係る膜ろ過装置に設置された膜破損診断装置の模式的構成図。The typical block diagram of the membrane breakage diagnosis apparatus installed in the membrane filtration apparatus which concerns on this invention. 本発明の実施の形態に係り、貯気槽内加圧気体のノズルからの流出計算モデルの概念図。The conceptual diagram of the outflow calculation model from the nozzle of the pressurized gas in a storage tank concerning embodiment of this invention. 本発明の実施の形態に係り、貯気槽内加圧気体の経時変化のイメージ図。The image figure of a time-dependent change of the pressurized gas in a storage tank concerning embodiment of this invention. 本発明に基づき演算推定した結果と実測値とを比較した結果を示す図。The figure which shows the result of having compared the result of calculation estimation based on this invention, and the measured value.

符号の説明Explanation of symbols

1 加圧気体供給装置
2 圧力調整器
3 加圧気体入口弁
4 大気開放弁
5 中空糸膜内側圧力計
6 温度計
7 膜ユニット
8 中空糸膜外側圧力計
9 ドレイン弁a
10 ドレイン弁b
11 膜破損診断手段
12 記憶・判定回路部
51 原水
52 原水供給ポンプ
53 ろ過入口弁
54 ろ過出口弁
55 膜ろ過水
56 逆洗ポンプ
57 逆洗水入口弁

DESCRIPTION OF SYMBOLS 1 Pressurized gas supply apparatus 2 Pressure regulator 3 Pressurized gas inlet valve 4 Atmospheric release valve 5 Hollow fiber membrane inner pressure gauge 6 Thermometer 7 Membrane unit 8 Hollow fiber membrane outer pressure gauge 9 Drain valve a
10 Drain valve b
DESCRIPTION OF SYMBOLS 11 Membrane breakage diagnostic means 12 Memory | storage / judgment circuit part 51 Raw water 52 Raw water supply pump 53 Filtration inlet valve 54 Filtration outlet valve 55 Membrane filtration water 56 Backwash pump 57 Backwash water inlet valve

Claims (5)

中空糸膜を有する膜ろ過装置における中空糸膜の内側に加圧気体を導入し、予め設定した圧力に到達した際に前記加圧気体の導入を停止して加圧側を密閉し、密閉後の高圧空間における圧力の経時変化から膜破損状態を診断する方法において、前記中空糸膜の破損状態を仮に想定した場合における前記高圧空間の圧力の経時変化を演算により求め、前記圧力の経時変化の実測値と前記演算値とを比較することにより、前記中空糸膜の破損状態を診断することを特徴とする膜ろ過装置の膜破損診断方法。 A pressurized gas is introduced into the inside of the hollow fiber membrane in the membrane filtration device having a hollow fiber membrane, and when the preset pressure is reached, the introduction of the pressurized gas is stopped and the pressurized side is sealed, In the method of diagnosing a membrane failure state from a change in pressure over time in a high-pressure space, when the failure state of the hollow fiber membrane is assumed, the change over time in the pressure in the high-pressure space is obtained by calculation, and the change over time in the pressure is measured. A membrane breakage diagnosis method for a membrane filtration device, wherein a breakage state of the hollow fiber membrane is diagnosed by comparing a value with the calculated value. 請求項1に記載の膜破損診断方法において、複数本の中空糸膜の内側空間を含む加圧空間を高圧貯気槽と仮定し、また中空糸膜を円管と仮定し、かつ膜破損孔を前記高圧貯気槽に設けたノズルと仮定し、さらに前記ノズルの孔径と数を仮定して複数種の中空糸膜の破損状態を想定し、前記貯気槽内加圧気体のノズルからの流出計算モデルに基づいて、貯気槽内加圧気体のエンタルピの経時変化を計算し、これにより、貯気槽内加圧気体の圧力の経時変化を、前記複数種の破損状態に対して演算により求め、この演算値と実測値とを比較することにより、前記中空糸膜の破損状態を診断することを特徴とする膜ろ過装置の膜破損診断方法。 2. The membrane breakage diagnosis method according to claim 1, wherein a pressurized space including an inner space of a plurality of hollow fiber membranes is assumed to be a high-pressure air reservoir, a hollow fiber membrane is assumed to be a circular pipe, and a membrane breakage hole is assumed. Assuming that the nozzle is provided in the high-pressure reservoir, further assuming the hole diameter and number of the nozzle, and assuming the state of damage of a plurality of types of hollow fiber membranes, from the pressurized gas nozzle in the reservoir Based on the outflow calculation model, calculate the change in enthalpy of the pressurized gas in the storage tank over time, and calculate the change in the pressure of the pressurized gas in the storage tank over time for the multiple types of damage states. The membrane breakage diagnosis method for a membrane filtration device is characterized by diagnosing the breakage state of the hollow fiber membrane by comparing the calculated value and the actual measurement value. 請求項2に記載の膜破損診断方法において、前記貯気槽内加圧気体の圧力Pの経時変化の演算は、下記数式(数1)に基づいて行なうことを特徴とする膜ろ過装置の膜破損診断方法。
Figure 2006289309
前記数式において、各記号は以下のとおりとする。
P:時間のときの貯気槽内圧力[kg/m2
1:ノズル流出口部(中空糸膜破断部)の外部圧力[kg/m2
1:ノズルの断面積(中空糸膜断面積)[m2
0:貯気槽内容積[m3]、t:時間[sec]
d:ノズルの相当直径(中空糸膜直径)[m]
ι:ノズルの長さ(中空糸膜破断部の長さ)[m]
ζ1:ノズル流入口部の損失係数、ζ2:ノズル流出口部の損失係数
λ:ノズル流路の摩擦係数、κ:気体の比熱比(空気の場合、1.4)
R:気体のガス定数(空気の場合、287[m2/s2K])、T1:気体の絶対温度
C:時間t=0としたとき決まる定数
3. The membrane failure diagnosis method according to claim 2, wherein the calculation of the change over time of the pressure P of the pressurized gas in the storage tank is performed based on the following mathematical formula (Equation 1). Damage diagnosis method.
Figure 2006289309
In the above formula, each symbol is as follows.
P: Pressure inside the storage tank at time [kg / m 2 ]
P 1 : External pressure at the nozzle outlet (hollow fiber membrane fracture) [kg / m 2 ]
A 1 : Nozzle cross-sectional area (hollow fiber membrane cross-sectional area) [m 2 ]
V 0 : Volume inside the storage tank [m 3 ], t: Time [sec]
d: Equivalent diameter of nozzle (hollow fiber membrane diameter) [m]
ι: Length of nozzle (length of hollow fiber membrane fracture) [m]
ζ 1 : Loss coefficient at the nozzle inlet, ζ 2 : Loss coefficient at the nozzle outlet
λ: Friction coefficient of nozzle flow path, κ: Specific heat ratio of gas (1.4 for air)
R: Gas constant of gas (in the case of air, 287 [m 2 / s 2 K]), T 1 : Absolute temperature of gas
C: Constant determined when time t = 0
請求項3に記載の膜破損診断方法において、前記貯気槽内加圧気体のノズルからの流出計算モデルは、貯気槽内加圧空気がノズル外部の水環境内に流出する場合と、貯気槽内加圧空気がノズル外部の空気環境内に流出する場合との2種類の計算モデルとし、各モデルに応じて前記貯気槽内加圧空気の圧力Pの経時変化の演算を行ない、前記いずれかの環境下の実測値と演算値とをそれぞれ比較することを特徴とする膜ろ過装置の膜破損診断方法。 4. The method for diagnosing a membrane failure according to claim 3, wherein the model for calculating the flow of pressurized gas in the storage tank from the nozzle includes a case where the pressurized air in the storage tank flows into the water environment outside the nozzle, Two types of calculation models for the case where the pressurized air in the air tank flows into the air environment outside the nozzle, and the time-dependent calculation of the pressure P of the pressurized air in the air storage tank is performed according to each model, A membrane breakage diagnosis method for a membrane filtration device, wherein the measured value and the calculated value in any one of the environments are respectively compared. 請求項1に記載の膜ろ過装置の膜破損診断方法を実施するための装置であって、中空糸膜の内側に加圧気体を導入し予め設定した圧力にする加圧気体供給装置および圧力調整器と、中空糸膜内外の圧力および温度を測定する中空糸膜内側圧力計、中空糸膜外側圧力計および温度計と、前記中空糸膜の破損状態を仮に想定した場合における高圧空間の圧力の経時変化を演算により求めた結果を予め記憶・格納し、前記中空糸膜内外の圧力の実測値とを比較して中空糸膜の破損状態を判定する機能を有する記憶判定手段とを備えることを特徴とする膜ろ過装置の膜破損診断装置。

A device for carrying out the membrane breakage diagnosis method for a membrane filtration device according to claim 1, wherein a pressurized gas supply device for introducing a pressurized gas inside the hollow fiber membrane to obtain a preset pressure and pressure adjustment A pressure gauge in the high-pressure space in the case of assuming a damaged state of the hollow fiber membrane, a hollow fiber membrane inner pressure gauge, a hollow fiber membrane outer pressure gauge and a thermometer for measuring pressure and temperature inside and outside the hollow fiber membrane. Storing and storing in advance the results obtained by calculating the change over time, and storing determination means having a function of determining the breakage state of the hollow fiber membrane by comparing the measured values of the pressure inside and outside the hollow fiber membrane A membrane breakage diagnosis device for membrane filtration devices.

JP2005116703A 2005-04-14 2005-04-14 Membrane filter diagnosis method and apparatus for membrane filtration Expired - Fee Related JP4728684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116703A JP4728684B2 (en) 2005-04-14 2005-04-14 Membrane filter diagnosis method and apparatus for membrane filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116703A JP4728684B2 (en) 2005-04-14 2005-04-14 Membrane filter diagnosis method and apparatus for membrane filtration

Publications (2)

Publication Number Publication Date
JP2006289309A true JP2006289309A (en) 2006-10-26
JP4728684B2 JP4728684B2 (en) 2011-07-20

Family

ID=37410484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116703A Expired - Fee Related JP4728684B2 (en) 2005-04-14 2005-04-14 Membrane filter diagnosis method and apparatus for membrane filtration

Country Status (1)

Country Link
JP (1) JP4728684B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178923B1 (en) 2010-10-27 2012-08-31 성균관대학교산학협력단 Apparatus and method for detecting damage of filtration membrane using optical fiber sensor
CN108507924A (en) * 2018-03-30 2018-09-07 华中科技大学 A kind of integrity of ultrafiltration membrane recognition methods and device
CN114858650A (en) * 2022-05-17 2022-08-05 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129003A (en) * 1980-03-12 1981-10-08 Toshiba Corp Inspection of liquid separation membrane module
JPH03110445A (en) * 1989-09-25 1991-05-10 Fuji Photo Film Co Ltd Completeness testing method
JP2000279770A (en) * 1999-03-30 2000-10-10 Nkk Corp Membrane failure detector of membrane filter device, method therefor and operating method
JP2000342936A (en) * 1999-06-02 2000-12-12 Nkk Corp Method and device for detecting membrane damage of hollow fiber membrane filter apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129003A (en) * 1980-03-12 1981-10-08 Toshiba Corp Inspection of liquid separation membrane module
JPH03110445A (en) * 1989-09-25 1991-05-10 Fuji Photo Film Co Ltd Completeness testing method
JP2000279770A (en) * 1999-03-30 2000-10-10 Nkk Corp Membrane failure detector of membrane filter device, method therefor and operating method
JP2000342936A (en) * 1999-06-02 2000-12-12 Nkk Corp Method and device for detecting membrane damage of hollow fiber membrane filter apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178923B1 (en) 2010-10-27 2012-08-31 성균관대학교산학협력단 Apparatus and method for detecting damage of filtration membrane using optical fiber sensor
CN108507924A (en) * 2018-03-30 2018-09-07 华中科技大学 A kind of integrity of ultrafiltration membrane recognition methods and device
CN108507924B (en) * 2018-03-30 2023-08-04 华中科技大学 Ultrafiltration membrane integrity recognition method and device
CN114858650A (en) * 2022-05-17 2022-08-05 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter
CN114858650B (en) * 2022-05-17 2023-10-17 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter

Also Published As

Publication number Publication date
JP4728684B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
ES2331809T3 (en) FILTRATION CONTROL AND MONITORING SYSTEM.
JP2001190938A (en) Method of detecting breakage of water treating membrane
Cobry et al. Comprehensive experimental studies of early-stage membrane scaling during nanofiltration
US20110138936A1 (en) Means for testing filter integrity in a liquid purification system
US8617093B2 (en) Method and device for monitoring a fluid system of an extracorporeal blood treatment device
EP1194217A1 (en) Method and apparatus for testing the integrity of filtering membranes
JP2001170458A (en) Method of detecting membrane breaking and fouling in membrane cleaning
JP7452893B2 (en) Method and system for filter device integrity testing
US9164062B2 (en) Analyzing ultrasonic signals using a dynamic window for an early detection of scaling in water processing equipment
EP2635367A1 (en) A membrane sensor and method of detecting fouling in a fluid
JP4728684B2 (en) Membrane filter diagnosis method and apparatus for membrane filtration
JP4713905B2 (en) Membrane filtration device membrane breakage detection method and apparatus
CN108168838A (en) A kind of detecting system and method for engine cooling water jacket patency
KR101753453B1 (en) Hollow fiber membrane and method of detecting damage of membrane thereof
JP7375882B2 (en) Control method for pure water production equipment
JP3862005B2 (en) Membrane filtration device and membrane filtration method
JP2008253888A (en) Membrane damage detecting method
JP2000342936A (en) Method and device for detecting membrane damage of hollow fiber membrane filter apparatus
JPS6094105A (en) Membrane separator
JP2004237281A (en) Membrane separation apparatus, and state detecction method for the apparatus
Johnson Automatic monitoring of membrane integrity in microfiltration systems
JP4461288B2 (en) Filtration membrane abnormality detection method and apparatus
JP2004219253A (en) Leak inspection method for water purifying cartridge
US20160313153A1 (en) Method and measuring assembly according to the differential pressure principle having a zero-point calibration
Johnson et al. Issues of operational integrity in membrane drinking water plants

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4728684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees