JP4460365B2 - Bearing and ultrasonic motor - Google Patents

Bearing and ultrasonic motor Download PDF

Info

Publication number
JP4460365B2
JP4460365B2 JP2004171031A JP2004171031A JP4460365B2 JP 4460365 B2 JP4460365 B2 JP 4460365B2 JP 2004171031 A JP2004171031 A JP 2004171031A JP 2004171031 A JP2004171031 A JP 2004171031A JP 4460365 B2 JP4460365 B2 JP 4460365B2
Authority
JP
Japan
Prior art keywords
shaft
bearing
ridges
pressure contact
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004171031A
Other languages
Japanese (ja)
Other versions
JP2005354775A (en
Inventor
洋 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004171031A priority Critical patent/JP4460365B2/en
Publication of JP2005354775A publication Critical patent/JP2005354775A/en
Application granted granted Critical
Publication of JP4460365B2 publication Critical patent/JP4460365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、ベアリング及び超音波モータに関し、詳しくは、超音波機械振動を利用してシャフトを軸回転させるベアリング、及び同ベアリングを回転子の予圧機構の一部に適用した超音波モータに係わる。   The present invention relates to a bearing and an ultrasonic motor, and more particularly to a bearing that rotates a shaft using ultrasonic mechanical vibration and an ultrasonic motor in which the bearing is applied to a part of a preload mechanism of a rotor.

従来より、ベアリングは、シャフトの軸受回転機構を構成する部品として広く利用されている。特に、ベアリングの内輪と外輪との間に複数の金属球を潤滑用に配置して回転抵抗を低減したボール・ベアリングは、内輪に固定されたシャフトの軸方向に対する滑動(いわゆる「軸滑り」)を防止する機構をもつ優れたベアリングとして、様々な分野で使用されている。   Conventionally, a bearing has been widely used as a component constituting a bearing rotation mechanism of a shaft. In particular, ball bearings in which a plurality of metal balls are arranged for lubrication between the inner ring and the outer ring of the bearing to reduce rotational resistance are slid in the axial direction of a shaft fixed to the inner ring (so-called “axial sliding”). It is used in various fields as an excellent bearing with a mechanism to prevent the above.

このため、上記ボール・ベアリングは、シャフトの鉛直上方に重量物を取り付けて使用されることの多い超音波モータの予圧機構を構成する際に欠かすことのできない構成部品であり、事実、当該ボール・ベアリングを用いて軸滑りを防止した高精度の超音波モータが次々と実用化されている。   For this reason, the ball bearing is an indispensable component when constructing a preload mechanism of an ultrasonic motor that is often used with a heavy object attached vertically above the shaft. High-accuracy ultrasonic motors that use shafts to prevent shaft slip have been put into practical use one after another.

なお、上記超音波モータの構成及び動作原理の詳細については、例えば下記の非特許文献1に開示されている。
Kentaro Nakamura, Minoru Kurosawa, Sadayuki Ueha,“Characteristics of a Hybrid Transducer-Type Ultrasonic Motor,”IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 3, May 1991, pp. 188-193
The details of the configuration and operating principle of the ultrasonic motor are disclosed in Non-Patent Document 1 below, for example.
Kentaro Nakamura, Minoru Kurosawa, Sadayuki Ueha, “Characteristics of a Hybrid Transducer-Type Ultrasonic Motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 3, May 1991, pp. 188-193

しかしながら、上記ボール・ベアリングには、内輪に固定されたシャフトの軸方向に過大な力が加わったときに、その回転抵抗が極端に増加してしまうという欠点がある。   However, the ball bearing has a disadvantage that its rotational resistance is extremely increased when an excessive force is applied in the axial direction of the shaft fixed to the inner ring.

ここにおいて、本発明の解決すべき主要な目的は、次のとおりである。
即ち、本発明の第1の目的は、シャフトの軸方向に過大な力が加わっても回転抵抗を増加させずに、回転トルクを発生することの可能なベアリング及び超音波モータを提供せんとするものである。
Here, the main objects to be solved by the present invention are as follows.
That is, the first object of the present invention is to provide a bearing and an ultrasonic motor capable of generating a rotational torque without increasing the rotational resistance even when an excessive force is applied in the axial direction of the shaft. Is.

本発明の第2の目的は、シャフトの軸方向に過大な力が加わっても軸滑りを生じないベアリング及び超音波モータを提供せんとするものである。   A second object of the present invention is to provide a bearing and an ultrasonic motor that do not cause shaft slip even when an excessive force is applied in the axial direction of the shaft.

本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から、自ずと明らかとなろう。   Other objects of the present invention will become apparent from the specification, drawings, and particularly the description of each claim.

本発明ベアリングにおいては、多段周回状に突設された複数の周回突条を具備してなるシャフトと、複数の周回突条の形態に応じ多段周回状に刻設された複数の周回溝を具備してなる軸受部材と、複数の周回突条の各外周縁領域を対応する複数の周回溝の各内周縁領域に対し定常的に圧接させる圧接弾性手段と、当該圧接弾性手段による定常圧接を得た状態でシャフトを超音波機械振動により励振するシャフト励振器とを具備させる、という特徴的構成手段を講じる。   The bearing according to the present invention includes a shaft having a plurality of circumferential ridges projecting in a multistage circumferential manner, and a plurality of circumferential grooves engraved in a multistage circumferential manner according to the form of the plurality of circumferential ridges. Bearing members, pressure contact elastic means for steadily pressing each outer peripheral edge region of the plurality of rotating ridges against each inner peripheral edge region of the corresponding plurality of rotating grooves, and obtaining a steady pressure contact by the pressure contact elastic means And a shaft exciter that excites the shaft by ultrasonic mechanical vibration in a state in which the shaft is provided.

また、本発明超音波モータにおいては、回転子の本体を構成し、多段周回状に突設された複数の周回突条を具備してなるシャフトと、複数の周回突条の形態に応じ多段周回状に刻設された複数の周回溝を具備してなる軸受部材と、複数の周回突条の各外周縁領域を対応する複数の周回溝の各内周縁領域に対し定常的に圧接させる圧接弾性手段と、複数の圧電素子を重層構成してなり、圧接弾性手段により定常圧接を得た状態でシャフトを超音波機械振動により励振する固定子と、当該固定子の振動端面に固着された摩擦部材と、シャフトの基端に一体に設けられて回転子の一部を構成し、摩擦部材上に伝導される超音波機械振動を受容する振動受容部材とを具備させる、という特徴的構成手段を講じる。   Further, in the ultrasonic motor of the present invention, the main body of the rotor is configured, the shaft is provided with a plurality of rotating ridges projecting in a multi-stage loop shape, and the multi-stage rotation is performed according to the form of the plurality of rotating ridges. Bearing member comprising a plurality of circumferential grooves engraved in a shape, and a pressure contact elasticity that steadily presses each outer peripheral edge region of the plurality of circumferential protrusions to each inner peripheral edge region of the corresponding plurality of circumferential grooves And a stator that includes a plurality of piezoelectric elements in a multi-layer structure, and in which the shaft is excited by ultrasonic mechanical vibration in a state in which steady pressure welding is obtained by the pressure welding elastic means, and a friction member fixed to the vibration end face of the stator And a vibration receiving member that is integrally provided at the base end of the shaft and forms a part of the rotor and receives ultrasonic mechanical vibration conducted on the friction member. .

さらに、具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位概念に亙る新規な特徴的構成手段を採用することにより、前記目的を達成するよう為される。   More specifically, in order to solve the problem, the present invention achieves the above-mentioned object by adopting a new characteristic configuration means ranging from the superordinate concept listed below to the subordinate concept. .

即ち、本発明ベアリングの第1の特徴は、軸方向に沿う一区間領域を占有して多段周回状に突設された複数の周回突条を具備してなるシャフトと、当該シャフトにおける前記複数の周回突条の全占有区間領域を内包する軸孔を具備すると共に、当該複数の周回突条が当該軸孔内において遊動嵌合状態で保持されるよう、当該複数の周回突条の形状及び数に対応して前記各周回突条の外形よりも一回り大きく多段周回状に当該軸孔内面に刻設された複数の周回溝を具備してなる軸受部材と、当該軸受部材の前記軸孔に対する貫通した前記シャフトの相対位置を同軸上に設定しつつ、前記複数の周回突条に亙る各外周縁領域を、当該複数の周回突条に対応する前記複数の周回溝に亙る各内周縁領域に対し定常的に弾性圧接させるための圧接弾性手段と、当該圧接弾性手段により前記複数の周回突条の前記複数の周回溝に対する定常的な弾性圧接を得た状態で、前記シャフトに回転を付勢する方向に回転トルクを生じさせる超音波機械振動励振するシャフト励振器と、を有し、前記圧接弾性手段は、前記軸受部材と前記シャフト励振器との対向面に亙って張設され、前記周回突条は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記シャフトの中心軸上に位置するよう構成され、前記周回溝は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記軸受部材における前記軸孔の中心軸上に位置するよう構成される、ベアリングの構成採用にある。 That is, the first feature of the bearing of the present invention is that a shaft comprising a plurality of circumferential ridges that occupy a section area along the axial direction and project in a multistage circumferential manner, and the plurality of the plurality of circumferential ridges in the shaft. The shape and number of the plurality of orbiting ridges includes a shaft hole that encloses the entire occupied section area of the orbiting ridge, and the plurality of orbiting ridges are held in a loosely fitted state in the shaft hole. Corresponding to a bearing member comprising a plurality of circumferential grooves carved on the inner surface of the shaft hole in a multi-stage circumferential shape that is slightly larger than the outer shape of each of the circumferential ridges, and the bearing member with respect to the shaft hole While setting the relative position of the penetrating shaft on the same axis, each outer peripheral edge region extending over the plurality of rotating protrusions is changed to each inner peripheral edge region extending over the plurality of rotating grooves corresponding to the plurality of rotating protrusions. Pressure-welded elastic hand for constantly elastically pressure-contacting When, in a state where the yield a steady elastic pressure against a plurality of circumferential grooves of the plurality of orbiting ridges by the pressing elastic means, ultrasonic mechanical vibrations causing rotational torque in a direction to urge the rotation to the shaft It has a, a shaft exciter for exciting the pressing elastic means is stretched over the opposite surfaces of the shaft exciter and the bearing member, said orbiting protrusion has a vertically symmetrical weight surface Both are substantially spindle-shaped with the same size, and are configured such that the virtual vertex of each spindle is located on the central axis of the shaft. None, the bearing is configured such that the virtual vertex of each weight is positioned on the central axis of the shaft hole in the bearing member .

本発明ベアリングの第2の特徴は、上記本発明ベアリングの第1の特徴における前記シャフト励振器が、前記シャフトに、直交する2つの方向のたわみ振動を90度の位相差励振により連続的に誘起させるたわみ振動モードを生じさせる前記超音波機械振動により、当該シャフトを励振するものである、ベアリングの構成採用にある。   A second feature of the bearing according to the present invention is that the shaft exciter according to the first feature of the bearing according to the present invention continuously induces flexural vibrations in two directions orthogonal to the shaft by phase difference excitation of 90 degrees. The present invention employs a bearing configuration that excites the shaft by the ultrasonic mechanical vibration that generates the bending vibration mode.

本発明ベアリングの第3の特徴は、上記本発明ベアリングの第1又は第2の特徴における前記複数の周回突条が、任意の駆動用モータのモータ軸を構成するシャフト上に具備され、前記シャフト励振器が、当該駆動用モータへの給電時における前記シャフトの回転を付勢する方向に回転トルクを生じさせる前記超音波機械振動により、当該シャフトを励振するものである、ベアリングの構成採用にある。   According to a third feature of the bearing of the present invention, the plurality of rotating ridges in the first or second feature of the bearing of the present invention are provided on a shaft constituting a motor shaft of an arbitrary drive motor, and the shaft The exciter employs a bearing configuration in which the shaft is excited by the ultrasonic mechanical vibration that generates a rotational torque in a direction for energizing the rotation of the shaft during power feeding to the drive motor. .

本発明ベアリングの第4の特徴は、上記本発明ベアリングの第3の特徴における前記シャフト励振器が、前記駆動用モータの前記シャフトが前記超音波機械振動により励振されるよう当該駆動用モータの本体の一部に固設されてなる、ベアリングの構成採用にある。   According to a fourth aspect of the bearing of the present invention, the shaft exciter according to the third aspect of the bearing of the present invention is a main body of the driving motor so that the shaft of the driving motor is excited by the ultrasonic mechanical vibration. It is in the configuration adoption of the bearing that is fixed to a part of the bearing.

本発明ベアリングの第5の特徴は、上記本発明ベアリングの第3又は第4の特徴における前記圧接弾性手段が、前記軸受部材と前記駆動用モータとの対向面に亙り、前記シャフトを中心に囲繞するよう同心円上に周方向等間隔に張設された複数の弾性体からなる、ベアリングの構成採用にある。   According to a fifth feature of the bearing of the present invention, the pressure contact elastic means according to the third or fourth feature of the bearing of the present invention spans the facing surface of the bearing member and the drive motor, and surrounds the shaft. Thus, the configuration of the bearing is constituted by a plurality of elastic bodies stretched on the concentric circles at equal intervals in the circumferential direction.

本発明ベアリングの第6の特徴は、上記本発明ベアリングの第1、第2、第3、第4又は第5の特徴における前記複数の周回突条の形状が、外周に山形を連続繰り返す算盤珠多重形を呈してなる、ベアリングの構成採用にある。   A sixth feature of the bearing according to the present invention is that the shape of the plurality of rotating ridges in the first, second, third, fourth, or fifth feature of the bearing according to the present invention repeats a mountain shape continuously on the outer periphery. It is in the configuration adoption of the bearing that is a multiple type.

また、本発明超音波モータの第1の特徴は、回転子の本体を構成し、軸方向に沿う一区間領域を占有して多段周回状に突設された複数の周回突条を具備してなるシャフトと、当該シャフトにおける前記複数の周回突条の全占有区間領域を内包する軸孔を具備すると共に、当該複数の周回突条が当該軸孔内において遊動嵌合状態で保持されるよう、当該複数の周回突条の形状及び数に対応して前記各周回突条の外形よりも一回り大きく多段周回状に当該軸孔内面に刻設された複数の周回溝を具備してなる軸受部材と、当該軸受部材の前記軸孔に対する貫通した前記シャフトの相対位置を同軸上に設定しつつ、前記複数の周回突条に亙る各外周縁領域を、当該複数の周回突条に対応する前記複数の周回溝に亙る各内周縁領域に対し定常的に弾性圧接させるための圧接弾性手段と、複数の圧電素子を重層構成してなり、当該圧接弾性手段により前記複数の周回突条の前記複数の周回溝に対する定常的な弾性圧接を得た状態で、前記シャフトに回転を付勢する方向に回転トルクを生じさせる超音波機械振動励振する固定子と、当該固定子の振動端面上に固着された摩擦部材と、前記シャフトの基端に一体に設けられて前記回転子の一部を構成し、前記固定子の前記振動端面から当該摩擦部材上に伝導される超音波機械振動を受容する振動受容部材と、を有前記圧接弾性手段は、前記軸受部材と前記固定子との対向部位間に亙って張設され、前記周回突条は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記シャフトの中心軸上に位置するよう構成され、前記周回溝は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記軸受部材における前記軸孔の中心軸上に位置するよう構成される超音波モータの構成採用にある。 The first feature of the ultrasonic motor of the present invention is that it comprises a rotor main body, and has a plurality of rotating ridges that occupy a section area along the axial direction and project in a multi-stage circular shape. And a shaft hole that encloses the entire occupied section region of the plurality of rotating ridges in the shaft, and the plurality of rotating ridges are held in the loosely fitted state in the shaft hole. A bearing member comprising a plurality of circumferential grooves engraved on the inner surface of the shaft hole in a multi-stage circumferential shape that is slightly larger than the outer shape of each of the circumferential projections and corresponding to the shape and number of the plurality of circumferential projections. And the plurality of peripheral edge regions extending over the plurality of rotating ridges corresponding to the plurality of rotating ridges while coaxially setting the relative position of the shaft penetrating the shaft member with respect to the shaft hole. The elastic pressure is steadily applied to each inner peripheral region over the circumferential groove And pressing the elastic means for, will have a plurality of piezoelectric elements by a multilayer structure, while receiving a constant elastic pressure by the pressing elastic means for said plurality of circumferential grooves of the plurality of orbiting protrusions, said shaft A stator that excites ultrasonic mechanical vibrations that generate rotational torque in the direction of energizing the rotation, a friction member fixed on the vibration end surface of the stator, and a base end of the shaft. constitutes a part of the rotor, have a, a vibration-receiving member for receiving the ultrasonic mechanical vibration that is conducted on the friction member from the oscillation end surface of the stator, the pressure resilient means, said bearing The circumferential ridge is stretched between opposing parts of the member and the stator, and the circular protrusion has a substantially spindle shape having a vertically symmetrical weight surface and the same size, and the virtual vertex of each weight is the shaft. Configured to lie on the central axis The circumferential groove, both without a size equal substantially spindle-shaped having a vertical symmetry weight surface, the ultrasonic motor configured virtual apex of each spindle is positioned on the center axis of the shaft hole in the bearing member It is in configuration adoption.

本発明超音波モータの第2の特徴は、上記本発明超音波モータの第1の特徴における前記圧接弾性手段が、前記複数の周回突条の前記複数の周回溝に対する前記定常的な弾性圧接を得るのと同時に、前記シャフトに予圧を印加するため、当該シャフトに設けられた前記振動受容部材を前記固定子に固着された前記摩擦部材に対し定常的に弾性圧接させるための機能手段を併備してなる、超音波モータの構成採用にある。   According to a second feature of the ultrasonic motor of the present invention, the pressure contact elastic means in the first feature of the ultrasonic motor of the present invention performs the steady elastic pressure contact with the plurality of circumferential grooves of the plurality of circumferential protrusions. At the same time, in order to apply a preload to the shaft, functional means is provided for constantly elastically pressing the vibration receiving member provided on the shaft against the friction member fixed to the stator. Therefore, the configuration of the ultrasonic motor is adopted.

本発明超音波モータの第3の特徴は、上記本発明超音波モータの第2の特徴における前記圧接弾性手段が、前記軸受部材と前記固定子の振動節面に介層されたフランジ部材との対向部位間に亙り、前記シャフトを中心に囲繞するよう同心円上に周方向等間隔に張設された複数の弾性体からなる、超音波モータの構成採用にある。   According to a third feature of the ultrasonic motor of the present invention, the pressure contact elastic means according to the second feature of the ultrasonic motor of the present invention includes a flange member interposed between the bearing member and a vibration node surface of the stator. The ultrasonic motor has a configuration adopting a plurality of elastic bodies that are stretched at equal intervals in a circumferential direction so as to extend between confronting parts and surround the shaft around the center.

本発明超音波モータの第4の特徴は、上記本発明超音波モータの第2又は第3の特徴における前記圧接弾性手段が、前記振動受容部材の前記摩擦部材に対する前記定常的な弾性圧接時に、その圧接領域上の前記超音波機械振動に伴って前記シャフトに生じうる軸直交方向への並進運動を抑止するための並進運動抑止手段を併備してなる、超音波モータの構成採用にある。   According to a fourth feature of the ultrasonic motor of the present invention, when the pressure contact elastic means in the second or third feature of the present invention ultrasonic motor is in the steady elastic pressure contact with the friction member of the vibration receiving member, The ultrasonic motor is configured to include a translational motion suppressing means for suppressing the translational motion in the direction perpendicular to the axis that can occur in the shaft in accordance with the ultrasonic mechanical vibration on the pressure contact region.

本発明超音波モータの第5の特徴は、上記本発明超音波モータの第4の特徴における前記並進運動抑止手段が、前記軸受部材の外周縁領域と前記フランジ部材の外周縁領域との間に、前記シャフトと並行かつ周方向等間隔に渡設され、当該軸受部材をその軸方向にのみ案内摺動可能に構成された複数のスライド部材からなる、超音波モータの構成採用にある。   According to a fifth feature of the ultrasonic motor of the present invention, the translational motion suppressing means according to the fourth feature of the ultrasonic motor of the present invention is between the outer peripheral edge region of the bearing member and the outer peripheral edge region of the flange member. The ultrasonic motor has a configuration adopting a plurality of slide members which are provided in parallel with the shaft and at equal intervals in the circumferential direction and which are configured to be capable of guiding and sliding the bearing member only in the axial direction.

本発明超音波モータの第6の特徴は、上記本発明超音波モータの第1、第2、第3、第4又は第5の特徴における前記固定子が、前記複数の圧電素子を以ってランジュバン型振動子を構成してなる、超音波モータの構成採用にある。   A sixth feature of the ultrasonic motor of the present invention is that the stator according to the first, second, third, fourth, or fifth feature of the ultrasonic motor of the present invention includes the plurality of piezoelectric elements. It is in the configuration adoption of an ultrasonic motor that constitutes a Langevin type vibrator.

本発明超音波モータの第7の特徴は、上記本発明超音波モータの第1、第2、第3、第4又は第5の特徴における前記固定子が、前記複数の圧電素子を以って進行波型振動子を構成してなる、超音波モータの構成採用にある。   A seventh feature of the ultrasonic motor of the present invention is that the stator according to the first, second, third, fourth, or fifth feature of the ultrasonic motor of the present invention includes the plurality of piezoelectric elements. The present invention employs a configuration of an ultrasonic motor that constitutes a traveling wave type vibrator.

以上のように、本発明のベアリングによれば、通常のシャフト又は駆動用モータのシャフト上に突設された算盤珠多重形を呈した周回突条が、軸受部材の軸孔内における対応する周回溝により遊動嵌合状態で保持され、かつ、当該シャフトが、その周回突条の周回溝に対する定常圧接を弾性体等の圧接弾性手段により得ながら、たわみ振動モードを生じさせる超音波機械振動により回転付勢可能に励振されることから、その圧接領域に、シャフトの軸方向に過大な力が加わったときの回転抵抗の増加を相殺する回転トルクが生じるようになり、この結果、当該ベアリングに、軸滑りを生じさせることなく回転抵抗を大幅に低減させることの可能な機構が得られるようになる。   As described above, according to the bearing of the present invention, the rotating ridges having the abacus multiplex shape protruding on the shaft of the normal shaft or the driving motor have the corresponding rotating loops in the shaft hole of the bearing member. The shaft is held in a loosely fitted state by the groove, and the shaft rotates by ultrasonic mechanical vibration that generates a flexural vibration mode while obtaining a steady pressure contact with the circular groove of the circular protrusion by means of a pressure elastic means such as an elastic body. Since it is excited to be energized, a rotational torque that cancels an increase in rotational resistance when an excessive force is applied in the axial direction of the shaft is generated in the pressure contact region. A mechanism capable of greatly reducing rotational resistance without causing shaft slip is obtained.

また、本発明の超音波モータによれば、上記ベアリングの基本構成を予圧機構の一部に採用し、かつ、その具体的構成を、ランジュバン型振動子や進行波型振動子等の固定子、当該固定子上の摩擦部材、振動受容部材を具備する回転子及びスライド部材等の並進運動抑止手段により具現化したことから、上記ベアリングにおけるそれと同一の効果が、当該超音波モータに得られるようになる。   Further, according to the ultrasonic motor of the present invention, the basic configuration of the bearing is adopted as a part of the preload mechanism, and the specific configuration is a stator such as a Langevin type vibrator or a traveling wave type vibrator, Since it is embodied by means of translational motion suppression means such as a friction member on the stator, a rotor having a vibration receiving member, and a slide member, the same effect as that in the bearing can be obtained in the ultrasonic motor. Become.

以下、本発明の実施の形態につき、添付図面を参照しながら、まず、ベアリング例として、シャフト・ベアリング例及び回転トルク発生ベアリング例を説明し、次いで、超音波モータ例を順に挙げて詳細に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a shaft bearing example and a rotational torque generating bearing example will be described as bearing examples, and then an ultrasonic motor example will be described in detail. To do.

(シャフト・ベアリング例)
図1(a)〜(c)は、本発明の一実施形態に係るシャフト・ベアリングの構成図であり、同図(a)は、同シャフト・ベアリングを構成するシャフトの正面図、同図(b)は、同シャフト・ベアリングを構成する軸受部材の分解正面図、同図(c)は、同シャフト・ベアリング全体の一部分解正面図である。
(Example of shaft / bearing)
FIGS. 1A to 1C are configuration diagrams of a shaft bearing according to an embodiment of the present invention. FIG. 1A is a front view of a shaft constituting the shaft bearing. b) is an exploded front view of a bearing member constituting the shaft bearing, and FIG. 5C is a partially exploded front view of the entire shaft bearing.

同図に示すように、本実施形態に係るシャフト・ベアリングαは、基本的に、シャフト1と軸受部材2とを有して構成され、このうち、シャフト1は、その軸方向に沿う一区間領域を占有して多段周回状に突設された複数(本例では4つ)の周回突条11,11,…を具備し、また、軸受部材2は、そのシャフト1における各周回突条11,11,…の全占有区間領域を内包する軸孔21と、各周回突条11,11,…が当該軸孔21内において遊動嵌合状態で保持されるよう、各周回突条11,11,…の形状及び数に応じ多段周回状に当該軸孔21内面に刻設された複数(本例では4つ)の周回溝22,22,…とを具備する。   As shown in the figure, the shaft bearing α according to the present embodiment is basically configured to have a shaft 1 and a bearing member 2, and the shaft 1 is one section along the axial direction thereof. A plurality of (four in this example) circumferential ridges 11, 11,... Occupying a region and projecting in a multistage circumferential manner are provided, and the bearing member 2 has each circumferential ridge 11 on the shaft 1. , 11,..., 11,..., And the circumferential ridges 11, 11 so that the circumferential ridges 11, 11,. ,... Are provided in a plurality of (four in this example) circumferential grooves 22, 22,...

なお、図示の軸受部材2は、その軸を含む平面で2分割された部材の一方のみを示しており、実際には、シャフト1を軸孔21に内包した後に双方の分割部材を上記平面で突合させ、これらを、例えばネジなどの固定手段を用いて堅固に固着することにより全体構成される(以下、後述する各実施形態において同じ)。   Note that the illustrated bearing member 2 shows only one of the members divided into two on the plane including the shaft. Actually, after the shaft 1 is enclosed in the shaft hole 21, both divided members are formed on the plane. The entire structure is formed by abutting and firmly fixing them using a fixing means such as a screw (hereinafter the same in each embodiment described later).

ここで、本例に示す4つの周回突条11,11,…は、外周の上下方向に同一山形を連続繰り返す算盤珠多重形を呈した、所謂、各段とも上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が、シャフト1の中心軸上に位置するよう構成される。また、4つの周回溝22,22,…は、上記各周回突条11,11,…の形態に対応して軸孔21内において遊動嵌合状態で保持されるよう、各周回突条11,11,…の外形よりも一回り大きく、かつ、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、ここでも、各錘の仮想頂点が、軸受部材2における軸孔21の中心軸上に位置するよう構成される。   Here, the four rotating ridges 11, 11,... Shown in this example have an abacus multiplex shape in which the same chevron is continuously repeated in the vertical direction of the outer periphery. The spindles have substantially the same spindle shape, and are configured such that the virtual vertex of each spindle is located on the central axis of the shaft 1. Further, the four circumferential grooves 22, 22,... Correspond to the forms of the respective circumferential protrusions 11, 11,... So as to be held in a loosely fitted state in the shaft hole 21. 11 is a substantially spindle shape that is slightly larger than the outer shape of 11,... And has a vertically symmetrical weight surface, and the same size, and the virtual vertex of each weight is also the central axis of the shaft hole 21 in the bearing member 2. Configured to sit on top.

なお、各周回突条11,11,…及び各周回溝22,22,…は、必ずしも本例のように隣接配設する必要はなく、シャフト1の軸方向に沿って任意の間隔をおきながら分散配設するようにしてもよい。また、それらの配設数も任意であり、本例のように必ずしも4つである必要はない。   .. And the circumferential grooves 22, 22,... Are not necessarily arranged adjacent to each other as in this example, and an arbitrary interval is provided along the axial direction of the shaft 1. It may be arranged in a distributed manner. Further, the number of arrangements is also arbitrary, and it is not always necessary to be four as in this example.

以上のように構成されたシャフト・ベアリングαにおいて、本願発明者は、シャフト1に具備された複数の周回突条11,11,…に亙る各外周縁領域を、軸受部材2の軸孔21に具備された対応する複数の周回溝22,22,…に亙る各内周縁領域に対し定常的に圧接させた状態で、そのシャフト1を超音波モータの回転子に見立て、当該シャフト1に、ちょうど超音波モータの固定子が回転子に与える超音波領域周波数の機械振動と同種の機械振動を与える実験を行った。その結果、各周回突条11,11,…と各周回溝22,22,…との圧接領域に上記超音波機械振動が伝導されて、当該シャフト1が、その圧接領域の摩擦力により自ら回転トルクを生じることが判明した。   In the shaft bearing α configured as described above, the inventor of the present application defines each outer peripheral edge region extending over the plurality of rotating ridges 11, 11,... Provided in the shaft 1 in the shaft hole 21 of the bearing member 2. The shaft 1 is regarded as a rotor of an ultrasonic motor in a state in which it is constantly pressed against each inner peripheral edge region extending over the corresponding plurality of circumferential grooves 22, 22,. An experiment was conducted to give the same kind of mechanical vibration as the ultrasonic frequency of the ultrasonic motor stator to the rotor. As a result, the ultrasonic mechanical vibration is conducted to the press contact region between each of the rotating ridges 11, 11,... And each of the rotating grooves 22, 22,..., And the shaft 1 rotates by the frictional force of the press contact region. It has been found that torque is produced.

以下に説明する回転トルク発生ベアリング例は、以上に述べたシャフト・ベアリングαの基本構成に、上記回転トルクをシャフト1に得るための所要の圧接弾性手段及びシャフト励振器並びに駆動用モータを付加し、これにより、当該シャフト・ベアリングαの実用化を図ったものである。   In the example of the rotational torque generating bearing described below, the required pressure elastic means, the shaft exciter, and the driving motor for obtaining the rotational torque are added to the basic structure of the shaft bearing α described above. In this way, the shaft bearing α is put to practical use.

(回転トルク発生ベアリング例)
図2は、本発明の一実施形態に係る回転トルク発生ベアリングの構成を示す一部分解正面図である。なお、本図に示される各構成要素には、図1に示したそれと同一又は同等のものにつき、これと共通する符号を付してある。
(Example of rotating torque generating bearing)
FIG. 2 is a partially exploded front view showing the configuration of the rotational torque generating bearing according to the embodiment of the present invention. It should be noted that the same or equivalent components as those shown in FIG. 1 are denoted by the same reference numerals as those shown in FIG.

同図に示すように、本実施形態に係る回転トルク発生ベアリングβは、前述したシャフト・ベアリングαにおける各構成要素に加え、所要の圧接弾性手段として、軸受部材2の軸孔21に対する貫通したシャフト1の相対位置を同軸上に設定しつつ、複数の周回突条11,11,…に亙る各外周縁領域を、対応する複数の周回溝22,22,…に亙る各内周縁領域に対し定常的に弾性圧接させるための複数の弾性体3,3,…と、これら複数の弾性体3,3,…により複数の周回突条11,11,…の複数の周回溝22,22,…に対する定常的な弾性圧接を得た状態で、シャフト1を超音波機械振動により励振するシャフト励振器4とを有して構成される。   As shown in the figure, the rotational torque generating bearing β according to the present embodiment is a shaft that penetrates the shaft hole 21 of the bearing member 2 as a required pressure contact elastic means in addition to the components of the shaft bearing α described above. While the relative position of 1 is set on the same axis, each outer peripheral edge region extending over the plurality of rotating ridges 11, 11,... Is stationary with respect to each inner peripheral edge region extending over the corresponding plurality of rotating grooves 22, 22,. Are elastically pressed against each other, and a plurality of circumferential grooves 22, 22,... Of the plurality of circumferential ridges 11, 11,. The shaft exciter 4 is configured to excite the shaft 1 by ultrasonic mechanical vibration in a state in which a steady elastic pressure welding is obtained.

ここで、上記シャフト1は、任意の駆動用モータ5の構成部材をなすモータ軸であり、複数の周回突条11,11,…は、当該シャフト1上に具備される。また、上記シャフト励振器4は、当該駆動用モータ5への給電時におけるシャフト1の回転を付勢する方向に回転トルクを生じさせる超音波機械振動により、当該シャフト1を励振するよう機能する。この機能を得るため、同シャフト励振器4は、駆動用モータ5のシャフト1が当該超音波機械振動により励振されるよう、当該駆動用モータ5の本体の一部(本例では裏面)に固設され、また、所要の超音波機械振動を得るために、例えば、シャフト1に対し、直交する2つの方向のたわみ振動を90度の位相差励振により連続的に誘起させるたわみ振動モードを発生する。   Here, the shaft 1 is a motor shaft that forms a constituent member of an arbitrary drive motor 5, and a plurality of rotating ridges 11, 11,... Are provided on the shaft 1. The shaft exciter 4 functions to excite the shaft 1 by ultrasonic mechanical vibration that generates a rotational torque in a direction for energizing the rotation of the shaft 1 when power is supplied to the driving motor 5. In order to obtain this function, the shaft exciter 4 is fixed to a part of the main body of the driving motor 5 (the back surface in this example) so that the shaft 1 of the driving motor 5 is excited by the ultrasonic mechanical vibration. In order to obtain the required ultrasonic mechanical vibration, for example, a flexural vibration mode is generated in which a flexural vibration in two directions orthogonal to the shaft 1 is continuously induced by phase difference excitation of 90 degrees. .

これに対し、複数の弾性体3,3,…は、共に弾性係数の等しい種々のゴムや引張りコイル発条(バネ)などからなり、軸受部材2と駆動用モータ5との対向面、即ち、軸受部材2のシャフト受容面2aにおける外周縁領域と、当該シャフト受容面2aと対向設置される駆動用モータ5のシャフト立設面5aにおける外周縁領域との間に亙り、軸受部材2の軸孔21と駆動用モータ5のシャフト1との双方の同軸を中心として当該シャフト1を囲繞するよう同心円上に周方向等間隔に張設される(図中、引張りコイル発条を例示するが、場合により圧縮コイル発条を用いてもよい)。   On the other hand, the plurality of elastic bodies 3, 3,... Are made of various rubbers having the same elastic coefficient, tension coil springs (springs), etc., and are opposed to the bearing member 2 and the drive motor 5, that is, bearings. The shaft hole 21 of the bearing member 2 spans between the outer peripheral edge region of the shaft receiving surface 2a of the member 2 and the outer peripheral edge region of the shaft standing surface 5a of the drive motor 5 that is installed opposite to the shaft receiving surface 2a. And the shaft 1 of the drive motor 5 are concentrically arranged at equal intervals in the circumferential direction so as to surround the shaft 1 (in the drawing, the tension coil ridge is illustrated, but compression is sometimes performed. Coil struts may be used).

なお、駆動用モータ5のシャフト1と軸受部材2の軸孔21とが同軸を構成するのは、各周回突条11,11,…及び各周回溝22,22,…をそれぞれ形作る各錘の各仮想頂点が、共にシャフト1及び軸孔21の各中心軸上に位置しているためである(図1の説明を参照)。そして、この同軸を中心としながら、共に弾性係数の等しい上記複数の弾性体3,3,…を等角等距離状に均等に張設することにより、軸孔21に対するシャフト1の相対位置の同軸上への設定が保たれた状態で、軸受部材2が駆動用モータ5の方向へ均等に牽引されるようになり、この結果、シャフト1上の各周回突条11,11,…に亙る各外周縁領域が、軸孔2内の複数の周回溝22,22,…に亙る各内周縁領域に対して定常的に弾性圧接するようになる(安定した定常弾性圧接を得るには、複数の弾性体3,3,…を少なくとも3本、好ましくは6〜8本程度用いる必要がある)。   The shaft 1 of the drive motor 5 and the shaft hole 21 of the bearing member 2 constitute the same axis because the respective weights forming the respective circumferential ridges 11, 11,... And the respective circumferential grooves 22, 22,. This is because the virtual vertices are both located on the central axes of the shaft 1 and the shaft hole 21 (see the description of FIG. 1). Then, the above-described elastic bodies 3, 3,... Having the same elastic coefficient are stretched evenly and equidistantly with the same axis as the center, so that the relative position of the shaft 1 relative to the shaft hole 21 is coaxial. The bearing member 2 is evenly pulled in the direction of the driving motor 5 in the state where the setting is maintained upward, and as a result, each of the rotating ridges 11, 11,. The outer peripheral edge region comes to be in an elastic pressure contact with each inner peripheral edge region over the plurality of circumferential grooves 22, 22,... In the shaft hole 2 (in order to obtain a stable steady elastic pressure contact, a plurality of It is necessary to use at least three elastic bodies 3, 3,..., Preferably about 6-8.

また、例えば、駆動用モータ5の直径がシャフト励振器4に比して小さい場合など、当該駆動用モータ5の所定の位置に複数の弾性体3,3,…を配設することができなくなるが、この場合には、外部に露出することになるシャフト励振器4のモータ固設面4aに、当該複数の弾性体3,3,…を配設すればよい。   Further, for example, when the diameter of the drive motor 5 is smaller than that of the shaft exciter 4, a plurality of elastic bodies 3, 3,... Cannot be disposed at a predetermined position of the drive motor 5. However, in this case, the plurality of elastic bodies 3, 3,... May be disposed on the motor fixing surface 4a of the shaft exciter 4 that is exposed to the outside.

以上のように構成された回転トルク発生ベアリングβの動作は以下の原理に従う。即ち、シャフト励振器4から発生される超音波機械振動は、まず、駆動用モータ5の本体を通じてシャフト1に伝導され、さらに、当該シャフト1上の各周回突条11,11,…と軸孔2内の各周回溝22,22,…との圧接領域に到達する。   The operation of the rotational torque generating bearing β configured as described above follows the following principle. That is, the ultrasonic mechanical vibration generated from the shaft exciter 4 is first conducted to the shaft 1 through the main body of the driving motor 5 and further, the rotating ridges 11, 11,. 2 reach the pressure contact region with each of the circumferential grooves 22, 22,.

このとき、上記シャフト励振器4に、駆動用モータ5への給電時におけるシャフト1の回転を付勢する方向に回転トルクを生じさせる超音波機械振動を発生させ、当該超音波機械振動を上記圧接領域に伝導させるようにすれば、シャフト1は、当該領域に弾性圧接により生じている摩擦力を駆動源として自ら回転トルクを生じるようになり、その結果、駆動用モータ5への給電に伴うシャフト1の回転が当該回転トルクにより補助されて、その回転抵抗が大幅に低減するようになる。   At this time, an ultrasonic mechanical vibration is generated in the shaft exciter 4 to generate a rotational torque in a direction for energizing the rotation of the shaft 1 when power is supplied to the drive motor 5, and the ultrasonic mechanical vibration is applied to the pressure contact. If it is made to conduct to a region, the shaft 1 itself generates a rotational torque by using a frictional force generated by elastic pressure welding in the region as a driving source, and as a result, the shaft accompanying power supply to the driving motor 5 The rotation resistance of 1 is assisted by the rotation torque, and the rotation resistance is greatly reduced.

以上に説明した回転トルク発生ベアリングβは、超音波モータの予圧機構用として正に好適である。以下に、当該ベアリングを適用した超音波モータ例を説明する。   The rotational torque generating bearing β described above is positively suitable for a preload mechanism of an ultrasonic motor. An example of an ultrasonic motor to which the bearing is applied will be described below.

(超音波モータ例)
図3は、本発明の一実施形態に係る超音波モータの構成を示す一部分解正面図である。なお、本図に示される各構成要素には、図1及び図2に示したそれと同一又は同等のものにつき、これと共通する符号を付してある。
(Example of ultrasonic motor)
FIG. 3 is a partially exploded front view showing the configuration of the ultrasonic motor according to the embodiment of the present invention. It should be noted that the same or equivalent components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals as those shown in FIGS.

同図に示すように、本実施形態に係る超音波モータγは、前述した回転トルク発生ベアリングβの基本構成を採用しながら、同回転トルク発生ベアリングβにおけるシャフト励振器4を、当該超音波モータγの固定子6に置き換えると共に、前述したシャフト・ベアリングαにおけるシャフト1を、当該超音波モータγにおける回転子7の本体に割り当てて構成し、さらに、前述した回転トルク発生ベアリングβにおける複数の弾性体3,3,…に変形を施したものである。   As shown in the figure, the ultrasonic motor γ according to the present embodiment adopts the basic configuration of the rotational torque generating bearing β described above, and the shaft exciter 4 in the rotational torque generating bearing β is connected to the ultrasonic motor. The shaft 1 in the shaft bearing α described above is assigned to the main body of the rotor 7 in the ultrasonic motor γ, and a plurality of elasticities in the rotational torque generating bearing β described above are replaced. The bodies 3, 3,... Are deformed.

即ち、固定子6は、複数の弾性体3,3,…により複数の周回突条11,11,…の複数の周回溝22,22,…に対する定常的な弾性圧接を得た状態で、回転子7としてのシャフト1を超音波機械振動により励振するために、重層構成される複数の圧電素子として、例えば、互いに直交する振動方向をもつ2枚のピッチ方向たわみ振動用圧電素子8,8と、2枚のロール方向たわみ振動用圧電素子9,9とを具備したランジュバン型振動子を以って構成され、当該ランジュバン型振動子により、直交する2つの方向のたわみ振動を90度の位相差励振により連続的に誘起させるたわみ振動モードが発生される(図2の説明を参照)。なお、このランジュバン型振動子に代えて、場合により進行波型振動子を採用することも可能である。   That is, the stator 6 is rotated in a state in which steady elastic pressure contact with the plurality of circumferential grooves 22, 22,... Of the plurality of circumferential protrusions 11, 11,. In order to excite the shaft 1 as the child 7 by ultrasonic mechanical vibration, as a plurality of piezoelectric elements configured in multiple layers, for example, two piezoelectric elements 8 and 8 for flexural vibration in the pitch direction having mutually orthogonal vibration directions, A Langevin type vibrator having two piezoelectric elements 9 and 9 for flexural vibration in the roll direction is used. The Langevin type vibrator allows a 90 degree phase difference between flexural vibrations in two orthogonal directions. A flexural vibration mode that is continuously induced by excitation is generated (see the description of FIG. 2). In addition, instead of the Langevin type vibrator, a traveling wave type vibrator may be employed in some cases.

また、上記固定子6の振動端面上(図の上方に位置する端面上)には、摩擦部材61が固着され、同固定子6の長手方向中間領域における振動節面(無振動面)には、フランジ部材62が介層される。   Further, a friction member 61 is fixed on the vibration end surface of the stator 6 (on the upper end surface in the figure), and on the vibration node surface (non-vibration surface) in the intermediate region in the longitudinal direction of the stator 6. The flange member 62 is interposed.

これに対し、回転子7の本体を構成するシャフト1の基端には、上記固定子6の振動端面から摩擦部材61上に伝導される超音波振動を受容する振動受容部材12が、当該回転子7の一部を構成するようシャフト1と一体に設けられる(即ち、回転子7は、シャフト1、複数の周回突条11,11,…及び振動受容部材12から構成される)。   On the other hand, at the base end of the shaft 1 constituting the main body of the rotor 7, a vibration receiving member 12 that receives ultrasonic vibrations transmitted from the vibration end surface of the stator 6 onto the friction member 61 is rotated. The rotor 7 is provided integrally with the shaft 1 so as to constitute a part of the child 7 (that is, the rotor 7 is composed of the shaft 1, a plurality of rotating ridges 11, 11,..., And a vibration receiving member 12).

一方、複数の弾性体3,3,…は、共に弾性係数の等しい種々のゴムや引張りコイル発条などからなり、複数の周回突条11,11,…の複数の周回溝22,22,…に対する定常的な弾性圧接を得るのと同時に、上記回転子7を構成するシャフト1に予圧を印加するため、当該シャフト1に設けられた振動受容部材12を固定子6に固着された摩擦部材61に対し定常的に弾性圧接させるための機能手段が併備されるよう、軸受部材2と固定子6の振動節面に介層されたフランジ部材62との対向部位間、即ち、軸受部材2のシャフト受容面2aにおける外周縁領域と、当該シャフト受容面2aと対向設置されるフランジ部材62のベアリング対向面6aにおける外周縁領域との間に亙り、軸受部材2の軸孔21と固定子6との双方の同軸を中心としてシャフト1を囲繞するよう同心円上に周方向等間隔に等角等距離状に張設される。   On the other hand, the plurality of elastic bodies 3, 3,... Are composed of various rubbers having the same elastic modulus, tensile coil ridges, etc., and the plurality of rotating ridges 11, 11,. At the same time as obtaining a constant elastic pressure contact, a vibration receiving member 12 provided on the shaft 1 is applied to the friction member 61 fixed to the stator 6 in order to apply a preload to the shaft 1 constituting the rotor 7. Between the opposing portions of the bearing member 2 and the flange member 62 layered on the vibration node surface of the stator 6, that is, the shaft of the bearing member 2, so that the functional means for constantly elastically pressing against the bearing is provided. Between the outer peripheral edge region of the receiving surface 2a and the outer peripheral edge region of the bearing facing surface 6a of the flange member 62 installed opposite to the shaft receiving surface 2a, the shaft hole 21 of the bearing member 2 and the stator 6 Coaxial on both sides Is tensioned concentrically in the circumferential direction at equal intervals equiangularly equidistant shaped so as to surround the shaft 1 as the center.

なお、複数の弾性体3,3,…からなる圧接弾性手段は、振動受容部材12の摩擦部材61に対する定常的な弾性圧接時に、その圧接領域上の超音波機械振動に伴って回転子7のシャフト1に生じうる軸直交方向への並進運動を抑止するための並進運動抑止手段として、軸受部材2の外周縁領域とフランジ部材62の外周縁領域との間に、双方の同軸を中心としてシャフト1と並行かつ周方向等間隔に渡設され、当該軸受部材2をその軸方向にのみ案内摺動可能に構成された複数のスライド部材10,10,…を併備しており、これにより、軸受部材2の軸孔21と固定子6とが同軸を構成するようになる(安定した並進運動防止機能を得るには、複数のスライド部材10,10,…を少なくとも3本、好ましくは6〜8本程度用いる必要がある)。   It is to be noted that the pressure contact elastic means comprising a plurality of elastic bodies 3, 3,... Is provided with the ultrasonic vibration of the rotor 7 in accordance with the ultrasonic mechanical vibration on the pressure contact area at the time of steady elastic pressure contact with the friction member 61 of the vibration receiving member 12. As a translational motion restraining means for restraining the translational motion in the direction perpendicular to the axis that can occur in the shaft 1, the shaft is centered on the same axis between the outer peripheral edge region of the bearing member 2 and the outer peripheral edge region of the flange member 62. 1 and a plurality of slide members 10, 10,... Which are arranged in parallel with the circumferential direction and at equal intervals in the circumferential direction and configured to be capable of guiding and sliding the bearing member 2 only in the axial direction. The shaft hole 21 of the bearing member 2 and the stator 6 are coaxial. (To obtain a stable translational motion prevention function, there are at least three slide members 10, 10,. It is necessary to use about 8 That).

以上のように構成された超音波モータγの動作は以下の原理に従う。即ち、固定子6のピッチ方向たわみ振動用圧電素子8,8及びロール方向たわみ振動用圧電素子9,9から発生される超音波機械振動は、まず、摩擦部材61及び回転子7の振動受容部材12を通じてシャフト1に伝導され、さらに、当該シャフト1上の各周回突条11,11,…と軸孔2内の各周回溝22,22,…との圧接領域に到達する。   The operation of the ultrasonic motor γ configured as described above follows the following principle. That is, ultrasonic mechanical vibration generated from the piezoelectric elements 8 and 8 for flexural vibration of the stator 6 in the pitch direction and the piezoelectric elements 9 and 9 for flexural vibration of the roll direction is first generated by the friction member 61 and the vibration receiving member of the rotor 7. .. Are transmitted to the shaft 1 through 12, and reach the pressure contact region between the rotating ridges 11, 11,... On the shaft 1 and the rotating grooves 22, 22,.

このとき、上記固定子6に、超音波モータγの駆動時における回転子7の回転を付勢する方向に回転トルクを生じさせる超音波機械振動を発生させ、当該超音波機械振動を上記圧接領域に伝導させるようにすれば、シャフト1は、当該領域に弾性圧接により生じている摩擦力を駆動源として自ら回転トルクを生じるようになり、その結果、超音波モータγの駆動に伴うシャフト1の回転が当該回転トルクにより補助されて、その回転抵抗が大幅に低減するようになる。   At this time, the stator 6 is caused to generate an ultrasonic mechanical vibration that generates a rotational torque in a direction for energizing the rotation of the rotor 7 when the ultrasonic motor γ is driven, and the ultrasonic mechanical vibration is generated in the pressure contact region. If the shaft 1 is made to conduct, the shaft 1 itself generates a rotational torque using the frictional force generated by the elastic pressure contact in the region as a drive source. As a result, the shaft 1 accompanying the driving of the ultrasonic motor γ The rotation is assisted by the rotation torque, and the rotation resistance is greatly reduced.

そして、以上の構成を採用した超音波モータγの総合的な回転トルクは、本願発明者の実測により、従来のボール・ベアリングによる予圧機構を用いた場合に比べ2倍近くに向上したことが確認された。   And the total rotational torque of the ultrasonic motor γ adopting the above configuration has been confirmed by the inventor's actual measurement to be nearly doubled compared to the case of using the preload mechanism by the conventional ball bearing. It was done.

以上、本発明の実施の形態について説明したが、本発明は、必ずしも上述した手段にのみ限定されるものではなく、前述した効果を有する範囲内において、適宜、変更実施することが可能なものである。   Although the embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described means, and can be appropriately modified within the scope of the above-described effects. is there.

本発明の一実施形態に係るシャフト・ベアリングの構成図であり、(a)は、同シャフト・ベアリングを構成するシャフトの正面図、(b)は、同シャフト・ベアリングを構成する軸受部材の分解正面図、(c)は、同シャフト・ベアリング全体の一部分解正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the shaft bearing which concerns on one Embodiment of this invention, (a) is a front view of the shaft which comprises the shaft bearing, (b) is an exploded view of the bearing member which comprises the shaft bearing Front view, (c) is a partially exploded front view of the entire shaft bearing. 本発明の一実施形態に係る回転トルク発生ベアリングの構成を示す一部分解正面図である。It is a partially exploded front view which shows the structure of the rotational torque generation bearing which concerns on one Embodiment of this invention. 本発明の一実施形態に係る超音波モータの構成を示す一部分解正面図である。1 is a partially exploded front view showing a configuration of an ultrasonic motor according to an embodiment of the present invention.

符号の説明Explanation of symbols

α…シャフト・ベアリング
β…回転トルク発生ベアリング
γ…超音波モータ
1…シャフト
11…(複数の)周回突条
12…振動受容部材
2…軸受部材
2a…シャフト受容面
21…軸孔
22…(複数の)周回溝
3…(複数の)弾性体
4…シャフト励振器
4a…モータ固設面
5…駆動用モータ
5a…シャフト立設面
6…固定子
6a…ベアリング対向面
61…摩擦部材
62…フランジ部材
7…回転子
8…(2枚の)ピッチ方向たわみ振動用圧電素子
9…(2枚の)ロール方向たわみ振動用圧電素子
10…(複数の)スライド部材
[alpha] ... shaft bearing [beta] ... rotational torque generating bearing [gamma] ... ultrasonic motor 1 ... shaft 11 ... (several) orbits 12 ... vibration receiving member 2 ... bearing member 2a ... shaft receiving surface 21 ... shaft hole 22 ... (several) 1) Circumferential groove 3 ... Elastic body 4 ... Shaft exciter 4a ... Motor fixing surface 5 ... Drive motor 5a ... Shaft standing surface 6 ... Stator 6a ... Bearing facing surface 61 ... Friction member 62 ... Flange Member 7... Rotor 8... (Two) piezoelectric elements for flexural vibration in the pitch direction 9... (Two) piezoelectric elements for flexural vibration in the roll direction 10..

Claims (13)

軸方向に沿う一区間領域を占有して多段周回状に突設された複数の周回突条を具備してなるシャフトと、
当該シャフトにおける前記複数の周回突条の全占有区間領域を内包する軸孔を具備すると共に、当該複数の周回突条が当該軸孔内において遊動嵌合状態で保持されるよう、当該複数の周回突条の形状及び数に対応して前記各周回突条の外形よりも一回り大きく多段周回状に当該軸孔内面に刻設された複数の周回溝を具備してなる軸受部材と、
当該軸受部材の前記軸孔に対する貫通した前記シャフトの相対位置を同軸上に設定しつつ、前記複数の周回突条に亙る各外周縁領域を、当該複数の周回突条に対応する前記複数の周回溝に亙る各内周縁領域に対し定常的に弾性圧接させるための圧接弾性手段と、
当該圧接弾性手段により前記複数の周回突条の前記複数の周回溝に対する定常的な弾性圧接を得た状態で、前記シャフトに回転を付勢する方向に回転トルクを生じさせる超音波機械振動励振するシャフト励振器と、を有し、
前記圧接弾性手段は、前記軸受部材と前記シャフト励振器との対向面に亙って張設され、
前記周回突条は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記シャフトの中心軸上に位置するよう構成され、
前記周回溝は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記軸受部材における前記軸孔の中心軸上に位置するよう構成される
ことを特徴とするベアリング。
A shaft comprising a plurality of circumferential ridges that occupy one section region along the axial direction and project in a multistage circumferential manner;
The shaft includes a shaft hole including the entire occupied section region of the plurality of rotating ridges on the shaft, and the plurality of rotating ridges are held in the loosely fitted state in the shaft hole. A bearing member comprising a plurality of circumferential grooves engraved on the inner surface of the shaft hole in a multi-stage circumferential shape that is slightly larger than the outer shape of each of the circumferential ridges corresponding to the shape and number of the ridges, and
While setting the relative position of the shaft penetrated with respect to the shaft hole of the bearing member to be coaxial, the outer peripheral edge regions extending over the plurality of rotating ridges are set to the plurality of rotating limbs corresponding to the plurality of rotating ridges. A pressure contact elastic means for making a constant elastic pressure contact with each inner peripheral edge region extending over the groove;
Exciting ultrasonic mechanical vibrations that generate rotational torque in the direction in which the shaft is urged to rotate in a state in which steady elastic pressure contact with the plurality of circular grooves of the plurality of circular protrusions is obtained by the pressure elastic means. and the shaft exciter that, the possess,
The pressure contact elastic means is stretched across the opposing surface of the bearing member and the shaft exciter,
The orbiting ridge has a substantially spindle shape having a vertically symmetrical weight surface and the same size, and is configured such that the virtual vertex of each weight is located on the central axis of the shaft,
The circumferential groove has a substantially spindle shape having a vertically symmetrical weight surface and the same size, and is configured such that a virtual vertex of each weight is positioned on a central axis of the shaft hole in the bearing member. Bearing.
前記シャフト励振器は、
前記シャフトに、直交する2つの方向のたわみ振動を90度の位相差励振により連続的に誘起させるたわみ振動モードを生じさせる前記超音波機械振動により、当該シャフトを励振するものである、
ことを特徴とする請求項1に記載のベアリング。
The shaft exciter is
The shaft is excited by the ultrasonic mechanical vibration that generates a bending vibration mode in which bending vibration in two directions orthogonal to the shaft is continuously induced by phase difference excitation of 90 degrees.
The bearing according to claim 1.
前記複数の周回突条は、
任意の駆動用モータのモータ軸を構成するシャフト上に具備され、
前記シャフト励振器は、
当該駆動用モータへの給電時における前記シャフトの回転を付勢する方向に回転トルクを生じさせる前記超音波機械振動により、当該シャフトを励振するものである、
ことを特徴とする請求項1又は2に記載のベアリング。
The plurality of rotating ridges are:
Provided on the shaft constituting the motor shaft of any drive motor,
The shaft exciter is
The shaft is excited by the ultrasonic mechanical vibration that generates a rotational torque in a direction for energizing the rotation of the shaft during power feeding to the drive motor.
The bearing according to claim 1 or 2, wherein
前記シャフト励振器は、
前記駆動用モータの前記シャフトが前記超音波機械振動により励振されるよう当該駆動用モータの本体の一部に固設される、
ことを特徴とする請求項3に記載のベアリング。
The shaft exciter is
The shaft of the driving motor is fixed to a part of the main body of the driving motor so as to be excited by the ultrasonic mechanical vibration.
The bearing according to claim 3.
前記圧接弾性手段は、
前記軸受部材と前記駆動用モータとの対向面に亙り、前記シャフトを中心に囲繞するよう同心円上に周方向等間隔に張設された複数の弾性体からなる、
ことを特徴とする請求項3又は4に記載のベアリング。
The pressure contact elastic means is
Consists of a plurality of elastic bodies stretched at equal intervals in a circumferential direction on concentric circles so as to surround the shaft around the opposing surface of the bearing member and the drive motor.
The bearing according to claim 3 or 4, characterized by the above.
前記複数の周回突条の形状は、
外周に山形を連続繰り返す算盤珠多重形を呈する、
ことを特徴とする請求項1、2、3、4又は5に記載のベアリング。
The shape of the plurality of rotating ridges is as follows:
It presents an abacus multiplex shape that repeats chevron on the outer periphery.
The bearing according to claim 1, 2, 3, 4 or 5.
回転子の本体を構成し、軸方向に沿う一区間領域を占有して多段周回状に突設された複数の周回突条を具備してなるシャフトと、
当該シャフトにおける前記複数の周回突条の全占有区間領域を内包する軸孔を具備すると共に、当該複数の周回突条が当該軸孔内において遊動嵌合状態で保持されるよう、当該複数の周回突条の形状及び数に対応して前記各周回突条の外形よりも一回り大きく多段周回状に当該軸孔内面に刻設された複数の周回溝を具備してなる軸受部材と、
当該軸受部材の前記軸孔に対する貫通した前記シャフトの相対位置を同軸上に設定しつつ、前記複数の周回突条に亙る各外周縁領域を、当該複数の周回突条に対応する前記複数の周回溝に亙る各内周縁領域に対し定常的に弾性圧接させるための圧接弾性手段と、
複数の圧電素子を重層構成してなり、当該圧接弾性手段により前記複数の周回突条の前記複数の周回溝に対する定常的な弾性圧接を得た状態で、前記シャフトに回転を付勢する方向に回転トルクを生じさせる超音波機械振動励振する固定子と、
当該固定子の振動端面上に固着された摩擦部材と、
前記シャフトの基端に一体に設けられて前記回転子の一部を構成し、前記固定子の前記振動端面から当該摩擦部材上に伝導される超音波機械振動を受容する振動受容部材と、を有
前記圧接弾性手段は、前記軸受部材と前記固定子との対向部位間に亙って張設され、
前記周回突条は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記シャフトの中心軸上に位置するよう構成され、
前記周回溝は、上下対称錘面をもつ共に大きさの等しい略紡錘形状をなし、各錘の仮想頂点が前記軸受部材における前記軸孔の中心軸上に位置するよう構成される
ことを特徴とする超音波モータ。
A shaft comprising a plurality of orbiting ridges constituting a main body of the rotor and occupying one section region along the axial direction and projecting in a multi-stage orbit;
The shaft includes a shaft hole including the entire occupied section region of the plurality of rotating ridges on the shaft, and the plurality of rotating ridges are held in the loosely fitted state in the shaft hole. A bearing member comprising a plurality of circumferential grooves engraved on the inner surface of the shaft hole in a multi-stage circumferential shape that is slightly larger than the outer shape of each of the circumferential ridges corresponding to the shape and number of the ridges, and
While setting the relative position of the shaft penetrated with respect to the shaft hole of the bearing member to be coaxial, the outer peripheral edge regions extending over the plurality of rotating ridges are set to the plurality of rotating limbs corresponding to the plurality of rotating ridges. A pressure contact elastic means for making a constant elastic pressure contact with each inner peripheral edge region extending over the groove;
A plurality of piezoelectric elements are formed in a multi-layer structure, and in a state in which steady elastic pressure contact with respect to the plurality of circumferential grooves of the plurality of circumferential protrusions is obtained by the pressure contact elastic means, in a direction in which rotation is applied to the shaft A stator that excites ultrasonic mechanical vibrations that produce rotational torque ;
A friction member fixed on the vibration end face of the stator;
A vibration receiving member that is integrally provided at a base end of the shaft and constitutes a part of the rotor, and that receives ultrasonic mechanical vibration transmitted from the vibration end surface of the stator onto the friction member; Yes, and
The pressure contact elastic means is stretched between opposing portions of the bearing member and the stator,
The orbiting ridge has a substantially spindle shape having a vertically symmetrical weight surface and the same size, and is configured such that the virtual vertex of each weight is located on the central axis of the shaft,
The circumferential groove has a substantially spindle shape having a vertically symmetrical weight surface and the same size, and is configured such that a virtual vertex of each weight is positioned on a central axis of the shaft hole in the bearing member. Ultrasonic motor.
前記圧接弾性手段は、
前記複数の周回突条の前記複数の周回溝に対する前記定常的な弾性圧接を得るのと同時に、前記シャフトに予圧を印加するため、当該シャフトに設けられた前記振動受容部材を前記固定子に固着された前記摩擦部材に対し定常的に弾性圧接させるための機能手段を併備する、
ことを特徴とする請求項7に記載の超音波モータ。
The pressure contact elastic means is
The vibration receiving member provided on the shaft is fixed to the stator so as to apply a preload to the shaft at the same time as obtaining the steady elastic pressure contact with the plurality of rotating grooves of the plurality of rotating ridges. A functional means for constantly elastically pressing the friction member
The ultrasonic motor according to claim 7.
前記圧接弾性手段は、
前記軸受部材と前記固定子の振動節面に介層されたフランジ部材との対向部位間に亙り、前記シャフトを中心に囲繞するよう同心円上に周方向等間隔に張設された複数の弾性体からなる、
ことを特徴とする請求項8に記載の超音波モータ。
The pressure contact elastic means is
A plurality of elastic bodies extending between confronting portions of the bearing member and the flange member interposed between the vibration node surfaces of the stator and concentrically around the shaft so as to surround the shaft. Consist of,
The ultrasonic motor according to claim 8.
前記圧接弾性手段は、
前記振動受容部材の前記摩擦部材に対する前記定常的な弾性圧接時に、その圧接領域上の前記超音波機械振動に伴って前記シャフトに生じうる軸直交方向への並進運動を抑止するための並進運動抑止手段を併備する、
ことを特徴とする請求項8又は9に記載の超音波モータ。
The pressure contact elastic means is
Translational motion suppression for restraining translational motion in a direction perpendicular to the axis that can occur in the shaft in accordance with the ultrasonic mechanical vibration on the pressure contact region during the steady elastic pressure welding of the vibration receiving member to the friction member. Have both means,
The ultrasonic motor according to claim 8 or 9, characterized in that.
前記並進運動抑止手段は、
前記軸受部材の外周縁領域と前記フランジ部材の外周縁領域との間に、前記シャフトと並行かつ周方向等間隔に渡設され、当該軸受部材をその軸方向にのみ案内摺動可能に構成された複数のスライド部材からなる、
ことを特徴とする請求項10に記載の超音波モータ。
The translational movement inhibiting means is
Between the outer peripheral edge area of the bearing member and the outer peripheral edge area of the flange member, it is provided in parallel with the shaft and at equal intervals in the circumferential direction, and the bearing member is configured to be slidable only in the axial direction. Consisting of a plurality of slide members,
The ultrasonic motor according to claim 10.
前記固定子は、
前記複数の圧電素子を以ってランジュバン型振動子を構成する、
ことを特徴とする請求項7、8、9、10又は11に記載の超音波モータ。
The stator is
A Langevin type vibrator is constituted by the plurality of piezoelectric elements.
The ultrasonic motor according to claim 7, 8, 9, 10, or 11.
前記固定子は、
前記複数の圧電素子を以って進行波型振動子を構成する、
ことを特徴とする請求項7、8、9、10又は11に記載の超音波モータ。
The stator is
A traveling wave type vibrator is constituted by the plurality of piezoelectric elements.
The ultrasonic motor according to claim 7, 8, 9, 10, or 11.
JP2004171031A 2004-06-09 2004-06-09 Bearing and ultrasonic motor Expired - Fee Related JP4460365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171031A JP4460365B2 (en) 2004-06-09 2004-06-09 Bearing and ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171031A JP4460365B2 (en) 2004-06-09 2004-06-09 Bearing and ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2005354775A JP2005354775A (en) 2005-12-22
JP4460365B2 true JP4460365B2 (en) 2010-05-12

Family

ID=35588759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171031A Expired - Fee Related JP4460365B2 (en) 2004-06-09 2004-06-09 Bearing and ultrasonic motor

Country Status (1)

Country Link
JP (1) JP4460365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224702A1 (en) * 2021-04-20 2022-10-27 株式会社村田製作所 Ultrasonic motor

Also Published As

Publication number Publication date
JP2005354775A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP2996477B2 (en) Vibration wave drive
JPH1146486A (en) Vibration actuator and manufacture of vibration-body tightening member in the actuator
KR100523109B1 (en) Vibration wave driving apparatus
JPH0795777A (en) Oscillatory wave driving device
EP1225682B1 (en) Vibration wave driving apparatus
JP4460365B2 (en) Bearing and ultrasonic motor
JP4261894B2 (en) Vibration type driving device
JP3566711B2 (en) Vibration wave drive
JPH0937573A (en) Ultrasonic actuator
JP4327620B2 (en) Multi-degree-of-freedom ultrasonic motor and preload device
JP3951647B2 (en) Tube pump
JP2004332923A (en) Power transmission mechanism, operating device having power transmission mechanism, and power transmitting method
JPH0226283A (en) Torque control mechanism
JP4130031B2 (en) Spherical actuator stator and spherical actuator using the same
JP4095301B2 (en) Vibration wave drive
JPH02311184A (en) Ultrasonic motor
JPH06153541A (en) Ultrasonic motor
JPS60200779A (en) Supersonic drive motor
JPH01177878A (en) Oscillatory wave motor
JP2754625B2 (en) Vibration actuator
JP2691895B2 (en) Vibration motor
JPH02119584A (en) Ultrasonic motor
JPH09219979A (en) Vibration actuator
JPH04236173A (en) Ultrasonic motor
JP2001016875A (en) Oscillatory wave drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Ref document number: 4460365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees