JP4458470B2 - Multilayer solid electrolytic capacitor and manufacturing method thereof - Google Patents

Multilayer solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4458470B2
JP4458470B2 JP2004206819A JP2004206819A JP4458470B2 JP 4458470 B2 JP4458470 B2 JP 4458470B2 JP 2004206819 A JP2004206819 A JP 2004206819A JP 2004206819 A JP2004206819 A JP 2004206819A JP 4458470 B2 JP4458470 B2 JP 4458470B2
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic capacitor
solid electrolytic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004206819A
Other languages
Japanese (ja)
Other versions
JP2006032516A (en
Inventor
雄一 丸子
健二 荒木
一志 高田
陽洋 川合
忠昌 朝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004206819A priority Critical patent/JP4458470B2/en
Publication of JP2006032516A publication Critical patent/JP2006032516A/en
Application granted granted Critical
Publication of JP4458470B2 publication Critical patent/JP4458470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は高分子の電解質を用いた積層型固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a multilayer solid electrolytic capacitor using a polymer electrolyte and a method for manufacturing the same.

従来、高分子の電解質を用いた積層型の固体電解コンデンサとしては、図3に示すものがある(以下、これを従来技術と呼ぶ)。図3に示す従来技術による積層型固体電解コンデンサ110は、3端子伝送線路素子タイプと呼ばれている。この従来技術による積層型固体電解コンデンサ110は、導電性高分子膜2を固体電解質としており、弁作用金属の表面に陽極酸化皮膜を形成して、弁作用金属陽極体1とし、絶縁樹脂6を境界領域のレジスト形成部1bに形成し、陽極部1cと陰極部1aとに完全に分離し、その後、陰極部1aを覆うように導電性高分子膜2を形成し、さらにその周囲にグラファイト層3、銀ペースト層(陰極層)4を順次形成して単位素子としている。この単位素子を3個重ね、陽極部を導電ペースト9bで接続し、陰極部1aを銀ペースト層4で接続して積層させ、陽極部1cと陽極端子用金属板10を導電ペースト9bで接合して陽極端子とする。また陰極層である銀ペースト層4の上側とその周囲を熱接着性樹脂含浸テープ5aで覆い、さらに、その上側を、補強板7で覆い、他方、底面側の銀ペースト層4の下側は、孔部5cを設けた熱接着性樹脂含浸テープ5bで覆い、この孔部5cに導電ペースト9aを充填後、陰極端子用金属板8で覆って、陰極端子を形成し、積層型コンデンサとしている。   Conventionally, there is a multilayer solid electrolytic capacitor using a polymer electrolyte as shown in FIG. 3 (hereinafter referred to as “prior art”). The multilayer solid electrolytic capacitor 110 according to the prior art shown in FIG. 3 is called a three-terminal transmission line element type. In this multilayer solid electrolytic capacitor 110 according to the prior art, the conductive polymer film 2 is a solid electrolyte, an anodic oxide film is formed on the surface of the valve action metal to form the valve action metal anode body 1, and the insulating resin 6 is provided. Formed on the resist forming portion 1b in the boundary region, completely separated into the anode portion 1c and the cathode portion 1a, and then formed the conductive polymer film 2 so as to cover the cathode portion 1a, and further, a graphite layer around it 3. A silver paste layer (cathode layer) 4 is sequentially formed to form unit elements. Three unit elements are stacked, the anode part is connected by the conductive paste 9b, the cathode part 1a is connected by the silver paste layer 4 and laminated, and the anode part 1c and the anode terminal metal plate 10 are joined by the conductive paste 9b. The anode terminal. Further, the upper side and the periphery of the silver paste layer 4 as the cathode layer are covered with the heat-adhesive resin-impregnated tape 5a, and the upper side is covered with the reinforcing plate 7, while the lower side of the silver paste layer 4 on the bottom side is The hole 5c is covered with a heat-adhesive resin-impregnated tape 5b, and the hole 5c is filled with a conductive paste 9a, and then covered with a metal plate 8 for cathode terminals to form cathode terminals, thereby forming a multilayer capacitor. .

このように積層する単位素子の各々で、導電性高分子膜の上にグラファイト層、銀ペースト層を順次形成した後、積層接続する方法は一般的であり、例えば特許文献1に開示された積層型固体電解コンデンサにおいても、そのような積層接続が行われている。   In each of the unit elements to be laminated as described above, a method of laminating and connecting a graphite layer and a silver paste layer on a conductive polymer film in order is generally used. For example, the lamination disclosed in Patent Document 1 is generally used. Such a stacked connection is also made in the solid electrolytic capacitor.

特開平6−168854号公報JP-A-6-168854

しかしながら、従来技術に開示されているような積層型コンデンサでは、図3に示したように、各素子にグラファイト界面、銀ペースト界面があり、また各素子間に接触界面が存在するため等価直列抵抗(ESR)が高くなるという問題点を有する。   However, in the multilayer capacitor as disclosed in the prior art, each element has a graphite interface and a silver paste interface as shown in FIG. There is a problem that (ESR) becomes high.

また、図3に示したように、各素子にグラファイト層、銀ペースト層があり、グラファイト層、銀ペースト層の厚みに相当する分、製品高さが高くなるという問題点もある。   Further, as shown in FIG. 3, each element has a graphite layer and a silver paste layer, and there is a problem that the product height becomes high corresponding to the thickness of the graphite layer and the silver paste layer.

さらに、グラファイト、銀ペーストの塗布が各素子に必要であり、材料費及び工数の低減が困難であるという問題点もある。   Furthermore, it is necessary to apply graphite and silver paste to each element, and there is a problem that it is difficult to reduce material costs and man-hours.

そこで、本発明の技術的課題は、ESRが小さく、低背、低コストの積層型固体電解コンデンサ及びその製造方法を提供することにある。   Therefore, a technical problem of the present invention is to provide a multilayer solid electrolytic capacitor having a small ESR, a low profile and a low cost, and a method for manufacturing the same.

第1の発明の積層型固体電解コンデンサの製造方法は、拡面化された板状又は箔状の弁作用金属の表面領域に陽極酸化皮膜が形成されてなる陽極体と、導電性高分子の固体電解質層とを有するコンデンサ素子を積層してなる積層型固体電解コンデンサの製造方法において、前記導電性高分子の固体電解質層を形成する前に、前記陽極体の陽極酸化皮膜が形成された表面領域を陰極部とし、他の表面領域に陽極部を設け、互いを絶縁材により遮断して、前記陽極部のみを導電ペースト又は溶接により接合して前記陽極体の積層構造体を形成する工程と、前記積層構造体の陰極部に導電性高分子を重合によって形成することで各々の陰極部を接合する工程とを含むことを特徴とする。 According to a first aspect of the present invention, there is provided a method for producing a multilayer solid electrolytic capacitor comprising: an anode body having an anodized film formed on a surface region of an enlarged plate-like or foil-like valve action metal; In the method for producing a multilayer solid electrolytic capacitor comprising a capacitor element having a solid electrolyte layer, a surface on which an anodic oxide film of the anode body is formed before forming the solid electrolyte layer of the conductive polymer A step of forming a cathode structure, forming an anode part on another surface area, blocking each other by an insulating material, and joining only the anode part by a conductive paste or welding to form a laminated structure of the anode body; And a step of joining each cathode part by forming a conductive polymer by polymerization on the cathode part of the laminated structure.

第2の発明は、第1の発明の積層型固体電解コンデンサの製造方法において、1つの陽極端子と1つの陰極端子とを有する2端子構造、又は2つの陽極端子と1つの陰極端子とを有する3端子構造となる様に前記陽極部及び陰極部を形成することを特徴とする。 According to a second aspect of the present invention, in the method for manufacturing a multilayer solid electrolytic capacitor according to the first aspect of the present invention, the two-terminal structure having one anode terminal and one cathode terminal, or two anode terminals and one cathode terminal are provided. The anode part and the cathode part are formed so as to have a three-terminal structure.

第3の発明は、第1又は第2の発明の積層型固体電解コンデンサの製造方法において、積層されたコンデンサ素子の積層端の一方での前記導電性高分子の層をグラファイト層及び/又は銀ペースト層を介して陰極用金属板に接続することを特徴とする。 According to a third aspect of the present invention, there is provided the method for manufacturing a multilayer solid electrolytic capacitor according to the first or second aspect , wherein the conductive polymer layer on one of the stacked ends of the stacked capacitor elements is a graphite layer and / or silver. It connects with the metal plate for cathodes through a paste layer, It is characterized by the above-mentioned.

第4の発明は、第1から第3のいずれかの発明の積層型固体電解コンデンサの製造方法において、前記導電性高分子の単量体を、アニリン、ピロール、チオフェン、又は、その誘導体から選択することを特徴とする。 According to a fourth invention, in the method for producing a multilayer solid electrolytic capacitor according to any one of the first to third inventions, the monomer of the conductive polymer is selected from aniline, pyrrole, thiophene, or a derivative thereof. It is characterized by doing.

本発明によれば、陽極体の積層構造体をあらかじめ製作し、陰極部は重合によって形成する導電性高分子で各々接続することにより、従来技術では積層単位となるコンデンサ素子の各々において外側の陰極層に必要とされていたグラファイト層、銀ペースト層等が不要となり、陰極層の界面を少なくできる。その結果、ESRが小さく、低背、低コストの積層型固体電解コンデンサ及びその製造方法を提供することができる。また、陽極体の積層構造体を作製した後で、各素子の陰極部をグラファイト層あるいは銀ペースト層を用いて接続する場合でも、積層後に一括して行うことで工数の低減に役立つ。   According to the present invention, the laminated structure of the anode body is manufactured in advance, and the cathode portion is connected to each other by a conductive polymer formed by polymerization. A graphite layer, a silver paste layer, and the like required for the layer are not necessary, and the interface of the cathode layer can be reduced. As a result, it is possible to provide a multilayer solid electrolytic capacitor having a low ESR, a low profile, and a low cost, and a method for manufacturing the same. Further, even when the cathode part of each element is connected using a graphite layer or a silver paste layer after the laminated structure of the anode body is manufactured, it is useful to reduce the man-hours by carrying out collectively after the lamination.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1による積層型コンデンサの断面図である。この積層型固体電解コンデンサ100は、長方形の平板状の固体電解コンデンサであり、図1はその長方形の面に垂直でかつ長手方向に平行な断面を示している。なお、複雑さを避けるためにハッチングを省略した部分もあるが、いずれの部分も断面形状を示している。この積層型コンデンサは、図3に従来例として示したものと同様に、3端子伝送線路素子タイプと呼ばれている。   FIG. 1 is a cross-sectional view of a multilayer capacitor according to Embodiment 1 of the present invention. The multilayer solid electrolytic capacitor 100 is a rectangular flat solid electrolytic capacitor, and FIG. 1 shows a cross section perpendicular to the rectangular surface and parallel to the longitudinal direction. In addition, although there is a part where hatching is omitted in order to avoid complexity, each part shows a cross-sectional shape. This multilayer capacitor is called a three-terminal transmission line element type, similar to that shown in FIG.

本発明の実施の形態1による積層型固体電解コンデンサ100は、導電性高分子膜2を固体電解質としており、板状又は箔状の弁作用を有する弁作用金属の表面をエッチング等により無数の空孔を形成して表面積を200倍等に大きくする拡面化を施し、この拡面化した弁作用金属の、陰極部1aとなる表面に陽極酸化皮膜を形成して、弁作用金属陽極体1とする。ここで、弁作用金属としては、タンタル、アルミニウム、ニオブ等を用いることができる。次に、この陽極酸化皮膜層表面の陰極部1aと陽極部1cとを、レジスト形成部1bに形成した絶縁樹脂6により、完全に遮断し、かつ陽極部1cのみを導電ペースト9bあるいは溶接等で電気的に接合させることにより、前記陽極体の積層構造体を製作する。   In the multilayer solid electrolytic capacitor 100 according to Embodiment 1 of the present invention, the conductive polymer film 2 is a solid electrolyte, and the surface of a valve-acting metal having a plate-like or foil-like valve action is etched by an infinite number of voids. The surface of the valve-acting metal having a surface area increased by 200 times or the like is formed by forming a hole, and an anodic oxide film is formed on the surface of the expanded valve-acting metal to become the cathode portion 1a. And Here, tantalum, aluminum, niobium, or the like can be used as the valve metal. Next, the cathode portion 1a and the anode portion 1c on the surface of the anodized film layer are completely cut off by the insulating resin 6 formed on the resist forming portion 1b, and only the anode portion 1c is electrically conductive paste 9b or welded. A laminated structure of the anode body is manufactured by electrical bonding.

その後、陰極部1aを覆うように、導電性高分子膜2を形成し、この導電性高分子膜2により、重ねられた単位素子の陰極部1aの間を接続した後、その積層構造体の外周部にグラファイト層3、銀ペースト層(陰極層)4を順次形成する。言い換えると、2つの側面、上面及び底面での導電性高分子膜2が表出した部分にグラファイト層3及び銀ペースト層(陰極層)4を形成する。その結果、図2に斜視図で示した積層素子が得られる。次に底面側の陽極部1cと陽極端子用金属板10を導電ペースト9bで接合して陽極端子とし、陰極層としての銀ペースト層4の上側とその周囲を熱接着性樹脂含浸テープ5aで覆い、さらに、その外側を補強板7で覆い、他方、底面側の銀ペースト層4の下側には、孔部5cを設けた熱接着性樹脂含浸テープ5bで覆い、この孔部5cに導電ペースト9aを充填後、陰極端子用金属板8で覆って、陰極端子を形成し、積層型コンデンサとしている。   After that, the conductive polymer film 2 is formed so as to cover the cathode part 1a, and the conductive polymer film 2 is connected between the cathode parts 1a of the stacked unit elements. A graphite layer 3 and a silver paste layer (cathode layer) 4 are sequentially formed on the outer periphery. In other words, the graphite layer 3 and the silver paste layer (cathode layer) 4 are formed on the portions where the conductive polymer film 2 is exposed on the two side surfaces, the top surface and the bottom surface. As a result, the laminated element shown in a perspective view in FIG. 2 is obtained. Next, the anode portion 1c on the bottom surface side and the anode terminal metal plate 10 are joined with a conductive paste 9b to form an anode terminal, and the upper side and the periphery of the silver paste layer 4 as a cathode layer are covered with a heat-adhesive resin impregnated tape 5a. Further, the outside is covered with a reinforcing plate 7, and on the other hand, the bottom side of the silver paste layer 4 is covered with a heat-adhesive resin-impregnated tape 5 b provided with a hole 5 c, and the conductive paste is placed in the hole 5 c. After filling with 9a, the cathode terminal is formed by covering with the cathode terminal metal plate 8 to form a multilayer capacitor.

ところで、本発明の実施の形態においては、導電性高分子膜2には、その単量体が、アニリン、ピロール、チオフェン、又は、その誘導体である高分子膜を用いることができ、素子補強用の金属の補強板7及び陰極端子用金属板8としては、銅、銅系合金、ニッケル合金などの板材を用いることができるが、電子部品端子材料からなる板材であるならば、これらに限定されるものではない。また、熱接着性樹脂含浸テープとして、アクリル基材に、エポキシ樹脂を含浸したものを用いているが、樹脂基材に接着剤を含浸したものであるならば、特に限定されるものではない。また導電性高分子膜2が形成された積層構造体の外周部にグラファイト層3及び銀ぺースト層4を形成して陰極端子用金属板8との接続を行うことに代えて、グラファイト層3又は銀ぺースト層4のいずれかのみを用いて 陰極端子用金属板8との接続を行ってもよい。   By the way, in the embodiment of the present invention, a polymer film whose monomer is aniline, pyrrole, thiophene, or a derivative thereof can be used for the conductive polymer film 2, which is for element reinforcement. As the metal reinforcing plate 7 and the metal plate 8 for the cathode terminal, a plate material such as copper, a copper-based alloy, or a nickel alloy can be used. However, the plate is not limited to these as long as it is a plate material made of an electronic component terminal material. It is not something. Moreover, as the heat-adhesive resin-impregnated tape, an acrylic base material impregnated with an epoxy resin is used, but there is no particular limitation as long as the resin base material is impregnated with an adhesive. Instead of forming the graphite layer 3 and the silver paste layer 4 on the outer peripheral portion of the laminated structure on which the conductive polymer film 2 is formed and connecting to the metal plate 8 for the cathode terminal, the graphite layer 3 Alternatively, connection to the cathode terminal metal plate 8 may be performed using only one of the silver paste layers 4.

上述した手順により、積層されたコンデンサ素子は、陰極層の各素子間に必要であったグラファイト層、銀ペースト層等が不要となる。このため、各素子のグラファイト、銀ペースト界面、また各素子間の接触界面を少なくでき、ESRの低減が可能となる。また、グラファイト層、銀ペースト層の厚みに相当する分、製品高さを低くすることができる。さらに、グラファイト、銀ペーストの塗布が積層構造体の外周部のみですむため、材料費の削減ができる。これにより、ESRが小さく、低背、低コストの積層型コンデンサの製造が可能となる。   According to the procedure described above, the laminated capacitor elements do not require the graphite layer, the silver paste layer, and the like that are necessary between the elements of the cathode layer. For this reason, the graphite, silver paste interface of each element, and the contact interface between each element can be reduced, and the ESR can be reduced. Further, the product height can be reduced by an amount corresponding to the thickness of the graphite layer and the silver paste layer. Furthermore, since the graphite and silver paste need only be applied to the outer periphery of the laminated structure, material costs can be reduced. This makes it possible to manufacture a multilayer capacitor with a low ESR, a low profile, and a low cost.

次に本発明の実施の形態2を、図1を流用して説明する。弁作用金属陽極体1に、左側のみの陽極部1cと、左側のみのレジスト形成部1bと、陰極部1aとを形成する。このように、一方の側にのみ陽極端子が接続される弁作用金属陽極体1を用い、他は実施の形態1と同様にして、2端子構造の積層型固体電解コンデンサを作製する。その結果、得られる効果は実施の形態1と同様である。ところで、陰極部からの引き出し端子数によっては、4端子構造なども可能であり、使用する周波数帯に応じて選択することができる。   Next, a second embodiment of the present invention will be described with reference to FIG. On the valve action metal anode body 1, an anode portion 1c only on the left side, a resist formation portion 1b only on the left side, and a cathode portion 1a are formed. In this way, a multilayer metal electrolytic capacitor having a two-terminal structure is manufactured in the same manner as in the first embodiment except that the valve-acting metal anode body 1 having the anode terminal connected to only one side is used. As a result, the obtained effect is the same as that of the first embodiment. By the way, depending on the number of lead-out terminals from the cathode portion, a four-terminal structure or the like is also possible, and can be selected according to the frequency band to be used.

ところで、上記の実施の形態では、陽極酸化皮膜の上に導電性高分子膜を形成する前に、各素子の陽極部を接続して、積層構造体を作製したが、それに代えて、陽極酸化皮膜上に導電性高分子膜を形成した後に、各素子の陽極部を接続して、積層構造体を作製し、その後、グラファイトペーストを用いて、積層方向に隣接する導電性高分子膜の間を接続してもよい。   By the way, in the above embodiment, before forming the conductive polymer film on the anodized film, the anode part of each element is connected to produce a laminated structure. After forming the conductive polymer film on the film, connect the anode parts of each element to make a laminated structure, and then use graphite paste to connect the conductive polymer films adjacent in the stacking direction. May be connected.

さらには、積層される陽極体の陽極酸化皮膜上に導電性高分子膜及びグラファイト層を順次形成した後に、各素子の陽極部を接続して、積層構造体を作製し、その後、銀ペーストを用いて積層方向に隣接する導電性高分子膜の間を接続してもよい。   Furthermore, after sequentially forming a conductive polymer film and a graphite layer on the anodized film of the laminated anode body, the anode part of each element is connected to produce a laminated structure, and then a silver paste is applied. It may be used to connect between conductive polymer films adjacent in the stacking direction.

以上、この発明の実施の形態を説明したが、この発明は、この実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち、当業者であれば、なしえるであろう各種変形、修正を含むことは勿論である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and design changes within a range not departing from the gist of the present invention are also included in the present invention. That is, it goes without saying that various modifications and corrections that can be made by those skilled in the art are included.

本発明に係る表面実装薄型の積層型固体電解コンデンサは、電子部品や電気部品のプリント配線基板等の基板に表面実装されるタイプの積層型固体電解コンデンサに適用することができる。   The surface-mount thin multilayer solid electrolytic capacitor according to the present invention can be applied to a multilayer solid electrolytic capacitor of a type that is surface-mounted on a substrate such as a printed wiring board of an electronic component or an electrical component.

本発明の実施の形態1による積層型固体コンデンサの断面図。1 is a sectional view of a multilayer solid capacitor according to a first embodiment of the present invention. 途中工程での積層素子を示す斜視図。The perspective view which shows the laminated element in an intermediate process. 従来技術による積層型固体電解コンデンサの断面図。Sectional drawing of the multilayer type solid electrolytic capacitor by a prior art.

符号の説明Explanation of symbols

1 弁作用金属陽極体
1a 陰極部
1b レジスト形成部
1c 陽極部
2 導電性高分子膜
3 グラファイト層
4 銀ペースト層(陰極層)
5a,5b 熱接着性樹脂含浸テープ
5c 孔部
6 絶縁樹脂
7 補強板
8 陰極端子用金属板
9a,9b 導電ペースト
10 陽極端子用金属板
100,110 積層型固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Valve action metal anode body 1a Cathode part 1b Resist formation part 1c Anode part 2 Conductive polymer film 3 Graphite layer 4 Silver paste layer (cathode layer)
5a, 5b Thermal adhesive resin impregnated tape 5c Hole 6 Insulating resin 7 Reinforcement plate 8 Metal plate for cathode terminal
9a, 9b Conductive paste 10 Metal plate for anode terminal 100, 110 Multilayer solid electrolytic capacitor

Claims (4)

拡面化された板状又は箔状の弁作用金属の表面領域に陽極酸化皮膜が形成されてなる陽極体と、導電性高分子の固体電解質層とを有するコンデンサ素子を積層してなる積層型固体電解コンデンサの製造方法において、前記導電性高分子の固体電解質層を形成する前に、前記陽極体の陽極酸化皮膜が形成された表面領域を陰極部とし、他の表面領域に陽極部を設け、互いを絶縁材により遮断して、前記陽極部のみを導電ペースト又は溶接により接合して前記陽極体の積層構造体を形成する工程と、前記積層構造体の陰極部に導電性高分子を重合によって形成することで各々の陰極部を接合する工程とを含むことを特徴とする積層型固体電解コンデンサの製造方法。   Multi-layered type in which a capacitor element having an anode body in which an anodized film is formed on a surface region of a plate-like or foil-like valve action metal having an enlarged surface and a solid electrolyte layer of a conductive polymer is laminated. In the method of manufacturing a solid electrolytic capacitor, before forming the solid electrolyte layer of the conductive polymer, the surface region on which the anodized film of the anode body is formed is set as a cathode portion, and the anode portion is provided in another surface region. A step of forming a laminated structure of the anode body by cutting off each other with an insulating material and joining only the anode part with a conductive paste or welding, and polymerizing a conductive polymer on the cathode part of the laminated structure And a step of joining the respective cathode portions by forming the multilayer solid electrolytic capacitor. 1つの陽極端子と1つの陰極端子とを有する2端子構造、又は2つの陽極端子と1つの陰極端子とを有する3端子構造となる様に前記陽極部及び陰極部を形成することを特徴とする請求項1記載の積層型固体電解コンデンサの製造方法。 The anode part and the cathode part are formed so as to have a two-terminal structure having one anode terminal and one cathode terminal, or a three-terminal structure having two anode terminals and one cathode terminal. The method for producing a multilayer solid electrolytic capacitor according to claim 1 . 積層されたコンデンサ素子の積層端の一方での前記導電性高分子の層をグラファイト層及び/又は銀ペースト層を介して陰極用金属板に接続することを特徴とする請求項1又は請求項2記載の積層型固体電解コンデンサの製造方法。 Claim that the layer of conductive polymer at one stack end of the stacked capacitor element, characterized in that connected through the graphite layer and / or silver paste layer on the metal plate for a cathode 1 or claim 2 The manufacturing method of the lamination type solid electrolytic capacitor of description. 前記導電性高分子の単量体を、アニリン、ピロール、チオフェン、又は、その誘導体から選択することを特徴とする請求項1から請求項3のいずれかに記載の積層型固体電解コンデンサの製造方法。 The method for producing a multilayer solid electrolytic capacitor according to any one of claims 1 to 3 , wherein the monomer of the conductive polymer is selected from aniline, pyrrole, thiophene, or a derivative thereof. .
JP2004206819A 2004-07-14 2004-07-14 Multilayer solid electrolytic capacitor and manufacturing method thereof Active JP4458470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206819A JP4458470B2 (en) 2004-07-14 2004-07-14 Multilayer solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206819A JP4458470B2 (en) 2004-07-14 2004-07-14 Multilayer solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006032516A JP2006032516A (en) 2006-02-02
JP4458470B2 true JP4458470B2 (en) 2010-04-28

Family

ID=35898523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206819A Active JP4458470B2 (en) 2004-07-14 2004-07-14 Multilayer solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4458470B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159811B2 (en) * 2007-10-19 2012-04-17 Oh Young Joo Metal capacitor and manufacturing method thereof
US7965492B2 (en) * 2007-10-19 2011-06-21 Oh Young Joo Metal capacitor and manufacturing method thereof
US8116062B2 (en) * 2007-10-19 2012-02-14 Oh Young Joo Metal capacitor to improve electric conductivity
US7626802B2 (en) * 2007-10-19 2009-12-01 Oh Young Joo Metal capacitor and manufacturing method thereof
JP2009158692A (en) * 2007-12-26 2009-07-16 Nec Tokin Corp Multilayer solid electrolytic capacitor
JP2010050218A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Laminated three terminal type solid electrolytic capacitor, and method of manufacturing the same
JP5279019B2 (en) * 2008-12-26 2013-09-04 ニチコン株式会社 Solid electrolytic capacitor
JP2010251643A (en) * 2009-04-20 2010-11-04 Nec Tokin Corp Manufacturing method of stacked capacitor
JP5346847B2 (en) * 2010-03-04 2013-11-20 Necトーキン株式会社 Solid electrolytic capacitor
JP5411047B2 (en) * 2010-04-02 2014-02-12 Necトーキン株式会社 Multilayer solid electrolytic capacitor and manufacturing method thereof
JP5672903B2 (en) * 2010-09-28 2015-02-18 株式会社村田製作所 Electrolytic capacitor manufacturing method
JP2012074437A (en) * 2010-09-28 2012-04-12 Murata Mfg Co Ltd Manufacturing method of electrolytic capacitor
JP6790628B2 (en) * 2016-09-10 2020-11-25 株式会社村田製作所 Solid electrolytic capacitors and their manufacturing methods
WO2019058535A1 (en) 2017-09-23 2019-03-28 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same

Also Published As

Publication number Publication date
JP2006032516A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP5132374B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US7355835B2 (en) Stacked capacitor and method of fabricating the same
JP4458470B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP5279569B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4653682B2 (en) Chip-shaped solid electrolytic capacitor
JP4975946B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP4142878B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5349112B2 (en) Solid electrolytic capacitor
JP4667214B2 (en) Bottom electrode type solid electrolytic capacitor
JP2006190929A (en) Solid electrolytic capacitor and its manufacturing method
JP2009129936A (en) Surface mounting thin-type capacitor and method of manufacturing the same
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP4215250B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2006032880A (en) Solid electrolytic capacitor and manufacturing method for the same
JP5247495B2 (en) Solid electrolytic capacitor
JP3958725B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP4737773B2 (en) Surface mount thin capacitors
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP4466094B2 (en) Electrolytic capacitor manufacturing method
JP2008117901A (en) Surface-mounting thin capacitor
JP5190947B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

R150 Certificate of patent or registration of utility model

Ref document number: 4458470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250