JP4457288B2 - Hemodialysis module - Google Patents
Hemodialysis module Download PDFInfo
- Publication number
- JP4457288B2 JP4457288B2 JP2001275447A JP2001275447A JP4457288B2 JP 4457288 B2 JP4457288 B2 JP 4457288B2 JP 2001275447 A JP2001275447 A JP 2001275447A JP 2001275447 A JP2001275447 A JP 2001275447A JP 4457288 B2 JP4457288 B2 JP 4457288B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fibers
- module
- hollow fiber
- hollow
- crimps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、慢性腎不全の治療に用いる血液透析用モジュールに関する。さらに詳しくは、モジュール内の透析液の流れが均一で、中空繊維膜の性能を最大限に発揮する事ができ、かつコンパクトなモジュールの組立性に優れた血液透析用モジュールに関する。
【0002】
【従来の技術】
血液透析モジュールの性能は、構成する中空繊維膜の透過性能に左右される事はもちろんであるが、モジュール構造による影響を受ける。すなわち、中空繊維膜の性能を最大限に発現するモジュール構造が必要である。血液透析モジュールは、およそ1万本の中空繊維をハウジングに充填してなり、血液は中空繊維内側の中空部を、透析液は中空繊維の外側、つまり各々の中空繊維の隙間を流れる。このとき、透析液が、全ての中空繊維間隙を均一に流れず、ある一部分のみに流れると、透析液が流れない部分の中空繊維膜は有効に活用されず、透過性能の高い中空繊維膜を用いても、モジュールとしての性能は著しく低下してしまう。そこで透析液が均一に流れない偏流現象を起さないために、これまで多くの工夫がなされている。
【0003】
例えば、特開昭61−119274には、長手方向に複数のフィンを持つ中空繊維が開示されている。中空繊維外側にこのようなフィンを形成させる事により、中空繊維同士の密着を防ぎ、中空繊維の間隙を均一に保つ事ができる。また、特開平5−41979には、2本1組の中空繊維膜を螺旋状にスペーサーヤーンで巻付け、複数組の中空繊維を、さらにスペーサーヤーンで螺旋状に巻き付ける事により、中空繊維膜間の間隙を確保している。しかしながら、前者は、特殊な紡糸口金が必要であり、紡糸条件的にも制約を受ける。また、後者では、スペーサーヤーンを巻き付ける工程が必要となりコストがかかるという問題がある。
【0004】
紡糸工程上の制約や、コストアップがなく、簡略に、偏流を防ぐ方法として、特開昭58−182722に、一定範囲の中空繊維外径、捲縮数、捲縮振幅を持つ中空繊維が開示されている。これは、中空繊維をボビンに巻き取った後に、特定な条件で、加熱処理する事だけで得ることができる。しかしながら、このように捲縮が付与された中空繊維膜の束は、嵩高く、ケースへ挿入する際にキズが生じるおそれがあるので、モジュールの中空繊維充填密度を高める事ができず、コンパクトなモジュールを得る事ができないという問題がある。
偏流を効果的に抑制し、紡糸工程上の制約やコストアップがなく、またモジュール組立性に優れた、血液透析用モジュールに用いる中空繊維膜は未だに得られていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、モジュール内の透析液の偏流を効果的に抑制することによって透析効率が優れ、かつ、紡糸工程上の制約やコストアップがなく、またモジュール組立性に優れた、透析用中空繊維を用いた血液透析用モジュールを提供することにある。
【0006】
【課題を解決するための手段】
本発明は、すなわち、透析用中空繊維を用いた血液透析用モジュールであって、該透析用中空繊維として、10cmあたりの捲縮数が20〜40個の中空繊維と10cmあたりの捲縮数が20個未満の中空繊維が混在することを特徴とする血液透析用モジュールであり、好ましくは、血液透析用モジュールの透析用中空繊維のうち、10cmあたりの捲縮数が20〜40個の中空繊維が占める割合が全中空繊維中の30〜75%であり、10cmあたりの捲縮数が0〜10個の中空繊維の占める割合が全中空繊維中の10〜55%である上記記載の血液透析用モジュールである。好ましくは、上記において、10cmあたりの捲縮数が20〜40個の中空繊維と10cm当りの捲縮数が0〜10個の中空繊維以外の中空繊維の10cm当りの捲縮数が、10個より多く、かつ20個未満である血液透析用モジュール。
【0007】
本発明は、透析用モジュールの中空繊維として2種類の異なった捲縮数を持つ中空繊維を混在させたことを特徴とする。すなわち、10cmあたりの捲縮数が20〜40個付与された中空繊維と、捲縮数が20個未満である中空繊維の2種類の異なった捲縮数を持つ中空繊維を混在させることにより、中空繊維同士の間隙を確保したまま、中空繊維の束の嵩高性が抑えられ、コンパクトで充填率が高く、偏流が起こりにくい血液透析用モジュールを得る事ができる。中空繊維の10cmあたりの捲縮数が20〜40個付与された中空繊維のみからなる血液透析モジュールの場合では、透析液の偏流を効果的に防ぐ事ができるが、中空繊維を束ねた時嵩高になり、モジュールを組み立てる際、ハウジングへの挿入が困難で、中空繊維へダメージを与える。そのため、コンパクトで生産歩留まりのよいモジュールを得る事が困難となる。
【0008】
本発明においては、好ましくは中空繊維の10cmあたりの捲縮数が0〜10個の捲縮がほとんど付与されていない中空繊維を混在させることにより、さらにコンパクトで充填率が高く、偏流が起こりにくい血液透析用モジュールを得る事ができる。
この原因は以下のように考える事ができる。すなわち、捲縮を与える目的は、中空繊維同士の間隙を確保するためであるが、2本の隣接する中空繊維を考えた場合、間隙が発生しにくいのは、2本とも捲縮を持たない場合であり、両方あるいは片方が捲縮を持てば、間隙は確保される。また、2本とも捲縮を持つ方が、間隙は大きくなり、嵩高性は高まると考えられる。大きな間隙は、高い嵩高性につながり、モジュールの中空繊維充填率を上げる事ができず、モジュールの大型化につながり問題である。そのため、ほとんど捲縮を持たない中空繊維膜を混在させる事で、中空繊維同士の間隙を確保し、その間隙を小さくする事で嵩高性の低い、コンパクトで充填率が高く、偏流をおこしにくい血液透析用モジュールを得る事ができる。
【0009】
本発明においては、透析用モジュールの中空繊維のうち、10cmあたりの捲縮数が20〜40個の中空繊維の本数が全体の中空繊維の本数に対して占める割合が30〜75%であり、かつ10cmあたりの捲縮数が0〜10個の中空繊維の本数が全体の中空繊維の本数に対して占める割合が10〜55%であることが望ましい。10cmあたりの捲縮数が20〜40個の中空繊維が占める割合が75%を超えると、中空繊維の間隙は確保され、透析液の偏流を抑制する効果は高いものの、中空繊維束の嵩高性が高くなりすぎて、モジュール作製において、中空繊維束をケースに挿入することが困難になり、中空繊維束とケースの摩擦により中空繊維にキズがつき、歩留まりが大きく低下するので好ましくない。30%未満場合は、透析液の偏流を抑制する効果が少なく透析モジュールの透析性能が低下する。また、10cmあたりの捲縮数が0〜10個の中空繊維が占める割合が55%を超えると中空繊維束の嵩高性が低くなり、中空繊維同士の間隙が確保できず、偏流が発生しやすくなるため好ましくない。10%未満の場合は、中空繊維の束の嵩高性を下げる効果が少なく、中空繊維束をケースに挿入しにくくなる。
【0010】
上記において、10cmあたりの捲縮数が20〜40個の中空繊維と10cm当りの捲縮数が0〜10個の中空繊維以外の中空繊維が存在してもよい。この場合、10cmあたりの捲縮数が20〜40個の中空繊維と10cm当りの捲縮数が0〜10個の中空繊維以外の中空繊維は、10cm当りの捲縮数が10個より多く、かつ20個未満である中空繊維が好ましい。本発明において、中空繊維の10cmあたりの捲縮数は40個以下が好ましい。10cmあたりの捲縮数が40個を超えた場合、中空繊維断面の真円度が低下する傾向があり、中空繊維内で血液凝固が発生する原因となることがある。
【0011】
本発明は、捲縮数の異なる中空繊維を混在させることを特徴とするが、2種類の捲縮数を持つ中空繊維を混在させても良いし、3種類以上の捲縮数を持つ中空繊維を混在させることもできる。また、捲縮数が0〜40個の範囲内で、連続的に変化した中空繊維を混在させてもよい。
【0012】
また、本発明の血液透析モジュールを作製するには、予め捲縮数が分かっている中空繊維を、目的とした混在比率になるように、ブレンドすることにより得ることができる。また、モジュール内の200本の中空繊維をランダムに採取し、異なる捲縮数の中空繊維混在比率が本発明の範囲内になるように、使用する原料中空繊維を調節することにより得る事ができる。
【0013】
本発明における捲縮数とは、中空繊維の繊維方向を軸方向に見た場合、中空繊維の一つの頂点と隣接する直径的に対抗する頂点とがsinカーブの頂点になるように、中空繊維の繊維方向の中心軸を設け、中心軸に対して同一側にある山の数とした。中空繊維10cmあたりの数で捲縮数を代表させた。
【0014】
また、本発明において、捲縮振幅Lを一定範囲とすることも重要である。本発明において捲縮振幅Lは、以下のように定義する。すなわち、前記の中空繊維の繊維方向のsinカーブにおける振幅(ある頂点とつぎに隣接する直径的に対向する頂点の外側間の縦方向距離の半分)である。本測定方法では、捲縮振幅が全くない場合、捲縮振幅Lはゼロとならず中空繊維外径(OD)の半分の値となる。捲縮振幅Lが0.65×ODより小さい範囲では、透析時に中空繊維の間隙を充分に確保できず、中空繊維同士が密着してしまう場合がある。そのために透析効率が下がり、中空繊維の持つ性能を充分に発揮させる事ができない。捲縮振幅Lが(OD+50)μmを超えた範囲では、中空繊維を束にする時に収束状態が大きくなり、モジュールを作製する際の中空繊維の均一配置が困難となる。また、捲縮による曲率半径が小さくなるので、中空繊維の捲縮内周側と外周側で、伸縮度が異なり、膜構造が変化してしまい性能低下の原因となる危倶がある。本発明の中空繊維膜の外径は、血液透析モジュールに用いるため200〜500μmが好ましい。
【0015】
中空繊維に捲縮を与えるためには、公知の手法を採用する事ができ、例えば特開昭58−84007に示される方法が挙げられる。また、特開昭61−5848の方法により、中空繊維の捲縮数や捲縮振幅を変化させる事が可能である。例えば、かかる捲縮を有するセルロースエステル系中空繊維膜を製造する方法としては、従来の半湿式紡糸および湿式紡糸によって製造した中空繊維膜ををグリセリン水溶液中に浸漬し、その後40℃〜80℃の範囲の空気または不活性ガス中で乾燥し,次いでワインダーによりボビンに巻き取り、巻き取ったボビンを熱処理することにより得ることができる。この際、ワインダーにより中空繊維を巻き取る際の合糸本数、巻き取り張力、綾角およびボビンの熱処理温度を調節することにより、異なる捲縮数を有する中空繊維を得ることができる。
【0016】
【実施例】
(捲縮数の異なる中空糸の作製)
セルロースジアセテート30重量部をジメチルホルムアミドが49重量部とポリチレングリコール#200が21重量部の混合溶媒に85℃で2時間攪拌し溶解し紡糸原液とした。紡糸原液を静置脱泡した後、二重環状オリフィスから芯液の流動パラフィンとともに吐出し紡糸した。オリフィスを出た紡糸原液は15cm空気中を走行させた後、ジメチルホルムアミド/トリエチレングリコール/水系の凝固浴中に導き凝固させた。更に水洗し、40重量%のグリセリン水溶液浴を通過させた後、60℃の乾燥空気ゾーンを通過させ中空繊維を綾角5度でワインダーによりボビンに巻き取った。中空繊維の内径は200μm、外径230μm、膜厚15μmであった。次に巻き取った中空繊維をボビンごと熱処理することで、中空繊維に捲縮を付与した。巻き取り張力と熱処理条件を変更することで、10cmあたりの捲縮数が4個(張力4g/2本合糸、熱処理30℃×18時間)、15個(張力15g/4本合糸、熱処理50℃×18時間)、27個(張力25g/6本合糸、熱処理80℃×18時間)の3種類の捲縮数の異なる中空繊維を準備した。なおこれらの中空繊維の捲縮の振幅は、180〜200μmであった。
【0017】
(透析用モジュールの作製)
10000本からなる中空繊維束を作製し、中空繊維充填率が60%となるようにケースに挿入し、端部をウレタン接着剤で封止し、透析用モジュールを作製した。
(透析用モジュールの歩留まり)
得られた透析用モジュールに水を充填し、血液側から1.5kgf/cm2、の窒素ガスを供給し、気泡発生が観察されたモジュールを不良品とし歩留まりを計算した。また、モジュールを分解して原因を調べた。気泡発生の無いモジュールは透析性能評価に供した。
【0018】
(透析用モジュールの偏流値)
得られた透析用モジュールの偏流値を以下の方法で測定した。偏流値が12mL/分を超えた場合を偏流発生が大きく問題である。
偏流値Dは、透析流量の高い条件(2000mL/分)で尿素のクリアランスC2を測定し、(1)式で総括物質移動係数K0を計算する。総括物質移動係数K0から(2)式で500mL/分での尿素のクリアランスC3を計算する。そして、実際に500mL/分の尿素のクリアランスC1を測定し、計算値との差を比較する。偏流がある場合、透析流量の高い条件の総括物質移動係数K0から計算された尿素のクリアランスが透析流量の低い条件での実測値より高くなる。すなわち、偏流値D=C3−C1 と定義する。偏流値が小さいほど、透析液のよどみが少なく、透析効率の高い透析用モジュールである。
【0019】
なお、クリアランス測定はダイアライザー性能評価基準(昭和57年、日本人工臓器学会)に準じ、血液側は尿素100mg/dL生理食塩水溶液、透析液は生理食塩水を用い、温度37℃±1℃で、濾過を生じない条件で測定した。
血液流量200mL/分で透析流量500mL/分、2000mL/分の時の各々のクリアランスC1、C2を実測した。
C2の値を用いて(1)式より総括物質移動係数K0を求めた。
血液と透析液とを交流に流す場合の血液中の溶質クリアランスCは(2)式で表される。(2)式にC2の値を用いて(1)式より求めた総括物質移動係数K0を代入して透析流量500mL/分の時のクリアランスC3を計算した。
【数1】
【数2】
【数3】
QB、QD:血液流量および透析液流量(mL/分)
K0:総括物質移動係数(cm/分)
S:モジュール膜面積(内径基準)
【0020】
(実施例1)
10cmあたりの捲縮数が27個の中空繊維を全中空繊維の70%、10cmあたりの捲縮数が4個の中空繊維を全中空繊維の30%を準備し、各中空繊維がほぼ均一に分散するよう中空繊維束を作製し、血液透析モジュールを100本組み立てた。モジュールの製作歩留まりは98%であった。得られた血液透析モジュールの内、10本を偏流値測定に供したところ、偏流値は7〜10mL/分の範囲であった。
【0021】
(実施例2)
10cmあたりの捲縮数が27個の中空繊維を全中空繊維の50%、10cmあたりの捲縮数が4個の中空繊維を全中空繊維の50%を準備し、各中空繊維がほぼ均一に分散するよう中空繊維束を作製し、血液透析モジュールを100本組み立てた。モジュールの製作歩留まりは100%であった。得られた血液透析モジュールの内10本を偏流値測定に供したところ、偏流値は10〜12mL/分の範囲であった。
【0022】
(実施例3)
10cmあたりの捲縮数が27個の中空繊維を全中空繊維の50%、10cmあたりの捲縮数が15個の中空繊維を全中空繊維の30%、10cmあたりの捲縮数が4個の中空繊維を全中空繊維の20%を準備し、各中空繊維がほぼ均一に分散するよう中空繊維束を作製し、血液透析モジュールを100本作製した。モジュールの製作歩留まりは100%であった。得られた血液透析モジュールの内10本を偏流値測定に供したところ、偏流値は9〜12mL/分の範囲内であった。
【0023】
(比較例1)
10cmあたりの捲縮数27個の中空繊維のみからなる中空繊維束を作製し、血液透析モジュールを作製した。モジュール製作歩留まりは73%であった。不良モジュールを解析したところ、すべてのモジュールで外周部の中空繊維にキズか認められた。この原因は、作製した中空繊維束の嵩高性が高く、中空繊維をハウジングに挿入する際、ケースと中空繊維の間に摩擦が生じ、中空繊維がダメージを受けたものと思われた。得られた良品モジュールの内、10本を偏流値測定に供したところ、偏流値は7〜10mL/分の範囲であった。
【0024】
(比較例2)
捲縮数が4個の中空繊維のみからなる中空繊維束を作製し、血液透析モジュールを作製した。モジュールの製作歩留まりは100%であった。得られた血液透析モジュールの内、10本を偏流値測定に供したところ、偏流値は15〜40mL/分の範囲であり、偏流が発生し、中空繊維の性能が発揮されない透析モジュールであることがわかった。この原因は、捲縮数が少ない中空繊維の存在比率が高すぎて、全ての中空繊維の間隙が確保されず、透析液が均一に流れなかったためと考えられた。
【0025】
【表1】
【0026】
【発明の効果】
本発明の血液透析用モジュールは、透析液の偏流を防止できるため高い透析性能を得ることができ、かつモジュール組み立てにおける中空糸束の挿入性が良好でモジュールケースと中空繊維の間に摩擦による中空繊維のダメージを防止できるためモジュールの歩留まりが高く、コンパクトなものが得られる。
【図面の簡単な説明】
【図1】中空繊維の捲縮数と振幅に関する説明図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hemodialysis module used for the treatment of chronic renal failure. More specifically, the present invention relates to a hemodialysis module in which the flow of dialysis fluid in the module is uniform, the performance of the hollow fiber membrane can be maximized, and the compact module is easy to assemble.
[0002]
[Prior art]
The performance of the hemodialysis module is naturally influenced by the permeation performance of the hollow fiber membranes, but is affected by the module structure. That is, a module structure that maximizes the performance of the hollow fiber membrane is required. The hemodialysis module has a housing filled with approximately 10,000 hollow fibers, and blood flows through a hollow portion inside the hollow fibers and dialysate flows outside the hollow fibers, that is, through the gaps between the hollow fibers. At this time, if the dialysate does not flow uniformly through all the hollow fiber gaps and flows only in a certain part, the hollow fiber membrane in the part where the dialysate does not flow is not effectively used, and a hollow fiber membrane having high permeation performance is not used. Even if it is used, the performance as a module is significantly reduced. Therefore, many attempts have been made so far in order to prevent the phenomenon of uneven flow in which the dialysate does not flow uniformly.
[0003]
For example, Japanese Patent Laid-Open No. 61-119274 discloses a hollow fiber having a plurality of fins in the longitudinal direction. By forming such fins on the outside of the hollow fibers, it is possible to prevent the close contact between the hollow fibers and keep the gaps between the hollow fibers uniform. Further, in JP-A-5-41979, a set of two hollow fiber membranes are spirally wound with a spacer yarn, and a plurality of sets of hollow fibers are further spirally wound with a spacer yarn, thereby forming a space between the hollow fiber membranes. The gap is secured. However, the former requires a special spinneret and is restricted by spinning conditions. In the latter case, there is a problem that a process of winding the spacer yarn is required and the cost is increased.
[0004]
As a method for simply preventing drift, there is no restriction on spinning process or cost increase, and Japanese Unexamined Patent Publication No. 58-182722 discloses hollow fibers having a certain range of hollow fiber outer diameter, crimp number, and crimp amplitude. Has been. This can be obtained simply by heating the hollow fiber around a bobbin under specific conditions. However, the bundle of crimped hollow fiber membranes is bulky and may cause scratches when inserted into the case. Therefore, the hollow fiber packing density of the module cannot be increased and is compact. There is a problem that a module cannot be obtained.
The present situation is that a hollow fiber membrane for use in a hemodialysis module has not yet been obtained that effectively suppresses drift, does not have any restrictions or cost increase in the spinning process, and has excellent module assemblability.
[0005]
[Problems to be solved by the invention]
The present invention provides a dialysis hollow fiber that has excellent dialysis efficiency by effectively suppressing the drift of dialysate in the module, is free from restrictions and costs on the spinning process, and has excellent module assembly. It is to provide a hemodialysis module used.
[0006]
[Means for Solving the Problems]
The present invention is a hemodialysis module using a dialysis hollow fiber, wherein the dialysis hollow fiber has 20 to 40 crimps per 10 cm and a crimp per 10 cm. It is a hemodialysis module characterized in that less than 20 hollow fibers are mixed. Preferably, among the dialysis hollow fibers of the hemodialysis module, the number of crimps per 10 cm is 20 to 40. The hemodialysis according to the above, wherein the proportion occupied by 30 to 75% in all hollow fibers and the proportion occupied by 0 to 10 hollow fibers per 10 cm is 10 to 55% in all hollow fibers. Module. Preferably, in the above, the number of crimps per 10 cm of hollow fibers other than hollow fibers having 20 to 40 crimps per 10 cm and hollow fibers having 0 to 10 crimps per 10 cm is 10 More and less than 20 modules for hemodialysis.
[0007]
The present invention is characterized in that two types of hollow fibers having different crimp numbers are mixed as the hollow fibers of the dialysis module. That is, by mixing hollow fibers having 20 to 40 crimps per 10 cm and hollow fibers having two different crimps, hollow fibers having less than 20 crimps, While securing the gaps between the hollow fibers, the bulkiness of the bundle of hollow fibers can be suppressed, and a module for hemodialysis that is compact, has a high filling rate, and is less likely to cause a drift can be obtained. In the case of a hemodialysis module consisting only of hollow fibers provided with 20 to 40 crimps per 10 cm of hollow fibers, it is possible to effectively prevent the dialysis fluid from drifting, but it is bulky when the hollow fibers are bundled. Therefore, when assembling the module, it is difficult to insert the module into the housing, and the hollow fibers are damaged. For this reason, it is difficult to obtain a module that is compact and has a high production yield.
[0008]
In the present invention, it is preferable to mix hollow fibers having a number of crimps of 0 to 10 crimps per 10 cm of the hollow fibers to which almost no crimp is applied, so that the compactness is higher and the filling rate is higher, and the drift is less likely to occur. A module for hemodialysis can be obtained.
The cause of this can be considered as follows. That is, the purpose of imparting crimp is to secure a gap between the hollow fibers, but when two adjacent hollow fibers are considered, the gap is less likely to be generated. If both or one has crimps, the gap is secured. In addition, it is considered that when both of the two have crimps, the gap becomes larger and the bulkiness is increased. A large gap leads to high bulkiness, and the hollow fiber filling rate of the module cannot be increased, leading to an increase in the size of the module, which is a problem. Therefore, by mixing hollow fiber membranes that have almost no crimps, the gap between the hollow fibers is ensured, and by reducing the gap, the blood is less bulky, compact, has a high filling rate, and does not easily drift. A dialysis module can be obtained.
[0009]
In the present invention, of the hollow fibers of the dialysis module, the ratio of the number of crimped fibers per 10 cm of 20-40 hollow fibers to the total number of hollow fibers is 30-75%, In addition, it is desirable that the ratio of the number of the hollow fibers having 0 to 10 crimps per 10 cm to the total number of hollow fibers is 10 to 55%. When the ratio of the number of crimps per 10 cm of 20-40 hollow fibers exceeds 75%, the hollow fiber gap is secured and the effect of suppressing the drift of the dialysate is high, but the bulkiness of the hollow fiber bundles Is too high to make it difficult to insert the hollow fiber bundle into the case in module production, and the hollow fibers are scratched by the friction between the hollow fiber bundle and the case, and the yield is greatly reduced. If it is less than 30%, the effect of suppressing the drift of the dialysate is small and the dialysis performance of the dialysis module is lowered. Moreover, when the ratio of the number of crimps of 0 to 10 hollow fibers per 10 cm exceeds 55%, the bulkiness of the hollow fiber bundle is lowered, the gap between the hollow fibers cannot be secured, and drift is likely to occur. Therefore, it is not preferable. If it is less than 10%, the effect of lowering the bulkiness of the bundle of hollow fibers is small, and it becomes difficult to insert the hollow fiber bundle into the case.
[0010]
In the above, hollow fibers other than hollow fibers having 20 to 40 crimps per 10 cm and hollow fibers having 0 to 10 crimps per 10 cm may exist. In this case, the hollow fibers other than the hollow fibers having 20 to 40 crimps per 10 cm and the hollow fibers having 0 to 10 crimps per 10 cm have more than 10 crimps per 10 cm, And the hollow fiber which is less than 20 pieces is preferable. In the present invention, the number of crimps per 10 cm of the hollow fiber is preferably 40 or less. When the number of crimps per 10 cm exceeds 40, the roundness of the cross section of the hollow fiber tends to decrease, which may cause blood coagulation in the hollow fiber.
[0011]
The present invention is characterized in that hollow fibers having different crimp numbers are mixed, but hollow fibers having two types of crimps may be mixed, or hollow fibers having three or more types of crimps. Can also be mixed. Moreover, you may mix the hollow fiber which changed continuously within the range whose crimp number is 0-40.
[0012]
Moreover, in order to produce the hemodialysis module of the present invention, it is possible to obtain hollow fibers having a known number of crimps by blending so that the intended mixture ratio is obtained. It can also be obtained by randomly collecting 200 hollow fibers in the module and adjusting the raw hollow fibers used so that the hollow fiber mixture ratio of different crimp numbers is within the scope of the present invention. .
[0013]
The number of crimps in the present invention refers to a hollow fiber such that when the fiber direction of the hollow fiber is viewed in the axial direction, one apex of the hollow fiber and an adjacent apex that is diametrically opposed are apexes of the sin curve. The center axis in the fiber direction was provided, and the number of peaks on the same side with respect to the center axis. The number of crimps was represented by the number per 10 cm of hollow fibers.
[0014]
In the present invention, it is also important to set the crimp amplitude L within a certain range. In the present invention, the crimp amplitude L is defined as follows. That is, the amplitude in the sin curve in the fiber direction of the hollow fiber (half of the longitudinal distance between the outer sides of a certain apex and the next adjacent diametrically opposed apex). In this measurement method, when there is no crimp amplitude, the crimp amplitude L does not become zero, but is half the value of the outer diameter (OD) of the hollow fiber. When the crimp amplitude L is smaller than 0.65 × OD, the hollow fibers may not be sufficiently secured during dialysis, and the hollow fibers may adhere to each other. For this reason, the dialysis efficiency is lowered, and the performance of the hollow fiber cannot be fully exhibited. In the range where the crimp amplitude L exceeds (OD + 50) μm, the convergence state becomes large when the hollow fibers are bundled, and it is difficult to uniformly arrange the hollow fibers when the module is manufactured. In addition, since the radius of curvature due to crimping is reduced, there is a danger that the degree of stretch differs between the crimped inner peripheral side and the outer peripheral side of the hollow fiber, resulting in a change in membrane structure and a decrease in performance. The outer diameter of the hollow fiber membrane of the present invention is preferably 200 to 500 μm for use in a hemodialysis module.
[0015]
In order to give a crimp to the hollow fiber, a known method can be adopted, and for example, a method disclosed in JP-A-58-84007 can be mentioned. Further, the number of crimps and the crimp amplitude of the hollow fiber can be changed by the method disclosed in JP-A No. 61-5848. For example, as a method for producing a cellulose ester-based hollow fiber membrane having such crimps, a hollow fiber membrane produced by conventional semi-wet spinning and wet spinning is immersed in an aqueous glycerin solution, and then heated at 40 ° C to 80 ° C. It can be obtained by drying in a range of air or inert gas, then winding on a bobbin with a winder and heat treating the wound bobbin. Under the present circumstances, the hollow fiber which has a different number of crimps can be obtained by adjusting the number of combined yarns at the time of winding a hollow fiber with a winder, winding tension, a twill angle, and the heat processing temperature of a bobbin.
[0016]
【Example】
(Production of hollow fibers with different number of crimps)
30 parts by weight of cellulose diacetate was dissolved in a mixed solvent of 49 parts by weight of dimethylformamide and 21 parts by weight of polyethylene glycol # 200 at 85 ° C. for 2 hours to prepare a spinning dope. The spinning solution was allowed to stand and defoamed, and then discharged from a double annular orifice together with the liquid paraffin as the core solution for spinning. The spinning stock solution exiting the orifice was allowed to run in air for 15 cm, and then was introduced into a dimethylformamide / triethylene glycol / water coagulation bath to be coagulated. Further, it was washed with water and passed through a 40% by weight glycerin aqueous solution bath, then passed through a dry air zone at 60 ° C., and the hollow fiber was wound around a bobbin by a winder at a cross angle of 5 degrees. The hollow fiber had an inner diameter of 200 μm, an outer diameter of 230 μm, and a film thickness of 15 μm. Next, the wound hollow fiber was heat treated together with the bobbin to impart crimp to the hollow fiber. By changing the winding tension and heat treatment conditions, the number of crimps per 10 cm is 4 (tension 4 g / 2 double yarn, heat treatment 30 ° C. × 18 hours), 15 (tensile 15 g / 4 double yarn, heat treatment) Three types of hollow fibers having different crimp numbers of 3 types (50 ° C. × 18 hours) and 27 pieces (tension 25 g / 6 double yarn, heat treatment 80 ° C. × 18 hours) were prepared. The amplitude of crimp of these hollow fibers was 180 to 200 μm.
[0017]
(Preparation of dialysis module)
A hollow fiber bundle consisting of 10,000 fibers was prepared, inserted into a case so that the hollow fiber filling rate was 60%, and the end was sealed with a urethane adhesive to prepare a dialysis module.
(Yield of dialysis module)
The obtained dialysis module was filled with water, 1.5 kgf / cm 2 of nitrogen gas was supplied from the blood side, and the yield of the module was determined as a defective product in which bubbles were observed. The module was disassembled to investigate the cause. Modules without air bubbles were subjected to dialysis performance evaluation.
[0018]
(Diffusion value of dialysis module)
The drift value of the obtained dialysis module was measured by the following method. When the drift value exceeds 12 mL / min, the occurrence of drift is a big problem.
For the drift value D, the urea clearance C2 is measured under a high dialysis flow rate condition (2000 mL / min), and the overall mass transfer coefficient K 0 is calculated by the equation (1). The urea clearance C3 at 500 mL / min is calculated from the overall mass transfer coefficient K 0 according to the equation (2). Then, the urea clearance C1 of 500 mL / min is actually measured, and the difference from the calculated value is compared. When there is a drift, the urea clearance calculated from the overall mass transfer coefficient K 0 under the high dialysis flow rate is higher than the actually measured value under the low dialysis flow rate condition. That is, the drift value D = C3-C1 is defined. The smaller the drift value, the less the stagnation of the dialysate and the higher the dialysis efficiency.
[0019]
In addition, clearance measurement is based on dialyzer performance evaluation criteria (1982, Japan Society for Artificial Organs), blood side is urea 100mg / dL physiological saline solution, dialysate is physiological saline, temperature 37 ° C ± 1 ° C, It measured on the conditions which do not produce filtration.
The clearances C1 and C2 were measured at a dialysis flow rate of 500 mL / min and 2000 mL / min at a blood flow rate of 200 mL / min.
Using the value of C2, the overall mass transfer coefficient K 0 was determined from equation (1).
Solute clearance C in blood when blood and dialysate are passed in alternating current is expressed by equation (2). Using the value of C2 in equation (2) and substituting the overall mass transfer coefficient K0 obtained from equation (1), clearance C3 at a dialysis flow rate of 500 mL / min was calculated.
[Expression 1]
[Expression 2]
[Equation 3]
Q B , Q D : Blood flow rate and dialysate flow rate (mL / min)
K 0 : Overall mass transfer coefficient (cm / min)
S: Module membrane area (inside diameter reference)
[0020]
Example 1
Prepare hollow fibers with 27 crimps per 10 cm of 70% of all hollow fibers, and hollow fibers with 10 crimps of 4 cm of 30% of all hollow fibers. A hollow fiber bundle was prepared so as to be dispersed, and 100 hemodialysis modules were assembled. The module production yield was 98%. When 10 of the obtained hemodialysis modules were subjected to drift value measurement, the drift value was in the range of 7 to 10 mL / min.
[0021]
(Example 2)
Prepare hollow fibers with 27 crimps per 10 cm, 50% of all hollow fibers, and hollow fibers with 10 crimps of 4 cm, 50% of all hollow fibers. A hollow fiber bundle was prepared so as to be dispersed, and 100 hemodialysis modules were assembled. The module production yield was 100%. When 10 of the obtained hemodialysis modules were subjected to drift value measurement, the drift value was in the range of 10 to 12 mL / min.
[0022]
(Example 3)
Hollow fibers with 27 crimps per 10 cm are 50% of all hollow fibers, hollow fibers with 15 crimps per 10 cm are 30% of all hollow fibers, and crimps are 4 per 10 cm. 20% of all hollow fibers were prepared as a hollow fiber, a hollow fiber bundle was prepared so that each hollow fiber was almost uniformly dispersed, and 100 hemodialysis modules were prepared. The module production yield was 100%. When 10 of the obtained hemodialysis modules were subjected to drift value measurement, the drift value was in the range of 9 to 12 mL / min.
[0023]
(Comparative Example 1)
A hollow fiber bundle consisting only of 27 hollow fibers with 10 crimps per 10 cm was produced to produce a hemodialysis module. The module production yield was 73%. When the defective module was analyzed, all the modules were found to have scratches on the outer peripheral hollow fiber. The cause of this was considered to be that the produced hollow fiber bundle was so bulky that when the hollow fiber was inserted into the housing, friction was generated between the case and the hollow fiber, and the hollow fiber was damaged. When 10 of the obtained non-defective modules were subjected to drift value measurement, the drift value was in the range of 7 to 10 mL / min.
[0024]
(Comparative Example 2)
A hollow fiber bundle consisting only of hollow fibers having four crimps was produced to produce a hemodialysis module. The module production yield was 100%. When 10 of the obtained hemodialysis modules were subjected to the drift value measurement, the drift value was in the range of 15 to 40 mL / min, the drift was generated, and the performance of the hollow fiber was not exhibited. I understood. The reason for this was thought to be that the abundance ratio of hollow fibers having a small number of crimps was too high, and the gaps of all the hollow fibers were not secured, and the dialysate did not flow uniformly.
[0025]
[Table 1]
[0026]
【The invention's effect】
The hemodialysis module of the present invention can obtain a high dialysis performance because it can prevent the flow of dialysate, and the hollow fiber bundle can be easily inserted in the module assembly, and the hollow between the module case and the hollow fiber is caused by friction. Since the fiber damage can be prevented, the module yield is high and a compact product can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram regarding the number of crimps and amplitude of hollow fibers.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001275447A JP4457288B2 (en) | 2001-09-11 | 2001-09-11 | Hemodialysis module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001275447A JP4457288B2 (en) | 2001-09-11 | 2001-09-11 | Hemodialysis module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003079721A JP2003079721A (en) | 2003-03-18 |
JP4457288B2 true JP4457288B2 (en) | 2010-04-28 |
Family
ID=19100311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001275447A Expired - Lifetime JP4457288B2 (en) | 2001-09-11 | 2001-09-11 | Hemodialysis module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4457288B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021100811A1 (en) * | 2019-11-20 | 2021-05-27 |
-
2001
- 2001-09-11 JP JP2001275447A patent/JP4457288B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003079721A (en) | 2003-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0186293B1 (en) | Blood treatment device | |
JP4992106B2 (en) | Polysulfone hemodialyzer | |
US5198110A (en) | Bundle of permselective hollow fibers and a fluid separator containing the same | |
EP2701762B1 (en) | Combination oxygenator and arterial filter device with a fiber bundle of continuously wound hollow fibers for treating blood in an extracorporeal blood circuit | |
EP2701763B1 (en) | Combination oxygenator and arterial filter device for treating blood in an extracorporeal blood circuit | |
JP5958625B2 (en) | Hollow fiber membrane spinning nozzle and method for producing hollow fiber membrane | |
US3963622A (en) | Fluid treatment apparatus | |
EP2868367A1 (en) | Hollow porous membrane | |
WO2016104757A1 (en) | Hemodiafilter and hemodiafiltration device | |
JP2008155009A (en) | Hollow fiber membrane type blood purification module and its manufacturing method | |
JP7234127B2 (en) | Hollow fiber membranes with improved diffusion properties | |
JP4457288B2 (en) | Hemodialysis module | |
JP2005246192A (en) | Hollow fiber membrane, hollow fiber membrane module and manufacturing method for them | |
JP4962029B2 (en) | Method for producing hollow fiber membrane | |
JPH0512013B2 (en) | ||
JP2015029927A (en) | Hollow fiber membrane, method of manufacturing the same, and hollow fiber membrane module | |
JP4894148B2 (en) | Hollow fiber membrane manufacturing method and manufacturing apparatus thereof | |
JP2019513031A (en) | Hollow fiber membrane with three-dimensional curl | |
JPS6242705A (en) | Permselective hollow yarn and fluid separator | |
JPH09266947A (en) | Hollow fiber membrane and module for dialysis | |
JPH03238027A (en) | Fluid treatment apparatus using hollow fiber | |
JPH06509746A (en) | Hollow fiber for dialysis | |
EP0321447A2 (en) | Cellulose type hollow fibers | |
JP2009095825A (en) | Hollow fiber membrane or hollow fiber membrane module, and its manufacturing method | |
JPS61268304A (en) | Fluid separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091015 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100114 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100127 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4457288 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140219 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |