JP2003079721A - Module for hemodialysis - Google Patents

Module for hemodialysis

Info

Publication number
JP2003079721A
JP2003079721A JP2001275447A JP2001275447A JP2003079721A JP 2003079721 A JP2003079721 A JP 2003079721A JP 2001275447 A JP2001275447 A JP 2001275447A JP 2001275447 A JP2001275447 A JP 2001275447A JP 2003079721 A JP2003079721 A JP 2003079721A
Authority
JP
Japan
Prior art keywords
hollow fibers
module
hemodialysis
hollow
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001275447A
Other languages
Japanese (ja)
Other versions
JP4457288B2 (en
Inventor
Hidehiko Sakurai
秀彦 櫻井
Yoshihito Sagara
誉仁 相良
Hitoshi Ono
仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001275447A priority Critical patent/JP4457288B2/en
Publication of JP2003079721A publication Critical patent/JP2003079721A/en
Application granted granted Critical
Publication of JP4457288B2 publication Critical patent/JP4457288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a module for hemodialysis using hollow fibers for dialysis which are excellent in dialysis efficiency by effectively suppressing channeling of the dialyzate solution in the module, is free of restriction and cost increase in a spinning process step, and is excellent in module assembling characteristics. SOLUTION: The module for hemodialysis which is a module for hemodialysis using the hollow fibers for dialysis, in which the hollow fibers of 20 to 40 pieces in the number of crimps per 10 cm and the hollow fibers of <20 pieces mingle in the module and more preferably in which the ratio occupied by the hollow fibers of 20 to 40 pieces in the number of crimps per 10 cm among the hollow fibers for dialysis of the module for hemodialysis is 30 to 75% in the entire hollow fibers and the ratio occupied by the hollow fibers of 0 to 10 pieces in the number of crimps is 10 to 55% in the entire hollow fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、慢性腎不全の治療
に用いる血液透析用モジュールに関する。さらに詳しく
は、モジュール内の透析液の流れが均一で、中空繊維膜
の性能を最大限に発揮する事ができ、かつコンパクトな
モジュールの組立性に優れた血液透析用モジュールに関
する。
TECHNICAL FIELD The present invention relates to a hemodialysis module used for treating chronic renal failure. More specifically, the present invention relates to a hemodialysis module in which the dialysate flow in the module is uniform, the performance of the hollow fiber membrane can be maximized, and the compact module is excellent in assembling.

【0002】[0002]

【従来の技術】血液透析モジュールの性能は、構成する
中空繊維膜の透過性能に左右される事はもちろんである
が、モジュール構造による影響を受ける。すなわち、中
空繊維膜の性能を最大限に発現するモジュール構造が必
要である。血液透析モジュールは、およそ1万本の中空
繊維をハウジングに充填してなり、血液は中空繊維内側
の中空部を、透析液は中空繊維の外側、つまり各々の中
空繊維の隙間を流れる。このとき、透析液が、全ての中
空繊維間隙を均一に流れず、ある一部分のみに流れる
と、透析液が流れない部分の中空繊維膜は有効に活用さ
れず、透過性能の高い中空繊維膜を用いても、モジュー
ルとしての性能は著しく低下してしまう。そこで透析液
が均一に流れない偏流現象を起さないために、これまで
多くの工夫がなされている。
2. Description of the Related Art The performance of a hemodialysis module is, of course, dependent on the permeation performance of the hollow fiber membranes that it comprises, but is also affected by the module structure. That is, a module structure that maximizes the performance of the hollow fiber membrane is required. The hemodialysis module has a housing filled with about 10,000 hollow fibers. Blood flows in the hollow portion inside the hollow fibers, and dialysate flows outside the hollow fibers, that is, in the gaps between the hollow fibers. At this time, if the dialysate does not flow uniformly in all the hollow fiber gaps and flows only in a certain part, the hollow fiber membrane in the part where the dialysate does not flow is not effectively utilized, and a hollow fiber membrane having high permeability is used. Even if it is used, the performance as a module will be significantly reduced. Therefore, in order to prevent the uneven flow phenomenon in which the dialysate does not flow uniformly, many measures have been made so far.

【0003】例えば、特開昭61−119274には、
長手方向に複数のフィンを持つ中空繊維が開示されてい
る。中空繊維外側にこのようなフィンを形成させる事に
より、中空繊維同士の密着を防ぎ、中空繊維の間隙を均
一に保つ事ができる。また、特開平5−41979に
は、2本1組の中空繊維膜を螺旋状にスペーサーヤーン
で巻付け、複数組の中空繊維を、さらにスペーサーヤー
ンで螺旋状に巻き付ける事により、中空繊維膜間の間隙
を確保している。しかしながら、前者は、特殊な紡糸口
金が必要であり、紡糸条件的にも制約を受ける。また、
後者では、スペーサーヤーンを巻き付ける工程が必要と
なりコストがかかるという問題がある。
For example, Japanese Patent Laid-Open No. 61-119274 discloses that
Hollow fibers having a plurality of fins in the longitudinal direction are disclosed. By forming such fins on the outside of the hollow fibers, it is possible to prevent the hollow fibers from adhering to each other and keep the gaps between the hollow fibers uniform. Further, in JP-A-5-41979, a set of two hollow fiber membranes is spirally wound with a spacer yarn, and a plurality of sets of hollow fibers are further spirally wound with a spacer yarn. The gap is secured. However, the former requires a special spinneret and is also restricted by spinning conditions. Also,
In the latter case, there is a problem that the step of winding the spacer yarn is required and the cost is high.

【0004】紡糸工程上の制約や、コストアップがな
く、簡略に、偏流を防ぐ方法として、特開昭58−18
2722に、一定範囲の中空繊維外径、捲縮数、捲縮振
幅を持つ中空繊維が開示されている。これは、中空繊維
をボビンに巻き取った後に、特定な条件で、加熱処理す
る事だけで得ることができる。しかしながら、このよう
に捲縮が付与された中空繊維膜の束は、嵩高く、ケース
へ挿入する際にキズが生じるおそれがあるので、モジュ
ールの中空繊維充填密度を高める事ができず、コンパク
トなモジュールを得る事ができないという問題がある。
偏流を効果的に抑制し、紡糸工程上の制約やコストアッ
プがなく、またモジュール組立性に優れた、血液透析用
モジュールに用いる中空繊維膜は未だに得られていない
のが現状である。
As a method for simply preventing uneven flow without restrictions on the spinning process and cost increase, Japanese Patent Laid-Open No. 58-18 has been proposed.
2722 discloses hollow fibers having a certain range of hollow fiber outer diameter, number of crimps, and crimp amplitude. This can be obtained only by winding the hollow fiber around a bobbin and then heat-treating it under specific conditions. However, since the bundle of the crimped hollow fiber membranes is bulky and may be damaged when it is inserted into the case, it is not possible to increase the hollow fiber packing density of the module, resulting in a compact size. There is a problem that you cannot get the module.
The present situation is that a hollow fiber membrane for a hemodialysis module, which effectively suppresses uneven flow, has no restrictions on the spinning process and does not increase the cost, and has an excellent module assembling property, has not yet been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、モジュール
内の透析液の偏流を効果的に抑制することによって透析
効率が優れ、かつ、紡糸工程上の制約やコストアップが
なく、またモジュール組立性に優れた、透析用中空繊維
を用いた血液透析用モジュールを提供することにある。
DISCLOSURE OF THE INVENTION The present invention has excellent dialysis efficiency by effectively suppressing the non-uniform flow of dialysate in the module, and there is no restriction or cost increase in the spinning process and the module assemblability. (EN) Provided is a hemodialysis module using a hollow fiber for dialysis, which is excellent.

【0006】[0006]

【課題を解決するための手段】本発明は、すなわち、透
析用中空繊維を用いた血液透析用モジュールであって、
該透析用中空繊維として、10cmあたりの捲縮数が2
0〜40個の中空繊維と10cmあたりの捲縮数が20
個未満の中空繊維が混在することを特徴とする血液透析
用モジュールであり、好ましくは、血液透析用モジュー
ルの透析用中空繊維のうち、10cmあたりの捲縮数が
20〜40個の中空繊維が占める割合が全中空繊維中の
30〜75%であり、10cmあたりの捲縮数が0〜1
0個の中空繊維の占める割合が全中空繊維中の10〜5
5%である上記記載の血液透析用モジュールである。好
ましくは、上記において、10cmあたりの捲縮数が2
0〜40個の中空繊維と10cm当りの捲縮数が0〜1
0個の中空繊維以外の中空繊維の10cm当りの捲縮数
が、10個より多く、かつ20個未満である血液透析用
モジュール。
The present invention provides a hemodialysis module using a hollow fiber for dialysis,
The number of crimps per 10 cm is 2 as the hollow fiber for dialysis.
0 to 40 hollow fibers and 20 crimps per 10 cm
It is a hemodialysis module characterized in that less than 30 hollow fibers are mixed, and preferably, among the hollow fibers for dialysis of the hemodialysis module, hollow fibers having 20 to 40 crimps per 10 cm are used. The ratio occupies 30 to 75% of all hollow fibers, and the number of crimps per 10 cm is 0 to 1.
The ratio of 0 hollow fibers is 10 to 5 in all hollow fibers.
The hemodialysis module as described above, which is 5%. Preferably, the number of crimps per 10 cm is 2 in the above.
0 to 40 hollow fibers and 0 to 1 crimp per 10 cm
A module for hemodialysis, wherein the number of crimps per 10 cm of hollow fibers other than 0 hollow fibers is more than 10 and less than 20.

【0007】本発明は、透析用モジュールの中空繊維と
して2種類の異なった捲縮数を持つ中空繊維を混在させ
たことを特徴とする。すなわち、10cmあたりの捲縮
数が20〜40個付与された中空繊維と、捲縮数が20
個未満である中空繊維の2種類の異なった捲縮数を持つ
中空繊維を混在させることにより、中空繊維同士の間隙
を確保したまま、中空繊維の束の嵩高性が抑えられ、コ
ンパクトで充填率が高く、偏流が起こりにくい血液透析
用モジュールを得る事ができる。中空繊維の10cmあ
たりの捲縮数が20〜40個付与された中空繊維のみか
らなる血液透析モジュールの場合では、透析液の偏流を
効果的に防ぐ事ができるが、中空繊維を束ねた時嵩高に
なり、モジュールを組み立てる際、ハウジングへの挿入
が困難で、中空繊維へダメージを与える。そのため、コ
ンパクトで生産歩留まりのよいモジュールを得る事が困
難となる。
The present invention is characterized in that two kinds of hollow fibers having different crimp numbers are mixed as the hollow fibers of the dialysis module. That is, a hollow fiber having 20 to 40 crimps per 10 cm and a crimp number of 20 are provided.
By mixing two types of hollow fibers having less than one number of crimps with different crimp numbers, the bulkiness of the bundle of hollow fibers is suppressed while maintaining the gap between the hollow fibers, and the compactness and filling rate It is possible to obtain a hemodialysis module having a high flow rate and less likely to cause uneven flow. In the case of a hemodialysis module consisting only of hollow fibers having 20 to 40 crimps per 10 cm of hollow fibers, it is possible to effectively prevent the dialysate from drifting, but it is bulky when the hollow fibers are bundled. Therefore, it is difficult to insert the module into the housing when assembling the module, and the hollow fiber is damaged. Therefore, it is difficult to obtain a compact module with a high production yield.

【0008】本発明においては、好ましくは中空繊維の
10cmあたりの捲縮数が0〜10個の捲縮がほとんど
付与されていない中空繊維を混在させることにより、さ
らにコンパクトで充填率が高く、偏流が起こりにくい血
液透析用モジュールを得る事ができる。この原因は以下
のように考える事ができる。すなわち、捲縮を与える目
的は、中空繊維同士の間隙を確保するためであるが、2
本の隣接する中空繊維を考えた場合、間隙が発生しにく
いのは、2本とも捲縮を持たない場合であり、両方ある
いは片方が捲縮を持てば、間隙は確保される。また、2
本とも捲縮を持つ方が、間隙は大きくなり、嵩高性は高
まると考えられる。大きな間隙は、高い嵩高性につなが
り、モジュールの中空繊維充填率を上げる事ができず、
モジュールの大型化につながり問題である。そのため、
ほとんど捲縮を持たない中空繊維膜を混在させる事で、
中空繊維同士の間隙を確保し、その間隙を小さくする事
で嵩高性の低い、コンパクトで充填率が高く、偏流をお
こしにくい血液透析用モジュールを得る事ができる。
In the present invention, it is preferable to mix hollow fibers having almost no crimps of 0 to 10 crimps per 10 cm of the hollow fibers so that the hollow fibers are more compact and have a high packing rate and drift. It is possible to obtain a hemodialysis module that is less likely to occur. The cause can be considered as follows. That is, the purpose of providing the crimp is to secure a gap between the hollow fibers.
When considering adjacent hollow fibers of a book, it is in the case where neither of the crimps has a crimp, and the gap is secured when both or one of them has crimps. Also, 2
It is considered that when the book has crimps, the gap becomes larger and the bulkiness increases. The large gap leads to high bulkiness, it is not possible to increase the hollow fiber filling rate of the module,
This leads to an increase in the size of the module, which is a problem. for that reason,
By mixing hollow fiber membranes with almost no crimp,
By securing a gap between the hollow fibers and reducing the gap, it is possible to obtain a hemodialysis module having low bulkiness, a compact size, a high filling rate, and a non-uniform flow.

【0009】本発明においては、透析用モジュールの中
空繊維のうち、10cmあたりの捲縮数が20〜40個
の中空繊維の本数が全体の中空繊維の本数に対して占め
る割合が30〜75%であり、かつ10cmあたりの捲
縮数が0〜10個の中空繊維の本数が全体の中空繊維の
本数に対して占める割合が10〜55%であることが望
ましい。10cmあたりの捲縮数が20〜40個の中空
繊維が占める割合が75%を超えると、中空繊維の間隙
は確保され、透析液の偏流を抑制する効果は高いもの
の、中空繊維束の嵩高性が高くなりすぎて、モジュール
作製において、中空繊維束をケースに挿入することが困
難になり、中空繊維束とケースの摩擦により中空繊維に
キズがつき、歩留まりが大きく低下するので好ましくな
い。30%未満場合は、透析液の偏流を抑制する効果が
少なく透析モジュールの透析性能が低下する。また、1
0cmあたりの捲縮数が0〜10個の中空繊維が占める
割合が55%を超えると中空繊維束の嵩高性が低くな
り、中空繊維同士の間隙が確保できず、偏流が発生しや
すくなるため好ましくない。10%未満の場合は、中空
繊維の束の嵩高性を下げる効果が少なく、中空繊維束を
ケースに挿入しにくくなる。
In the present invention, of the hollow fibers of the dialysis module, the number of hollow fibers having 20 to 40 crimps per 10 cm occupies 30 to 75% of the total number of hollow fibers. It is preferable that the number of hollow fibers having 0 to 10 crimps per 10 cm occupy 10 to 55% of the total number of hollow fibers. When the ratio of the hollow fibers having 20 to 40 crimps per 10 cm is more than 75%, the voids of the hollow fibers are secured and the effect of suppressing the nonuniform flow of the dialysate is high, but the bulkiness of the hollow fiber bundle is high. Is too high, which makes it difficult to insert the hollow fiber bundle into the case during module production, and the hollow fiber is scratched due to friction between the hollow fiber bundle and the case, resulting in a large decrease in yield, which is not preferable. If it is less than 30%, the effect of suppressing the nonuniform flow of the dialysate is small and the dialysis performance of the dialysis module deteriorates. Also, 1
If the proportion of the hollow fibers having 0 to 10 crimps per 0 cm exceeds 55%, the bulkiness of the hollow fiber bundle becomes low, a gap between the hollow fibers cannot be secured, and a drift is likely to occur. Not preferable. When it is less than 10%, the effect of lowering the bulkiness of the bundle of hollow fibers is small, and it becomes difficult to insert the hollow fiber bundle into the case.

【0010】上記において、10cmあたりの捲縮数が
20〜40個の中空繊維と10cm当りの捲縮数が0〜
10個の中空繊維以外の中空繊維が存在してもよい。こ
の場合、10cmあたりの捲縮数が20〜40個の中空
繊維と10cm当りの捲縮数が0〜10個の中空繊維以
外の中空繊維は、10cm当りの捲縮数が10個より多
く、かつ20個未満である中空繊維が好ましい。本発明
において、中空繊維の10cmあたりの捲縮数は40個
以下が好ましい。10cmあたりの捲縮数が40個を超
えた場合、中空繊維断面の真円度が低下する傾向があ
り、中空繊維内で血液凝固が発生する原因となることが
ある。
In the above, hollow fibers having 20 to 40 crimps per 10 cm and 0 to 10 crimps per 10 cm.
Hollow fibers other than 10 hollow fibers may be present. In this case, hollow fibers other than hollow fibers having 20 to 40 crimps per 10 cm and 0 to 10 crimps per 10 cm have more than 10 crimps per 10 cm, And hollow fibers having less than 20 fibers are preferred. In the present invention, the number of crimps per 10 cm of the hollow fiber is preferably 40 or less. When the number of crimps per 10 cm exceeds 40, the roundness of the cross section of the hollow fiber tends to decrease, which may cause blood coagulation in the hollow fiber.

【0011】本発明は、捲縮数の異なる中空繊維を混在
させることを特徴とするが、2種類の捲縮数を持つ中空
繊維を混在させても良いし、3種類以上の捲縮数を持つ
中空繊維を混在させることもできる。また、捲縮数が0
〜40個の範囲内で、連続的に変化した中空繊維を混在
させてもよい。
The present invention is characterized in that hollow fibers having different crimp numbers are mixed, but hollow fibers having two crimp numbers may be mixed, or three or more crimp numbers may be mixed. It is also possible to mix the hollow fibers that it has. The number of crimps is 0
Within the range of up to 40, hollow fibers that have continuously changed may be mixed.

【0012】また、本発明の血液透析モジュールを作製
するには、予め捲縮数が分かっている中空繊維を、目的
とした混在比率になるように、ブレンドすることにより
得ることができる。また、モジュール内の200本の中
空繊維をランダムに採取し、異なる捲縮数の中空繊維混
在比率が本発明の範囲内になるように、使用する原料中
空繊維を調節することにより得る事ができる。
The hemodialysis module of the present invention can be prepared by blending hollow fibers whose crimp numbers are known in advance so that the intended mixing ratio is achieved. In addition, it can be obtained by randomly sampling 200 hollow fibers in the module and adjusting the raw material hollow fibers to be used so that the mixing ratio of the hollow fibers having different crimp numbers is within the range of the present invention. .

【0013】本発明における捲縮数とは、中空繊維の繊
維方向を軸方向に見た場合、中空繊維の一つの頂点と隣
接する直径的に対抗する頂点とがsinカーブの頂点に
なるように、中空繊維の繊維方向の中心軸を設け、中心
軸に対して同一側にある山の数とした。中空繊維10c
mあたりの数で捲縮数を代表させた。
The crimp number in the present invention means that, when the fiber direction of the hollow fiber is viewed in the axial direction, one apex of the hollow fiber and the adjacent diametrically opposed apex become the apex of the sin curve. The central axis of the hollow fiber in the fiber direction was provided, and the number of peaks on the same side of the central axis was used. Hollow fiber 10c
The number of crimps was represented by the number per m.

【0014】また、本発明において、捲縮振幅Lを一定
範囲とすることも重要である。本発明において捲縮振幅
Lは、以下のように定義する。すなわち、前記の中空繊
維の繊維方向のsinカーブにおける振幅(ある頂点と
つぎに隣接する直径的に対向する頂点の外側間の縦方向
距離の半分)である。本測定方法では、捲縮振幅が全く
ない場合、捲縮振幅Lはゼロとならず中空繊維外径(O
D)の半分の値となる。捲縮振幅Lが0.65×ODよ
り小さい範囲では、透析時に中空繊維の間隙を充分に確
保できず、中空繊維同士が密着してしまう場合がある。
そのために透析効率が下がり、中空繊維の持つ性能を充
分に発揮させる事ができない。捲縮振幅Lが(OD+5
0)μmを超えた範囲では、中空繊維を束にする時に収
束状態が大きくなり、モジュールを作製する際の中空繊
維の均一配置が困難となる。また、捲縮による曲率半径
が小さくなるので、中空繊維の捲縮内周側と外周側で、
伸縮度が異なり、膜構造が変化してしまい性能低下の原
因となる危倶がある。本発明の中空繊維膜の外径は、血
液透析モジュールに用いるため200〜500μmが好
ましい。
Further, in the present invention, it is important to set the crimp amplitude L within a certain range. In the present invention, the crimp amplitude L is defined as follows. That is, it is the amplitude in the sin curve of the hollow fiber in the fiber direction (half the vertical distance between the outside of a certain vertex and the next adjacent diametrically opposite vertex). In this measuring method, when there is no crimp amplitude, the crimp amplitude L does not become zero and the hollow fiber outer diameter (O
It is half the value of D). When the crimp amplitude L is smaller than 0.65 × OD, the gap between the hollow fibers cannot be sufficiently secured during dialysis, and the hollow fibers may adhere to each other.
Therefore, the dialysis efficiency is lowered, and the performance of the hollow fiber cannot be fully exhibited. The crimp amplitude L is (OD + 5
If it exceeds 0) μm, the converged state becomes large when the hollow fibers are bundled, and it becomes difficult to uniformly arrange the hollow fibers when manufacturing a module. In addition, since the radius of curvature due to crimping becomes smaller, the inner and outer crimping sides of the hollow fiber are
There is a danger that the degree of expansion and contraction will be different, and the membrane structure will change, resulting in reduced performance. The outer diameter of the hollow fiber membrane of the present invention is preferably 200 to 500 μm for use in a hemodialysis module.

【0015】中空繊維に捲縮を与えるためには、公知の
手法を採用する事ができ、例えば特開昭58−8400
7に示される方法が挙げられる。また、特開昭61−5
848の方法により、中空繊維の捲縮数や捲縮振幅を変
化させる事が可能である。例えば、かかる捲縮を有する
セルロースエステル系中空繊維膜を製造する方法として
は、従来の半湿式紡糸および湿式紡糸によって製造した
中空繊維膜ををグリセリン水溶液中に浸漬し、その後4
0℃〜80℃の範囲の空気または不活性ガス中で乾燥
し,次いでワインダーによりボビンに巻き取り、巻き取
ったボビンを熱処理することにより得ることができる。
この際、ワインダーにより中空繊維を巻き取る際の合糸
本数、巻き取り張力、綾角およびボビンの熱処理温度を
調節することにより、異なる捲縮数を有する中空繊維を
得ることができる。
In order to crimp the hollow fiber, a known method can be adopted, for example, JP-A-58-8400.
The method shown in 7 is mentioned. In addition, JP-A-61-5
By the method of 848, it is possible to change the number of crimps and the crimp amplitude of the hollow fiber. For example, as a method for producing a cellulose ester-based hollow fiber membrane having such crimps, a hollow fiber membrane produced by conventional semi-wet spinning and wet spinning is immersed in an aqueous glycerin solution, and then 4
It can be obtained by drying in air or an inert gas in the range of 0 ° C. to 80 ° C., then winding on a bobbin with a winder, and heat-treating the wound bobbin.
At this time, hollow fibers having different crimp numbers can be obtained by adjusting the number of combined yarns, the winding tension, the winding angle, and the heat treatment temperature of the bobbin when winding the hollow fibers with a winder.

【0016】[0016]

【実施例】(捲縮数の異なる中空糸の作製)セルロース
ジアセテート30重量部をジメチルホルムアミドが49
重量部とポリチレングリコール#200が21重量部の
混合溶媒に85℃で2時間攪拌し溶解し紡糸原液とし
た。紡糸原液を静置脱泡した後、二重環状オリフィスか
ら芯液の流動パラフィンとともに吐出し紡糸した。オリ
フィスを出た紡糸原液は15cm空気中を走行させた
後、ジメチルホルムアミド/トリエチレングリコール/
水系の凝固浴中に導き凝固させた。更に水洗し、40重
量%のグリセリン水溶液浴を通過させた後、60℃の乾
燥空気ゾーンを通過させ中空繊維を綾角5度でワインダ
ーによりボビンに巻き取った。中空繊維の内径は200
μm、外径230μm、膜厚15μmであった。次に巻
き取った中空繊維をボビンごと熱処理することで、中空
繊維に捲縮を付与した。巻き取り張力と熱処理条件を変
更することで、10cmあたりの捲縮数が4個(張力4
g/2本合糸、熱処理30℃×18時間)、15個(張
力15g/4本合糸、熱処理50℃×18時間)、27
個(張力25g/6本合糸、熱処理80℃×18時間)
の3種類の捲縮数の異なる中空繊維を準備した。なおこ
れらの中空繊維の捲縮の振幅は、180〜200μmで
あった。
Example (Preparation of hollow fibers having different crimp numbers) 30 parts by weight of cellulose diacetate was mixed with 49 parts of dimethylformamide.
Parts by weight and polyethylene glycol # 200 were stirred and dissolved in a mixed solvent of 21 parts by weight at 85 ° C. for 2 hours to prepare a spinning dope. The spinning stock solution was allowed to stand and defoamed, then discharged from the double annular orifice together with the liquid paraffin of the core solution for spinning. The spinning dope from the orifice was run in air for 15 cm, and then dimethylformamide / triethylene glycol /
It was introduced into an aqueous coagulation bath and coagulated. It was further washed with water, passed through a 40 wt% glycerin aqueous solution bath, passed through a dry air zone at 60 ° C., and the hollow fiber was wound around a bobbin with a winder at a twist angle of 5 °. The inner diameter of the hollow fiber is 200
The outer diameter was 230 μm, and the film thickness was 15 μm. Next, the wound hollow fiber was heat-treated together with the bobbin, so that the hollow fiber was crimped. By changing the winding tension and heat treatment conditions, the number of crimps per 10 cm is 4 (tension 4
g / 2-ply composite yarn, heat treatment 30 ° C. × 18 hours), 15 yarns (tension 15 g / 4-ply composite yarn, heat treatment 50 ° C. × 18 hours), 27
Pieces (tension 25g / 6 yarns, heat treatment 80 ° C x 18 hours)
Three kinds of hollow fibers having different crimp numbers were prepared. The crimp amplitude of these hollow fibers was 180 to 200 μm.

【0017】(透析用モジュールの作製)10000本
からなる中空繊維束を作製し、中空繊維充填率が60%
となるようにケースに挿入し、端部をウレタン接着剤で
封止し、透析用モジュールを作製した。 (透析用モジュールの歩留まり)得られた透析用モジュ
ールに水を充填し、血液側から1.5kgf/cm2
の窒素ガスを供給し、気泡発生が観察されたモジュール
を不良品とし歩留まりを計算した。また、モジュールを
分解して原因を調べた。気泡発生の無いモジュールは透
析性能評価に供した。
(Production of dialysis module) A hollow fiber bundle consisting of 10,000 fibers was produced and the hollow fiber filling rate was 60%.
Then, the dialysis module was manufactured by inserting the dialysis module into a case so that the end portion was sealed with a urethane adhesive. (Yield of dialysis module) The obtained dialysis module was filled with water, and 1.5 kgf / cm 2 from the blood side,
The nitrogen gas was supplied, and the module in which bubbles were observed was regarded as a defective product, and the yield was calculated. Also, the module was disassembled and the cause was investigated. The module in which no bubbles were generated was used for dialysis performance evaluation.

【0018】(透析用モジュールの偏流値)得られた透
析用モジュールの偏流値を以下の方法で測定した。偏流
値が12mL/分を超えた場合を偏流発生が大きく問題
である。偏流値Dは、透析流量の高い条件(2000m
L/分)で尿素のクリアランスC2を測定し、(1)式
で総括物質移動係数K0を計算する。総括物質移動係数
0から(2)式で500mL/分での尿素のクリアラ
ンスC3を計算する。そして、実際に500mL/分の
尿素のクリアランスC1を測定し、計算値との差を比較
する。偏流がある場合、透析流量の高い条件の総括物質
移動係数K0から計算された尿素のクリアランスが透析
流量の低い条件での実測値より高くなる。すなわち、偏
流値D=C3−C1 と定義する。偏流値が小さいほ
ど、透析液のよどみが少なく、透析効率の高い透析用モ
ジュールである。
(Diffusion Value of Dialysis Module) The deviation value of the obtained dialysis module was measured by the following method. When the drift value exceeds 12 mL / min, the occurrence of drift is a serious problem. The drift value D is a condition (2000 m
The urea clearance C2 is measured at (L / min), and the overall mass transfer coefficient K 0 is calculated by the equation (1). The urea clearance C3 at 500 mL / min is calculated from the overall mass transfer coefficient K 0 by the formula (2). Then, the urea clearance C1 of 500 mL / min is actually measured, and the difference from the calculated value is compared. When there is a drift, the urea clearance calculated from the overall mass transfer coefficient K 0 under the high dialysis flow rate condition is higher than the actually measured value under the low dialysis flow rate condition. That is, the drift value D = C3-C1 is defined. The smaller the drift value, the less stagnation of the dialysate and the higher the dialysis efficiency of the dialysis module.

【0019】なお、クリアランス測定はダイアライザー
性能評価基準(昭和57年、日本人工臓器学会)に準
じ、血液側は尿素100mg/dL生理食塩水溶液、透
析液は生理食塩水を用い、温度37℃±1℃で、濾過を
生じない条件で測定した。血液流量200mL/分で透
析流量500mL/分、2000mL/分の時の各々の
クリアランスC1、C2を実測した。C2の値を用いて
(1)式より総括物質移動係数K0を求めた。血液と透
析液とを交流に流す場合の血液中の溶質クリアランスC
は(2)式で表される。(2)式にC2の値を用いて
(1)式より求めた総括物質移動係数K0を代入して透
析流量500mL/分の時のクリアランスC3を計算し
た。
The clearance measurement is based on the dialyzer performance evaluation standard (1982, Japan Society for Artificial Organs), urea 100 mg / dL physiological saline solution is used on the blood side, and physiological saline is used as the dialysate, and the temperature is 37 ° C. ± 1. It was measured at 0 ° C. under the condition that no filtration occurred. The respective clearances C1 and C2 at the blood flow rate of 200 mL / min and the dialysis flow rate of 500 mL / min and 2000 mL / min were measured. Using the value of C2, the overall mass transfer coefficient K 0 was calculated from the equation (1). Solute clearance C in blood when blood and dialysate are exchanged
Is expressed by equation (2). The clearance C3 at a dialysis flow rate of 500 mL / min was calculated by substituting the overall mass transfer coefficient K0 obtained from the equation (1) using the value of C2 in the equation (2).

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 B、QD:血液流量および透析液流量(mL/分) K0:総括物質移動係数(cm/分) S:モジュール膜面積(内径基準)[Equation 3] Q B , Q D : Blood flow rate and dialysate flow rate (mL / min) K 0 : Overall mass transfer coefficient (cm / min) S: Module membrane area (inner diameter standard)

【0020】(実施例1)10cmあたりの捲縮数が2
7個の中空繊維を全中空繊維の70%、10cmあたり
の捲縮数が4個の中空繊維を全中空繊維の30%を準備
し、各中空繊維がほぼ均一に分散するよう中空繊維束を
作製し、血液透析モジュールを100本組み立てた。モ
ジュールの製作歩留まりは98%であった。得られた血
液透析モジュールの内、10本を偏流値測定に供したと
ころ、偏流値は7〜10mL/分の範囲であった。
Example 1 The number of crimps per 10 cm is 2
Prepare 70 hollow fibers of 7 hollow fibers and 30% of all hollow fibers having 4 crimps per 10 cm, and make a hollow fiber bundle so that each hollow fiber is dispersed almost uniformly. It produced and assembled 100 hemodialysis modules. The production yield of the module was 98%. When 10 of the obtained hemodialysis modules were subjected to the drift value measurement, the drift value was in the range of 7 to 10 mL / min.

【0021】(実施例2)10cmあたりの捲縮数が2
7個の中空繊維を全中空繊維の50%、10cmあたり
の捲縮数が4個の中空繊維を全中空繊維の50%を準備
し、各中空繊維がほぼ均一に分散するよう中空繊維束を
作製し、血液透析モジュールを100本組み立てた。モ
ジュールの製作歩留まりは100%であった。得られた
血液透析モジュールの内10本を偏流値測定に供したと
ころ、偏流値は10〜12mL/分の範囲であった。
(Example 2) The number of crimps per 10 cm is 2
Prepare 7 hollow fibers 50% of all hollow fibers and 50% of all hollow fibers having 4 crimps per 10 cm and prepare a hollow fiber bundle so that each hollow fiber is dispersed almost uniformly. It produced and assembled 100 hemodialysis modules. The manufacturing yield of the module was 100%. When 10 of the obtained hemodialysis modules were subjected to the drift value measurement, the drift value was in the range of 10 to 12 mL / min.

【0022】(実施例3)10cmあたりの捲縮数が2
7個の中空繊維を全中空繊維の50%、10cmあたり
の捲縮数が15個の中空繊維を全中空繊維の30%、1
0cmあたりの捲縮数が4個の中空繊維を全中空繊維の
20%を準備し、各中空繊維がほぼ均一に分散するよう
中空繊維束を作製し、血液透析モジュールを100本作
製した。モジュールの製作歩留まりは100%であっ
た。得られた血液透析モジュールの内10本を偏流値測
定に供したところ、偏流値は9〜12mL/分の範囲内
であった。
(Embodiment 3) The number of crimps per 10 cm is 2
50% of all hollow fibers, 7 hollow fibers, 30% of all hollow fibers, with 15 crimps per 10 cm
20% of all hollow fibers were prepared from hollow fibers having 4 crimps per 0 cm, and hollow fiber bundles were prepared so that each hollow fiber was dispersed substantially uniformly, and 100 hemodialysis modules were prepared. The manufacturing yield of the module was 100%. When 10 of the obtained hemodialysis modules were subjected to drift value measurement, the drift value was within the range of 9 to 12 mL / min.

【0023】(比較例1)10cmあたりの捲縮数27
個の中空繊維のみからなる中空繊維束を作製し、血液透
析モジュールを作製した。モジュール製作歩留まりは7
3%であった。不良モジュールを解析したところ、すべ
てのモジュールで外周部の中空繊維にキズか認められ
た。この原因は、作製した中空繊維束の嵩高性が高く、
中空繊維をハウジングに挿入する際、ケースと中空繊維
の間に摩擦が生じ、中空繊維がダメージを受けたものと
思われた。得られた良品モジュールの内、10本を偏流
値測定に供したところ、偏流値は7〜10mL/分の範
囲であった。
(Comparative Example 1) Number of crimps per 10 cm 27
A hollow fiber bundle consisting of individual hollow fibers was prepared to prepare a hemodialysis module. Module production yield is 7
It was 3%. When the defective modules were analyzed, flaws were found in the hollow fibers in the outer peripheral portion in all the modules. The reason for this is that the produced hollow fiber bundle has high bulkiness,
It was considered that when the hollow fiber was inserted into the housing, friction occurred between the case and the hollow fiber, and the hollow fiber was damaged. When 10 of the obtained non-defective modules were subjected to the drift value measurement, the drift value was in the range of 7 to 10 mL / min.

【0024】(比較例2)捲縮数が4個の中空繊維のみ
からなる中空繊維束を作製し、血液透析モジュールを作
製した。モジュールの製作歩留まりは100%であっ
た。得られた血液透析モジュールの内、10本を偏流値
測定に供したところ、偏流値は15〜40mL/分の範
囲であり、偏流が発生し、中空繊維の性能が発揮されな
い透析モジュールであることがわかった。この原因は、
捲縮数が少ない中空繊維の存在比率が高すぎて、全ての
中空繊維の間隙が確保されず、透析液が均一に流れなか
ったためと考えられた。
(Comparative Example 2) A hollow fiber bundle consisting only of hollow fibers having four crimps was prepared to prepare a hemodialysis module. The manufacturing yield of the module was 100%. When 10 of the obtained hemodialysis modules were subjected to the drift value measurement, the drift value was in the range of 15 to 40 mL / min, and a drift flow occurred and the performance of the hollow fiber was not exhibited. I understood. The cause is
It is considered that the existence ratio of the hollow fibers having a small number of crimps was too high, the gaps of all the hollow fibers were not secured, and the dialysate did not flow uniformly.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明の血液透析用モジュールは、透析
液の偏流を防止できるため高い透析性能を得ることがで
き、かつモジュール組み立てにおける中空糸束の挿入性
が良好でモジュールケースと中空繊維の間に摩擦による
中空繊維のダメージを防止できるためモジュールの歩留
まりが高く、コンパクトなものが得られる。
EFFECTS OF THE INVENTION The hemodialysis module of the present invention can obtain a high dialysis performance because it can prevent the dialysate from drifting unevenly, and the hollow fiber bundle can be easily inserted during the module assembly, and the module case and the hollow fiber Since the hollow fibers can be prevented from being damaged by friction, the yield of the module is high and a compact module can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】中空繊維の捲縮数と振幅に関する説明図FIG. 1 is an explanatory diagram regarding the number of crimps and the amplitude of hollow fibers.

フロントページの続き Fターム(参考) 4C077 AA05 BB01 CC01 EE01 KK15 LL05 LL16 PP04 4D006 GA13 HA01 JA02A JA13A JB06 MA01 MA31 MA33 PA01 PB09 PC47 Continued front page    F-term (reference) 4C077 AA05 BB01 CC01 EE01 KK15                       LL05 LL16 PP04                 4D006 GA13 HA01 JA02A JA13A                       JB06 MA01 MA31 MA33 PA01                       PB09 PC47

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透析用中空繊維を用いた血液透析用モジ
ュールであって、10cm当りの捲縮数が20〜40個
の中空繊維と10cm当りの捲縮数が20個未満の中空
繊維が混在することを特徴とする血液透析用モジュー
ル。
1. A hemodialysis module using hollow fibers for dialysis, wherein hollow fibers having 20 to 40 crimps per 10 cm and hollow fibers having less than 20 crimps per 10 cm are mixed. A module for hemodialysis characterized by:
【請求項2】 透析用中空繊維を用いた血液透析用モジ
ュールであって、10cmあたりの捲縮数が20〜40
個の中空繊維が占める割合が全中空繊維中の30〜75
%であり、10cm当りの捲縮数が0〜10個の中空繊
維の占める割合が全中空繊維中の10〜55%であるこ
とを特徴とする血液透析用モジュール。
2. A hemodialysis module using hollow fibers for dialysis, wherein the number of crimps per 10 cm is 20 to 40.
The ratio of the individual hollow fibers is 30 to 75 in all the hollow fibers.
%, And the ratio of the hollow fibers having 0 to 10 crimps per 10 cm is 10 to 55% of the total hollow fibers, the hemodialysis module.
【請求項3】 請求項2記載の血液透析用モジュールで
あって、10cmあたりの捲縮数が20〜40個の中空
繊維と10cm当りの捲縮数が0〜10個の中空繊維以
外の中空繊維の10cm当りの捲縮数が、10個より多
く、かつ20個未満であるこを特徴とする血液透析用モ
ジュール。
3. The hemodialysis module according to claim 2, wherein hollow fibers having 20 to 40 crimps per 10 cm and hollow fibers having 0 to 10 crimps per 10 cm are hollow. A module for hemodialysis, characterized in that the number of crimps per 10 cm of the fiber is more than 10 and less than 20.
JP2001275447A 2001-09-11 2001-09-11 Hemodialysis module Expired - Lifetime JP4457288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275447A JP4457288B2 (en) 2001-09-11 2001-09-11 Hemodialysis module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275447A JP4457288B2 (en) 2001-09-11 2001-09-11 Hemodialysis module

Publications (2)

Publication Number Publication Date
JP2003079721A true JP2003079721A (en) 2003-03-18
JP4457288B2 JP4457288B2 (en) 2010-04-28

Family

ID=19100311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275447A Expired - Lifetime JP4457288B2 (en) 2001-09-11 2001-09-11 Hemodialysis module

Country Status (1)

Country Link
JP (1) JP4457288B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100811A1 (en) 2019-11-20 2021-05-27 ニプロ株式会社 Hollow fiber membrane module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100811A1 (en) 2019-11-20 2021-05-27 ニプロ株式会社 Hollow fiber membrane module
EP4063004A4 (en) * 2019-11-20 2023-11-15 Nipro Corporation Hollow fiber membrane module

Also Published As

Publication number Publication date
JP4457288B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US5198110A (en) Bundle of permselective hollow fibers and a fluid separator containing the same
CN105063778B (en) The manufacturing method of hollow-fibre membrane spinning-nozzle and hollow-fibre membrane
EP0186293B1 (en) Blood treatment device
US3963622A (en) Fluid treatment apparatus
EP2701762B1 (en) Combination oxygenator and arterial filter device with a fiber bundle of continuously wound hollow fibers for treating blood in an extracorporeal blood circuit
EP2701763B1 (en) Combination oxygenator and arterial filter device for treating blood in an extracorporeal blood circuit
KR101985552B1 (en) Method to make a yarn-reinforced hollow fibre membranes around a soluble core
JPH08246283A (en) Hollow fiber bundle and substance- and/or heat exchanger
JP6115592B2 (en) Hollow porous membrane
JP7234127B2 (en) Hollow fiber membranes with improved diffusion properties
JP4457288B2 (en) Hemodialysis module
CA1142495A (en) Coreless hollow filament separatory module and method of fabrication
JP2008190081A (en) Method for producing hollow fiber membrane
JPH0512013B2 (en)
JP2015029927A (en) Hollow fiber membrane, method of manufacturing the same, and hollow fiber membrane module
JP2005246192A (en) Hollow fiber membrane, hollow fiber membrane module and manufacturing method for them
JP4894148B2 (en) Hollow fiber membrane manufacturing method and manufacturing apparatus thereof
EA038203B1 (en) Hollow fibre membrane having three dimensional texturing
JPH03238027A (en) Fluid treatment apparatus using hollow fiber
JPH09266947A (en) Hollow fiber membrane and module for dialysis
JPH06509746A (en) Hollow fiber for dialysis
JP2015029923A (en) Hollow fiber membrane for degassing and hollow fiber membrane module for degassing
WO2021100811A1 (en) Hollow fiber membrane module
JPH0260658A (en) Hollow yarn membrane type material transfer device
JPH0810322A (en) Manufacture of hollow fiber membrane for blood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R151 Written notification of patent or utility model registration

Ref document number: 4457288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

EXPY Cancellation because of completion of term