JP4456801B2 - Method for forming insulation coating of polymer battery - Google Patents

Method for forming insulation coating of polymer battery Download PDF

Info

Publication number
JP4456801B2
JP4456801B2 JP2002250204A JP2002250204A JP4456801B2 JP 4456801 B2 JP4456801 B2 JP 4456801B2 JP 2002250204 A JP2002250204 A JP 2002250204A JP 2002250204 A JP2002250204 A JP 2002250204A JP 4456801 B2 JP4456801 B2 JP 4456801B2
Authority
JP
Japan
Prior art keywords
polymer battery
insulating coating
battery
electrode lead
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002250204A
Other languages
Japanese (ja)
Other versions
JP2004087422A (en
Inventor
和人 中島
正明 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002250204A priority Critical patent/JP4456801B2/en
Publication of JP2004087422A publication Critical patent/JP2004087422A/en
Application granted granted Critical
Publication of JP4456801B2 publication Critical patent/JP4456801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、ラミネートシートを外装材としたポリマー電池とその外装材に絶縁被覆を施す絶縁被覆形成方法に関するものである。
【0002】
【従来の技術】
電池は一般的に液体の電解液を使用しているため、電解液が外部に漏れたり外部から水分が流入しないように金属缶を外装材として、電池缶内に極板群及び電解液からなる発電要素を収容し、電池缶の開口部はガスケットなどのシール部材を用いて封口板により封口される。外装材として金属缶を用いた場合に小型化、薄型化、軽量化に限界があり、小型軽量化が要求される携帯電子機器の電池電源として、金属缶を用いないリチウムポリマー電解質二次電池のようなポリマー電池が開発されている。ポリマー電池ではゲル状の電解液を使用することができるので、液漏れの心配が少なく、アルミニウム箔の両面を樹脂フィルムで被覆したアルミラミネートシートを電池缶に代わる外装材として用いることができ、薄型化、軽量化の達成に有効である。
【0003】
アルミラミネートシートを外装材に用いたポリマー電池は、図4に示すように、所定形状に裁断した一対のアルミラミネートシート15、15の周囲を熱溶着した外装体14中に発電要素を封止して構成される。発電要素は正極板10と負極板12とをセパレータ11を介して積層した極板群13と、ゲル状の電解液とから構成され、前記正極板10から引き出された正極リード8及び負極板12から引き出された負極リード9は、一対のアルミラミネートシート15、15を熱溶着した間から外部に引き出されている。
【0004】
アルミラミネートシート15は、図4(c)に熱溶着された端辺部分を拡大図示するように、基材となるアルミニウム箔17の両面に樹脂フィルム16a,16bをラミネートしたもので、外装体14に形成するために、一対のラミネートシート15、15は周囲で熱溶着される。熱溶着は一対のアルミラミネートシート15、15の内面側となる樹脂フィルム16b、16bの間を加熱溶融させて接合することによりなされる。
【0005】
上記構成になるポリマー電池1において、外装体14の端辺にはアルミラミネートシート15の裁断部分が存在するため、図4(c)に示すように、アルミニウム箔17の裁断面が外部に露出しており、アルミニウム箔17に導体が接触して短絡等が発生する問題点があった。このアルミニウム箔17の露出端辺への接触を回避するため、従来は図5に示すように、導体が接触する恐れのある外装体14の端辺を被覆して絶縁テープ18を貼着している。
【0006】
ポリマー電池1の所定端辺に対する絶縁テープ18の貼着は、図6に示すようなテープ貼着装置によってなされる。装置ベース55上に配設されたガイドレール58上を図示K方向に移動可能に搭載された電池固定部51にポリマー電池1をグリップ56により固定し、電池固定部51を手動によりK方向に移動させてテープ貼着位置に固定し、装置を稼働させると、制御部60による動作制御によりポリマー電池1に対する絶縁テープ18の貼着がなされる。
【0007】
絶縁テープ18はテープカートリッジ50から繰り出され、その先端はテープ引出しヘッド54が備える開閉チャックによって把持され、テープ引出しヘッド54が図示M方向に移動することにより所定長さに引き出される。このテープ引出しヘッド54による絶縁テープ18の引出し動作及びテープカートリッジ50の図示I方向への回転動作は制御部60によって制御され、テープ引出しヘッド54による絶縁テープ18の引出し動作がなされると、制御部60はアクチュエータ59を駆動制御する。アクチュエータ59はガイドレール58上に搭載されたテープ貼着ヘッド53を図示L方向に進出駆動させるので、テープ引出しヘッド54に設けられたテープ裁断刃52により絶縁テープ18が裁断され、テープ貼着ヘッド54によって引き出された絶縁テープ18は電池固定部51に固定されたポリマー電池1の端辺に所定圧力で押圧すると共に2つ折りにして貼着する。
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来技術に係るポリマー電池1に対する絶縁テープ18の貼着装置では、比較的直線的な部位に対してのみ絶縁テープ18の貼着が可能で、コーナー部位や貼着に対する障害物がある部位に対しては人手による作業に頼らざるを得ない問題点があった。例えば、図5に示した正極リード8及び負極リード9が引き出されている端辺に対する絶縁テープ18の貼着はテープ貼着装置では不可能で、人手による貼着作業によって正極リード8及び負極リード9を避けて絶縁テープ18を分散貼着している。
【0009】
従って、ポリマー電池1の端辺を絶縁処理するために絶縁テープ18を貼着する構造及びその方法、装置は作業性が悪く、工数増加やコストアップが避けられない課題があった。
【0010】
本発明が目的とするところは、金属箔の両面を樹脂フィルムで被覆された長方形のラミネートシート2つの間に正極リードおよび負極リードの先端が2つのラミネートシートの間から突出するように挟持し、重ね合わせた前記2つのラミネートシートの積層面と垂直な面を封止し、封止された前記ラミネートシートの積層面と垂直な面全てに紫外線硬化樹脂を塗着し、塗着した前記紫外線硬化樹脂を固化させ絶縁被覆を形成するポリマー電池の絶縁被覆形成方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発のポリマー電池の絶縁被覆形成方法は、金属箔の両面を樹脂フィルムで被覆された長方形のラミネートシート2つの間に正極リードおよび負極リードの先端が2つのラミネートシートの間から突出するように挟持し、重ね合わせた前記2つのラミネートシートの積層面と垂直な面を封止し、封止された前記ラミネートシートの積層面と垂直な面全てに紫外線硬化樹脂を塗着し、塗着した前記紫外線硬化樹脂を固化させ絶縁被覆を形成することを特徴とする。
【0012】
上記構成によれば、金属箔の両面を樹脂フィルムにより被覆された長方形のラミネートシート2つの間に正極リードおよび負極リードの先端が2つのラミネートシートの間から突出するように挟持し、重ね合わせた2つのラミネートシートの積層面と垂直な面を封止したことで、前記ラミネートシートの積層面と垂直な面に金属箔の切断端が露出していても、ラミネートシートの積層面と垂直な面全てに絶縁被覆を施すので、金属箔に導体が接触することによる短絡等の発生が防止される。絶縁被覆は紫外線硬化樹脂を塗着して固化させることにより形成し、絶縁被覆の形成に熱が加わらないので、ラミネートシートの樹脂フィルム層に熱影響を与えることなく絶縁被覆を形成することができる。
【0021】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0022】
図1は、実施形態に係るポリマー電池100の構成を示すもので、図4に示したポリマー電池1の所定端辺に絶縁被覆2が形成されている。前記絶縁被覆2は、紫外線硬化樹脂を所定端辺に塗着させた後、紫外線照射により塗着された紫外線硬化樹脂を硬化させて所定端辺を樹脂で被覆したものである。
【0023】
前述したように、絶縁被覆2が形成されていないポリマー電池1の状態では、一対のアルミラミネートシート15、15の周囲を熱溶着して形成された外装体14の端辺は、図4(c)に示したように、アルミラミネートシート15の芯材であるアルミニウム箔17の切断面が外部露出した状態にあるため、導体がアルミニウム箔17に接触することによる短絡等が発生する恐れがあったが、本実施形態に係るポリマー電池100では、所定端辺に形成された絶縁被覆2により、図1(b)に示すように、アルミニウム箔17の裁断端は絶縁被覆2により被覆され、導体の接触による短絡等の発生は防止される。
【0024】
本実施形態においては、絶縁被覆2は導体との接触が発生しやすい端辺、即ち、正極リード8及び負極リード9が引き出されている端辺(B)及びその反対側の端辺(A)に形成しているが、4辺全てに絶縁被覆2を形成することができる。また、本実施形態による絶縁被覆2の形成方法によれば、外装体14の4つのコーナー部分にも絶縁被覆2が形成されるので、導体と最も接触しやすいコーナー部分の絶縁性の強化が図られる。
【0025】
ポリマー電池1の任意端辺に絶縁被覆2を形成してポリマー電池100とする絶縁被覆形成方法は、図2(a)に示すように、紫外線硬化樹脂を貯留した溶融樹脂溜まり3にポリマー電池1の一方の端辺(A)を浸漬させて端辺(A)に紫外線硬化樹脂を付着させ、ポリマー電池1を反転させて他方の端辺(B)を溶融樹脂溜まり3に浸漬させて端辺(B)に紫外線硬化樹脂を塗着させる。端辺(B)には正極リード8及び負極リード9が突出しているので、端辺(B)への溶融樹脂の塗着時には、溶融樹脂溜まり3に設けられたリード逃がし穴3aに正極リード8及び負極リード9を収容して端辺(B)に紫外線硬化樹脂を塗着させる。端辺(A),(B)以外の端辺にも絶縁被覆2を形成するときには、絶縁被覆2を形成したい端辺を溶融樹脂溜まり3側に向けると、同様に紫外線硬化樹脂を塗着することができる。
【0026】
端辺A,Bに紫外線硬化樹脂が着されたポリマー電池1は、図2(b)に示すように、紫外線光源4から紫外線が照射される環境下で回転させて紫外線硬化樹脂を硬化させ、端辺(A)、(B)に絶縁被覆2を形成する。図1(b)に示すように、端辺に形成される絶縁樹脂2の厚さaは、紫外線硬化樹脂の粘度や環境温度によって決定されるが、ここでは20〜40μmとしている。また、形成高さbは、溶融樹脂溜まり3の進出量によって任意に選択できるが、ここでは2〜3mmに設定している。
【0027】
上記絶縁被覆形成方法を実現する絶縁被覆形成装置について、図3を参照して以下に説明する。
【0028】
図3(a)において、架台37の上方には回動駆動手段42により回動駆動されるベース36が配設され、ベース36上には電池回転手段32が固定されている。電池回転手段32は保持プレート(電池保持手段)33によりポリマー電池1を真空吸着により保持し、保持プレート33を回動させてポリマー電池1の任意端辺を所定方向に回動移動させる。このポリマー電池1を保持した電池回転手段32は、前記回動駆動手段42によりベース36が回動駆動されることにより、実線で示す塗工位置から破線で示す固化位置に所定のタイミングで移動制御される。
【0029】
また、架台37の下方に図示X軸方向に配設されたガイドレール38上には昇降駆動手段40を備えたベース39が搭載されており、進退駆動手段41によりガイドレール38上をX軸方向に進退移動する。前記昇降駆動手段40の昇降軸には塗工部(樹脂塗着手段)21を構成する容器29が固定され、容器29は昇降駆動手段40により図示Y軸方向に昇降移動する。
【0030】
塗工部21は、図3(b)にX軸方向から見た状態で示すように、容器29内に多孔質で弾性を有する含浸体30を収容し、容器29内にはディスペンサ(溶融樹脂供給手段)26から送給パイプ27を通じて定期的に所定量(例えば、5cc)の紫外線硬化樹脂が吐出されるように構成されている。容器29内に供給された紫外線硬化樹脂は含浸体30に一定量が常に含浸された状態になる。含浸体30はX軸方向の略1/2の幅に2ヵ所の切欠部31、31が形成され、この切欠部31の位置はポリマー電池1に設けられた正極リード8及び負極リード9の形成位置に対応している。また、ディスペンサ26はパイプ38を通じてタンク25に連通し、供給パイプ28を通じて外部から一定量の紫外線硬化樹脂が供給されているタンク25内に所定圧力(例えば、0.3MPa)が加えられていることにより、ディスペンサ26は内装する電磁弁の開閉により一定量の紫外線硬化樹脂を前記容器29内に送給することができる。
【0031】
上記構成における電池回転手段32、回動駆動手段42、昇降駆動手段40、進退駆動手段41及びディスペンサ26の動作は、制御部24によって制御される。この制御部24による動作制御の手順について以下に説明する。
【0032】
図示しない移載装置によりポリマー電池1を装置内に搬入して、保持プレート33にポリマー電池1を当接させると、保持プレート33は真空吸着によりポリマー電池1をその平坦面で吸着保持する。このときのポリマー電池1の吸着姿勢は、正極リード8及び負極リード9が形成された端辺(B)が上向きになっているものとする。即ち、端辺(A)側から紫外線硬化樹脂を塗着する手順となる。端辺(A)側から紫外線硬化樹脂を塗着するので、進退駆動手段41はベース39をガイドレール38上で進退駆動させ、ベース39上にある容器29内の含浸体(溶融樹脂溜まり)30の切欠部31が形成されていない部位が保持プレート33に保持されたポリマー電池1の直下に位置するように進退移動させる。
【0033】
次に、昇降駆動手段40により容器29を所定高さ位置まで上昇させると、含浸体30がポリマー電池1の端辺(A)に当接し、端辺(A)が弾性を有する含浸体30内に進出するので、含浸している紫外線硬化樹脂が端辺(A)に塗着される。この容器29の上昇高さ位置により端辺(A)に紫外線硬化樹脂を塗着する塗着高さb(図1(b)参照)を設定することができる。また、端辺(A)に対する押圧力は、外装体14を変形させることがないように上昇速度及び含浸体30の硬さが選定され、0.08MPaを上限としている。
【0034】
端辺(A)に対して紫外線硬化樹脂を塗着した後、昇降駆動手段40を下降方向に駆動させて容器29を下降させ、電池回転手段32は保持プレート33を回動させてポリマー電池1をその端辺(B)が下向きになるように回動させる。端辺(B)には正極リード8及び負極リード9が形成されているので、進退駆動手段41はベース39をガイドレール38上に進退移動させ、ベース39上にある容器29内の含浸体30の切欠部31が存在する部位がポリマー電池1の下に位置するように位置決めする。位置決め終了後、昇降駆動手段40により容器29を所定高さ位置まで上昇させると、端辺(B)に形成された正極リード8及び負極リード9は切欠部31内に収容され、端辺(B)は含浸体30に所定深さまで進出するので、端辺(B)には正極リード8及び負極リード9を除いて紫外線硬化樹脂が塗着される。
【0035】
容器29を上昇させて端辺(B)に紫外線硬化樹脂を塗着させた後、昇降駆動手段40は下降動作により容器29を下降させるので、回動駆動手段42はベース36を180度回動させてポリマー電池1を保持した保持プレート33を実線で示す塗工位置から破線で示す固化位置に移動させる。
【0036】
固化位置には紫外線照射部(樹脂固化手段)23が設けられており、出力調整可能な光源(紫外線照射手段)43から出射される紫外線はリフレクタ43で集光され、ポリマー電池1に照射される。尚、45は紫外線が所要外に照射されないように遮蔽する紫外線遮蔽板である。電池回転手段32は保持プレート33を回転させ、ポリマー電池1の端辺(A)(B)に紫外線が均等に照射されるようにして塗着された紫外線硬化樹脂を硬化させ、端辺(A)(B)に絶縁被覆2を形成する。前記光源43のピーク強度を調整し、暴露するエネルギー量を概算で800mj前後とすると、電池回転手段32によりポリマー電池1を15rpm前後で回転させると、約4秒間の暴露により塗着された紫外線硬化樹脂は硬化して絶縁被覆2に形成される。尚、光源43の電源制御はマニュアル設定としているが、必要に応じて制御部24により制御できるように構成することができる。
【0037】
ポリマー電池1に絶縁被覆2が形成された後、回動駆動手段42はベース36を180度回動駆動してポリマー電池1を保持した保持プレート33を塗工位置に戻すので、保持プレート33は真空吸着を解除し、図示しない移載装置にポリマー電池1は受け渡されて樹脂被覆2が形成されたポリマー電池100として装置外に搬出される。
【0038】
上記手順により1つのポリマー電池1に対する絶縁被覆2の形成工程が完了するので、移載装置により次に処理するポリマー電池1を搬入して上記工程手順を実施することにより、絶縁被覆2が形成されたポリマー電池100を自動生産することができる。この処理するポリマー電池1を切り換える搬出、搬入の間に、ディスペンサ26の電磁弁を作動させて容器29内に紫外線硬化樹脂が送給され、次の塗工に備える動作が実施される。
【0039】
以上説明したポリマー電池100の構成では、外装体14の端辺(A)(B)に絶縁被覆2を形成しているが、図3に示した絶縁被覆形成装置において、電池回転手段32によるポリマー電池1の回動を90度毎の回動制御とし、その都度進退駆動手段41及び昇降駆動手段40の動作を制御すると、ポリマー電池1の4辺全てに絶縁被覆2を形成することができる。また、紫外線硬化樹脂の粘度を調整することにより絶縁被覆2の塗工厚さaを任意に設定することができ、昇降駆動手段40による容器29の上昇高さ位置を調整することにより、絶縁被覆2に塗工高さbを変更することができる。
【0040】
【発明の効果】
以上の説明の通り本発明に係るポリマー電池の絶縁被覆形成方法は、金属箔の両面を樹脂フィルムにより被覆された長方形のラミネートシートの積層面と垂直な面に、金属箔が外部露出していても、ラミネートシートの積層面と垂直な面の全てに絶縁被覆を施して金属箔の露出部分被覆るので、金属箔に導体が接触することによる短絡等の発生が防止され、小型薄型化されて構成要素が密集配置される携帯電子機器などに適用するのに好適な電池が得られる。また、絶縁被覆は紫外線硬化樹脂をラミネートシート積層面と垂直な面全てに塗着させ、紫外線照射により固化させることにより得られるので、絶縁被覆形成により外装体に悪影響を与えることがない。また、絶縁被覆の形成は自動化が可能であり、人手を加えることなく効率よくポリマー電池を製造することができる。
【図面の簡単な説明】
【図1】実施形態に係るポリマー電池の構成を示す(a)は平面図、(b)は端辺の断面図。
【図2】同上ポリマー電池の絶縁被覆形成方法を示す説明図。
【図3】絶縁被覆形成装置の構成を示す(a)は全体構成図、(b)は塗工部の構成図。
【図4】ポリマー電池の構成を示す(a)は平面図、(b)は断面図、(c)は端辺の拡大断面図。
【図5】従来技術に係るポリマー電池の構成を示す(a)は平面図、(b)は端辺の拡大断面図。
【図6】従来技術に係る絶縁テープ貼着装置の構成を示す構成図。
【符号の説明】
1、100 ポリマー電池
2 絶縁被覆
14 外装体
15 アルミラミネートシート
16a、16b 樹脂フィルム
17 アルミニウム箔
21 塗工部(樹脂塗着手段)
23 紫外線照射部(樹脂固化手段)
26 ディスペンサ(樹脂供給手段)
30 含浸体(溶融樹脂溜まり)
32 電池回動手段
33 保持プレート(電池保持手段)
40 昇降駆動手段
41 進退駆動手段
42 回動駆動手段
43 光源(紫外線照射手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating coating formed how to apply the insulating coating of the laminate sheet and the outer material polymer battery and its exterior material.
[0002]
[Prior art]
Batteries generally use a liquid electrolyte, so the battery can consists of a plate group and an electrolyte so that the electrolyte does not leak outside or moisture does not flow from the outside. The power generation element is accommodated, and the opening of the battery can is sealed with a sealing plate using a sealing member such as a gasket. When a metal can is used as an exterior material, there is a limit to downsizing, thinning, and weight reduction, and as a battery power source for portable electronic devices that require reduction in size and weight, lithium polymer electrolyte secondary batteries that do not use a metal can Such polymer batteries have been developed. The polymer battery can use a gel electrolyte, so there is little risk of liquid leakage, and an aluminum laminate sheet with both sides of an aluminum foil covered with a resin film can be used as an exterior material instead of a battery can. It is effective for achieving reduction in weight and weight.
[0003]
As shown in FIG. 4, a polymer battery using an aluminum laminate sheet as an exterior material seals a power generation element in an exterior body 14 in which the periphery of a pair of aluminum laminate sheets 15 and 15 cut into a predetermined shape is thermally welded. Configured. The power generation element is composed of an electrode plate group 13 in which a positive electrode plate 10 and a negative electrode plate 12 are laminated via a separator 11, and a gel electrolyte, and the positive electrode lead 8 and the negative electrode plate 12 drawn from the positive electrode plate 10. The negative electrode lead 9 drawn out from is pulled out to the outside from the time when the pair of aluminum laminate sheets 15 and 15 are thermally welded.
[0004]
The aluminum laminate sheet 15 is obtained by laminating resin films 16a and 16b on both surfaces of an aluminum foil 17 serving as a base material, as shown in an enlarged view of an end portion thermally welded in FIG. In order to form, a pair of laminate sheets 15 and 15 are heat-welded around. The heat welding is performed by heating and melting the resin films 16b and 16b on the inner surface side of the pair of aluminum laminate sheets 15 and 15 and joining them.
[0005]
In the polymer battery 1 configured as described above, since the cut portion of the aluminum laminate sheet 15 exists on the edge of the outer package 14, the cut surface of the aluminum foil 17 is exposed to the outside as shown in FIG. There is a problem that a conductor contacts the aluminum foil 17 to cause a short circuit. In order to avoid contact with the exposed end of the aluminum foil 17, conventionally, as shown in FIG. 5, the end of the outer package 14 that may be in contact with the conductor is covered with an insulating tape 18. Yes.
[0006]
The insulating tape 18 is attached to the predetermined end side of the polymer battery 1 by a tape attaching apparatus as shown in FIG. The polymer battery 1 is fixed by a grip 56 to a battery fixing portion 51 mounted on the guide rail 58 disposed on the device base 55 so as to be movable in the K direction in the drawing, and the battery fixing portion 51 is manually moved in the K direction. When the apparatus is operated after being fixed at the tape attaching position, the insulating tape 18 is attached to the polymer battery 1 by the operation control by the control unit 60.
[0007]
The insulating tape 18 is drawn out from the tape cartridge 50, the tip thereof is gripped by an open / close chuck provided in the tape drawing head 54, and pulled out to a predetermined length by moving the tape drawing head 54 in the M direction in the figure. The controller 60 controls the drawing operation of the insulating tape 18 by the tape drawing head 54 and the rotation operation of the tape cartridge 50 in the direction I in the figure. When the drawing operation of the insulating tape 18 by the tape drawing head 54 is performed, the control unit Reference numeral 60 controls the drive of the actuator 59. Since the actuator 59 drives the tape adhering head 53 mounted on the guide rail 58 to advance in the L direction in the drawing, the insulating tape 18 is cut by the tape cutting blade 52 provided on the tape drawing head 54, and the tape adhering head. The insulating tape 18 drawn out by 54 is pressed against the edge of the polymer battery 1 fixed to the battery fixing part 51 with a predetermined pressure and is folded in two and stuck.
[0008]
[Problems to be solved by the invention]
However, in the sticking device of the insulating tape 18 to the polymer battery 1 according to the above-described prior art, the insulating tape 18 can be stuck only to a relatively linear part, and there are obstacles to corner parts and sticking. There was a problem that the part had to be relied on manually. For example, the insulating tape 18 cannot be attached to the end from which the positive electrode lead 8 and the negative electrode lead 9 shown in FIG. 5 are drawn out, and the positive electrode lead 8 and the negative electrode lead can be manually attached. Insulating tape 18 is dispersed and stuck around 9.
[0009]
Therefore, the structure and method and apparatus for attaching the insulating tape 18 to insulate the edges of the polymer battery 1 have poor workability, and there is a problem that man-hour increase and cost increase cannot be avoided.
[0010]
The purpose of the present invention is to sandwich the positive electrode lead and the negative electrode lead between two rectangular laminate sheets coated with a resin film on both sides of the metal foil so that the tips of the positive and negative leads protrude between the two laminate sheets, The surface perpendicular to the laminated surface of the two laminated sheets laminated is sealed, and an ultraviolet curable resin is applied to all surfaces perpendicular to the laminated surface of the laminated sheet , and the ultraviolet curing applied is applied. solidifying the resin to provide an insulating coating forming how the polymer battery to form an insulating coating.
[0011]
[Means for Solving the Problems]
To achieve the above object, an insulating coating forming method of this onset Ming polymer battery, both surfaces of the positive electrode lead and the negative electrode lead between the laminate sheet two rectangular coated with the resin film leading end of the two metal foils The laminate sheet is sandwiched so as to protrude from between the two laminated sheets, and a surface perpendicular to the laminated surface of the two laminated sheets is sealed, and UV curing is performed on all surfaces perpendicular to the laminated surface of the laminated sheets. A resin is applied , and the applied ultraviolet curable resin is solidified to form an insulating coating.
[0012]
According to the above configuration, the two ends of the metal foil are sandwiched between two rectangular laminate sheets covered with a resin film so that the leading ends of the positive electrode lead and the negative electrode lead protrude from between the two laminate sheets, and overlapped. Even if the cut edge of the metal foil is exposed on the surface perpendicular to the laminate surface of the laminate sheet by sealing the surface perpendicular to the laminate surface of the two laminate sheets, the surface perpendicular to the laminate surface of the laminate sheet Since the insulation coating is applied to all , the occurrence of a short circuit or the like due to the contact of the conductor with the metal foil is prevented. Insulating coating is formed by solidifying by coating wearing ultraviolet curing resin, since no heat is applied to the formation of the insulating coating, it is possible to form the insulating coating without thermally affecting the resin film layer of the laminate sheet .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0022]
FIG. 1 shows a configuration of a polymer battery 100 according to the embodiment, and an insulating coating 2 is formed on a predetermined end side of the polymer battery 1 shown in FIG. The insulating coating 2 is obtained by applying an ultraviolet curable resin to a predetermined end side and then curing the ultraviolet curable resin applied by ultraviolet irradiation to coat the predetermined end side with the resin.
[0023]
As described above, in the state of the polymer battery 1 in which the insulating coating 2 is not formed, the end sides of the exterior body 14 formed by thermally welding the periphery of the pair of aluminum laminate sheets 15 and 15 are shown in FIG. ), Since the cut surface of the aluminum foil 17 that is the core material of the aluminum laminate sheet 15 is exposed to the outside, a short circuit or the like may occur due to contact of the conductor with the aluminum foil 17. However, in the polymer battery 100 according to the present embodiment, the cut end of the aluminum foil 17 is covered with the insulating coating 2 as shown in FIG. Generation | occurrence | production of the short circuit by contact, etc. is prevented.
[0024]
In the present embodiment, the insulating coating 2 has an end on which contact with a conductor is likely to occur, that is, an end (B) from which the positive lead 8 and the negative lead 9 are drawn and an opposite end (A). However, the insulating coating 2 can be formed on all four sides. Further, according to the method for forming the insulating coating 2 according to the present embodiment, since the insulating coating 2 is also formed at the four corner portions of the exterior body 14, the insulation of the corner portion that is most likely to come into contact with the conductor is enhanced. It is done.
[0025]
As shown in FIG. 2 (a), an insulating coating forming method in which an insulating coating 2 is formed on an arbitrary edge of the polymer battery 1 to form a polymer battery 100 includes a polymer battery 1 in a molten resin reservoir 3 in which an ultraviolet curable resin is stored. One end side (A) is immersed to attach an ultraviolet curable resin to the end side (A), the polymer battery 1 is inverted, and the other end (B) is immersed in the molten resin reservoir 3 to end the end side. (B) is coated with an ultraviolet curable resin. Since the positive electrode lead 8 and the negative electrode lead 9 protrude from the end side (B), when the molten resin is applied to the end side (B), the positive electrode lead 8 is inserted into the lead relief hole 3 a provided in the molten resin reservoir 3. Then, the negative electrode lead 9 is accommodated and an ultraviolet curable resin is applied to the end side (B). When the insulating coating 2 is formed on the other sides other than the end sides (A) and (B), the end side where the insulating coating 2 is to be formed is directed to the molten resin reservoir 3 side, and the ultraviolet curable resin is applied in the same manner. be able to.
[0026]
As shown in FIG. 2 (b), the polymer battery 1 in which the ends A and B are coated with an ultraviolet curable resin is rotated in an environment irradiated with ultraviolet rays from the ultraviolet light source 4 to cure the ultraviolet curable resin. An insulating coating 2 is formed on the end sides (A) and (B). As shown in FIG. 1B, the thickness a of the insulating resin 2 formed on the end side is determined by the viscosity of the ultraviolet curable resin and the environmental temperature, but is 20 to 40 μm here. The formation height b can be arbitrarily selected depending on the amount of advance of the molten resin reservoir 3, but is set to 2 to 3 mm here.
[0027]
An insulating coating forming apparatus for realizing the insulating coating forming method will be described below with reference to FIG.
[0028]
In FIG. 3A, a base 36 that is rotationally driven by a rotational driving means 42 is disposed above the gantry 37, and the battery rotating means 32 is fixed on the base 36. The battery rotating means 32 holds the polymer battery 1 by vacuum suction with a holding plate (battery holding means) 33, and rotates the holding plate 33 to rotate and move an arbitrary end of the polymer battery 1 in a predetermined direction. The battery rotating means 32 holding the polymer battery 1 is controlled to move from the coating position indicated by the solid line to the solidified position indicated by the broken line at a predetermined timing by the base 36 being rotated by the rotation driving means 42. Is done.
[0029]
Further, a base 39 provided with a lift drive means 40 is mounted on a guide rail 38 disposed in the X-axis direction in the figure below the gantry 37, and the guide rail 38 is moved in the X-axis direction by an advancing / retreating drive means 41. Move forward and backward. A container 29 constituting a coating portion (resin coating means) 21 is fixed to the lift shaft of the lift drive means 40, and the container 29 is moved up and down in the Y-axis direction by the lift drive means 40.
[0030]
As shown in the state viewed from the X-axis direction in FIG. 3B, the coating unit 21 contains a porous and elastic impregnated body 30 in a container 29, and a dispenser (molten resin) is contained in the container 29. A predetermined amount (for example, 5 cc) of ultraviolet curable resin is periodically discharged from the supply means) 26 through the supply pipe 27. The ultraviolet curable resin supplied into the container 29 is always in a state where a certain amount of the impregnated body 30 is impregnated. The impregnated body 30 is formed with two notches 31, 31 having a width of approximately ½ in the X-axis direction. The positions of the notches 31 are the formation of the positive electrode lead 8 and the negative electrode lead 9 provided in the polymer battery 1. Corresponds to the position. The dispenser 26 communicates with the tank 25 through a pipe 38, and a predetermined pressure (for example, 0.3 MPa) is applied to the tank 25 to which a certain amount of ultraviolet curable resin is supplied from the outside through the supply pipe 28. Thus, the dispenser 26 can feed a certain amount of ultraviolet curable resin into the container 29 by opening and closing the electromagnetic valve provided therein.
[0031]
The operation of the battery rotation means 32, the rotation drive means 42, the elevation drive means 40, the advance / retreat drive means 41 and the dispenser 26 in the above configuration is controlled by the control unit 24. The procedure of operation control by the control unit 24 will be described below.
[0032]
When the polymer battery 1 is carried into the apparatus by a transfer device (not shown) and the polymer battery 1 is brought into contact with the holding plate 33, the holding plate 33 sucks and holds the polymer battery 1 on its flat surface by vacuum suction. The adsorption posture of the polymer battery 1 at this time is such that the end (B) where the positive electrode lead 8 and the negative electrode lead 9 are formed is upward. That is, the procedure is to apply the ultraviolet curable resin from the end (A) side. Since the ultraviolet curable resin is applied from the end (A) side, the advancing / retreating drive means 41 drives the base 39 to advance / retreat on the guide rail 38, and the impregnated body (molten resin pool) 30 in the container 29 on the base 39. The portion where the notch 31 is not formed is moved forward and backward so that it is located immediately below the polymer battery 1 held by the holding plate 33.
[0033]
Next, when the container 29 is raised to a predetermined height position by the elevation drive means 40, the impregnated body 30 comes into contact with the end side (A) of the polymer battery 1, and the end side (A) has elasticity inside the impregnated body 30. Therefore, the impregnated ultraviolet curable resin is applied to the edge (A). The coating height b (see FIG. 1B) at which the ultraviolet curable resin is applied to the edge (A) can be set by the rising height position of the container 29. In addition, the pressing force against the edge (A) is selected so that the rising speed and the hardness of the impregnated body 30 are not deformed, and the upper limit is 0.08 MPa.
[0034]
After the ultraviolet curable resin is applied to the end (A), the raising / lowering driving means 40 is driven in the downward direction to lower the container 29, and the battery rotating means 32 rotates the holding plate 33 to rotate the polymer battery 1. Is rotated so that its end (B) faces downward. Since the positive electrode lead 8 and the negative electrode lead 9 are formed on the end side (B), the advance / retreat driving means 41 moves the base 39 forward and backward on the guide rail 38, and the impregnated body 30 in the container 29 on the base 39. The part where the notch 31 is located is positioned below the polymer battery 1. After the positioning is completed, when the container 29 is raised to a predetermined height position by the elevation driving means 40, the positive electrode lead 8 and the negative electrode lead 9 formed on the end side (B) are accommodated in the notch 31 and the end side (B ) Advances to the impregnated body 30 to a predetermined depth, and an ultraviolet curable resin is applied to the edge (B) except for the positive electrode lead 8 and the negative electrode lead 9.
[0035]
After the container 29 is lifted and the UV curable resin is applied to the end (B), the lift drive means 40 lowers the container 29 by the lowering operation, so the rotation drive means 42 rotates the base 36 by 180 degrees. The holding plate 33 holding the polymer battery 1 is moved from the coating position indicated by the solid line to the solidification position indicated by the broken line.
[0036]
An ultraviolet irradiation unit (resin solidification unit) 23 is provided at the solidification position, and ultraviolet rays emitted from a light source (ultraviolet irradiation unit) 43 whose output can be adjusted are condensed by the reflector 43 and irradiated to the polymer battery 1. . Reference numeral 45 denotes an ultraviolet shielding plate that shields ultraviolet rays from being irradiated unnecessarily. The battery rotating means 32 rotates the holding plate 33 to cure the ultraviolet curable resin applied so that the ultraviolet rays are evenly applied to the edges (A) and (B) of the polymer battery 1, and the edges (A ) Insulation coating 2 is formed on (B). When the peak intensity of the light source 43 is adjusted and the amount of energy to be exposed is approximately 800 mj, when the polymer battery 1 is rotated at approximately 15 rpm by the battery rotating means 32, the ultraviolet curing applied by the exposure for about 4 seconds. The resin is cured and formed on the insulating coating 2. The power supply control of the light source 43 is set manually, but can be configured to be controlled by the control unit 24 as necessary.
[0037]
After the insulating coating 2 is formed on the polymer battery 1, the rotation driving means 42 rotates the base 36 by 180 degrees to return the holding plate 33 holding the polymer battery 1 to the coating position. The vacuum adsorption is released, and the polymer battery 1 is transferred to a transfer device (not shown) and carried out of the device as a polymer battery 100 having a resin coating 2 formed thereon.
[0038]
Since the process of forming the insulation coating 2 for one polymer battery 1 is completed by the above procedure, the insulation coating 2 is formed by carrying in the process procedure by carrying in the polymer battery 1 to be processed next by the transfer device. The polymer battery 100 can be automatically produced. During carry-out and carry-in of switching the polymer battery 1 to be processed, the electromagnetic valve of the dispenser 26 is operated to feed the ultraviolet curable resin into the container 29, and the operation for the next coating is performed.
[0039]
In the configuration of the polymer battery 100 described above, the insulating coating 2 is formed on the edges (A) and (B) of the exterior body 14, but in the insulating coating forming apparatus shown in FIG. If the rotation of the battery 1 is controlled to be rotated every 90 degrees, and the operations of the advance / retreat drive means 41 and the elevating drive means 40 are controlled each time, the insulating coating 2 can be formed on all four sides of the polymer battery 1. Further, the coating thickness a of the insulating coating 2 can be arbitrarily set by adjusting the viscosity of the ultraviolet curable resin, and the insulating coating can be adjusted by adjusting the rising height position of the container 29 by the lifting drive means 40. The coating height b can be changed to 2.
[0040]
【The invention's effect】
As the insulating coating forming method of a polymer battery according to the present invention the above description, the both sides of the metal foil lamination plane perpendicular the plane of the rectangular laminate sheet coated with a resin film, a metal foil is exposed external can have, is prevented Runode to cover the exposed portion of the metal foil by applying an insulating coating on all the lamination plane perpendicular the plane of the laminate sheet, occurrence of short circuit caused by a conductor comes into contact with the metal foil, a thin, compact Thus, a battery suitable for application to a portable electronic device or the like in which the components are densely arranged can be obtained. Further, since the insulating coating is obtained by applying an ultraviolet curable resin to all surfaces perpendicular to the laminate sheet lamination surface and solidifying by ultraviolet irradiation, the insulating coating is not adversely affected. Further, the formation of the insulating coating can be automated, and a polymer battery can be efficiently manufactured without adding manpower.
[Brief description of the drawings]
FIG. 1A is a plan view showing a configuration of a polymer battery according to an embodiment, and FIG.
FIG. 2 is an explanatory view showing a method for forming an insulating coating of the polymer battery.
FIGS. 3A and 3B are diagrams showing the configuration of an insulation coating forming apparatus, and FIG. 3B is a configuration diagram of a coating unit.
4A is a plan view showing a configuration of a polymer battery, FIG. 4B is a cross-sectional view, and FIG. 4C is an enlarged cross-sectional view of an end side;
5A is a plan view showing the configuration of a polymer battery according to the prior art, and FIG. 5B is an enlarged cross-sectional view of an end side.
FIG. 6 is a configuration diagram showing a configuration of an insulating tape attaching apparatus according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,100 Polymer battery 2 Insulation coating 14 Exterior body 15 Aluminum laminate sheet 16a, 16b Resin film 17 Aluminum foil 21 Coating part (resin coating means)
23 UV irradiation part (resin solidification means)
26 Dispenser (resin supply means)
30 Impregnated body (molten resin pool)
32 battery rotating means 33 holding plate (battery holding means)
40 Lifting / lowering drive means 41 Advance / retreat drive means 42 Rotation drive means 43 Light source (ultraviolet irradiation means)

Claims (1)

金属箔の両面を樹脂フィルムで被覆された長方形のラミネートシート2つの間に正極リードおよび負極リードの先端が2つのラミネートシートの間から突出するように挟持し、
重ね合わせた前記2つのラミネートシートの積層面と垂直な面を封止し、
封止された前記ラミネートシートの積層面と垂直な面全てに紫外線硬化樹脂を塗着し、
塗着した前記紫外線硬化樹脂を固化させ絶縁被覆を形成することを特徴とするポリマー電池の絶縁被覆形成方法。
The metal foil is sandwiched between two rectangular laminate sheets coated with a resin film so that the tip of the positive electrode lead and the negative electrode lead protrudes between the two laminate sheets,
Sealing the surface perpendicular to the laminated surface of the two laminated sheets superimposed,
Apply UV curable resin to all surfaces perpendicular to the laminated surface of the sealed laminate sheet ,
A method of forming an insulating coating for a polymer battery, comprising solidifying the applied ultraviolet curable resin to form an insulating coating.
JP2002250204A 2002-08-29 2002-08-29 Method for forming insulation coating of polymer battery Expired - Fee Related JP4456801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250204A JP4456801B2 (en) 2002-08-29 2002-08-29 Method for forming insulation coating of polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250204A JP4456801B2 (en) 2002-08-29 2002-08-29 Method for forming insulation coating of polymer battery

Publications (2)

Publication Number Publication Date
JP2004087422A JP2004087422A (en) 2004-03-18
JP4456801B2 true JP4456801B2 (en) 2010-04-28

Family

ID=32057090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250204A Expired - Fee Related JP4456801B2 (en) 2002-08-29 2002-08-29 Method for forming insulation coating of polymer battery

Country Status (1)

Country Link
JP (1) JP4456801B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055714B2 (en) * 2005-04-27 2012-10-24 大日本印刷株式会社 Battery exterior structure
KR100880386B1 (en) 2005-06-03 2009-01-23 주식회사 엘지화학 Secondary Battery of Novel Structure and Battery Pack Having the Same
JP2008041494A (en) * 2006-08-08 2008-02-21 Densei Lambda Kk Battery cell and battery pack structure
JP2009087655A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Battery and its manufacturing method
US8875768B2 (en) * 2010-04-16 2014-11-04 Lg Chem, Ltd. Tape application machine for applying an electrically non-conductive tape to a battery cell
KR101229228B1 (en) 2010-12-20 2013-02-04 주식회사 엘지화학 Secondary Battery with Improved Moisture Barrier
US10347877B2 (en) * 2013-02-06 2019-07-09 Dai Nippon Printing Co., Ltd. Battery packaging material
KR101375398B1 (en) * 2013-06-13 2014-03-17 주식회사 엘지화학 Pouch type secondary battery having enhanced electrical insulation and wetting properties
KR101661562B1 (en) * 2013-06-18 2016-10-04 주식회사 엘지화학 a secondary battery sealing by sealant
KR101717154B1 (en) * 2013-12-27 2017-03-16 주식회사 엘지화학 Manufacturing Method of the Battery Cell Applied Curing Material and Manufacturing Device
JP6988114B2 (en) * 2016-06-16 2022-01-05 荒川化学工業株式会社 A sealing material composition for a lithium ion battery, a cured product thereof, and a lithium ion battery using the same.
WO2018049561A1 (en) * 2016-09-13 2018-03-22 东莞新能源科技有限公司 Battery
CN113097608A (en) * 2021-03-29 2021-07-09 珠海冠宇电池股份有限公司 Battery with a battery cell

Also Published As

Publication number Publication date
JP2004087422A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4456801B2 (en) Method for forming insulation coating of polymer battery
US10153520B2 (en) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
WO2015051700A1 (en) Adhesive pasting apparatus for lithium ion battery pole piece, adhesive pasting machine thereof and adhesive pasting method therefor
TW200946956A (en) Method of making an electrowetting device, apparatus for carrying out the method and electrowetting device
JP2009224310A (en) Hermetic sealing apparatus and hermetic sealing method using frit
EP1741004A1 (en) Electronic ink display device and manufacturing method thereof
JP6427909B2 (en) Separator joining device for electrical devices
WO2006059255A1 (en) Electronic ink display device and method for manufacturing the same
CN111129414A (en) Lithium ion battery core package, lithium ion battery and preparation method of lithium ion battery
WO2018049572A1 (en) Battery edge sealing structure and battery edge sealing method
JP5926083B2 (en) Transfer method and transfer device
CN102760858A (en) Bag-making and laminating machine and bag-making and laminating method
JP2003127233A (en) Method and equipment for sticking film
JP2013118112A (en) Adhesive application method and adhesive application apparatus
KR102157893B1 (en) Apparatus for removing battery tube
CN210142673U (en) Laminated battery and electronic device
JP5929135B2 (en) Adhesive application method and adhesive application device
WO2018198198A1 (en) Workpiece transport device and workpiece transport method
WO2009113640A1 (en) Solar cell module and method of manufacturing the same
JP2000223083A (en) Case forming method for polymer battery and case forming device
CN115124252B (en) Sealing and thinning method of fingerprint panel
JP2005322468A (en) Sealing method of organic electroluminescent element, and its sealing device
JPH06283265A (en) Electroluminescent lamp and manufacture thereof and equipment for manufacture thereof
CN110246707B (en) Dye-sensitized solar cell packaging equipment and method
JP6257855B1 (en) Joining member manufacturing apparatus, manufacturing method of joining member, and manufacturing method of coated material coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090529

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees