WO2009113640A1 - Solar cell module and method of manufacturing the same - Google Patents

Solar cell module and method of manufacturing the same Download PDF

Info

Publication number
WO2009113640A1
WO2009113640A1 PCT/JP2009/054808 JP2009054808W WO2009113640A1 WO 2009113640 A1 WO2009113640 A1 WO 2009113640A1 JP 2009054808 W JP2009054808 W JP 2009054808W WO 2009113640 A1 WO2009113640 A1 WO 2009113640A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
inner lead
bonding
cell element
fixing member
Prior art date
Application number
PCT/JP2009/054808
Other languages
French (fr)
Japanese (ja)
Inventor
達章 坂野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2010502882A priority Critical patent/JP5116836B2/en
Publication of WO2009113640A1 publication Critical patent/WO2009113640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • a solar cell module includes a translucent substrate, a solar cell string provided on the translucent substrate and electrically connected between solar cell elements with inner leads, and a back sheet provided on the solar cell string. It consists of
  • One of the causes that hinders the durability of the solar cell module is peeling of the junction between the solar cell element and the inner lead. When such peeling occurs, the contact area between the solar cell element and the inner lead decreases, the resistance loss at the junction increases, and the output of the solar cell module decreases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-295174
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2-295174
  • An object of the present invention is to provide a solar cell module excellent in durability in which peeling of an inner lead from a solar cell element is suppressed, and a manufacturing method thereof.
  • the solar cell module of the present invention includes a plurality of solar cell elements, an inner lead that is disposed so as to straddle adjacent solar cell elements, and electrically connects the adjacent solar cell elements, the inner lead, and the solar cell A solar cell string having a bonding material disposed so as to be interposed between the elements, a sealing material covering the solar cell string, the solar cell element bonding side of the inner lead, and the And a resin material having a coefficient of thermal expansion lower than that of the sealing material, which is disposed in a non-bonded region of the bonding material.
  • the solar cell module is a resin material that is provided on the solar cell element bonding side of the inner lead and has a lower coefficient of thermal expansion than the sealing material in the non-bonding region of the bonding material interposed between the inner lead and the solar cell element.
  • bonding protective resin material for example, the sealing material is prevented from entering a non-bonded region of the bonding material between the inner lead and the solar cell element.
  • FIG. 3 is a diagram showing a state of connection between a plurality of solar cell elements 1 by an inner lead 2.
  • 4 is an enlarged cross-sectional view of a portion where two solar cell elements 1 are adjacent to each other in the solar cell module 20.
  • FIG. It is a figure which shows the state in which only a part of non-joining area
  • 1 is an external perspective view of a manufacturing apparatus 100.
  • FIG. 4 is an exploded perspective view for explaining a state in which the solar cell element 1 and the inner lead 2 are held and fixed in the manufacturing apparatus 100.
  • FIG. 4 is an exploded perspective view for explaining a state in which the solar cell element 1 and the inner lead 2 are held and fixed in the manufacturing apparatus 100.
  • FIG. 6 is a cross-sectional view illustrating a second fixing member 106 in which an opening 112 is formed so as to have a taper 119 at the end on the side in contact with the solar cell element 1. It is a disassembled perspective view for demonstrating a mode that the solar cell element 1 and the inner lead 2 are hold
  • FIG. 4 is an exploded perspective view for explaining a state in which the solar cell element 1 and the inner lead 2 are held and fixed in the manufacturing apparatus 200.
  • FIG. It is sectional drawing which shows the state which hold
  • the solar cell module 20 is a solar cell string formed by connecting a plurality of planarly arranged solar cell elements 1 with inner leads 2 as shown in FIGS. 3 is encapsulated with a sealing material 4, and the encapsulated body is disposed between a translucent substrate 5 and a back sheet (back surface protective film) 6.
  • the solar cell element 1 of the present embodiment is a back contact type in which both an N electrode (negative electrode) 7a and a P electrode (positive electrode) 7b that are output extraction electrodes are provided on the non-light-receiving surface side (back surface side). (BC type) structure.
  • the solar cell element 1 for example, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a thin film solar cell, a solar cell in which a thin film amorphous silicon is formed on a crystalline silicon substrate, a CIGS solar cell, or a CdTe solar cell is used. It is done. Among these, single crystal silicon solar cells, polycrystalline silicon solar cells, thin film solar cells, or solar cells in which thin film amorphous silicon is formed on a crystalline silicon substrate are preferably used.
  • the thickness of the solar cell element 1 is, for example, about 150 ⁇ m to 250 ⁇ m.
  • the inner lead 2 for example, a low resistance wiring material such as copper or aluminum is used.
  • the surface of this low-resistance wiring material which is solder-coated with a thickness of about 20 ⁇ m to 70 ⁇ m by plating or dipping, may be cut into an appropriate length and used.
  • the substantially straight inner lead 2 is illustrated, but a bent portion or a cutout portion is provided so that a portion other than the joint portion with the solar cell element 1 does not come into contact with the solar cell element 1.
  • the inner lead 2 may be used.
  • the size of the inner lead 2 is not particularly limited.
  • the inner lead 2 has a width of about 1 mm to 3 mm, a thickness of about 0.1 mm to 0.3 mm, and a length. Is about 250 mm to 300 mm.
  • the inner lead 2 is disposed so as to straddle the boundary between adjacent solar cell elements 1 and electrically connects the adjacent solar cell elements 1. Specifically, it is joined to an electrode disposed on the solar cell element 1.
  • the N electrode 7a of one solar cell element 1a and the P electrode 7b of the solar cell element 1b adjacent to the solar cell element 1a are arranged on a straight line, and these N electrodes A substantially linear inner lead 2 is arranged and connected to 7a and P electrode 7b. What is necessary is just to set suitably the electrode pattern in the solar cell element 1 according to arrangement
  • thermosetting resin such as an ethylene vinyl acetate copolymer (EVA).
  • EVA ethylene vinyl acetate copolymer
  • acrylic resin, silicone resin, epoxy resin, EEA (ethylene-ethyl acrylate copolymer) and the like can be used.
  • the joint portion 9 between the solar cell element 1 and the inner lead 2 joins the solar cell element 1, specifically, an electrode disposed on the solar cell element 1 and the inner lead 2. Connected by a material 8.
  • the bonding material 8 is disposed so as to be interposed between the inner lead 2 and the solar cell element 1.
  • solder for example, eutectic solder, lead-free solder
  • the inner lead 2 having a bent portion is used.
  • the bonding region of the bonding material used in the present specification is specifically a region where the solar cell element and the inner lead are bonded by the bonding material, and the non-bonding region of the bonding material is a solar cell. This is a region where the element and the inner lead are not joined by a joining material.
  • the solar cell module 20 is further provided on the solar cell element bonding side of the inner lead 2 and in the non-bonding region 10 of the bonding material 8 (hereinafter simply referred to as the non-bonding region 10).
  • the bonding protection resin material 11 having a lower thermal expansion coefficient than that is disposed.
  • This bonding protective resin material 11 is for suppressing the sealing material 4 from entering the non-bonded region 10 of the bonding material 8 between the solar cell element 1 and the inner lead 2. Therefore, it is preferable that the bonding protection resin material 11 is disposed at least between the inner lead 2 and the solar cell element 1.
  • the bonding protection resin material 11 suppresses the entry of the non-bonding region 10 of the sealing material 4 in this manner, whereby the sealing material 4 that has entered the non-bonding region 10 is obtained. Peeling of the inner lead 2 from the solar cell element 1 that can be caused by repeated thermal expansion and contraction is suppressed.
  • EVA polyimide resin, PEEK (polyether ether ketone) resin
  • a UV curable resin it is cured by irradiating the discharged uncured bonding protection resin material 11 with ultraviolet rays for several seconds to several tens of seconds, so that high production efficiency is obtained.
  • a thermosetting resin can be used as the bonding protection resin material 11.
  • the sealing material 4 tends to enter especially in the place near the side edge part 1e of the solar cell element 1, it is especially preferable to block
  • FIG. 3 the case where the whole non-joining area
  • FIG. 4 illustrates a case where only a part of the non-bonding region 10 is blocked by the bonding protection resin material 11 and a gap 12 exists between the bonding material 8 and the bonding protection resin material 11. Even in the case shown in FIG. 4, the penetration of the sealing material into the non-bonding region 10 is sufficiently suppressed.
  • the side edge part 1e of a solar cell element means the side part or edge part in the main surface of a solar cell element.
  • the bonding protective resin material 11 is on the inner lead (on the solar cell element bonding side) and is adjacent to the boundary portion of the adjacent solar cell elements 1. Are continuously disposed between the bonding regions. Thereby, when the sealing material 4 is filled, it is possible to effectively suppress the sealing material 4 from entering the non-joining regions 10 of the respective solar cell elements 1 along the inner leads 2. .
  • the bonding protective resin material 11 may contain a colorant.
  • the colorant include metal oxides such as titanium oxide and cobalt-based oxides, inorganic pigments such as metal powders, azo-based, phthalocyanine-based, and lake-based organic pigments.
  • the bonding protection resin material 11 when the bonding protection resin material 11 is continuously arranged on the inner lead 2, the bonding protection resin material 11 has a color similar to the color of the light receiving surface of the solar cell element 1. By including the coloring agent to be exhibited, the effect of suppressing the reflection of light of the inner lead 2 and improving the appearance of the solar cell module 20 is obtained.
  • the non-bonding region 10 between the solar cell element 1 and the inner lead 2 and not bonded by the bonding material 8 is heated more than the sealing material 4.
  • the bonding protective resin material 11 having a low expansion coefficient the sealing material 4 is prevented from entering the non-bonding region 10, so that the solar caused by the invasion of the sealing material 4 due to such thermal expansion and thermal contraction Peeling of the inner lead 2 from the battery element 1 (decrease in bonding area) is suitably suppressed.
  • a method for manufacturing the solar cell module 20 according to this embodiment will be described.
  • a plurality of solar cell elements 1 and inner leads 2 are abutted and fixed with a bonding material 8 interposed therebetween, and the bonding material 8 is heated and melted to heat the solar cell elements 1 and the inner leads 2.
  • the solar cell string 3 in which the solar cell element 1 and the inner lead are electrically connected is sandwiched between the translucent substrate 5 and the back sheet 6 in a state where the solar cell string 3 is sealed with the sealing material 4.
  • the step of integrating may be included.
  • a manufacturing apparatus 100 as shown in FIG. 5 is used for the fixing step, the joining step, and the attaching step.
  • the manufacturing apparatus 100 mainly includes a fixing unit 110 that performs the fixing step, a heating unit 120 that performs the bonding step, and an attachment unit 130 that performs the bonding step.
  • a fixing unit 110 that performs the fixing step
  • a heating unit 120 that performs the bonding step
  • an attachment unit 130 that performs the bonding step.
  • the solar cell element 1 and the inner lead 2 that are to be held and fixed in the manufacturing apparatus 100 are also collectively referred to as a holding object A.
  • the fixing means 110 mainly includes a first fixing member 111, a second fixing member 112, and a pressing plate 113.
  • Through holes 114 are formed in a row in the first fixing member 111, and a pressing bar 115 that is inserted through the through hole 114 is disposed on the pressing plate 113 corresponding to the through hole 114.
  • the second fixing member 112 is provided with an opening 116 used in the attaching process.
  • the first fixing member 111 supports the holding object A from below when the holding object A is sandwiched between the first fixing member 111 and the second fixing member 112.
  • Examples of the material of the first fixing member 111 include metals such as iron, stainless steel, and aluminum, light metals, and ceramic plates.
  • the inner lead 2 having a cross-sectional view as shown in FIG. 7 is used for the purpose of alleviating the thermal stress generated between the back electrode (N electrode 7a and P electrode 7b) of the solar cell element 1.
  • the cross-sectional shape of the sandwiching surface 111a of the first fixing member 111 is preferably wavy.
  • the first fixing member 111 may be provided with a guide 111g for guiding the second fixing member 112 in the vicinity of the four end portions of the holding surface 111a that holds the holding object A, for example.
  • the through hole 114 formed from the clamping surface 111 a of the first fixing member 111 to the opposite surface is a hole for inserting the pressing rod 115 disposed on the pressing plate 113. It is formed corresponding to the arrangement position.
  • the through holes 115 are also arranged in a straight line so as to correspond to the straight inner leads 2. The arrangement of the through-holes 115 can be used for positioning the inner lead 2 at the time of joining.
  • the presser bar 115 is to support the inner lead 2.
  • the presser bar 115 preferably includes a spring. The inner lead 2 is pressed against the solar cell element 1 with an appropriate force by the spring.
  • the second fixing member 112 is a member disposed above the holding object A.
  • the second fixing member 112 is made of a material that can efficiently apply heat generated by the heating means 120 to the bonding material 8.
  • a material having high thermal conductivity such as aluminum
  • a material having high light transmittance such as glass can be used depending on the configuration of the heating unit 120.
  • the second fixing member 112 is made of a glass material such as soda lime glass, borosilicate glass, and quartz glass that efficiently transmits infrared rays. Is preferred.
  • the second fixing member 112 When the self-weight of the second fixing member 112 is used for fixing the holding object A with the first fixing member 111, the second fixing member has a weight that does not cause cracks in the solar cell element 1. It is preferable to use the member 112.
  • the second fixing member 112 having a thickness such that stress applied to the solar cell element 1 is 0.75g / cm 2 ⁇ 2.5g / cm 2 is used.
  • the 2nd fixing member 112 may be lighter than the above-mentioned requirement in the range which a position shift does not produce.
  • the second fixing member 112 is provided with an opening 116 as shown in FIGS.
  • the opening 116 is in the vicinity of the side end portion 1e of the adjacent solar cell elements 1 (that is, the bonding protection resin). It is provided at a location where the adhesion target portion of the material 11 is located.
  • the opening 116 is provided in order to perform the adhesion treatment of the bonding protection resin material 11 to the non-bonding region 10 between the solar cell element 1 and the inner lead 2.
  • the opening 116 Since the opening 116 is provided, a part of the holding object A is exposed even when the holding object A is sandwiched between the first fixing member 111 and the second fixing member 112. A cooling effect can be obtained in which the object A is cooled by being in contact with the surrounding atmosphere. For example, when the ambient temperature is lower than the temperature of the exposed portion of the holding object A from the opening 116, the solar cell element 1 and the inner lead 2 are joined by heating and melting the joining material 8. Residual stress accompanying thermal expansion / contraction of the inner lead 2 can be reduced. Note that, for the purpose of enhancing the cooling effect, the opening 116 may be provided at a location other than the location where the adhesion target portion of the bonding protection resin material 11 is exposed. In such a case, since the time required for heat dissipation after heating is shortened, the production efficiency of the solar cell module 20 is improved.
  • FIGS. 5 and 6 illustrate a case where the opening 116 has a simple cylindrical shape.
  • it may be an opening 116 having a taper 117 as shown in FIG. In this case, the shearing force applied to the solar cell element 1 around the opening 116 is reduced. Note that the stress applied to the solar cell element 1 may be adjusted depending on the size and shape of the opening 116 of the second fixing member 112.
  • the material of the pressing plate 113 for example, a metal such as iron, stainless steel, or aluminum, a light metal, a ceramic plate, or the like is used.
  • the manufacturing apparatus 100 in order to hold and fix the solar cell element 1 that is the holding object A and the inner lead 2, first, between the solar cell element 1 and the inner lead 2, The bonding material 8 before melting is interposed in advance at a bonding target position (position to be a bonding region).
  • a bonding target position position to be a bonding region
  • the solder previously coated on the inner lead 2 may be used, or a solder paste may be newly applied to the joining position of the inner lead 2.
  • the holding object A with the bonding material 8 interposed therebetween is placed on the first fixing member 111, and the second fixing member 112 is placed along the guide 111g from above to hold the holding object A. Hold A from above and below. Then, the sandwiched body thus obtained is placed on the pressing plate 113. After the holding body is placed on the pressing plate 113, the holding object A is held by the presser bar 116 and the second fixing member 112.
  • the heating means 120 is provided for the purpose of melting the bonding material 8 such as solder interposed between the solar cell element 1 and the inner lead 2. Thereby, the solar cell element 1 and the inner lead 2 are joined.
  • the heating unit 120 is provided so that the bonding material 8 can be heated and melted in a state where the holding object A is held by the pressing bar 115 of the pressing plate 113 and the second fixing member 112. As shown in FIG. 5, the heating means 120 is attached to an arm 141 that is movable in the horizontal direction by being guided by a rail 140.
  • the heating means 120 for example, an infrared irradiation device, an irradiation device (laser light source) for irradiating a laser beam such as a semiconductor laser or a YAG laser having a high energy density similar to infrared rays, a hot air applying device, and a sandwiching device provided with a temperature raising mechanism Examples thereof include devices. It is more preferable to increase production efficiency by using a plurality of heating means 108 in combination.
  • the heating means 120 may be mechanical. It is preferable to use an infrared irradiation device with a small load.
  • the second fixing member 112 is made of glass, it is preferable to use an infrared irradiation device that can irradiate near infrared rays that pass through the glass. Near-infrared irradiation has the effect of giving a high energy density to the object to be heated and raising the temperature of the object to be heated in a relatively short time. If performed, an improvement in processing speed and a reduction in power consumption are realized.
  • a near infrared light source a halogen lamp, a xenon lamp, or the like can be used.
  • the heating means 120 irradiates near infrared rays from above the second fixing member 112 toward the joining target position of the holding object A (toward the opening 116 provided on the joining target position).
  • the solar cell element 1 (strictly, its N electrode 7a and P electrode 7b) and the inner lead 2 are joined by heating and melting the bonding material 8 located on the back side of the solar cell element 1 through the fixing member 112.
  • the bonding material 8 can be heated and melted sequentially at a plurality of positions to be bonded, and the bonded portion between the solar cell element 1 and the inner lead 2 can be formed.
  • the formation of the joint portion between the solar cell element 1 and the inner lead 2 is performed in a state where the solar cell element 1 and the inner lead 2 are held and fixed in this way, Occurrence of misalignment of the joining position due to the difference is suppressed.
  • the exposed portion of the inner lead 2 is increased by enlarging the opening 116 of the second fixing member 112 so that the solar cell element 1 and the inner lead 2 are in direct contact with the hot air. It is preferable.
  • the shear due to the displacement of the sandwiching position is obtained by matching the sandwiching positions of the light receiving surface and the back surface by the sandwiching device. It is preferable to suppress the solar cell element 1 from being damaged by force.
  • the adhering unit 130 mainly includes a resin discharging unit 131, a camera 132, and a UV irradiation unit 133. As shown in FIG. 5, these components are attached to an arm 141 that is movable in the horizontal direction by being guided by a rail 140. Thereby, each component can be moved in the horizontal direction by being guided by the rail 140.
  • FIG. 5 shows a mode in which these components are attached to a common arm 141, but this is not essential, and a mode in which individual moving means are provided corresponding to each component. It may be.
  • Resin discharging means 131 is, for example, an inkjet head.
  • the resin discharge means 131 discharges the uncured bonding protection resin material 11 supplied from a resin supply unit (not shown) to the discharge target position of the holding target A held and fixed on the pressing plate 113.
  • the resin discharge means 131 is applied to the inner lead 2 exposed in the vicinity of the non-bonded region 10 at both ends of the solar cell element 1 or further in the opening 116 provided in the second fixing member 112. Ejects the bonding protection resin material 11 and attaches it.
  • the resin discharge means 131 discharges the bonding protection resin material 11 to the discharge target position in a non-contact state with the holding target A, almost no external force acts on the inner lead 2 during the discharge. That is, it is preferable that the resin discharge means 131 is constituted by an ink jet head in terms of preventing damage to the joint portion 9 between the solar cell element 1 and the inner lead 2.
  • the individual inner leads 2 used for connection are the same as shown in FIG. Since it is joined to the solar cell element 1 at the height position, the discharge target position of the resin discharge means 131 is also at a certain height position. Therefore, in the case of the present embodiment, the control in the height direction is simplified in spite of the fact that an inkjet head whose control in the height direction is complicated is generally used as the resin discharge means 131.
  • the camera 132 is used when specifying the discharge target position of the resin discharge means 131.
  • the position of the inner lead 2 is detected based on the captured image obtained by the camera 132, and the discharge position of the bonding protection resin material 11 from the resin discharge means 131 is determined according to the detection result, thereby protecting the bonding.
  • the resin material 11 can be attached to the non-bonding region 10 with high accuracy.
  • the UV irradiation means 133 irradiates the uncured bonding protection resin material 11 after being discharged from the resin discharge means 131 with ultraviolet light.
  • the UV irradiation means 133 is realized by, for example, a mercury lamp.
  • the discharged uncured bonding protective resin material is irradiated with ultraviolet rays from the UV irradiation means 133 for several seconds to several tens of seconds, the bonding protective resin material is cured, so that high production efficiency can be obtained.
  • the discharge position is determined by imaging with the camera 132 and shown in FIG.
  • the bonding protective resin material 11 is discharged from the resin discharge means 131 provided above the second fixing member 112 to the non-bonded region 10 in the opening 116 and the exposed portion of the inner lead 2. Thereby, the bonding protection resin material 11 can be attached to the non-bonding region 10 with high accuracy.
  • thermosetting resin material 11 when a thermosetting resin is used as the bonding protection resin material 11, a means for performing hot air drying after discharge may be appropriately provided.
  • the manufacturing apparatus 100 is used, and the solar cell element 1 and the inner lead 2 are held and fixed, and the bonding of the bonding material 8 by heat melting and the non-bonding region are maintained.
  • the bonding protective resin material 11 is attached to the substrate 10 using a single device.
  • the bonding process of the bonding protective resin material 11 is performed after the bonding process of the solar cell element and the inner lead by heating and melting the bonding material 8, the heated inner lead 2 is thermally expanded. By heat shrinking, the occurrence of cracks and peeling to the bonded protective resin material 11 is reduced.
  • the first fixing member 111 it is preferable to provide a mechanism for providing a predetermined pore (not shown) on the holding surface 111 a for holding the holding object A and generating a negative pressure through the pore.
  • a negative pressure is applied to the clamping surface 111a with the holding object A held between the first fixing member 111 and the second fixing member 112
  • the holding object A is attracted and fixed to the holding surface 111a. Thereby, the position shift of the holding object A is suppressed.
  • the first fixing member 111 it is preferable to provide an exhaust groove or an exhaust hole (not shown) that can vent outward from the holding surface 111a.
  • an exhaust groove or an exhaust hole (not shown) that can vent outward from the holding surface 111a.
  • the flux gas generated when the bonding material 8 previously interposed at the bonding target position is heated and melted can be discharged to the outside. Stain can be suppressed. This has the effect of reducing the defect rate.
  • a mechanism for sucking in the gas discharged from the exhaust groove or the exhaust hole described above may be provided outside the first fixing member 111.
  • the bonding material 8 or its surroundings in advance to a predetermined temperature before heating and melting the bonding material 8.
  • a preheating device into the pressing plate 113, the first fixing member 111, or the second fixing member 112.
  • the ambient temperature is low, a part of the heat applied to connect the solar cell element 1 and the inner lead 2 may be released to the surroundings. , Such defects are effectively suppressed.
  • a groove 117 into which the inner lead 2 can be fitted is formed in the first fixing member 111 shown in FIG.
  • the groove 117 is formed with a depth larger than the thickness of the inner lead 2.
  • a through hole 115 is provided from the bottom surface of the groove 117 to the opposite surface.
  • first fixing member 111 When such a first fixing member 111 is used, in joining the solar cell element 1 and the inner lead 2, the first fixing member 111 and the second fixing member in which the inner lead 2 is fitted in the groove 117.
  • the solar cell element 1 is sandwiched by 112. Even when the first fixing member 111 is used, when the sandwiching body is placed on the pressing plate 113, each pressing bar 115 is inserted into the corresponding through hole 114, and as shown in FIG.
  • the front end of the presser bar 115 protrudes from the clamping surface 111a.
  • the solar cell element 1 and the inner lead 2 are not in contact with each other before the sandwiched body is placed on the pressing plate 113, and the solar cell element 1 and the inner lead are not placed until the sandwiched body is placed on the pressing plate 113.
  • 2 makes contact with the solar cell element 1 and the inner lead 2, and the time for applying a pressing load to the solar cell element 1 and the inner lead 2 can be shortened, and an unnecessary load is applied to the solar cell element 1 and the inner lead 2 before the bonding process. Is suitably suppressed.
  • the upper surface of the second fixing member 112 is preferably provided with a light shielding property by applying a reflective paint or the like.
  • the solar cell element 1 which has an electrode on both surfaces of an element as 2nd Embodiment of this invention is demonstrated. More specifically, the solar cell element 1 according to the present embodiment has a light receiving surface electrode (not shown) on one surface and a back electrode (not shown) on the other surface. In such a case, in order to join the adjacent solar cell elements 1, it is necessary to connect one light receiving surface electrode and the other back surface electrode by the inner lead 2. In the case where the inner leads 2 are arranged in such a manner, it is preferable that the inner leads 2 have the same shape on both sides from the viewpoint of balancing the stress of the inner leads 2 with respect to the solar cell element 1 on both sides.
  • the shape of the inner lead 2 disposed on one side is linear
  • the shape of the inner lead 2 positioned on the other side is also linear (see FIGS. 11 and 12).
  • the other inner lead 2 is also waved so that the wave positions on both sides coincide. If it does in this way, since the stress from the inner lead 2 balances with both surfaces of the solar cell element 1, it is suppressed that deformation
  • the manufacturing apparatus 200 is used when the solar cell element 1 and the inner lead 2 are bonded and the bonding protective resin material 11 is adhered, similarly to the manufacturing apparatus 100. Similar to the manufacturing apparatus 100, the manufacturing apparatus 200 mainly includes a first fixing member 111, a second fixing member 112, and a pressing plate 113 as components for holding and fixing the holding object A. All of these are basically made of the same material as that of the first embodiment, but the structure differs depending on the difference in the structure of the solar cell element 1 to be joined.
  • a groove 117 into which the inner lead 2 can be fitted is formed at the same position as the thickness of the inner lead 2 at the position of the inner lead 2 on the clamping surface 111a.
  • a through hole 115 is provided from the bottom surface of the groove 117 to the opposite surface.
  • the pressing plate 113 is formed with a pressing bar 115 (first pressing bar 115a) corresponding to the arrangement position of the through hole 114.
  • the second fixing member 112 is provided with an opening 116 larger than that of the first embodiment so that the entire inner lead 2 located on the light receiving surface side of the solar cell element 1 is exposed.
  • the manufacturing apparatus 200 having such a configuration, when the solar cell element 1 that is the holding object A and the inner lead 2 are held and fixed, first, between the solar cell element 1 and the inner lead 2, A bonding material 8, for example, solder before melting (not shown) is interposed in advance at the position to be bonded, and then the holding object A is placed on the first fixing member 111, and the second from above is placed. The holding object A is sandwiched from above and below by placing the fixing member 112. Then, the sandwiched body thus obtained is placed on the pressing plate 113.
  • a bonding material 8 for example, solder before melting
  • the inner lead 2 may be pressed toward the solar cell element 1 from above through the opening 116 by the second pressing rod 115b.
  • the solar cell element 1 and the inner lead 2 are joined by heating and melting the joining material 8.
  • the heating means 108 similar to that in the first embodiment can be used.
  • the hot air application device can reduce the stress caused by the deformation by averaging the heat distribution during heating, or temporary heating (preheating) means for raising the temperature to a certain temperature in advance to increase production efficiency In combination with other heating means, it can be suitably used.
  • a process of attaching the joining protective resin material 11 is performed. Also in the present embodiment, this can be performed by the resin discharge means 131, the camera 132, and the UV irradiation means 133 as in the first embodiment.
  • the bonding protection resin material 11 is substantially discharged with the inner lead 2 exposed in the opening 116 as the discharge target position. Thereby, the effect similar to 1st Embodiment can be acquired.
  • the solar cell element 1 and the inner lead 2 in this embodiment are held and fixed by the short side of the opening 116 of the second fixing member 112 instead of the presser bar 115 b of the second embodiment.
  • a wire 150 passed from one end of the direction to the other end is used.
  • the wire 150 is made of, for example, stainless steel or brass.
  • the wire 150 is disposed upward by the thickness of the inner lead 2 from the position of the holding surface 112a of the second fixing member 112. As a result, the weight load of the second fixing member 112 is not concentrated on the inner lead 2 but distributed over the entire surface of the solar cell element 1.
  • the wire 150 having the spring property is fixed to the second fixing member 112 in a state where the wire 150 is curved downward, an appropriate load is applied from the wire 150 to the inner lead 2. Can be fixed.
  • the aesthetic influence can be reduced by setting the diameter of the wire 120 to a desired fineness.
  • the load applied to the solar cell element 1 can be more effectively dispersed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a solar cell module with excellent durability, in which detachment of the inner leads from the solar cell elements are inhibited, and a method of manufacturing the solar cell module. The solar cell module has: a solar cell string having a plurality of solar cell elements, inner leads that electrically connect adjacent solar cell elements and are arranged so as to straddle the bordering parts of the adjacent solar cell elements, and a binder that is arranged so as to be interposed between the inner leads and the solar cell elements; a sealant that covers the solar cell string; and a resinous material that has a lower rate of thermal expansion than the sealant, and is provided on the side where the inner leads bind the solar cell elements and arranged in the area of the non-binding area of the binder.

Description

太陽電池モジュールおよびその製造方法Solar cell module and manufacturing method thereof
 本発明は太陽電池モジュールおよびその製造方法に関する。 The present invention relates to a solar cell module and a manufacturing method thereof.
 近年、太陽電池の市場拡大に伴い、高温下、低温下などの種々の環境に耐え得る太陽電池モジュールが求められている。太陽電池モジュールは、一般に、透光性基板、透光性基板上に設けられる、太陽電池素子間をインナーリードで電気的に接続してなる太陽電池ストリング、および太陽電池ストリング上に設けられる裏面シートで構成されている。 In recent years, with the expansion of the solar cell market, solar cell modules that can withstand various environments such as high temperatures and low temperatures have been demanded. In general, a solar cell module includes a translucent substrate, a solar cell string provided on the translucent substrate and electrically connected between solar cell elements with inner leads, and a back sheet provided on the solar cell string. It consists of
 太陽電池モジュールの耐久性を阻害する原因の一つに、太陽電池素子とインナーリードとの接合部の剥離が挙げられる。このような剥離が生じると、太陽電池素子とインナーリードとの接触面積が減少し、接合部における抵抗損失が増大し、太陽電池モジュールの出力低下が引き起こされる。 One of the causes that hinders the durability of the solar cell module is peeling of the junction between the solar cell element and the inner lead. When such peeling occurs, the contact area between the solar cell element and the inner lead decreases, the resistance loss at the junction increases, and the output of the solar cell module decreases.
 このような課題を解決するために、例えば、特開平2-295174号公報(特許文献1)では、太陽電池素子間を接続するインナーリードに撓みを設けることにより、熱ストレスを吸収し、太陽電池素子からのインナーリードの剥離を抑制する技術が提案されている。 In order to solve such problems, for example, in Japanese Patent Application Laid-Open No. 2-295174 (Patent Document 1), the inner leads connecting the solar cell elements are bent to absorb heat stress, thereby A technique for suppressing peeling of the inner lead from the element has been proposed.
 本発明の目的は、太陽電池素子からのインナーリードの剥離が抑制された、耐久性に優れた太陽電池モジュール、およびその製造方法を提供することにある。 An object of the present invention is to provide a solar cell module excellent in durability in which peeling of an inner lead from a solar cell element is suppressed, and a manufacturing method thereof.
 本発明の太陽電池モジュールは、複数の太陽電池素子と、隣り合う太陽電池素子を跨ぐように配置され、前記隣り合う太陽電池素子を電気的に接続するインナーリードと、前記インナーリードと前記太陽電池素子との間に介在されるように配置される接合材と、を有する太陽電池ストリングと、前記太陽電池ストリングを覆う封止材と、前記インナーリードの太陽電池素子接合側に設けられ、かつ前記接合材の非接合領域に配置される、前記封止材よりも熱膨張率の低い樹脂材と、を有する。 The solar cell module of the present invention includes a plurality of solar cell elements, an inner lead that is disposed so as to straddle adjacent solar cell elements, and electrically connects the adjacent solar cell elements, the inner lead, and the solar cell A solar cell string having a bonding material disposed so as to be interposed between the elements, a sealing material covering the solar cell string, the solar cell element bonding side of the inner lead, and the And a resin material having a coefficient of thermal expansion lower than that of the sealing material, which is disposed in a non-bonded region of the bonding material.
 上記太陽電池モジュールは、インナーリードの太陽電池素子接合側に設けられ、インナーリードと太陽電池素子との間に介在される接合材の非接合領域に、封止材より熱膨張率が低い樹脂材(接合保護樹脂材)を配置することによって、例えば、インナーリードと太陽電池素子との間の接合材の非接合領域に封止材が入りこむことを抑制する。これにより、封止材が接合材の非接合領域に入り込んだ状態において、太陽電池モジュールを使用した場合に、封止材が熱膨張・熱収縮を繰り返すことによって生じる、太陽電池素子からのインナーリードの剥離が抑制される。すなわち、耐久性に優れた太陽電池モジュールが得られる。 The solar cell module is a resin material that is provided on the solar cell element bonding side of the inner lead and has a lower coefficient of thermal expansion than the sealing material in the non-bonding region of the bonding material interposed between the inner lead and the solar cell element. By disposing (bonding protective resin material), for example, the sealing material is prevented from entering a non-bonded region of the bonding material between the inner lead and the solar cell element. As a result, when the solar cell module is used in a state where the sealing material has entered the non-bonded region of the bonding material, the inner lead from the solar cell element is generated by the thermal expansion and thermal contraction of the sealing material. Is prevented from peeling. That is, a solar cell module having excellent durability can be obtained.
本発明の第1の実施の形態に係る太陽電池モジュール20の分解斜視図である。It is a disassembled perspective view of the solar cell module 20 which concerns on the 1st Embodiment of this invention. インナーリード2による複数の太陽電池素子1同士の接続の様子を示す図である。FIG. 3 is a diagram showing a state of connection between a plurality of solar cell elements 1 by an inner lead 2. 太陽電池モジュール20において2つの太陽電池素子1が隣り合う部分の拡大断面図である。4 is an enlarged cross-sectional view of a portion where two solar cell elements 1 are adjacent to each other in the solar cell module 20. FIG. 接合材の非接合領域10の一部のみが接合保護樹脂材11によって塞がれた状態を示す図である。It is a figure which shows the state in which only a part of non-joining area | region 10 of the joining material was block | closed by the joining protection resin material 11. 製造装置100の外観斜視図である。1 is an external perspective view of a manufacturing apparatus 100. FIG. 製造装置100において太陽電池素子1とインナーリード2とを保持固定する様子を説明するための分解斜視図である。4 is an exploded perspective view for explaining a state in which the solar cell element 1 and the inner lead 2 are held and fixed in the manufacturing apparatus 100. FIG. 太陽電池素子1とインナーリード2との接合を行う様子と接合保護樹脂材11の付着を行う様子とを示す断面図である。It is sectional drawing which shows a mode that the solar cell element 1 and the inner lead 2 are joined, and a mode that adhesion | attachment of the joining protection resin material 11 is performed. 太陽電池素子1と接触する側の端部にテーパー119を有するように開口部112が形成された第二の固定部材106を例示する断面図である。FIG. 6 is a cross-sectional view illustrating a second fixing member 106 in which an opening 112 is formed so as to have a taper 119 at the end on the side in contact with the solar cell element 1. 第1の実施の形態の変形例に係る、製造装置100において太陽電池素子1とインナーリード2とを保持固定する様子を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating a mode that the solar cell element 1 and the inner lead 2 are hold | maintained and fixed in the manufacturing apparatus 100 based on the modification of 1st Embodiment. 製造装置200の外観斜視図である。1 is an external perspective view of a manufacturing apparatus 200. FIG. 製造装置200において太陽電池素子1とインナーリード2とを保持固定する様子を説明するための分解斜視図である。4 is an exploded perspective view for explaining a state in which the solar cell element 1 and the inner lead 2 are held and fixed in the manufacturing apparatus 200. FIG. 第2の実施形態に係る、太陽電池素子1とインナーリード2とを保持固定した状態と、接合保護樹脂材11の付着を行う様子とを示す断面図である。It is sectional drawing which shows the state which hold | maintained the solar cell element 1 and the inner lead 2 based on 2nd Embodiment, and a mode that adhesion | attachment of the joining protection resin material 11 is performed. 第3の実施形態に係る、太陽電池素子1とインナーリード2とを保持固定した状態で接合保護樹脂材11の付着を行う様子を示す断面図である。It is sectional drawing which shows a mode that the adhesion | attachment protection resin material 11 adheres in the state which hold | maintained and fixed the solar cell element 1 and the inner lead 2 based on 3rd Embodiment.
  <第1の実施形態>
  ≪太陽電池モジュールの概略構成≫
 本発明の第1の実施形態に係る太陽電池モジュール20は、図1および図2に示すように、平面的に配置された複数の太陽電池素子1をインナーリード2で接続してなる太陽電池ストリング3を封止材4で封入し、この封入体を透光性基板5と裏面シート(裏面保護フィルム)6との間に配置されてなる。
<First Embodiment>
≪Schematic configuration of solar cell module≫
The solar cell module 20 according to the first embodiment of the present invention is a solar cell string formed by connecting a plurality of planarly arranged solar cell elements 1 with inner leads 2 as shown in FIGS. 3 is encapsulated with a sealing material 4, and the encapsulated body is disposed between a translucent substrate 5 and a back sheet (back surface protective film) 6.
 本実施形態の太陽電池素子1は、出力取出電極であるN電極(負電極)7aとP電極(正電極)7bとがともに非受光面側(裏面側)に設けられた、バックコンタクト型(BC型)の構造を有している。 The solar cell element 1 of the present embodiment is a back contact type in which both an N electrode (negative electrode) 7a and a P electrode (positive electrode) 7b that are output extraction electrodes are provided on the non-light-receiving surface side (back surface side). (BC type) structure.
 太陽電池素子1としては、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜太陽電池、結晶シリコン基板上に薄膜アモルファスシリコンを形成した太陽電池、CIGS太陽電池、あるいはCdTe太陽電池などが用いられる。これらの中でも、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜太陽電池、または結晶シリコン基板上に薄膜アモルファスシリコンを形成した太陽電池が好適に使用される。太陽電池素子1の厚さは、例えば150μm~250μm程度である。 As the solar cell element 1, for example, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a thin film solar cell, a solar cell in which a thin film amorphous silicon is formed on a crystalline silicon substrate, a CIGS solar cell, or a CdTe solar cell is used. It is done. Among these, single crystal silicon solar cells, polycrystalline silicon solar cells, thin film solar cells, or solar cells in which thin film amorphous silicon is formed on a crystalline silicon substrate are preferably used. The thickness of the solar cell element 1 is, for example, about 150 μm to 250 μm.
 インナーリード2としては、例えば銅やアルミニウムのような低抵抗配線材などが用いられる。この低抵抗配線材の表面に、メッキやディッピングにより20μm~70μm程度の厚みではんだコートしたものを、適当な長さに切断して用いてもよい。なお、図2においては、略直線状のインナーリード2を例示しているが、太陽電池素子1との接合部以外の部分が太陽電池素子1と接触しないように屈曲部や切欠き部を設けたインナーリード2を用いてもよい。係る屈曲部や切り欠き部を有するインナーリード2を用いた場合、太陽電池モジュール20を設置した状態において、温度変化により生じる、熱膨張・収縮による応力が緩和される。 As the inner lead 2, for example, a low resistance wiring material such as copper or aluminum is used. The surface of this low-resistance wiring material, which is solder-coated with a thickness of about 20 μm to 70 μm by plating or dipping, may be cut into an appropriate length and used. In FIG. 2, the substantially straight inner lead 2 is illustrated, but a bent portion or a cutout portion is provided so that a portion other than the joint portion with the solar cell element 1 does not come into contact with the solar cell element 1. The inner lead 2 may be used. When the inner lead 2 having such a bent portion or notch is used, stress due to thermal expansion / contraction caused by a temperature change is alleviated in a state where the solar cell module 20 is installed.
 インナーリード2の大きさは特に制限されない。例えば、一般的な150mm角程度の多結晶シリコン太陽電池を太陽電池素子1として使用する場合、インナーリード2は、幅が1mm~3mm程度、厚さが0.1mm~0.3mm程度、長さが250mm~300mm程度である。 The size of the inner lead 2 is not particularly limited. For example, when a general polycrystalline silicon solar cell of about 150 mm square is used as the solar cell element 1, the inner lead 2 has a width of about 1 mm to 3 mm, a thickness of about 0.1 mm to 0.3 mm, and a length. Is about 250 mm to 300 mm.
 インナーリード2は、隣り合う太陽電池素子1の境界部を跨ぐように配置され、隣り合う太陽電池素子1を電気的に接続する。具体的には、太陽電池素子1に配置される電極に接合される。例えば、図2においては、一方の太陽電池素子1aのN電極7aと、太陽電池素子1aと隣り合う太陽電池素子1bのP電極7bとを一直線上に位置するように配置し、これらのN電極7aおよびP電極7bに略直線状のインナーリード2を配置して接続される。太陽電池素子1における電極パターンは、太陽電池素子1の配置とインナーリード2の形状とに応じて適宜設定すればよい。 The inner lead 2 is disposed so as to straddle the boundary between adjacent solar cell elements 1 and electrically connects the adjacent solar cell elements 1. Specifically, it is joined to an electrode disposed on the solar cell element 1. For example, in FIG. 2, the N electrode 7a of one solar cell element 1a and the P electrode 7b of the solar cell element 1b adjacent to the solar cell element 1a are arranged on a straight line, and these N electrodes A substantially linear inner lead 2 is arranged and connected to 7a and P electrode 7b. What is necessary is just to set suitably the electrode pattern in the solar cell element 1 according to arrangement | positioning of the solar cell element 1, and the shape of the inner lead 2. FIG.
 封止材4として用いる樹脂としては、エチレン酢酸ビニル共重合体(EVA)などの透明な熱硬化性樹脂を用いるのが好適である。あるいは、熱可塑性樹脂に架橋剤を含有して熱硬化の特性を持たせた樹脂を用いてもよい。例えばアクリル樹脂、シリコーン樹脂、エポキシ樹脂やEEA(エチレン-アクリル酸エチル共重合体)などが利用可能である。 As the resin used as the sealing material 4, it is preferable to use a transparent thermosetting resin such as an ethylene vinyl acetate copolymer (EVA). Or you may use the resin which contained the crosslinking agent in the thermoplastic resin and gave the characteristic of thermosetting. For example, acrylic resin, silicone resin, epoxy resin, EEA (ethylene-ethyl acrylate copolymer) and the like can be used.
 図3に示すように、太陽電池素子1とインナーリード2との接合部9は、太陽電池素子1、具体的には、太陽電池素子1上に配置される電極とインナーリード2とを、接合材8により接続されている。このように、接合材8は、インナーリード2と太陽電池素子1との間に介在されるように配置されている。接合材8としては、はんだ(例えば、共晶はんだ、鉛フリーはんだ)などが好適に用いられる。なお、図3においては、屈曲部を有するインナーリード2が用いられている。なお、本明細書で用いる接合材の接合領域は、具体的には、太陽電池素子とインナーリードとが接合材により接合されている領域のことであり、接合材の非接合領域は、太陽電池素子とインナーリードとが接合材により接合されていない領域のことである。 As shown in FIG. 3, the joint portion 9 between the solar cell element 1 and the inner lead 2 joins the solar cell element 1, specifically, an electrode disposed on the solar cell element 1 and the inner lead 2. Connected by a material 8. Thus, the bonding material 8 is disposed so as to be interposed between the inner lead 2 and the solar cell element 1. As the bonding material 8, solder (for example, eutectic solder, lead-free solder) or the like is preferably used. In FIG. 3, the inner lead 2 having a bent portion is used. Note that the bonding region of the bonding material used in the present specification is specifically a region where the solar cell element and the inner lead are bonded by the bonding material, and the non-bonding region of the bonding material is a solar cell. This is a region where the element and the inner lead are not joined by a joining material.
 本実施形態に係る太陽電池モジュール20は、さらに、インナーリード2の太陽電池素子接合側であって、接合材8の非接合領域10(以下、単に非接合領域10という)に、封止材4よりも熱膨張率の低い接合保護樹脂材11が配置される。この接合保護樹脂材11は、封止材4が太陽電池素子1とインナーリード2との間の接合材8の非接合領域10に入り込むことを抑制するためである。したがって、接合保護樹脂材11は、少なくともインナーリード2と前記太陽電池素子1との間に配置されることが好ましい。封止材4が非接合領域10に入り込むことをさらに抑制する観点から、太陽電池素子1とインナーリード2との両方に接触するように接合保護樹脂材11を配置することが好ましい。これにより、非接合領域10は接合保護樹脂材11によって塞がれた状態となる。本実施形態に係る太陽電池モジュール20においては、このように接合保護樹脂材11が封止材4の非接合領域10の進入を抑制することにより、非接合領域10に侵入した封止材4が熱膨張・熱収縮を繰り返すことによって引き起こし得るインナーリード2の太陽電池素子1からの剥離が抑制される。例えば、封止材4としてEVAを用いる場合、接合保護樹脂材11としては、(ポリイミド樹脂、PEEK(ポリエーテルエーテルケトン)樹脂)などが用いられる。なお、接合保護樹脂材11としてUV硬化樹脂を用いる場合、吐出させた未硬化の接合保護樹脂材11に対し紫外線を数秒~数十秒間照射すれば硬化するので、高い生産効率が得られる。あるいは、接合保護樹脂材11として、熱硬化性樹脂を用いることもできる。 The solar cell module 20 according to the present embodiment is further provided on the solar cell element bonding side of the inner lead 2 and in the non-bonding region 10 of the bonding material 8 (hereinafter simply referred to as the non-bonding region 10). The bonding protection resin material 11 having a lower thermal expansion coefficient than that is disposed. This bonding protective resin material 11 is for suppressing the sealing material 4 from entering the non-bonded region 10 of the bonding material 8 between the solar cell element 1 and the inner lead 2. Therefore, it is preferable that the bonding protection resin material 11 is disposed at least between the inner lead 2 and the solar cell element 1. From the viewpoint of further suppressing the sealing material 4 from entering the non-bonding region 10, it is preferable to dispose the bonding protection resin material 11 so as to contact both the solar cell element 1 and the inner lead 2. Thereby, the non-joining area | region 10 will be in the state obstruct | occluded with the joining protection resin material 11. FIG. In the solar cell module 20 according to the present embodiment, the bonding protective resin material 11 suppresses the entry of the non-bonding region 10 of the sealing material 4 in this manner, whereby the sealing material 4 that has entered the non-bonding region 10 is obtained. Peeling of the inner lead 2 from the solar cell element 1 that can be caused by repeated thermal expansion and contraction is suppressed. For example, when EVA is used as the sealing material 4, (polyimide resin, PEEK (polyether ether ketone) resin) or the like is used as the bonding protection resin material 11. When a UV curable resin is used as the bonding protection resin material 11, it is cured by irradiating the discharged uncured bonding protection resin material 11 with ultraviolet rays for several seconds to several tens of seconds, so that high production efficiency is obtained. Alternatively, a thermosetting resin can be used as the bonding protection resin material 11.
 なお、非接合領域10においては、特に太陽電池素子1の側端部1eに近い場所ほど封止材4が入り込みやすいので、少なくともこの部分を接合保護樹脂材11にて塞ぐことが特に好ましい。図3においては、非接合領域10の全体が接合保護樹脂材11によって塞がれた場合を例示している。図4は、非接合領域10の一部のみが接合保護樹脂材11によって塞がれ、接合材8と接合保護樹脂材11との間に空隙12が存在する場合を例示している。図4に示す場合においても、非接合領域10への封止材の侵入は十分に抑制される。なお、太陽電池素子の側端部1eとは、太陽電池素子の主面における側部または端部のことをいう。 In addition, in the non-joining area | region 10, since the sealing material 4 tends to enter especially in the place near the side edge part 1e of the solar cell element 1, it is especially preferable to block | close this part with the joining protection resin material 11 at least. In FIG. 3, the case where the whole non-joining area | region 10 is obstruct | occluded with the joining protection resin material 11 is illustrated. FIG. 4 illustrates a case where only a part of the non-bonding region 10 is blocked by the bonding protection resin material 11 and a gap 12 exists between the bonding material 8 and the bonding protection resin material 11. Even in the case shown in FIG. 4, the penetration of the sealing material into the non-bonding region 10 is sufficiently suppressed. In addition, the side edge part 1e of a solar cell element means the side part or edge part in the main surface of a solar cell element.
 好ましくは、図3に示すように、接合保護樹脂材11は、インナーリード上(太陽電池素子接合側)であって、隣り合う太陽電池素子1の境界部近傍に形成される隣り合う接合材8の接合領域の間に、連続して配置される。これにより、封止材4が充填される際に、インナーリード2に沿ってそれぞれの太陽電池素子1の非接合領域10に封止材4が侵入することを、効果的に抑制することができる。 Preferably, as shown in FIG. 3, the bonding protective resin material 11 is on the inner lead (on the solar cell element bonding side) and is adjacent to the boundary portion of the adjacent solar cell elements 1. Are continuously disposed between the bonding regions. Thereby, when the sealing material 4 is filled, it is possible to effectively suppress the sealing material 4 from entering the non-joining regions 10 of the respective solar cell elements 1 along the inner leads 2. .
 さらに、接合保護樹脂材11は、着色剤を含んでもよい。着色剤として、酸化チタンやコバルト系酸化物などの金属酸化物や、金属粉などの無機顔料、アゾ系、フタロシアニン系、レーキ系の有機顔料などが挙げられる。特に、図3に示すように、接合保護樹脂材11をインナーリード2の上に連続させて配置する場合には、接合保護樹脂材11に太陽電池素子1の受光面の色と類似の色を呈する着色剤を含むようにすることにより、インナーリード2の光の反射を抑制し、太陽電池モジュール20の外観を向上させる効果が得られる。 Furthermore, the bonding protective resin material 11 may contain a colorant. Examples of the colorant include metal oxides such as titanium oxide and cobalt-based oxides, inorganic pigments such as metal powders, azo-based, phthalocyanine-based, and lake-based organic pigments. In particular, as shown in FIG. 3, when the bonding protection resin material 11 is continuously arranged on the inner lead 2, the bonding protection resin material 11 has a color similar to the color of the light receiving surface of the solar cell element 1. By including the coloring agent to be exhibited, the effect of suppressing the reflection of light of the inner lead 2 and improving the appearance of the solar cell module 20 is obtained.
 以上のように、本実施の形態によれば、太陽電池素子1とインナーリード2との間であって、接合材8による接合がなされていない非接合領域10に、封止材4よりも熱膨張率の低い接合保護樹脂材11を介在させることで、非接合領域10に封止材4が入り込むことを抑制するので、係る熱膨張や熱収縮による封止材4の侵入に起因した、太陽電池素子1からのインナーリード2の剥離(接合領域の減少)が好適に抑制される。 As described above, according to the present embodiment, the non-bonding region 10 between the solar cell element 1 and the inner lead 2 and not bonded by the bonding material 8 is heated more than the sealing material 4. By interposing the bonding protective resin material 11 having a low expansion coefficient, the sealing material 4 is prevented from entering the non-bonding region 10, so that the solar caused by the invasion of the sealing material 4 due to such thermal expansion and thermal contraction Peeling of the inner lead 2 from the battery element 1 (decrease in bonding area) is suitably suppressed.
  ≪太陽電池モジュールの製造方法≫
 次に、本実施形態に係る太陽電池モジュール20の製造方法について説明する。この製造方法は、複数の太陽電池素子1とインナーリード2とを接合材8を介した状態で当接固定させる工程と、接合材8を加熱溶融させることによって、太陽電池素子1とインナーリード2とを接合する工程と、インナーリードの太陽電池素子接合側であって、かつ前記接合材の非接合領域10に、前記封止材よりも熱膨張率の低い樹脂を付着させる工程と、を包含し、さらに太陽電池素子1とインナーリードとが電気的に接続された太陽電池ストリング3を封止材4により封止した状態で透光性基板5と裏面シート6との間で挟持しこれらを一体化させる工程を包含し得る。上記固定工程、上記接合工程、および上記付着工程については、図5に示すような製造装置100が用いられる。
≪Solar cell module manufacturing method≫
Next, a method for manufacturing the solar cell module 20 according to this embodiment will be described. In this manufacturing method, a plurality of solar cell elements 1 and inner leads 2 are abutted and fixed with a bonding material 8 interposed therebetween, and the bonding material 8 is heated and melted to heat the solar cell elements 1 and the inner leads 2. And a step of attaching a resin having a thermal expansion coefficient lower than that of the sealing material to the non-bonding region 10 of the bonding material on the solar cell element bonding side of the inner lead. Furthermore, the solar cell string 3 in which the solar cell element 1 and the inner lead are electrically connected is sandwiched between the translucent substrate 5 and the back sheet 6 in a state where the solar cell string 3 is sealed with the sealing material 4. The step of integrating may be included. For the fixing step, the joining step, and the attaching step, a manufacturing apparatus 100 as shown in FIG. 5 is used.
 製造装置100は、主に、上記固定工程を行う固定手段110と、上記接合工程を行う加熱手段120と、付着工程を行う付着手段130とから構成されている。なお、以降の説明において、製造装置100における保持固定の対象となる太陽電池素子1とインナーリード2とを併せて保持対象Aとも称する。 The manufacturing apparatus 100 mainly includes a fixing unit 110 that performs the fixing step, a heating unit 120 that performs the bonding step, and an attachment unit 130 that performs the bonding step. In the following description, the solar cell element 1 and the inner lead 2 that are to be held and fixed in the manufacturing apparatus 100 are also collectively referred to as a holding object A.
 固定手段110は、図5および図6に示すように、第一の固定部材111と、第二の固定部材112と、押圧プレート113とを主として備える。第一の固定部材111には、貫通孔114が列状に形成されており、押圧プレート113上には、貫通孔114を挿通するような押さえ棒115が貫通孔114に対応して配設されている。また、第二の固定部材112には、付着工程の際に用いられる開口部116が設けられている。 As shown in FIGS. 5 and 6, the fixing means 110 mainly includes a first fixing member 111, a second fixing member 112, and a pressing plate 113. Through holes 114 are formed in a row in the first fixing member 111, and a pressing bar 115 that is inserted through the through hole 114 is disposed on the pressing plate 113 corresponding to the through hole 114. ing. Further, the second fixing member 112 is provided with an opening 116 used in the attaching process.
 第一の固定部材111は、第二の固定部材112との間で保持対象Aを挟持する際に、保持対象Aを下方から支持する。第一の固定部材111の材料としては、例えば、鉄、ステンレス鋼、アルミニウムなどの金属、軽金属、セラミック板などが用いられる。 The first fixing member 111 supports the holding object A from below when the holding object A is sandwiched between the first fixing member 111 and the second fixing member 112. Examples of the material of the first fixing member 111 include metals such as iron, stainless steel, and aluminum, light metals, and ceramic plates.
 なお、太陽電池素子1の裏面電極(N電極7aおよびP電極7b)との間で生じる熱ストレスを緩和することを目的として、図7に示すような断面視波状のインナーリード2を用いる場合は、第一の固定部材111の挟持面111aの断面形状も、インナーリード2の断面形状は波状が好ましい。 When the inner lead 2 having a cross-sectional view as shown in FIG. 7 is used for the purpose of alleviating the thermal stress generated between the back electrode (N electrode 7a and P electrode 7b) of the solar cell element 1. As for the cross-sectional shape of the sandwiching surface 111a of the first fixing member 111, the cross-sectional shape of the inner lead 2 is preferably wavy.
 第一の固定部材111は、例えば、保持対象Aを挟持する挟持面111aの四方端部の近傍に、第二の固定部材112を案内するためのガイド111gを設けてもよい。 The first fixing member 111 may be provided with a guide 111g for guiding the second fixing member 112 in the vicinity of the four end portions of the holding surface 111a that holds the holding object A, for example.
 さらに、第一の固定部材111の挟持面111aからその反対面にかけて形成される貫通孔114は、押圧プレート113上に配設される押さえ棒115を挿通させるための孔であり、インナーリード2の配置位置に対応させて形成される。図6においては、直線状のインナーリード2に対応させて、貫通孔115も直線状に配列される。係る貫通孔115の配列は、接合の際のインナーリード2の位置決めに利用可能である。 Further, the through hole 114 formed from the clamping surface 111 a of the first fixing member 111 to the opposite surface is a hole for inserting the pressing rod 115 disposed on the pressing plate 113. It is formed corresponding to the arrangement position. In FIG. 6, the through holes 115 are also arranged in a straight line so as to correspond to the straight inner leads 2. The arrangement of the through-holes 115 can be used for positioning the inner lead 2 at the time of joining.
 第一の固定部材111が押圧プレート113の上に載置される際には、押さえ棒115が対応する貫通孔114に挿通されるとともに、図7に示すように、押さえ棒115の先端が挟持面111aから突出するようになっている。これにより、第一の固定部材111と第二の固定部材112とによって保持対象Aを挟持した挟持体が押圧プレート113の上に載置されると、第一の固定部材111に代わり、棒状部材である押さえ棒115がインナーリード2を支持するようになる。なお、押さえ棒115はバネを備えていることが好ましい。バネにより、インナーリード2が太陽電池素子1に向かって適切な力で押し付けられるようになる。 When the first fixing member 111 is placed on the pressing plate 113, the presser bar 115 is inserted into the corresponding through hole 114, and the tip of the presser bar 115 is clamped as shown in FIG. It protrudes from the surface 111a. Thereby, when the holding body which hold | maintained holding object A with the 1st fixing member 111 and the 2nd fixing member 112 is mounted on the press plate 113, it replaces with the 1st fixing member 111, and is a rod-shaped member. The presser bar 115 is to support the inner lead 2. The presser bar 115 preferably includes a spring. The inner lead 2 is pressed against the solar cell element 1 with an appropriate force by the spring.
 第二の固定部材112は、保持対象Aの上方に配置される部材である。第二の固定部材112は、加熱手段120において発生させた熱を接合材8へ効率よく与えることができる材料にて構成される。例えば、アルミニウムなどの熱伝導性の高い材料のほか、加熱手段120の構成によっては、ガラスなどの光透過性が高い材料も用いることができる。例えば、加熱手段120として赤外線照射装置を用いる場合であれば、赤外線を効率良く透過する部材、例えばソーダ石灰ガラス、ホウケイ酸ガラス及び石英ガラスなどのガラス材料で第二の固定部材112を構成することが好ましい。特に、表面に傷が生じて赤外線の透過率が低下することを抑制する観点からは、強化ガラスを用いるのが好ましい。 The second fixing member 112 is a member disposed above the holding object A. The second fixing member 112 is made of a material that can efficiently apply heat generated by the heating means 120 to the bonding material 8. For example, in addition to a material having high thermal conductivity such as aluminum, a material having high light transmittance such as glass can be used depending on the configuration of the heating unit 120. For example, if an infrared irradiation device is used as the heating means 120, the second fixing member 112 is made of a glass material such as soda lime glass, borosilicate glass, and quartz glass that efficiently transmits infrared rays. Is preferred. In particular, it is preferable to use tempered glass from the viewpoint of suppressing the occurrence of scratches on the surface and reducing the infrared transmittance.
 第二の固定部材112の自重を、第一の固定部材111との間で保持対象Aの固定に利用する場合には、太陽電池素子1にクラックなどを生じさせない重さを有する第二の固定部材112を用いるようにすることが好ましい。例えば、太陽電池素子1に加わる応力が0.75g/cm2~2.5g/cm2となるような厚みを有する第二の固定部材112が用いられる。なお、第二の固定部材112は、位置ずれが生じない範囲で上述の要件よりも軽くてもよい。 When the self-weight of the second fixing member 112 is used for fixing the holding object A with the first fixing member 111, the second fixing member has a weight that does not cause cracks in the solar cell element 1. It is preferable to use the member 112. For example, the second fixing member 112 having a thickness such that stress applied to the solar cell element 1 is 0.75g / cm 2 ~ 2.5g / cm 2 is used. In addition, the 2nd fixing member 112 may be lighter than the above-mentioned requirement in the range which a position shift does not produce.
 また、第二の固定部材112には、図5および図6に示すように、開口部116が設けられている。開口部116は、第一の固定部材111と第二の固定部材112との間で保持対象Aを挟持した際に、隣り合う太陽電池素子1の側端部1eの近傍(つまりは接合保護樹脂材11の付着対象部位)が位置する箇所に、設けられてなる。開口部116は、太陽電池素子1とインナーリード2との非接合領域10への接合保護樹脂材11の付着処理を行うために設けられる。 The second fixing member 112 is provided with an opening 116 as shown in FIGS. When the holding object A is sandwiched between the first fixing member 111 and the second fixing member 112, the opening 116 is in the vicinity of the side end portion 1e of the adjacent solar cell elements 1 (that is, the bonding protection resin). It is provided at a location where the adhesion target portion of the material 11 is located. The opening 116 is provided in order to perform the adhesion treatment of the bonding protection resin material 11 to the non-bonding region 10 between the solar cell element 1 and the inner lead 2.
 開口部116が設けられていることにより、第一の固定部材111と第二の固定部材112との間で保持対象Aを挟持している状態でも保持対象Aの一部が露出することから、保持対象Aが周囲の雰囲気に接することによって冷却される冷却効果を得ることができる。例えば、開口部116からの保持対象Aの露出部分の温度よりも雰囲気温度の方が低い場合には、接合材8を加熱溶融させることによって太陽電池素子1とインナーリード2とを接合する際にインナーリード2の熱膨張・収縮に伴って残留する応力を、低減することができる。なお、係る冷却効果を高めることを目的として、開口部116を接合保護樹脂材11の付着対象部位が露出する箇所以外にを設けてもよい。係る場合、加熱後の放熱に要する時間が短縮されるので、太陽電池モジュール20の生産効率が向上する。 Since the opening 116 is provided, a part of the holding object A is exposed even when the holding object A is sandwiched between the first fixing member 111 and the second fixing member 112. A cooling effect can be obtained in which the object A is cooled by being in contact with the surrounding atmosphere. For example, when the ambient temperature is lower than the temperature of the exposed portion of the holding object A from the opening 116, the solar cell element 1 and the inner lead 2 are joined by heating and melting the joining material 8. Residual stress accompanying thermal expansion / contraction of the inner lead 2 can be reduced. Note that, for the purpose of enhancing the cooling effect, the opening 116 may be provided at a location other than the location where the adhesion target portion of the bonding protection resin material 11 is exposed. In such a case, since the time required for heat dissipation after heating is shortened, the production efficiency of the solar cell module 20 is improved.
 なお、太陽電池素子1の挟持に支障が生じない限り、開口部116の形状および大きさは、特に限定されるものではない。例えば、図5および図6においては、開口部116が単純な円柱状を有する場合を例示している。 It should be noted that the shape and size of the opening 116 are not particularly limited as long as there is no problem in sandwiching the solar cell element 1. For example, FIGS. 5 and 6 illustrate a case where the opening 116 has a simple cylindrical shape.
 一方、図8に示すようにテーパー117を有する開口部116であってもよい。この場合、開口部116の周辺で太陽電池素子1に加わるせん断力が低減される。なお、第二の固定部材112の開口部116の大きさおよび形状によって、太陽電池素子1に加わる応力を調整するようにしてもよい。 On the other hand, it may be an opening 116 having a taper 117 as shown in FIG. In this case, the shearing force applied to the solar cell element 1 around the opening 116 is reduced. Note that the stress applied to the solar cell element 1 may be adjusted depending on the size and shape of the opening 116 of the second fixing member 112.
 押圧プレート113の材料としては、例えば、鉄、ステンレス鋼、アルミニウムなどの金属、軽金属、セラミック板などが用いられる。 As the material of the pressing plate 113, for example, a metal such as iron, stainless steel, or aluminum, a light metal, a ceramic plate, or the like is used.
 係る構成を有する製造装置100において、保持対象Aである太陽電池素子1とインナーリード2との保持固定を行うにあたっては、まず、太陽電池素子1とインナーリード2との間であって、両者の接合対象位置(接合領域となる位置)に、あらかじめ溶融前の接合材8を介在させる。これは、例えばインナーリード2に予め被覆されたはんだを用いてもよいし、あるいはインナーリード2の接合位置にはんだペーストを新たに塗布してもよい。なお、はんだ付けを良好にするため、太陽電池素子1の接合対象位置であるN電極7aおよびP電極7bに、あらかじめフラックスを塗布しておくようにしてもよい。そして、第一の固定部材111の上に接合材8を介在させた保持対象Aを載置し、その上からガイド111gに沿って第二の固定部材112を載置することによって、該保持対象Aを上下から挟持する。そして、これにより得られた挟持体を、押圧プレート113の上に載置する。挟持体が押圧プレート113の上に載置された後は、押さえ棒116と第二の固定部材112とによって保持対象Aが挟持される。 In the manufacturing apparatus 100 having such a configuration, in order to hold and fix the solar cell element 1 that is the holding object A and the inner lead 2, first, between the solar cell element 1 and the inner lead 2, The bonding material 8 before melting is interposed in advance at a bonding target position (position to be a bonding region). For example, the solder previously coated on the inner lead 2 may be used, or a solder paste may be newly applied to the joining position of the inner lead 2. In addition, in order to make soldering favorable, you may make it apply | coat a flux beforehand to the N electrode 7a and P electrode 7b which are the joining object positions of the solar cell element 1. FIG. Then, the holding object A with the bonding material 8 interposed therebetween is placed on the first fixing member 111, and the second fixing member 112 is placed along the guide 111g from above to hold the holding object A. Hold A from above and below. Then, the sandwiched body thus obtained is placed on the pressing plate 113. After the holding body is placed on the pressing plate 113, the holding object A is held by the presser bar 116 and the second fixing member 112.
 加熱手段120は、太陽電池素子1とインナーリード2との間に介在されるはんだなどの接合材8を溶融させる目的で設けられる。これによって、太陽電池素子1とインナーリード2とが接合される。加熱手段120は、保持対象Aが、押圧プレート113の押さえ棒115と第二の固定部材112とによって保持されている状態で、接合材8を加熱溶融できるように設けられる。また、図5に示すように、加熱手段120は、レール140にて案内されることで水平方向に移動自在なアーム141に付設されてなる。 The heating means 120 is provided for the purpose of melting the bonding material 8 such as solder interposed between the solar cell element 1 and the inner lead 2. Thereby, the solar cell element 1 and the inner lead 2 are joined. The heating unit 120 is provided so that the bonding material 8 can be heated and melted in a state where the holding object A is held by the pressing bar 115 of the pressing plate 113 and the second fixing member 112. As shown in FIG. 5, the heating means 120 is attached to an arm 141 that is movable in the horizontal direction by being guided by a rail 140.
 加熱手段120としては、例えば、赤外線照射装置、赤外線と同様に高いエネルギー密度を有する半導体レーザーやYAGレーザーなどのレーザー光を照射する照射装置(レーザー光源)、熱風印加装置、昇温機構を備える挟持装置などが挙げられる。複数の加熱手段108を併用することによって生産効率を高めることがより好ましい。 As the heating means 120, for example, an infrared irradiation device, an irradiation device (laser light source) for irradiating a laser beam such as a semiconductor laser or a YAG laser having a high energy density similar to infrared rays, a hot air applying device, and a sandwiching device provided with a temperature raising mechanism Examples thereof include devices. It is more preferable to increase production efficiency by using a plurality of heating means 108 in combination.
 本実施形態のように、接合材8による接合の対象が、インナーリード2との接合部の位置決め精度が求められるバックコンタクト型の太陽電池素子1である場合、加熱手段120としては、力学的な負荷が小さい赤外線照射装置を用いることが好ましい。特に、第二の固定部材112がガラスで構成される場合であれば、赤外線照射装置としては、ガラスを透過する近赤外線を照射可能なものを用いることが好ましい。近赤外線の照射は、被加熱物に高いエネルギー密度を与え、比較的短時間で被加熱物の温度を上昇させるという作用効果を有していることから、接合材8の加熱溶融を近赤外線によって行った場合には、加工速度の向上と電力消費量の低減とが実現される。近赤外線の光源としては、ハロゲンランプ、キセノンランプなどが利用可能である。 When the object to be joined by the joining material 8 is the back contact type solar cell element 1 in which the positioning accuracy of the joined portion with the inner lead 2 is required as in this embodiment, the heating means 120 may be mechanical. It is preferable to use an infrared irradiation device with a small load. In particular, if the second fixing member 112 is made of glass, it is preferable to use an infrared irradiation device that can irradiate near infrared rays that pass through the glass. Near-infrared irradiation has the effect of giving a high energy density to the object to be heated and raising the temperature of the object to be heated in a relatively short time. If performed, an improvement in processing speed and a reduction in power consumption are realized. As a near infrared light source, a halogen lamp, a xenon lamp, or the like can be used.
 加熱手段120は、第二の固定部材112の上方から保持対象Aの接合対象位置に向けて(接合対象位置の上に設けられた開口部116に向けて)近赤外線を照射し、第二の固定部材112を通じて太陽電池素子1の裏面側に位置する接合材8を加熱溶融させることによって、太陽電池素子1(厳密にはそのN電極7aおよびP電極7b)とインナーリード2とを接合させる。 The heating means 120 irradiates near infrared rays from above the second fixing member 112 toward the joining target position of the holding object A (toward the opening 116 provided on the joining target position). The solar cell element 1 (strictly, its N electrode 7a and P electrode 7b) and the inner lead 2 are joined by heating and melting the bonding material 8 located on the back side of the solar cell element 1 through the fixing member 112.
 図7(a)に示すように、第二の固定部材112の上方に備わる加熱手段120からの近赤外線の照射と該加熱手段120の移動とを繰り返すことにより、あるいは、加熱手段120を水平方向に移動させつつ近赤外線を連続的に照射することにより、複数の接合対象位置において順次に接合材8を加熱溶融させ、太陽電池素子1とインナーリード2との接合部を形成することができる。 As shown in FIG. 7A, by repeating the irradiation of near infrared rays from the heating unit 120 provided above the second fixing member 112 and the movement of the heating unit 120, or the heating unit 120 in the horizontal direction. By continuously irradiating near-infrared rays while being moved, the bonding material 8 can be heated and melted sequentially at a plurality of positions to be bonded, and the bonded portion between the solar cell element 1 and the inner lead 2 can be formed.
 本実施形態においては、このように、太陽電池素子1とインナーリード2との接合部の形成を、太陽電池素子1とインナーリード2とを保持固定した状態で行うので、両者の熱膨張係数の差によって接合位置のずれが発生することが抑制される。 In the present embodiment, since the formation of the joint portion between the solar cell element 1 and the inner lead 2 is performed in a state where the solar cell element 1 and the inner lead 2 are held and fixed in this way, Occurrence of misalignment of the joining position due to the difference is suppressed.
 熱風印加装置を用いる場合には、太陽電池素子1およびインナーリード2が熱風と直接に接触するように、第二の固定部材112の開口部116を大きくすることによってインナーリード2の露出部を増やすことが好ましい。 When the hot air application device is used, the exposed portion of the inner lead 2 is increased by enlarging the opening 116 of the second fixing member 112 so that the solar cell element 1 and the inner lead 2 are in direct contact with the hot air. It is preferable.
 昇温機構を備える挟持装置を用いて太陽電池素子1を両面から挟持した状態で加熱する場合には、挟持装置による受光面と裏面の挟持位置を合わせることによって、挟持位置のズレに起因するせん断力によって太陽電池素子1が破損することを抑制することが好ましい。 In the case where the solar cell element 1 is heated in a state of being sandwiched from both sides by using a sandwiching device having a temperature raising mechanism, the shear due to the displacement of the sandwiching position is obtained by matching the sandwiching positions of the light receiving surface and the back surface by the sandwiching device. It is preferable to suppress the solar cell element 1 from being damaged by force.
 付着手段130は、樹脂吐出手段131と、カメラ132と、UV照射手段133とを主として備える。図5に示すように、これらの構成要素は、レール140にて案内されることで水平方向に移動自在なアーム141に、付設されてなる。これにより、各構成要素は、レール140に案内されることにより水平方向に移動可能とされてなる。なお、図5においては、共通するアーム141にこれらの構成要素が付設されてなる態様を示しているが、これは必須ではなく、それぞれの構成要素に対応させて個別の移動手段が設けられる態様であってもよい。 The adhering unit 130 mainly includes a resin discharging unit 131, a camera 132, and a UV irradiation unit 133. As shown in FIG. 5, these components are attached to an arm 141 that is movable in the horizontal direction by being guided by a rail 140. Thereby, each component can be moved in the horizontal direction by being guided by the rail 140. FIG. 5 shows a mode in which these components are attached to a common arm 141, but this is not essential, and a mode in which individual moving means are provided corresponding to each component. It may be.
 樹脂吐出手段131は、例えばインクジェットヘッドである。例えば、インクジェットヘッドとしては、電極パターニングの塗装などに用いられる高精細出力が可能なものを用いることが好適である。樹脂吐出手段131は、図示しない樹脂供給部から供給される未硬化の接合保護樹脂材11を、押圧プレート113上に保持固定されている保持対象Aの吐出対象位置に対して吐出させる。具体的には、第二の固定部材112に設けられた開口部116において、太陽電池素子1の両端の非接合領域10近傍あるいはさらにその間に露出しているインナーリード2に対し、樹脂吐出手段131は接合保護樹脂材11を吐出し、これを付着させる。 Resin discharging means 131 is, for example, an inkjet head. For example, as the ink jet head, it is preferable to use a head capable of high-definition output used for electrode patterning coating. The resin discharge means 131 discharges the uncured bonding protection resin material 11 supplied from a resin supply unit (not shown) to the discharge target position of the holding target A held and fixed on the pressing plate 113. Specifically, the resin discharge means 131 is applied to the inner lead 2 exposed in the vicinity of the non-bonded region 10 at both ends of the solar cell element 1 or further in the opening 116 provided in the second fixing member 112. Ejects the bonding protection resin material 11 and attaches it.
 係る樹脂吐出手段131は、保持対象Aに非接触の状態でその吐出対象位置に対し接合保護樹脂材11を吐出するので、係る吐出の間、インナーリード2にはほとんど外力が作用しない。すなわち、樹脂吐出手段131をインクジェットヘッドにより構成することは、太陽電池素子1とインナーリード2との接合部9の破損を防止する点において好適である。 Since the resin discharge means 131 discharges the bonding protection resin material 11 to the discharge target position in a non-contact state with the holding target A, almost no external force acts on the inner lead 2 during the discharge. That is, it is preferable that the resin discharge means 131 is constituted by an ink jet head in terms of preventing damage to the joint portion 9 between the solar cell element 1 and the inner lead 2.
 なお、本実施の形態のように、バックコンタクト型の太陽電池素子1を複数接続して太陽電池モジュール20を形成する場合、図5に示すように、接続に用いる個々のインナーリード2は同一の高さ位置において太陽電池素子1と接合されるので、樹脂吐出手段131の吐出対象位置も一定の高さ位置にあることになる。従って、本実施の形態の場合、一般には高さ方向の制御が複雑なインクジェットヘッドを樹脂吐出手段131として用いているにもかかわらず、その高さ方向の制御は簡素化される。 When the solar cell module 20 is formed by connecting a plurality of back contact solar cell elements 1 as in the present embodiment, the individual inner leads 2 used for connection are the same as shown in FIG. Since it is joined to the solar cell element 1 at the height position, the discharge target position of the resin discharge means 131 is also at a certain height position. Therefore, in the case of the present embodiment, the control in the height direction is simplified in spite of the fact that an inkjet head whose control in the height direction is complicated is generally used as the resin discharge means 131.
 カメラ132は、樹脂吐出手段131の吐出対象位置を特定する際に用いられる。例えば、カメラ132によって得られる撮像画像に基づいてインナーリード2の位置を検出し、係る検出結果に従って樹脂吐出手段131からの接合保護樹脂材11の吐出位置を決定するようにすることで、接合保護樹脂材11を非接合領域10に精度よく付着させることができる。 The camera 132 is used when specifying the discharge target position of the resin discharge means 131. For example, the position of the inner lead 2 is detected based on the captured image obtained by the camera 132, and the discharge position of the bonding protection resin material 11 from the resin discharge means 131 is determined according to the detection result, thereby protecting the bonding. The resin material 11 can be attached to the non-bonding region 10 with high accuracy.
 UV照射手段133は、接合保護樹脂材11としてUV硬化樹脂が用いられる場合に、樹脂吐出手段131から吐出された後の未硬化の接合保護樹脂材11に対し紫外光を照射することによって、これを硬化させる手段として備わる。UV照射手段133は、例えば水銀ランプなどによって実現される。吐出させた未硬化の接合保護樹脂材に対しUV照射手段133から紫外線を数秒~数十秒間照射すれば接合保護樹脂材は硬化するので、高い生産効率が得られる。 When UV curable resin is used as the bonding protection resin material 11, the UV irradiation means 133 irradiates the uncured bonding protection resin material 11 after being discharged from the resin discharge means 131 with ultraviolet light. As a means to cure. The UV irradiation means 133 is realized by, for example, a mercury lamp. When the discharged uncured bonding protective resin material is irradiated with ultraviolet rays from the UV irradiation means 133 for several seconds to several tens of seconds, the bonding protective resin material is cured, so that high production efficiency can be obtained.
 加熱手段120により接合材8の加熱溶融を行った後、接合保護樹脂材11を非接合領域10に付着させるにあたっては、カメラ132による撮像により吐出位置を決定しつつ、図7(b)に示すように、第二の固定部材112の上方に備わる樹脂吐出手段131から、開口部116内の非接合領域10およびインナーリード2の露出部に対し接合保護樹脂材11を吐出させる。これによって、接合保護樹脂材11を精度よく非接合領域10に付着させることができる。 When the bonding material 8 is heated and melted by the heating means 120 and then the bonding protection resin material 11 is adhered to the non-bonding region 10, the discharge position is determined by imaging with the camera 132 and shown in FIG. As described above, the bonding protective resin material 11 is discharged from the resin discharge means 131 provided above the second fixing member 112 to the non-bonded region 10 in the opening 116 and the exposed portion of the inner lead 2. Thereby, the bonding protection resin material 11 can be attached to the non-bonding region 10 with high accuracy.
 なお、接合保護樹脂材11として熱硬化性樹脂を用いる場合には、吐出後に熱風乾燥を行うための手段が適宜設けられればよい。 In addition, when a thermosetting resin is used as the bonding protection resin material 11, a means for performing hot air drying after discharge may be appropriately provided.
 接合保護樹脂材11を付着させる手法としては、上述の樹脂吐出手段131を利用する態様の他に、ハケ塗り、ディスペンサー、ハンコ、テープ貼り付けのなど手法が利用可能である。例えば、テープ貼り付けは、乾燥や硬化などの別工程を有しない簡素な手法であるため、接合保護樹脂材11の付着位置に高い精度が要求されない場合には好ましい。 As a method for adhering the bonding protection resin material 11, methods such as brushing, dispenser, soldering, tape sticking, etc. can be used in addition to the above-described embodiment using the resin discharge means 131. For example, tape affixing is a simple technique that does not have separate processes such as drying and curing, and is therefore preferable when high accuracy is not required for the adhesion position of the bonding protection resin material 11.
 以上のように、本実施形態においては、製造装置100を用い、太陽電池素子1とインナーリード2とを保持固定した状態を保ちつつ、接合材8の加熱溶融による両者の接合と、非接合領域10への接合保護樹脂材11の付着とを一の装置によって行うようにしている。 As described above, in the present embodiment, the manufacturing apparatus 100 is used, and the solar cell element 1 and the inner lead 2 are held and fixed, and the bonding of the bonding material 8 by heat melting and the non-bonding region are maintained. The bonding protective resin material 11 is attached to the substrate 10 using a single device.
 これにより、接合時の熱によって太陽電池素子1が変形することが抑制される。また、接合保護樹脂材を付着させない場合、接合処理後の搬送の際に、太陽電池素子1の位置ずれが生じうるが、本実施の形態によれば、係る位置ずれが抑制される。これにより、インナーリード2の接続位置のズレによって生じるリーク電流もしくは短絡が抑制されるので、太陽電池素子1とインナーリード2との接合の信頼性が向上する。 This suppresses the solar cell element 1 from being deformed by heat at the time of joining. Further, when the bonding protection resin material is not attached, the positional deviation of the solar cell element 1 may occur during conveyance after the bonding process, but according to the present embodiment, such positional deviation is suppressed. Thereby, since the leak current or short circuit which arises by the shift | offset | difference of the connection position of the inner lead 2 is suppressed, the reliability of joining of the solar cell element 1 and the inner lead 2 improves.
 しかも、接合保護樹脂材11の付着工程を、接合材8の加熱溶融による太陽電池素子とインナーリードとの接合工程よりも後で行うようにしているので、加熱されたインナーリード2が熱膨張・熱収縮することによって、付着させた接合保護樹脂材11への亀裂や剥離の発生が低減される。 In addition, since the bonding process of the bonding protective resin material 11 is performed after the bonding process of the solar cell element and the inner lead by heating and melting the bonding material 8, the heated inner lead 2 is thermally expanded. By heat shrinking, the occurrence of cracks and peeling to the bonded protective resin material 11 is reduced.
  <第一の実施の形態の変形例>
 第一の固定部材111においては、保持対象Aを挟持する挟持面111aに、図示しない所定の気孔を設け、該気孔を通じて負圧を発生させる機構を設けることが好ましい。第一の固定部材111と第二の固定部材112との間に保持対象Aを挟持させた状態で挟持面111aに負圧を与えると、保持対象Aが挟持面111aに吸着固定される。これにより、保持対象Aの位置ズレが抑制される。
<Modification of the first embodiment>
In the first fixing member 111, it is preferable to provide a mechanism for providing a predetermined pore (not shown) on the holding surface 111 a for holding the holding object A and generating a negative pressure through the pore. When a negative pressure is applied to the clamping surface 111a with the holding object A held between the first fixing member 111 and the second fixing member 112, the holding object A is attracted and fixed to the holding surface 111a. Thereby, the position shift of the holding object A is suppressed.
 あるいはまた、第一の固定部材111においては、挟持面111aに、外方と通気可能な図示しない排気溝や排気孔を設けることが好ましい。これによって、保持対象Aを保持した後、あらかじめ接合対象位置に介在させてあった接合材8を加熱溶融させる際に生じるフラックスガスを外方に排出させることができ、フラックスガスの付着による各部材の汚れを抑制することができる。これは、不良率を低減させる効果がある。より効率的にフラックスガスを排出するために、例えば、第一の固定部材111の外側に、上述の排気溝や排気孔から排出されるガスを吸気する機構を別途設けてもよい。 Alternatively, in the first fixing member 111, it is preferable to provide an exhaust groove or an exhaust hole (not shown) that can vent outward from the holding surface 111a. As a result, after holding the holding object A, the flux gas generated when the bonding material 8 previously interposed at the bonding target position is heated and melted can be discharged to the outside. Stain can be suppressed. This has the effect of reducing the defect rate. In order to discharge the flux gas more efficiently, for example, a mechanism for sucking in the gas discharged from the exhaust groove or the exhaust hole described above may be provided outside the first fixing member 111.
 生産効率を高める観点からは、接合材8の加熱溶融を行うに先立ち、接合材8あるいはその周囲があらかじめ所定温度になるように予熱しておくことが好ましい。例えば、押圧プレート113、第一の固定部材111あるいは第二の固定部材112に、予熱装置を組み込むようにすることで、これは実現される。雰囲気温度が低い場合、太陽電池素子1とインナーリード2とを接続するために加えられた熱の一部が周囲に放出されることにより接合不良が発生することがあるが、予熱を行うことにより、係る不良が効果的に抑制される。 From the viewpoint of increasing the production efficiency, it is preferable to preheat the bonding material 8 or its surroundings in advance to a predetermined temperature before heating and melting the bonding material 8. For example, this is realized by incorporating a preheating device into the pressing plate 113, the first fixing member 111, or the second fixing member 112. When the ambient temperature is low, a part of the heat applied to connect the solar cell element 1 and the inner lead 2 may be released to the surroundings. , Such defects are effectively suppressed.
 図9に示す第一の固定部材111には、インナーリード2を嵌合可能な溝117が形成されてなる。係る溝117は、インナーリード2の厚みよりも大きな深さにて形成されてなる。また、図9においては、図示しないが、溝117の底面から反対面にかけて、貫通孔115が設けられる。 A groove 117 into which the inner lead 2 can be fitted is formed in the first fixing member 111 shown in FIG. The groove 117 is formed with a depth larger than the thickness of the inner lead 2. In FIG. 9, though not shown, a through hole 115 is provided from the bottom surface of the groove 117 to the opposite surface.
 このような第一の固定部材111を用いる場合、太陽電池素子1とインナーリード2とを接合するにあたっては、インナーリード2を溝117に嵌め込んだ第一の固定部材111と第二の固定部材112とによって太陽電池素子1が挟持される。係る第一の固定部材111を用いる場合も、挟持体が押圧プレート113上に載置されると、それぞれの押さえ棒115が対応する貫通孔114に挿通されるとともに、図8に示すように、押さえ棒115の先端が挟持面111aから突出するようになっている。 When such a first fixing member 111 is used, in joining the solar cell element 1 and the inner lead 2, the first fixing member 111 and the second fixing member in which the inner lead 2 is fitted in the groove 117. The solar cell element 1 is sandwiched by 112. Even when the first fixing member 111 is used, when the sandwiching body is placed on the pressing plate 113, each pressing bar 115 is inserted into the corresponding through hole 114, and as shown in FIG. The front end of the presser bar 115 protrudes from the clamping surface 111a.
 これにより、挟持体を押圧プレート113に載置する前には太陽電池素子1とインナーリード2とは当接せず、挟持体が押圧プレート113に載置されてはじめて太陽電池素子1とインナーリード2とが当接するので、太陽電池素子1およびインナーリード2に押圧負荷が加わる時間が短縮できるほか、接合処理前に太陽電池素子1とインナーリード2とに不要な負荷を与えて破壊してしまうことが好適に抑制される。 Thus, the solar cell element 1 and the inner lead 2 are not in contact with each other before the sandwiched body is placed on the pressing plate 113, and the solar cell element 1 and the inner lead are not placed until the sandwiched body is placed on the pressing plate 113. 2 makes contact with the solar cell element 1 and the inner lead 2, and the time for applying a pressing load to the solar cell element 1 and the inner lead 2 can be shortened, and an unnecessary load is applied to the solar cell element 1 and the inner lead 2 before the bonding process. Is suitably suppressed.
 第二の固定部材112において保持対象Aを挟持する挟持面には、エンボス加工を施しておくのが好ましい。一方、第二の固定部材112の上面には、反射塗料を塗布するなどして遮光性を付与しておくことが好ましい。これらによって、太陽電池素子1とインナーリード2とを接合する際の太陽電池素子1の温度分布を適切に制御することが可能となる。 It is preferable to emboss the holding surface that holds the holding object A in the second fixing member 112. On the other hand, the upper surface of the second fixing member 112 is preferably provided with a light shielding property by applying a reflective paint or the like. By these, it becomes possible to appropriately control the temperature distribution of the solar cell element 1 when the solar cell element 1 and the inner lead 2 are joined.
  <第2の実施形態>
 次に、本発明の第2の実施形態として、素子の両面に電極を有する太陽電池素子1を用いて太陽電池モジュールを構成する場合について説明する。より詳細には、本実施形態に係る太陽電池素子1は、一方の面に受光面電極(図示省略)を有し、他方の面に裏面電極(図示省略)を有するものとする。係る場合、隣り合う太陽電池素子1を接合するには、一方の受光面電極と他方の裏面電極とをインナーリード2によって接続する必要がある。このような態様にてインナーリード2を配置する場合には、太陽電池素子1に対するインナーリード2の応力を両面で均衡させる観点から、両面におけるインナーリード2の形状を同じにすることが好ましい。例えば、一方に配置されるインナーリード2の形状を直線状にする場合には、他方に位置されるインナーリード2の形状も同様に直線状にする(図11および図12参照)。あるいは、一方のインナーリード2を波状にする場合には、他方のインナーリード2も波状にして、両面における波の位置が一致するようにする。このようにすると、インナーリード2からの応力が太陽電池素子1の両面で均衡するので、太陽電池素子1に反りなどの変形が生じることが抑制される。
<Second Embodiment>
Next, the case where a solar cell module is comprised using the solar cell element 1 which has an electrode on both surfaces of an element as 2nd Embodiment of this invention is demonstrated. More specifically, the solar cell element 1 according to the present embodiment has a light receiving surface electrode (not shown) on one surface and a back electrode (not shown) on the other surface. In such a case, in order to join the adjacent solar cell elements 1, it is necessary to connect one light receiving surface electrode and the other back surface electrode by the inner lead 2. In the case where the inner leads 2 are arranged in such a manner, it is preferable that the inner leads 2 have the same shape on both sides from the viewpoint of balancing the stress of the inner leads 2 with respect to the solar cell element 1 on both sides. For example, when the shape of the inner lead 2 disposed on one side is linear, the shape of the inner lead 2 positioned on the other side is also linear (see FIGS. 11 and 12). Alternatively, when one inner lead 2 is waved, the other inner lead 2 is also waved so that the wave positions on both sides coincide. If it does in this way, since the stress from the inner lead 2 balances with both surfaces of the solar cell element 1, it is suppressed that deformation | transformation, such as curvature, arises in the solar cell element 1. FIG.
 以下、本実施形態において実現される、太陽電池素子1とインナーリード2との接合と、非接合領域10への接合保護樹脂材の付着とについて、これに用いる製造装置200を含め、説明する。なお、以下においては、上述の第1の実施形態と同様の作用効果を奏する構成要素については詳細な説明を省略する。 Hereinafter, the bonding between the solar cell element 1 and the inner lead 2 and the adhesion of the bonding protective resin material to the non-bonding region 10 realized in the present embodiment, including the manufacturing apparatus 200 used for this, will be described. In the following, detailed description of the components that exhibit the same effects as those of the first embodiment described above will be omitted.
 製造装置200は、製造装置100と同様に、太陽電池素子1とインナーリード2との接合と、接合保護樹脂材11の付着とを行う際に使用される。製造装置200も、製造装置100と同様に、保持対象Aを保持固定するための構成要素として、第一の固定部材111と、第二の固定部材112と、押圧プレート113とを主として備える。これらはいずれも、基本的には第1の実施形態と同様の材質からなるが、接合対象とする太陽電池素子1の構造の相違に応じて、その構造は異なっている。 The manufacturing apparatus 200 is used when the solar cell element 1 and the inner lead 2 are bonded and the bonding protective resin material 11 is adhered, similarly to the manufacturing apparatus 100. Similar to the manufacturing apparatus 100, the manufacturing apparatus 200 mainly includes a first fixing member 111, a second fixing member 112, and a pressing plate 113 as components for holding and fixing the holding object A. All of these are basically made of the same material as that of the first embodiment, but the structure differs depending on the difference in the structure of the solar cell element 1 to be joined.
 第一の固定部材111においては、挟持面111aのインナーリード2の配置位置に、インナーリード2を嵌合可能な溝117がインナーリード2の厚みと同じ深さに形成されてなる。また、溝117の底面から反対面にかけて、貫通孔115が設けられてなる。 In the first fixing member 111, a groove 117 into which the inner lead 2 can be fitted is formed at the same position as the thickness of the inner lead 2 at the position of the inner lead 2 on the clamping surface 111a. A through hole 115 is provided from the bottom surface of the groove 117 to the opposite surface.
 そして、押圧プレート113には、係る貫通孔114の配置位置に対応させて、押さえ棒115(第1の押さえ棒115a)が形成されてなる。 The pressing plate 113 is formed with a pressing bar 115 (first pressing bar 115a) corresponding to the arrangement position of the through hole 114.
 また、第二の固定部材112には、太陽電池素子1の受光面側に位置するインナーリード2全体が露出するように、第1実施形態よりも大きな開口部116が設けられている。 Further, the second fixing member 112 is provided with an opening 116 larger than that of the first embodiment so that the entire inner lead 2 located on the light receiving surface side of the solar cell element 1 is exposed.
 係る構成を有する製造装置200において、保持対象Aである太陽電池素子1とインナーリード2との保持固定を行う場合も、まず、太陽電池素子1とインナーリード2との間であって、両者の接合対象位置に、あらかじめ接合材8、例えば、溶融前のはんだ(図示せず)を介在させたうえで、第一の固定部材111の上に保持対象Aを載置し、その上から第二の固定部材112を載置することによって、該保持対象Aを上下から挟持する。そして、これにより得られた挟持体を、押圧プレート113の上に載置する。 In the manufacturing apparatus 200 having such a configuration, when the solar cell element 1 that is the holding object A and the inner lead 2 are held and fixed, first, between the solar cell element 1 and the inner lead 2, A bonding material 8, for example, solder before melting (not shown) is interposed in advance at the position to be bonded, and then the holding object A is placed on the first fixing member 111, and the second from above is placed. The holding object A is sandwiched from above and below by placing the fixing member 112. Then, the sandwiched body thus obtained is placed on the pressing plate 113.
 加えて、本実施の形態においては、開口部116を介して上方から第二の押さえ棒115bによりインナーリード2を太陽電池素子1に向かって押し付けるようにしてもよい。 In addition, in the present embodiment, the inner lead 2 may be pressed toward the solar cell element 1 from above through the opening 116 by the second pressing rod 115b.
 係る保持固定状態が実現されると、接合材8の加熱溶融による太陽電池素子1とインナーリード2との接合が行われる。本実施形態においても、第1実施形態と同様の加熱手段108を用いることができる。ただし、第1の実施形態よりも接合対象位置が広範囲であり、これに対応して開口部116も比較的大きいため、はんだへの加熱効果を高めるために、赤外線照射装置や熱風印加装置などの複数の加熱手段108を併用することが好ましい。例えば、熱風印加装置は、加熱時の熱分布を平均化させることで、変形により生じる応力を低減させることができる点や、あらかじめ一定温度まで昇温させて生産効率を高める仮加熱(予熱)手段に用いることができるという点から、他の加熱手段との併用を好適に行えることができる。 When such a holding and fixing state is realized, the solar cell element 1 and the inner lead 2 are joined by heating and melting the joining material 8. Also in this embodiment, the heating means 108 similar to that in the first embodiment can be used. However, since the position to be joined is wider than that in the first embodiment and the opening 116 is relatively large correspondingly, the infrared irradiation device, the hot air application device, etc. It is preferable to use a plurality of heating means 108 in combination. For example, the hot air application device can reduce the stress caused by the deformation by averaging the heat distribution during heating, or temporary heating (preheating) means for raising the temperature to a certain temperature in advance to increase production efficiency In combination with other heating means, it can be suitably used.
 太陽電池素子1とインナーリード2との接合が得られると、接合保護樹脂材11を付着させる処理が行われる。本実施形態においても、第1実施形態と同様に、樹脂吐出手段131と、カメラ132と、UV照射手段133とによってこれを行うことができる。 When the joining of the solar cell element 1 and the inner lead 2 is obtained, a process of attaching the joining protective resin material 11 is performed. Also in the present embodiment, this can be performed by the resin discharge means 131, the camera 132, and the UV irradiation means 133 as in the first embodiment.
 ただし、本実施の形態においては、実質的には、開口部116において露出しているインナーリード2を吐出対象位置として接合保護樹脂材11を吐出するようにする。これにより、第1実施形態と同様の効果を得ることができる。 However, in the present embodiment, the bonding protection resin material 11 is substantially discharged with the inner lead 2 exposed in the opening 116 as the discharge target position. Thereby, the effect similar to 1st Embodiment can be acquired.
  <第3の実施形態>
 次に、本発明の第3の実施形態として、第2の実施形態とは異なる、太陽電池素子1とインナーリード2との保持固定態様について説明する。
<Third Embodiment>
Next, as a third embodiment of the present invention, a manner of holding and fixing the solar cell element 1 and the inner lead 2 different from the second embodiment will be described.
 図13に示すように、本実施形態における太陽電池素子1とインナーリード2の保持固定は、第2の実施形態の押さえ棒115bの代わりに、第二の固定部材112の開口部116の短手方向の一方端から他方端へと渡されたワイヤー150が用いられる。ワイヤー150は、例えばステンレスや真鍮などからなる。 As shown in FIG. 13, the solar cell element 1 and the inner lead 2 in this embodiment are held and fixed by the short side of the opening 116 of the second fixing member 112 instead of the presser bar 115 b of the second embodiment. A wire 150 passed from one end of the direction to the other end is used. The wire 150 is made of, for example, stainless steel or brass.
 図13(b)に示すように、ワイヤー150は、第二の固定部材112の挟持面112aの位置からインナーリード2の厚さ分だけ上方に配置することが好ましい。これによって、第二の固定部材112の重量負荷は、インナーリード2に集中せず、太陽電池素子1の全面に分散することになる。なお、バネ性を有するワイヤー150を、下に凸に湾曲した状態で第二の固定部材112に固定した場合には、ワイヤー150からインナーリード2により適切な荷重を与えた状態で、インナーリード2を固定することができる。 As shown in FIG. 13B, it is preferable that the wire 150 is disposed upward by the thickness of the inner lead 2 from the position of the holding surface 112a of the second fixing member 112. As a result, the weight load of the second fixing member 112 is not concentrated on the inner lead 2 but distributed over the entire surface of the solar cell element 1. In addition, when the wire 150 having the spring property is fixed to the second fixing member 112 in a state where the wire 150 is curved downward, an appropriate load is applied from the wire 150 to the inner lead 2. Can be fixed.
 接合保護樹脂材11が着色剤を含んでいる場合、ワイヤー120の径を所望の細さに設定することで、美観上の影響を低減することができる。 When the bonding protective resin material 11 includes a colorant, the aesthetic influence can be reduced by setting the diameter of the wire 120 to a desired fineness.
 また、上述のワイヤー150あるいはこれに代わる線状部材を、開口部116に網目状に設けた場合には、太陽電池素子1に加わる荷重をより効果的に分散できる。 Further, when the above-described wire 150 or a linear member instead thereof is provided in the opening 116 in a mesh shape, the load applied to the solar cell element 1 can be more effectively dispersed.

Claims (9)

  1.  複数の太陽電池素子と、隣り合う前記太陽電池素子を跨ぐように配置され、隣り合う前記太陽電池素子を電気的に接続するインナーリードと、前記インナーリードと前記太陽電池素子との間に介在されるように配置される接合材と、を有する太陽電池ストリングと、
     前記太陽電池ストリングを覆う封止材と、
     前記インナーリードの太陽電池素子接合側に設けられ、かつ前記接合材の非接合領域に配置される、前記封止材よりも熱膨張率の低い樹脂材と、
    を有する、太陽電池モジュール。
    A plurality of solar cell elements, an inner lead arranged so as to straddle the adjacent solar cell elements, and electrically connecting the adjacent solar cell elements, and interposed between the inner lead and the solar cell element A solar cell string having a bonding material arranged to be
    A sealing material covering the solar cell string;
    A resin material having a lower coefficient of thermal expansion than the sealing material, which is provided on the solar cell element bonding side of the inner lead and is disposed in a non-bonding region of the bonding material;
    A solar cell module.
  2.  前記樹脂材は、隣り合う前記太陽電池素子の境界部近傍に形成される隣り合う前記接合材の接合領域の間に、連続して配置されている、請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein the resin material is continuously disposed between the bonding regions of the adjacent bonding materials formed in the vicinity of a boundary portion between the adjacent solar cell elements.
  3.  前記樹脂材は、少なくとも前記インナーリードと前記太陽電池素子との間に配置される、請求項1または2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the resin material is disposed at least between the inner lead and the solar cell element.
  4.  前記樹脂材は、前記インナーリードおよび前記太陽電池素子の両方に接触している、請求項1から3のいずれかの項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the resin material is in contact with both the inner lead and the solar cell element.
  5.  前記樹脂材は、着色剤を含む、請求項1から4のいずれかの項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the resin material includes a colorant.
  6.  前記インナーリードは、前記隣り合う太陽電池素子の非受光面同士を互いに接続する、請求項1から5のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 5, wherein the inner lead connects the non-light-receiving surfaces of the adjacent solar cell elements to each other.
  7.  複数の太陽電池素子と、隣り合う前記太陽電池素子の境界部を跨ぐように配置され、隣り合う前記太陽電池素子を電気的に接続するインナーリードと、前記インナーリードと前記太陽電池素子との間に介在されるように配置される接合材と、を有する太陽電池ストリングと、前記太陽電池ストリングを覆う封止材と、前記インナーリードの前記太陽電池素子接合側に設けられ、かつ前記接合材の非接合領域に配置される、前記封止材よりも熱膨張率の低い樹脂材と、を有する太陽電池モジュールの製造方法であって、
     第一の固定部材と開口部を有する第二の固定部材との間で、前記太陽電池素子と前記インナーリードとを前記接合材を介した状態で当接固定させる工程と、
     前記接合材を加熱溶融させることによって、前記太陽電池素子と前記インナーリードとを接合する工程と、
     前記第二の固定部材の開口部において、前記インナーリードの太陽電池素子接合側であって、かつ前記接合材の非接合領域に、前記封止材よりも熱膨張率の低い樹脂を付着させる工程と、
    を包含する、太陽電池モジュールの製造方法。
    A plurality of solar cell elements, an inner lead that is arranged so as to straddle the boundary between adjacent solar cell elements, and electrically connect the adjacent solar cell elements, and between the inner lead and the solar cell element A solar cell string having a bonding material disposed so as to be interposed between the solar cell string, a sealing material covering the solar cell string, the solar cell element bonding side of the inner lead, and the bonding material A resin material having a thermal expansion coefficient lower than that of the sealing material, which is disposed in a non-bonded region,
    Between the first fixing member and the second fixing member having an opening, the step of abutting and fixing the solar cell element and the inner lead via the bonding material;
    A step of bonding the solar cell element and the inner lead by heating and melting the bonding material;
    A step of attaching a resin having a lower coefficient of thermal expansion than the sealing material to the solar cell element bonding side of the inner lead in the opening of the second fixing member and to the non-bonding region of the bonding material When,
    A method for manufacturing a solar cell module, comprising:
  8.  前記第一の固定部材を貫通して前記インナーリードを下方から支持する複数の棒状部材と前記第二の固定部材とによって挟持することにより、前記複数の太陽電池素子と前記インナーリードとを当接固定させる、請求項7に記載の太陽電池モジュールの製造方法。 The plurality of solar cell elements and the inner lead are brought into contact with each other by being sandwiched by the plurality of rod-shaped members that penetrate the first fixing member and support the inner lead from below and the second fixing member. The method for manufacturing a solar cell module according to claim 7, wherein the solar cell module is fixed.
  9.  前記接合材の加熱溶融を、前記第二の固定部材の上方から赤外線を照射することにより行う、請求項7または8に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 7 or 8, wherein the bonding material is heated and melted by irradiating infrared rays from above the second fixing member.
PCT/JP2009/054808 2008-03-12 2009-03-12 Solar cell module and method of manufacturing the same WO2009113640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502882A JP5116836B2 (en) 2008-03-12 2009-03-12 Solar cell module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008063109 2008-03-12
JP2008-063109 2008-03-12

Publications (1)

Publication Number Publication Date
WO2009113640A1 true WO2009113640A1 (en) 2009-09-17

Family

ID=41065300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054808 WO2009113640A1 (en) 2008-03-12 2009-03-12 Solar cell module and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP5116836B2 (en)
WO (1) WO2009113640A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005811C2 (en) * 2010-09-24 2012-03-27 Solland Solar Cells B V Method and apparatus for soldering contacts in a solar panel.
CN105081626A (en) * 2015-07-23 2015-11-25 晶科能源有限公司 Auxiliary welding device and welding method for solar cell
IT201700084020A1 (en) * 2017-07-24 2019-01-24 Vismunda S R L "METHOD AND ASSEMBLY SYSTEM OF A BACK-CONTACT PHOTOVOLTAIC PANEL, WITH PRINTING ON A CELL COMBINED WITH LOADING AND PRE-FIXING"

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359351U (en) * 1986-10-03 1988-04-20
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2005268254A (en) * 2004-03-16 2005-09-29 Sharp Corp Solar battery and its manufacturing method, and solar battery module
JP2007123522A (en) * 2005-10-27 2007-05-17 Kyocera Corp Method of manufacturing solar cell module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359351A (en) * 1986-08-29 1988-03-15 Canon Inc Method and apparatus for adhering membrane in liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359351U (en) * 1986-10-03 1988-04-20
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2005268254A (en) * 2004-03-16 2005-09-29 Sharp Corp Solar battery and its manufacturing method, and solar battery module
JP2007123522A (en) * 2005-10-27 2007-05-17 Kyocera Corp Method of manufacturing solar cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005811C2 (en) * 2010-09-24 2012-03-27 Solland Solar Cells B V Method and apparatus for soldering contacts in a solar panel.
WO2012039610A1 (en) * 2010-09-24 2012-03-29 Solland Solar Energy Holding B.V. Method and apparatus for soldering contacts in a solar panel
CN105081626A (en) * 2015-07-23 2015-11-25 晶科能源有限公司 Auxiliary welding device and welding method for solar cell
IT201700084020A1 (en) * 2017-07-24 2019-01-24 Vismunda S R L "METHOD AND ASSEMBLY SYSTEM OF A BACK-CONTACT PHOTOVOLTAIC PANEL, WITH PRINTING ON A CELL COMBINED WITH LOADING AND PRE-FIXING"
WO2019021053A1 (en) * 2017-07-24 2019-01-31 Vismunda S.R.L. Assembly method and plant of photovoltaic panel of the back-contact type, with printing on the cells combined with loading and pre-fixing
US11217712B2 (en) 2017-07-24 2022-01-04 Vismunda Srl Assembly method and plant of photovoltaic panel of the back-contact type, with printing on the cells combined with loading and pre-fixing

Also Published As

Publication number Publication date
JP5116836B2 (en) 2013-01-09
JPWO2009113640A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US20120131959A1 (en) Laser sealing device for glass substrates
JP6410801B2 (en) Laser welding connection method of crystalline silicon solar cell
EP2218109B1 (en) Methods for manufacturing solar cell module and apparatus for manufacturing the same
CN109311112B (en) Roll-to-roll laser reflow welding device and reflow welding method
TW201115766A (en) Method of monolithic photo-voltaic module assembly
CN103972378A (en) LED light-emitting device and packaging method thereof
TWI440196B (en) Back contact solar module and electrode soldering method therefor
JP2011151334A (en) Method of manufacturing solar cell module
JP5116836B2 (en) Solar cell module and manufacturing method thereof
US7520416B2 (en) Transparent window with non-transparent contact surface for a soldering bonding
JP2010087011A (en) Solar cell module and method of manufacturing the same
JP2007273830A (en) Method for manufacturing solar battery device
JP2007258699A (en) Method and device for connecting electronic component using laser
JP2009297759A (en) Laser bonding method and laser machining apparatus
JP4001341B2 (en) Bonding method and apparatus
JP2011044598A (en) Device and method for connection of solar cell substrate
EP3211676B1 (en) Method for producing solar cell module
JP2007201291A (en) Solar battery module and method of reproducing same
JP4056551B2 (en) Tab lead soldering method
US9318463B2 (en) Method for producing a photovoltaic module
JP2007123522A (en) Method of manufacturing solar cell module
EP3475240B1 (en) Laser-assisted hermetic encapsulation process and product thereof
JP5395584B2 (en) Method and apparatus for joining solar cell modules
US20210037661A1 (en) Method for curing solder paste on a thermally fragile substrate
JP5241113B2 (en) Solar cell module and method for manufacturing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502882

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719345

Country of ref document: EP

Kind code of ref document: A1