JP4456514B2 - Seismic control structure of lightweight steel house - Google Patents

Seismic control structure of lightweight steel house Download PDF

Info

Publication number
JP4456514B2
JP4456514B2 JP2005104275A JP2005104275A JP4456514B2 JP 4456514 B2 JP4456514 B2 JP 4456514B2 JP 2005104275 A JP2005104275 A JP 2005104275A JP 2005104275 A JP2005104275 A JP 2005104275A JP 4456514 B2 JP4456514 B2 JP 4456514B2
Authority
JP
Japan
Prior art keywords
viscoelastic damper
frame
tan
viscoelastic
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005104275A
Other languages
Japanese (ja)
Other versions
JP2006283374A (en
Inventor
友和 高田
高 内山
功 夏堀
守 佐藤
重和 横山
弘臣 田中
清次 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sekisui House Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sekisui House Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005104275A priority Critical patent/JP4456514B2/en
Publication of JP2006283374A publication Critical patent/JP2006283374A/en
Application granted granted Critical
Publication of JP4456514B2 publication Critical patent/JP4456514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、地震により発生する振動の減衰を図るために軽量鉄骨住宅に採用される制震構造に関するものである。   The present invention relates to a vibration control structure employed in a lightweight steel house in order to attenuate vibrations generated by an earthquake.

軽量鉄骨住宅の制震構造として、柱材と横架材とから構成される枠組フレームを上下の梁の間に付設し、その枠組フレームの内外に粘弾性ダンパーやオイルダンパー等の制震装置を設けることにより、地震によるエネルギーを粘性減衰エネルギーとして吸収して制震効果を得るものが知られている。具体的には、枠組フレームと梁との間に粘弾性ダンパーを設置した制震構造(特許文献1)や、枠組フレームを上下に分けて構成し、それらの2つの枠組フレームの間に粘弾性ダンパーを設置した制震構造(特許文献2)、枠組フレームの内部を上下に二分割するように補強材を水平に架設し、その補強材の上下において、二つのオイルダンパーを互い違いの傾斜状に設置したKブレース型の制震構造(特許文献3)が知られている。   As a light-damping structure for lightweight steel houses, a frame consisting of pillars and horizontal members is attached between the upper and lower beams, and viscoelastic dampers and oil dampers are installed on the inside and outside of the frame. It is known that a seismic effect can be obtained by providing energy by absorbing earthquake energy as viscous damping energy. Specifically, a seismic control structure in which a viscoelastic damper is installed between the frame and the beam (Patent Document 1), or the frame is divided into upper and lower frames, and viscoelasticity is formed between these two frame frames. Damping structure with dampers (Patent Document 2), reinforcing material is installed horizontally so that the inside of the frame is divided into two parts vertically, and the two oil dampers are staggered at the top and bottom of the reinforcing material. An installed K-brace type damping structure (Patent Document 3) is known.

特開2001−90381号公報JP 2001-90381 A 特開2001−90379号公報JP 2001-90379 A 特開2004−218207号公報JP 2004-218207 A

しかしながら、上記従来の制震構造における枠組フレームでは、粘弾性ダンパーを除いた枠組フレームの取付剛性(枠組フレーム全体の取付剛性)と粘弾性ダンパーの貯蔵剛性(硬さ)とのバランスが悪いと、粘弾性ダンパーが変位する前に枠組フレーム自体や粘弾性ダンパーの取り付け部分が変形してしまい、十分な減衰性能が得られない、という事態が発生する。   However, in the frame frame in the conventional vibration control structure, if the balance between the frame frame mounting rigidity excluding the viscoelastic damper (the entire frame frame mounting rigidity) and the viscoelastic damper storage rigidity (hardness) is poor, Before the viscoelastic damper is displaced, the frame itself and the attachment portion of the viscoelastic damper are deformed, and a situation in which sufficient damping performance cannot be obtained occurs.

本発明の目的は、上記従来の軽量鉄骨住宅の制震構造が有する問題点を解消し、粘弾性ダンパーが十分な減衰特性を発揮し、地震による振動エネルギーを効率的に熱エネルギーに変換し、建物の変形を軽減することが可能な軽量鉄骨住宅の制震構造を提供することにある。   The object of the present invention is to eliminate the problems of the conventional light-damped steel housing vibration control structure, the viscoelastic damper exhibits sufficient damping characteristics, and efficiently converts vibration energy from the earthquake into thermal energy, The object of the present invention is to provide a damping structure for a light-weight steel house that can reduce the deformation of the building.

かかる本発明の内、請求項1に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに、内部を上下に二分割する中桟を架設し、その中桟の上下において、片側の柱材と中桟との仕口と、反対側の柱材と上側の横架材との仕口とを結ぶように第一粘弾性ダンパーを傾斜状に設置するとともに、その第一粘弾性ダンパーに対して中桟を中心として上下対称となるように、第二粘弾性ダンパーを、片側の柱材と中桟との仕口と、反対側の柱材と下側の横架材との仕口とを結ぶように傾斜状に設置した軽量鉄骨住宅の制震構造であって、層間変形角が1/200radである場合に、下式1〜6を満たすことにある。
40kN/cm≦Kbs1≦200kN/cm ・・1
40kN/cm≦Kbs2≦200kN/cm ・・2
1.5≦Kbs1/K’ds1≦10 ・・3
1.5≦Kbs2/K’ds2≦10 ・・4
tanδ1≧0.6 ・・5
tanδ2≧0.6 ・・5
(但し、Kbs1,Kbs2は、それぞれ、第一粘弾性ダンパーの取付剛性、第二粘弾性ダンパーの取付剛性であり、K’ds1,K’ds2は、それぞれ、第一粘弾性ダンパーの貯蔵剛性、第二粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2は、それぞれ、第一粘弾性ダンパーの損失係数、第二粘弾性ダンパーの損失係数である)
Among the present inventions, the structure of the invention described in claim 1 is constructed by installing an intermediate beam that divides the inside vertically into a frame frame composed of left and right column members and upper and lower horizontal members, At the top and bottom of the middle rail, the first viscoelastic damper is installed in an inclined manner so as to connect the joint between the pillar material on one side and the middle rail and the joint between the opposite pillar material and the upper horizontal member. In addition, the second viscoelastic damper is connected to the first and second viscoelastic dampers with a column material on one side and a middle beam, and a column material on the opposite side. A lightweight steel house vibration control structure installed in an inclined manner so as to connect the joint with the lower horizontal member, and when the interlayer deformation angle is 1/200 rad, the following expressions 1 to 6 are satisfied There is.
40 kN / cm ≦ Kbs1 ≦ 200 kN / cm 1
40 kN / cm ≦ Kbs2 ≦ 200 kN / cm 2
1.5 ≦ Kbs1 / K′ds1 ≦ 10 3
1.5 ≦ Kbs2 / K′ds2 ≦ 10 4
tan δ1 ≧ 0.6 ・ ・ 5
tan δ2 ≧ 0.6 ・ ・ 5
(However, Kbs1 and Kbs2 are the attachment rigidity of the first viscoelastic damper and the attachment rigidity of the second viscoelastic damper, respectively, and K′ds1 and K′ds2 are the storage rigidity of the first viscoelastic damper, respectively. Storage rigidity of the second viscoelastic damper, tan δ1 and tan δ2 are the loss coefficient of the first viscoelastic damper and the loss coefficient of the second viscoelastic damper, respectively)

本発明の如く、内部が上下二つの領域に分割されて上側の領域に第一粘弾性ダンパーが取り付けられ、下側の領域に第二粘弾性ダンパーが取り付けられた枠組フレームにおいては、水平方向のみを考慮すると、枠組フレーム全体の特性を、図1の如き直列水平換算バネとしてモデル化することができる。なお、図1において、M1のバネは、枠組フレームの第一粘弾性ダンパーの取付部分を弾性要素として示したものであり、M2のバネおよびダッシュポットは、第一粘弾性ダンパーを粘弾性要素として示したものである。また、M3のバネは、枠組フレームの第二粘弾性ダンパーの取付部分を弾性要素として示したものであり、M4のバネおよびダッシュポットは、第二粘弾性ダンパーを粘弾性要素として示したものである。   As in the present invention, in a frame frame in which the interior is divided into two upper and lower regions, the first viscoelastic damper is attached to the upper region, and the second viscoelastic damper is attached to the lower region, only in the horizontal direction. Can be modeled as a series horizontal conversion spring as shown in FIG. In FIG. 1, the spring of M1 shows the attachment part of the first viscoelastic damper of the frame frame as an elastic element, and the spring and dashpot of M2 have the first viscoelastic damper as a viscoelastic element. It is shown. In addition, the spring of M3 shows the attachment part of the second viscoelastic damper of the frame frame as an elastic element, and the spring and dashpot of M4 show the second viscoelastic damper as a viscoelastic element. is there.

したがって、枠組フレームに粘弾性ダンパーの代わりに剛体(きわめて剛性の高い鋼材等)を取り付けて測定した場合の取付強度を、枠組フレーム全体の取付剛性Kbs(sは水平成分を示す)の近似値とすることができ、その取付剛性Kbsから下式8,9を利用して、第一粘弾性ダンパーの取付部分の取付剛性Kbs1、第二粘弾性ダンパーの取付部分の取付剛性Kbs2を求めることができる。
1/Kbs=1/Kbs1+1/Kbs2 ・・8
Kbs1=Kbs2 ・・9
Therefore, the attachment strength when measured by attaching a rigid body (such as an extremely rigid steel material) to the frame frame instead of the viscoelastic damper is the approximate value of the frame frame attachment rigidity Kbs (s indicates the horizontal component). The mounting rigidity Kbs1 of the mounting portion of the first viscoelastic damper and the mounting rigidity Kbs2 of the mounting portion of the second viscoelastic damper can be obtained from the mounting rigidity Kbs using the following equations 8 and 9. .
1 / Kbs = 1 / Kbs1 + 1 / Kbs2 ..8
Kbs1 = Kbs2 ..9

本発明の制震構造においては、層間変形量が1/200rad以上である場合に、上記の如く枠組フレームに剛体を取り付けて求められる取付剛性Kbs1および取付剛性Kbs2が、いずれも、40kN/cm以上200kN/cm以下となるように調整されることが必要である。なお、層間変形角とは、各層の層間変位をその階の高さで除した値のことである。Kbs1やKbs2が、40kN/cm未満となると、地震によって振動した場合に、枠組フレーム自体が変形してしまい、第一粘弾性ダンパー、第二粘弾性ダンパーが十分な減衰特性を発揮できなくなる。なお、Kbs1やKbs2を増加させる方法としては、柱材や横架材の断面剛性を高める方法等を挙げることができる、反対に、Kbs1やKbs2が200kN/cmを上回るような設計では、枠組フレームを構成する鋼材の重量が大きくなりすぎて、軽量鉄骨住宅の施工に適用することが難しくなる。   In the vibration control structure of the present invention, when the amount of inter-layer deformation is 1/200 rad or more, both the mounting rigidity Kbs1 and the mounting rigidity Kbs2 required by attaching a rigid body to the frame frame as described above are 40 kN / cm or more. It is necessary to adjust so that it may become 200 kN / cm or less. The interlayer deformation angle is a value obtained by dividing the interlayer displacement of each layer by the height of the floor. When Kbs1 or Kbs2 is less than 40 kN / cm, when the frame vibrates due to an earthquake, the frame frame itself is deformed, and the first viscoelastic damper and the second viscoelastic damper cannot exhibit sufficient damping characteristics. In addition, as a method of increasing Kbs1 or Kbs2, a method of increasing the cross-sectional rigidity of the column member or the horizontal member can be mentioned. On the contrary, in a design in which Kbs1 or Kbs2 exceeds 200 kN / cm, a frame frame It becomes difficult to apply the construction of a lightweight steel house because the weight of the steel material constituting the steel becomes too large.

また、本発明の制震構造においては、上記の如く求められる取付剛性Kbs1と第一粘弾性ダンパーの貯蔵剛性K’ds1との比の値、および、上記の如く求められる取付剛性Kbs2と第二粘弾性ダンパーの貯蔵剛性K’ds2との比の値が、いずれも、1.5以上10以下であることが必要である。Kbs1/K’ds1やKbs2/K’ds2が1.5未満であると、ある程度の耐力は発揮されるものの、減衰性能が損なわれてしまう。反対に、Kbs1/K’ds1やKbs2/K’ds2が10を上回ると、地震によって振動した場合に、第一粘弾性ダンパー、第二粘弾性ダンパーが十分に変形して減衰特性を発揮するものの、耐力が損なわれてしまう。   Further, in the vibration control structure of the present invention, the ratio value between the mounting rigidity Kbs1 obtained as described above and the storage rigidity K'ds1 of the first viscoelastic damper, and the mounting rigidity Kbs2 obtained as described above and the second value. The value of the ratio with the storage rigidity K′ds2 of the viscoelastic damper must be 1.5 or more and 10 or less. If Kbs1 / K′ds1 or Kbs2 / K′ds2 is less than 1.5, a certain level of yield strength is exhibited, but the damping performance is impaired. On the other hand, when Kbs1 / K'ds1 or Kbs2 / K'ds2 exceeds 10, when the vibration is caused by an earthquake, the first viscoelastic damper and the second viscoelastic damper are sufficiently deformed to exhibit damping characteristics. The yield strength will be impaired.

さらに、本発明の制震構造においては、第一粘弾性ダンパーの損失係数tanδ1、第二粘弾性ダンパーの損失係数tanδ2の値が、いずれも0.6以上であることが必要である。tanδ1やtanδ2が0.6未満となると、十分な減衰特性が得られなくなる。なお、本発明における第一粘弾性ダンパーの貯蔵剛性K’ds1、損失係数tanδ1、第二粘弾性ダンパーの貯蔵剛性K’ds2、損失係数tanδ2は、一般的な住宅の固有振動数(約1〜7Hz)の領域において常温下で測定されるものである。   Furthermore, in the damping structure of the present invention, it is necessary that both the loss coefficient tan δ1 of the first viscoelastic damper and the loss coefficient tan δ2 of the second viscoelastic damper are 0.6 or more. When tan δ1 and tan δ2 are less than 0.6, sufficient attenuation characteristics cannot be obtained. In the present invention, the storage rigidity K′ds1 and loss coefficient tan δ1 of the first viscoelastic damper, the storage rigidity K′ds2 and loss coefficient tan δ2 of the second viscoelastic damper are the natural frequencies (about 1 to 7 Hz) and measured at room temperature.

請求項2に記載された発明の構成は、請求項1に記載の発明において、層間変形角が1/100radである場合に、下式7を満たすことにある。
Fdsmax<Fs ・・7
(但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
The structure of the invention described in claim 2 is that, in the invention described in claim 1, when the interlayer deformation angle is 1/100 rad, the following expression 7 is satisfied.
Fdsmax <Fs 7
(Where Fdsmax is the maximum horizontal strength generated in the frame and Fs is the allowable horizontal strength of the frame)

なお、Fdsmaxは、各粘弾性ダンパー単体の軸方向に作用する反力(粘弾性ダンパー単体の引張圧縮試験によって測定されるもの)をFdjとした場合に、下式10によって与えられるものであり、許容水平耐力Fsとは、構造物を弾性体と仮定して部材に応じる応力度の最大値が許容応力度(すなわち、構造物の外力に対する安全性を確保するために定められる部材に許容できる応力度の限界)に達するときに作用し得る荷重のことである。
Fdsmax=Fdj×a/√(a+(b/2)) ・・10
(但し、図2の模式図に示すように、aは、枠組フレームの幅であり、bは、枠組フレームの高さである)
Note that Fdsmax is given by the following equation 10 when the reaction force acting in the axial direction of each viscoelastic damper unit (measured by a tensile compression test of the viscoelastic damper unit) is Fdj. The allowable horizontal proof stress Fs means that the maximum stress degree corresponding to a member is assumed to be an elastic body and the allowable stress degree (that is, a stress that can be allowed for a member that is determined to ensure safety against external force of the structure). It is the load that can act when the limit of the degree is reached.
Fdsmax = Fdj × a / √ (a 2 + (b / 2) 2 ) 10
(However, as shown in the schematic diagram of FIG. 2, a is the width of the frame and b is the height of the frame)

また、請求項2の如く構成する場合には、層間変形角が1/100radである場合にも、上式1〜6を満たすように構成するのが好ましい。   Further, when configured as in claim 2, it is preferable to configure so as to satisfy the above formulas 1 to 6 even when the interlayer deformation angle is 1/100 rad.

請求項3に記載された発明の構成は、請求項1、または請求項2に記載された発明において、前記第一粘弾性ダンパーおよび前記第二粘弾性ダンパーが、外筒部材の内部に内芯部材を挿入し、その内芯部材と外筒部材との隙間に粘弾性体を介在させたものであることにある。   According to a third aspect of the present invention, in the first or second aspect of the invention, the first viscoelastic damper and the second viscoelastic damper are arranged in an inner core inside the outer cylindrical member. A member is inserted, and a viscoelastic body is interposed in a gap between the inner core member and the outer cylinder member.

本発明に係る軽量鉄骨住宅の制震構造は、第一粘弾性ダンパーおよび第二粘弾性ダンパーが適度な粘弾性を有しており、かつ、第一粘弾性ダンパーおよび第二粘弾性ダンパーを除いた枠組フレーム全体が適度な剛性を有しているため、地震によって外力が加わった場合に、各粘弾性ダンパーが適度に変形して、十分な減衰性能が発揮される。したがって、地震による振動エネルギーが効率的に熱エネルギーに変換されるため、建物の変形を大きく軽減することができる。また、請求項2の如く、枠組フレームに発生する最大水平耐力が枠組フレームの許容水平耐力を下回るように調整することにより、許容耐力内で大きな減衰を発生させることができる。また、過度な荷重の発生による躯体構造の損傷を防止することができる。すなわち、枠組フレームに発生する最大水平耐力が許容水平耐力を超えてしまうと、アンカーボルトが脱落したり、基礎が破壊されたり、躯体が損傷したりするが、請求項2の如く構成することにより、そのような事態の発生が防止される。さらに、請求項3の如き第一粘弾性ダンパーおよび第二粘弾性ダンパーを採用した場合には、枠組フレームの大きさや形状に合わせて、粘弾性特性を容易に調整することが可能となる。   The damping structure of the lightweight steel house according to the present invention includes the first viscoelastic damper and the second viscoelastic damper having moderate viscoelasticity, and excluding the first viscoelastic damper and the second viscoelastic damper. Since the entire framework frame has an appropriate rigidity, when an external force is applied due to an earthquake, each viscoelastic damper is appropriately deformed to exhibit a sufficient damping performance. Therefore, the vibration energy due to the earthquake is efficiently converted into thermal energy, so that the deformation of the building can be greatly reduced. Further, as described in claim 2, by adjusting the maximum horizontal proof stress generated in the frame frame to be lower than the allowable horizontal proof strength of the frame frame, a large attenuation can be generated within the allowable proof stress. Moreover, damage to the housing structure due to the generation of an excessive load can be prevented. That is, if the maximum horizontal strength generated in the frame exceeds the allowable horizontal strength, the anchor bolt may drop off, the foundation may be destroyed, or the housing may be damaged. The occurrence of such a situation is prevented. Furthermore, when the first viscoelastic damper and the second viscoelastic damper are employed, it is possible to easily adjust the viscoelastic characteristics according to the size and shape of the frame.

以下、本発明にかかる軽量鉄骨住宅の制震構造の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of a vibration control structure for a lightweight steel house according to the present invention will be described in detail with reference to the drawings.

図3は、実施例1の枠組フレームを示す正面図である。枠組フレーム1は、軽量の形鋼を用いた鉄骨系プレハブ構造に採用されるものであり、所定の間隔をおいて配設される一対の柱材2,2と、それらの柱材2,2の上下の端同士をそれぞれ接続する横架材(上桟、下桟)3,3とによって、高さが約2700mmで幅が約1000mmの縦長の長方形状に組み付けられている。なお、各横架材3,3は、C型鋼によって形成されたものであり、各柱材2,2は、横架材3と同じC形鋼を幅方向に接合することによって形成されたものである。また、各横架材3,3と各柱材2,2とは、溶接によって接合されている。加えて、各横架材3,3は、溶接によって梁9と接合されている。なお、枠組フレーム1は、設計上、許容水平耐力Fsが30kNとなっている。   FIG. 3 is a front view illustrating the frame frame according to the first embodiment. The frame 1 is employed in a steel-based prefabricated structure using light-weight steel, and includes a pair of pillar members 2 and 2 disposed at a predetermined interval, and the pillar members 2 and 2. These are assembled into a vertically long rectangular shape having a height of about 2700 mm and a width of about 1000 mm by horizontal members (upper and lower bars) 3 and 3 that connect the upper and lower ends of each. The horizontal members 3 and 3 are made of C-shaped steel, and the column members 2 and 2 are formed by joining the same C-shaped steel as the horizontal material 3 in the width direction. It is. The horizontal members 3 and 3 and the column members 2 and 2 are joined by welding. In addition, the horizontal members 3 and 3 are joined to the beam 9 by welding. The frame 1 has an allowable horizontal proof stress Fs of 30 kN by design.

また、柱材2,2の間には、それらの柱材2,2を中間部位同士で接続する中桟4が架設されており、その中桟4によって上下二つの領域R1,R2に分割されている。なお、中桟4も、各横架材3,3等と同様なC型鋼によって形成されたものであり、溶接によって柱材2,2に接合されている。そして、それらの各領域R1,R2には、それぞれ、第一粘弾性ダンパー5aと第二粘弾性ダンパー5bとが取り付けられている。すなわち、中桟4の上側の領域R1においては、第一粘弾性ダンパー5aが、左側の柱材2と中桟4との仕口部分と、右側の柱材2と上側の横架材3との仕口部分とを結ぶように、傾斜状に取り付けられている。一方、中桟4の下側の領域R2においては、第二粘弾性ダンパー5bが、左側の柱材2と中桟4との仕口部分と、右側の柱材2と下側の横架材3との仕口部分とを結ぶように、傾斜状に取り付けられている。そして、第一粘弾性ダンパー5aと第二粘弾性ダンパー5bとは、中桟4を軸にして上下対称に配置された状態になっている。なお、第一粘弾性ダンパー5aと第二粘弾性ダンパー5bとは、規格上同一のものであり、後述するように粘弾性特性が調整されている。   Further, between the pillars 2 and 2, an intermediate rail 4 connecting the pillars 2 and 2 at intermediate portions is installed, and the intermediate rail 4 is divided into two upper and lower regions R1 and R2. ing. The middle rail 4 is also formed of C-shaped steel similar to the horizontal members 3, 3, etc., and is joined to the column members 2, 2 by welding. A first viscoelastic damper 5a and a second viscoelastic damper 5b are attached to each of the regions R1 and R2. That is, in the region R1 on the upper side of the middle rail 4, the first viscoelastic damper 5a includes a joint portion between the left column member 2 and the middle rail 4, the right column member 2, and the upper horizontal member 3. It is attached in an inclined shape so as to tie the joint part. On the other hand, in the lower region R2 of the middle rail 4, the second viscoelastic damper 5b includes a joint portion between the left pillar 2 and the middle rail 4, the right pillar 2 and the lower horizontal member. It is attached in an inclined shape so as to connect the joint portion with 3. And the 1st viscoelastic damper 5a and the 2nd viscoelastic damper 5b are the states arrange | positioned symmetrically up and down centering on the middle rail 4. As shown in FIG. In addition, the 1st viscoelastic damper 5a and the 2nd viscoelastic damper 5b are the same in specification, and the viscoelastic characteristic is adjusted so that it may mention later.

図4は、第一粘弾性ダンパー5a(第二粘弾性ダンパー5b)を示したものであり、第一粘弾性ダンパー5aは、断面長方形状の筒状の外筒部材6の内部に、その外筒部材6よりも小径の円筒状の内芯部材7が挿入されており、外筒部材6と内芯部材7との隙間に粘弾性体8が介在した状態になっている(外筒部材6の内面と内芯部材7の外面との間に粘弾性体8が挟み込まれている)。そして、外筒部材6の外側の端縁には、ネジ溝を螺刻したボルト挿通孔19が穿設されており、内芯部材7の外側の端縁には、ネジ溝を螺刻したボルト挿通孔10が穿設されている。そして、第一粘弾性ダンパー5aは、左右の柱材2,2の間に相対的な変位が発生した場合や上側の横架材3と中桟4との間に相対的な変位が発生した場合に(すなわち、上下あるいは左右にずれた場合に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。一方、下側の第二粘弾性ダンパー5bは、左右の柱材2,2の間に相対的な変位が発生した場合や下側の横架材3と中桟4との間に相対的な変位が発生した場合に(すなわち、上下あるいは左右にずれた場合に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。   FIG. 4 shows the first viscoelastic damper 5a (second viscoelastic damper 5b). The first viscoelastic damper 5a is disposed inside the cylindrical outer cylinder member 6 having a rectangular cross section. A cylindrical inner core member 7 having a smaller diameter than that of the cylindrical member 6 is inserted, and a viscoelastic body 8 is interposed in a gap between the outer cylindrical member 6 and the inner core member 7 (the outer cylindrical member 6). The viscoelastic body 8 is sandwiched between the inner surface of the inner core member 7 and the outer surface of the inner core member 7). A bolt insertion hole 19 in which a screw groove is screwed is formed in the outer edge of the outer cylinder member 6, and a bolt in which a screw groove is screwed in the outer edge of the inner core member 7. An insertion hole 10 is formed. In the first viscoelastic damper 5a, a relative displacement occurs between the left and right column members 2 and 2, or between the upper horizontal member 3 and the middle rail 4. In some cases (that is, when the viscoelastic body 8 is displaced up and down or left and right), the viscoelastic body 8 is subjected to shear deformation to exhibit damping performance. On the other hand, the lower second viscoelastic damper 5b is relatively movable when a relative displacement occurs between the left and right column members 2 and 2, or between the lower horizontal member 3 and the middle rail 4. When a displacement occurs (that is, when the viscoelastic body 8 is displaced up and down or left and right), the viscoelastic body 8 is subjected to shear deformation to exhibit a damping performance.

一方、枠組フレーム1の右側の柱材2と上下の横架材3,3との仕口部分には、それぞれ、金属板からなる剛接合片11,11が設けられている。各剛接合片11,11の内側には、ボルト挿通孔を穿設した固定板が折返し状に設けられており、その固定板のボルト挿通孔を利用して、第一粘弾性ダンパー5aおよび第二粘弾性ダンパー5bの内芯部材7の外端(ボルト挿通孔10の穿設部分)を螺合(すなわち、剛接合)することができるようになっている。   On the other hand, rigid joint pieces 11, 11 made of metal plates are provided at the joints between the column material 2 on the right side of the frame 1 and the upper and lower horizontal members 3, 3, respectively. Inside each of the rigid joint pieces 11, 11, a fixing plate having a bolt insertion hole is provided in a folded shape, and the first viscoelastic damper 5a and the second fixing plate are formed using the bolt insertion hole of the fixing plate. The outer end of the inner core member 7 of the two-viscoelastic damper 5b (the drilled portion of the bolt insertion hole 10) can be screwed (that is, rigidly joined).

また、左側の柱材2と中桟4との上下の仕口には、それぞれ、金属板からなる剛接合片12,12が設けられている。各剛接合片12,12の内側には、ボルト挿通孔を穿設した固定板が折返し状に設けられており、その固定板のボルト挿通孔を利用して、第一粘弾性ダンパー5aおよび第二粘弾性ダンパー5bの外筒部材6の外端(ボルト挿通孔19の穿設部分)を螺合(すなわち、剛接合)することができるようになっている。   Further, rigid joint pieces 12 and 12 made of metal plates are provided at the upper and lower joints of the left column member 2 and the middle rail 4, respectively. Inside each of the rigid joint pieces 12, 12, a fixing plate having a bolt insertion hole is provided in a folded shape, and the first viscoelastic damper 5a and the second fixing plate are formed using the bolt insertion hole of the fixing plate. The outer end of the outer cylinder member 6 of the two-viscoelastic damper 5b (the drilled portion of the bolt insertion hole 19) can be screwed (that is, rigidly joined).

実施例1の枠組フレーム1においては、水平方向のみを考慮した場合、上記の如く、粘弾性特性を図1のような直列水平換算バネとしてモデル化でき、第一粘弾性ダンパー5aおよび第二粘弾性ダンパー5bの代わりに剛体を取り付けて測定した場合の取付強度を、枠組フレーム1全体の取付強度Kbsとして近似させることができる。また、枠組フレーム1においては、各領域R1,R2が中桟4を軸として上下対称であるため、粘弾性ダンパー5aの取付剛性Kbs1と、粘弾性ダンパー5bの取付剛性Kbs2との間に、上式8,9が成立する。   In the frame 1 of the first embodiment, when only the horizontal direction is taken into consideration, the viscoelastic characteristics can be modeled as a series horizontal conversion spring as shown in FIG. 1, and the first viscoelastic damper 5a and the second viscoelastic damper 5a can be modeled. The attachment strength when a rigid body is attached instead of the elastic damper 5b and measured can be approximated as the attachment strength Kbs of the entire frame 1. Further, in the frame frame 1, each region R1, R2 is vertically symmetric with respect to the middle rail 4 as an axis, so that the upper portion is between the mounting rigidity Kbs1 of the viscoelastic damper 5a and the mounting rigidity Kbs2 of the viscoelastic damper 5b. Expressions 8 and 9 are established.

そのため、上下の領域R1,R2における剛接合片11と剛接合片12との間に、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの代わりに、略同一形状の剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図3の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、粘弾性ダンパー5aの取付部分の取付剛性Kbs1および粘弾性ダンパー5bの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、41.5kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。   Therefore, a rigid body (metal plate) having substantially the same shape is used instead of the first viscoelastic damper 5a and the second viscoelastic damper 5b between the rigid joint piece 11 and the rigid joint piece 12 in the upper and lower regions R1, R2. In this state, the frame 1 is horizontally deformed (in the direction of the arrow in FIG. 3) so that the interlayer deformation angle is 1/200 rad, and the mounting rigidity Kbs of the frame 1 is determined from the relationship between the applied stress and the amount of deformation. And the mounting stiffness Kbs1 of the mounting portion of the viscoelastic damper 5a and the mounting stiffness Kbs2 of the mounting portion of the viscoelastic damper 5b were calculated using the above equations 8 and 9. The calculated value of the mounting rigidity Kbs of the frame 1 was 41.5 kN / cm. Table 1 shows the calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2. Table 2 shows calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

一方、第一粘弾性ダンパー5aの貯蔵剛性K’ds1、第二粘弾性ダンパー5bの貯蔵剛性K’ds2は、それぞれ、下式11により算出される。
K’ds1,K’ds2=G×S/d ・・11
なお、上式11において、Gは剪断弾性係数であり、K’ds1,K’ds2の算出にあたっては、粘弾性体の特性から剪断弾性係数Gを0.18N/mmとした。また、Sは粘弾性体8の面積であり、dは粘弾性体8の厚み(粘弾性体8単体の厚み)である。
On the other hand, the storage rigidity K′ds1 of the first viscoelastic damper 5a and the storage rigidity K′ds2 of the second viscoelastic damper 5b are calculated by the following equation 11, respectively.
K′ds1, K′ds2 = G × S / d 11
In the above equation 11, G is a shear elastic coefficient. In calculating K′ds1 and K′ds2, the shear elastic coefficient G was set to 0.18 N / mm 2 from the characteristics of the viscoelastic body. Further, S is the area of the viscoelastic body 8, and d is the thickness of the viscoelastic body 8 (thickness of the viscoelastic body 8 alone).

それゆえ、貯蔵剛性K’ds1,K’ds2が、それぞれ、表1に示す数値となるように、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの粘弾性体8の面積S、厚みdを調整した(すなわち、貯蔵剛性K’ds1,K’ds2が表1に示す数値となるように第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを設計した)。   Therefore, the area S and the thickness d of the viscoelastic body 8 of the first viscoelastic damper 5a and the second viscoelastic damper 5b are set so that the storage rigidity K′ds1 and K′ds2 are the values shown in Table 1, respectively. (That is, the first viscoelastic damper 5a and the second viscoelastic damper 5b are designed so that the storage rigidity K′ds1, K′ds2 is a numerical value shown in Table 1).

また、第一粘弾性ダンパー5aの損失係数tanδ1、第二粘弾性ダンパー5bの損失係数tanδ2を測定した。なお、かかる損失係数tanδ1,tanδ2の測定は、動的加振機((株)鷺宮製作所製)を用いて、20℃の雰囲気下で、2Hzの正弦波を利用して200%の剪断歪を加えた場合の変形−荷重を挙動を調べることによって行った。損失係数tanδ1,tanδ2の測定結果を表1に示す。   Further, the loss coefficient tan δ1 of the first viscoelastic damper 5a and the loss coefficient tan δ2 of the second viscoelastic damper 5b were measured. The loss factors tan δ1 and tan δ2 are measured by using a dynamic shaker (manufactured by Kakinomiya Seisakusho Co., Ltd.) and a 200% shear strain using a 2 Hz sine wave in an atmosphere of 20 ° C. When applied, deformation-loading was performed by examining the behavior. Table 1 shows the measurement results of the loss coefficients tan δ1 and tan δ2.

上記の如く、枠組フレーム1の取付剛性Kbs、取付剛性Kbs1、取付剛性Kbs2を求めた後に、上下の領域R1,R2における剛接合片11と剛接合片12との間から剛体を取り外し、上記した第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを取り付けた。第一粘弾性ダンパー5a第二粘弾性ダンパー5bを取り付けた枠組フレーム1においては、貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値は、2.54に調整されていることになり、貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値は、2.58に調整されていることになる(表1参照)。   As described above, after obtaining the attachment rigidity Kbs, the attachment rigidity Kbs1, and the attachment rigidity Kbs2 of the frame 1, the rigid body is removed from between the rigid joint piece 11 and the rigid joint piece 12 in the upper and lower regions R1 and R2 and described above. The first viscoelastic damper 5a and the second viscoelastic damper 5b were attached. In the frame 1 to which the first viscoelastic damper 5a and the second viscoelastic damper 5b are attached, the value of Kbs1 / K'ds1 is adjusted to 2.54 in consideration of the storage rigidity K'ds1 and the attachment rigidity Kbs1. In view of the storage rigidity K′ds2 and the mounting rigidity Kbs2, the value of Kbs2 / K′ds2 is adjusted to 2.58 (see Table 1).

そして、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを取り付けた枠組フレーム1において、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。   Then, in the frame 1 to which the first viscoelastic damper 5a and the second viscoelastic damper 5b are attached, the frame 1 is horizontally placed so that the interlayer deformation angle is 1/200 rad using a large dynamic shaker. The storage stiffness K′as, the loss stiffness K ″ as, and the loss coefficient tanδa of the entire system are measured from the deformation-load relationship, and the horizontal components tanδa / tanδ1 and tanδa / tanδ2 that serve as indicators of the damping characteristics are measured. The calculation results are shown in Table 1. Further, tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/100 rad are shown in Table 2.

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles 1/200 rad and 1/100 rad was calculated based on the above equation 10. Tables 1 and 2 show the calculated Fdsmax.

実施例1の枠組フレーム1の上下各領域R1,R2の剛接合片11,11を、ピン結合可能なピン挿通孔を有するピン接合片13,13に変更するとともに、上下の領域R1,R2の剛接合片12,12を、ピン結合可能なピン挿通孔を有するピン接合片14,14に変更した(図5参照)。そして、実施例1と同様に、上下の各領域R1,R2におけるピン接合片13とピン接合片14との間に剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図5の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、第一粘弾性ダンパーの取付部分の取付剛性Kbs1および第二粘弾性ダンパーの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、41.3kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。   The rigid joint pieces 11 and 11 in the upper and lower regions R1 and R2 of the frame 1 of the first embodiment are changed to pin joint pieces 13 and 13 having pin insertion holes that can be pin-coupled, and the upper and lower regions R1 and R2 The rigid joint pieces 12 and 12 were changed to pin joint pieces 14 and 14 having pin insertion holes that can be pin-coupled (see FIG. 5). As in the first embodiment, a rigid body (metal plate) is attached between the pin joint piece 13 and the pin joint piece 14 in each of the upper and lower regions R1, R2, and in this state, the interlayer deformation angle is 1/200 rad. Then, the frame 1 is horizontally deformed (in the direction of the arrow in FIG. 5), and the mounting rigidity Kbs of the frame 1 is calculated from the relationship between the applied stress and the amount of deformation. The attachment rigidity Kbs1 of the attachment part of the first viscoelastic damper and the attachment rigidity Kbs2 of the attachment part of the second viscoelastic damper were calculated. The calculated value of the attachment rigidity Kbs of the frame 1 was 41.3 kN / cm. Table 1 shows the calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2. Table 2 shows calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

また、図6は、実施例2の枠組フレーム1に取り付ける粘弾性ダンパーを示したものである。なお、各領域R1,R2に設置される粘弾性ダンパーは、規格上同一のものである。各領域R1,R2に設置される第一粘弾性ダンパー15a、第二粘弾性ダンパー15bは、実施例1の第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの構造と略同様であるが、外筒部材6の外側の端縁の形状および内芯部材7の外側の端縁の形状が実施例1のものと異なっている。すなわち、第一粘弾性ダンパー15a、第二粘弾性ダンパー15bの外筒部材6の外側の端縁には、ピン挿通孔を穿設したピン結合部材16が固着されており、内芯部材7の外側の端縁には、ピン挿通孔を穿設したピン結合部材17が固着されている。第一粘弾性ダンパー15a、第二粘弾性ダンパー15bのその他の部分の形状、構造は、実施例1の第一粘弾性ダンパー5a、第二粘弾性ダンパー5bと同様である。また、第一粘弾性ダンパー15a、第二粘弾性ダンパー15bは、それぞれ、貯蔵剛性(K’ds1,K’ds2)が表1の数値となるように調整されている。   FIG. 6 shows a viscoelastic damper attached to the frame 1 of the second embodiment. The viscoelastic dampers installed in the regions R1 and R2 are the same in terms of standards. The first viscoelastic damper 15a and the second viscoelastic damper 15b installed in each region R1, R2 are substantially the same as the structures of the first viscoelastic damper 5a and the second viscoelastic damper 5b in the first embodiment. The shape of the outer edge of the outer cylinder member 6 and the shape of the outer edge of the inner core member 7 are different from those of the first embodiment. That is, a pin coupling member 16 having a pin insertion hole is fixed to the outer edge of the outer cylinder member 6 of the first viscoelastic damper 15a and the second viscoelastic damper 15b. A pin coupling member 17 having a pin insertion hole is fixed to the outer edge. The shapes and structures of the other parts of the first viscoelastic damper 15a and the second viscoelastic damper 15b are the same as those of the first viscoelastic damper 5a and the second viscoelastic damper 5b of the first embodiment. Further, the first viscoelastic damper 15a and the second viscoelastic damper 15b are adjusted so that the storage rigidity (K'ds1, K'ds2) is the numerical value shown in Table 1, respectively.

かかる第一粘弾性ダンパー15aの損失係数tanδ1、第二粘弾性ダンパー15bの損失係数tanδ2を、実施例1と同様の方法によって測定した。測定結果を表1に示す。   The loss coefficient tan δ1 of the first viscoelastic damper 15a and the loss coefficient tan δ2 of the second viscoelastic damper 15b were measured by the same method as in Example 1. The measurement results are shown in Table 1.

そして、枠組フレーム1の上下の領域R1,R2において、それぞれ、ピン接合片13とピン接合片14との間に、上記した第一粘弾性ダンパー15a、第二粘弾性ダンパー15bを取り付け、実施例1と同様に、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。なお、第一粘弾性ダンパー15a、第二粘弾性ダンパー15bを取り付けた実施例2の枠組フレーム1においては、第一粘弾性ダンパー15aの貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値が3.87に調整されていることになり、第二粘弾性ダンパー15bの貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値が3.72に調整されていることになる(表1参照)。   In the upper and lower regions R1 and R2 of the frame 1, the first viscoelastic damper 15a and the second viscoelastic damper 15b described above are attached between the pin joint piece 13 and the pin joint piece 14, respectively. 1, using a large dynamic shaker, the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/200 rad. From the deformation-load relationship, the storage rigidity K of the entire system 'as, loss stiffness K "as and loss coefficient tan δa were measured to calculate tan δa / tan δ1 and tan δa / tan δ2 which are indexes of damping characteristics. The calculation results are shown in Table 1. The interlayer deformation angle is also shown. Table 2 shows tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so as to be 1/100 rad. In the frame 1 of the embodiment 2 in which the par 15a and the second viscoelastic damper 15b are attached, the value of Kbs1 / K'ds1 is determined in consideration of the storage rigidity K'ds1 and the attachment rigidity Kbs1 of the first viscoelastic damper 15a. In consideration of the storage rigidity K'ds2 and the mounting rigidity Kbs2 of the second viscoelastic damper 15b, the value of Kbs2 / K'ds2 is adjusted to 3.72. (See Table 1).

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles 1/200 rad and 1/100 rad was calculated based on the above equation 10. Tables 1 and 2 show the calculated Fdsmax.

実施例1の枠組フレーム1の上下の領域R1,R2の剛接合片11,11を、固定端から粘弾性ダンパーとの接合部位までの長さが長い剛接合片21,21に変更した(図7参照)。そして、実施例1と同様に、上下の領域R1,R2における剛接合片21と剛接合片12との間に剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図7の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、第一粘弾性ダンパーの取付部分の取付剛性Kbs1および第二粘弾性ダンパーの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、34.9kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。   The rigid joint pieces 11 and 11 in the upper and lower regions R1 and R2 of the frame 1 of the first embodiment are changed to rigid joint pieces 21 and 21 having a long length from the fixed end to the joint portion with the viscoelastic damper (see FIG. 7). As in the first embodiment, a rigid body (metal plate) is attached between the rigid joint piece 21 and the rigid joint piece 12 in the upper and lower regions R1 and R2, and in this state, the interlayer deformation angle is 1/200 rad. The frame 1 is horizontally deformed (in the direction of the arrow in FIG. 7), and the mounting rigidity Kbs of the frame 1 is calculated from the relationship between the applied stress and the amount of deformation. The attachment rigidity Kbs1 of the attachment part of the viscoelastic damper and the attachment rigidity Kbs2 of the attachment part of the second viscoelastic damper were calculated. The calculated value of the attachment rigidity Kbs of the frame 1 was 34.9 kN / cm. Table 1 shows the calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2. Table 2 shows calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

また、実施例3で用いる第一粘弾性ダンパー25a、第二粘弾性ダンパー25bは、実施例1で用いた第一粘弾性ダンパー5a、第二粘弾性ダンパー5bと略同様のものであるが、外筒部材6の外側の端縁から内芯部材7の外側の端縁までの長さが短くなっている。さらに、第一粘弾性ダンパー25a、第二粘弾性ダンパー25bは、それぞれ、貯蔵剛性(K’ds1,K’ds2)が表1の数値となるように調整されている。かかる第一粘弾性ダンパー25aの損失係数tanδ1、第二粘弾性ダンパー25bの損失係数tanδ2を、実施例1と同様の方法によって測定した。測定結果を表1に示す。   The first viscoelastic damper 25a and the second viscoelastic damper 25b used in the third embodiment are substantially the same as the first viscoelastic damper 5a and the second viscoelastic damper 5b used in the first embodiment. The length from the outer edge of the outer cylinder member 6 to the outer edge of the inner core member 7 is shortened. Further, the first viscoelastic damper 25a and the second viscoelastic damper 25b are adjusted so that the storage rigidity (K′ds1, K′ds2) is the value shown in Table 1. The loss coefficient tan δ1 of the first viscoelastic damper 25a and the loss coefficient tan δ2 of the second viscoelastic damper 25b were measured by the same method as in Example 1. The measurement results are shown in Table 1.

そして、枠組フレーム1の上下の領域R1,R2において、それぞれ、剛接合片21と剛接合片12との間に、上記した第一粘弾性ダンパー25a、第二粘弾性ダンパー25bを取り付け、実施例1と同様に、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。なお、第一粘弾性ダンパー25a、第二粘弾性ダンパー25bを取り付けた実施例3の枠組フレーム1においては、第一粘弾性ダンパー25aの貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値が3.36に調整されていることになり、第二粘弾性ダンパー15bの貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値が3.01に調整されていることになる(表1参照)。   In the upper and lower regions R1 and R2 of the frame 1, the first viscoelastic damper 25a and the second viscoelastic damper 25b described above are attached between the rigid joint piece 21 and the rigid joint piece 12, respectively. 1, using a large dynamic shaker, the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/200 rad. From the deformation-load relationship, the storage rigidity K of the entire system 'as, loss stiffness K "as and loss coefficient tan δa were measured to calculate tan δa / tan δ1 and tan δa / tan δ2 which are indexes of damping characteristics. The calculation results are shown in Table 1. The interlayer deformation angle is also shown. Table 2 shows tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so as to be 1/100 rad. In the frame 1 of the embodiment 3 to which the 25a and the second viscoelastic damper 25b are attached, the value of Kbs1 / K'ds1 is 3 in consideration of the storage rigidity K'ds1 and the attachment rigidity Kbs1 of the first viscoelastic damper 25a. .36, and considering the storage rigidity K'ds2 and the mounting rigidity Kbs2 of the second viscoelastic damper 15b, the value of Kbs2 / K'ds2 is adjusted to 3.01. (See Table 1).

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles 1/200 rad and 1/100 rad was calculated based on the above equation 10. Tables 1 and 2 show the calculated Fdsmax.

実施例3の枠組フレーム1の上下の領域R1,R2の剛接合片21,21を、ピン結合可能なピン挿通孔を有するピン接合片31,31に変更するとともに、上下の領域R1,R2の剛接合片12,12を、ピン結合可能なピン挿通孔を有するピン接合片32,32に変更した(図8参照)。そして、実施例1と同様に、上下の領域R1,R2におけるピン接合片31とピン接合片32との間に剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図8の矢印方向)、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、第一粘弾性ダンパーの取付部分の取付剛性Kbs1および第二粘弾性ダンパーの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、28.9kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。   The rigid joint pieces 21 and 21 in the upper and lower regions R1 and R2 of the framework frame 1 of the third embodiment are changed to pin joint pieces 31 and 31 having pin insertion holes that can be pin-coupled, and the upper and lower regions R1 and R2 The rigid joint pieces 12 and 12 were changed to pin joint pieces 32 and 32 having pin insertion holes that can be pin-coupled (see FIG. 8). As in the first embodiment, a rigid body (metal plate) is attached between the pin joining piece 31 and the pin joining piece 32 in the upper and lower regions R1, R2, and in this state, the interlayer deformation angle becomes 1/200 rad. The frame frame 1 is horizontally deformed (in the direction of the arrow in FIG. 8), and the mounting rigidity Kbs of the frame frame 1 is calculated from the relationship between the applied stress and the amount of deformation. The attachment rigidity Kbs1 of the attachment part of the viscoelastic damper and the attachment rigidity Kbs2 of the attachment part of the second viscoelastic damper were calculated. The calculated value of the mounting rigidity Kbs of the frame 1 was 28.9 kN / cm. Table 1 shows the calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2. Table 2 shows calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

また、実施例4で用いる第一粘弾性ダンパー35a、第二粘弾性ダンパー35bは、実施例2で用いた粘弾性ダンパー5a,5bと略同様のものであるが、外筒部材6の外側の端縁から内芯部材7の外側の端縁までの長さが短くなっている。さらに、第一粘弾性ダンパー35a、第二粘弾性ダンパー35bは、それぞれ、貯蔵剛性(K’ds1,K’ds2)が表1の数値となるように調整されている。かかる第一粘弾性ダンパー35aの損失係数tanδ1、第二粘弾性ダンパー35bの損失係数tanδ2を、実施例1と同様の方法によって測定した。測定結果を表1に示す。   The first viscoelastic damper 35a and the second viscoelastic damper 35b used in the fourth embodiment are substantially the same as the viscoelastic dampers 5a and 5b used in the second embodiment. The length from the edge to the outer edge of the inner core member 7 is shortened. Further, the first viscoelastic damper 35a and the second viscoelastic damper 35b are adjusted so that the storage rigidity (K'ds1, K'ds2) is the value shown in Table 1. The loss coefficient tan δ1 of the first viscoelastic damper 35a and the loss coefficient tan δ2 of the second viscoelastic damper 35b were measured by the same method as in Example 1. The measurement results are shown in Table 1.

そして、枠組フレーム1の上下の領域R1,R2において、それぞれ、ピン接合片31とピン接合片32との間に、上記した第一粘弾性ダンパー35a、第二粘弾性ダンパー35bを取り付け、実施例1と同様に、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。なお、第一粘弾性ダンパー35a、第二粘弾性ダンパー35bを取り付けた実施例4の枠組フレーム1においては、第一粘弾性ダンパー35aの貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値が2.40に調整されていることになり、第二粘弾性ダンパー35bの貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値が2.72に調整されていることになる(表1参照)。   In the upper and lower regions R1 and R2 of the frame 1, the first viscoelastic damper 35a and the second viscoelastic damper 35b described above are attached between the pin joint piece 31 and the pin joint piece 32, respectively. 1, using a large dynamic shaker, the frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/200 rad. From the deformation-load relationship, the storage rigidity K of the entire system 'as, loss stiffness K "as and loss coefficient tan δa were measured to calculate tan δa / tan δ1 and tan δa / tan δ2 which are indexes of damping characteristics. The calculation results are shown in Table 1. The interlayer deformation angle is also shown. Table 2 shows tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so as to be 1/100 rad. In the frame 1 of the fourth embodiment in which the par 35a and the second viscoelastic damper 35b are attached, when the storage rigidity K'ds1 and the attachment rigidity Kbs1 of the first viscoelastic damper 35a are considered, the value of Kbs1 / K'ds1 is In consideration of the storage rigidity K′ds2 and the mounting rigidity Kbs2 of the second viscoelastic damper 35b, the value of Kbs2 / K′ds2 is adjusted to 2.72. (See Table 1).

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles 1/200 rad and 1/100 rad was calculated based on the above equation 10. Tables 1 and 2 show the calculated Fdsmax.

<比較例>
実施例1の枠組フレーム1の上下の領域R1,R2の剛接合片11,11を、ピン結合可能なピン挿通孔を有するピン接合片41,41に変更した。そして、実施例1と同様に、上下の領域R1,R2におけるピン接合片41と剛接合片12との間に剛体を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて、加えた応力と変形量との関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、第一粘弾性ダンパーの取付部分の取付剛性Kbs1および第二粘弾性ダンパーの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbの値は、27.0kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。
<Comparative example>
The rigid joint pieces 11 and 11 in the upper and lower regions R1 and R2 of the frame 1 of the first embodiment are changed to pin joint pieces 41 and 41 having pin insertion holes that can be pin-coupled. Then, similarly to the first embodiment, a rigid body is attached between the pin joint piece 41 and the rigid joint piece 12 in the upper and lower regions R1, R2, and in this state, the frame frame is set so that the interlayer deformation angle is 1/200 rad. 1 is horizontally deformed, the attachment rigidity Kbs of the frame 1 is calculated from the relationship between the applied stress and the deformation amount, and the attachment rigidity Kbs1 of the attachment portion of the first viscoelastic damper is calculated using the above equations 8 and 9. The attachment rigidity Kbs2 of the attachment portion of the second viscoelastic damper was calculated. The calculated value of the mounting rigidity Kb of the frame 1 was 27.0 kN / cm. Table 1 shows the calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2. Table 2 shows calculation results of the attachment rigidity Kbs1 and the attachment rigidity Kbs2 when the frame 1 is horizontally deformed so that the interlayer deformation angle becomes 1/100 rad.

また、比較例で用いる第一粘弾性ダンパー、第二粘弾性ダンパーは、実施例1で用いた第一粘弾性ダンパー5a、第二粘弾性ダンパー5bと略同様のものであるが、比較例の第一粘弾性ダンパー、第二粘弾性ダンパーの外筒部材6の外側の端縁には、ピン挿通孔を穿設したピン結合部材が固着されている。また、外筒部材6と内芯部材7との隙間に充填された粘弾性体8が、実施例1と比べて剛直なものになっている。比較例の第一粘弾性ダンパー、第二粘弾性ダンパーのその他の部分の形状、構造は、実施例1の第一粘弾性ダンパー5a、第二粘弾性ダンパー5bと同様である。さらに、比較例の第一粘弾性ダンパー、第二粘弾性ダンパーは、それぞれ、貯蔵剛性(K’ds1,K’ds2)が表1の数値となるように調整されている。かかる比較例の第一粘弾性ダンパーの損失係数tanδ1、比較例の第二粘弾性ダンパーの損失係数tanδ2を、実施例1と同様の方法によって測定した。測定結果を表1に示す。   The first viscoelastic damper and the second viscoelastic damper used in the comparative example are substantially the same as the first viscoelastic damper 5a and the second viscoelastic damper 5b used in Example 1, but A pin coupling member having a pin insertion hole is fixed to the outer edge of the outer cylinder member 6 of the first viscoelastic damper and the second viscoelastic damper. Further, the viscoelastic body 8 filled in the gap between the outer cylinder member 6 and the inner core member 7 is more rigid than the first embodiment. The shapes and structures of the other parts of the first viscoelastic damper and the second viscoelastic damper of the comparative example are the same as those of the first viscoelastic damper 5a and the second viscoelastic damper 5b of the first embodiment. Furthermore, the first viscoelastic damper and the second viscoelastic damper of the comparative example are adjusted so that the storage rigidity (K′ds1, K′ds2) is the numerical value shown in Table 1. The loss coefficient tan δ1 of the first viscoelastic damper of the comparative example and the loss coefficient tan δ2 of the second viscoelastic damper of the comparative example were measured by the same method as in Example 1. The measurement results are shown in Table 1.

そして、枠組フレーム1の上下の領域R1,R2において、それぞれ、ピン接合片41と剛接合片12との間に、上記した比較例の第一粘弾性ダンパー、第二粘弾性ダンパーを取り付け、実施例1と同様に、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。なお、比較例の枠組フレーム1においては、第一粘弾性ダンパーの貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値が1.03に調整されていることになり、第二粘弾性ダンパーの貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値が1.03に調整されていることになる(表1参照)。   Then, in the upper and lower regions R1 and R2 of the frame 1, the first viscoelastic damper and the second viscoelastic damper of the comparative example described above are attached between the pin joint piece 41 and the rigid joint piece 12, respectively. As in Example 1, using a large dynamic shaker, the frame frame 1 is deformed in the horizontal direction so that the interlayer deformation angle is 1/200 rad, and the storage rigidity of the entire system is determined from the deformation-load relationship. K′as, loss stiffness K ″ as, loss coefficient tan δa were measured, and horizontal components tan δa / tan δ1 and tan δa / tan δ2 that serve as indexes of the attenuation characteristics were calculated. The calculation results are shown in Table 1. Also, the interlayer deformation angle. Table 2 shows tan δa / tan δ1 and tan δa / tan δ2 when the frame 1 is deformed in the horizontal direction so that becomes 1/100 rad. 1, the storage rigidity K'ds1 and the attachment rigidity Kbs1 of the first viscoelastic damper are taken into consideration, and the value of Kbs1 / K'ds1 is adjusted to 1.03, and the storage of the second viscoelastic damper is stored. Considering the rigidity K′ds2 and the mounting rigidity Kbs2, the value of Kbs2 / K′ds2 is adjusted to 1.03 (see Table 1).

また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。   Further, the maximum horizontal proof stress Fdsmax generated in the frame 1 at the time of deformation of the interlayer deformation angles 1/200 rad and 1/100 rad was calculated based on the above equation 10. Tables 1 and 2 show the calculated Fdsmax.

Figure 0004456514
Figure 0004456514

Figure 0004456514
Figure 0004456514

表1より、枠組フレーム1の第一粘弾性ダンパー取付部分の取付剛性Kbs1、枠組フレーム1の第二粘弾性ダンパー取付部分の取付剛性Kbs2、第一粘弾性ダンパーの貯蔵剛性K’ds1、損失係数tanδ1、第二粘弾性ダンパーの貯蔵剛性K’ds2、損失係数tanδ2が、本発明の条件を満たすように調整された実施例1〜4の枠組フレームにおいては、減衰特性の指標となる水平成分のtanδa/tanδ1,tanδa/tanδ2がいずれも50%以上となり、良好な減衰特性を発現し得ることが分かる。これに対して、Kbs1,Kbs2,K’ds1,tanδ1,K’ds2,tanδ2が、本発明の条件を満たさない比較例の枠組フレームにおいては、減衰特性の指標となる水平成分のtanδa/tanδ1,tanδa/tanδ2がいずれも50%未満となり、良好な減衰特性を発現し得ないことが分かる。また、表1、表2より、実施例1〜4における枠組フレーム1に発生する最大水平耐力Fdsmaxは、枠組フレーム1の許容水平耐力Fs(30kN)に比べて十分に小さくなっていることが分かる。   From Table 1, the mounting rigidity Kbs1 of the first viscoelastic damper mounting portion of the frame 1, the mounting rigidity Kbs2 of the second viscoelastic damper mounting portion of the frame 1, the storage stiffness K′ds1 of the first viscoelastic damper, the loss factor In the frame frames of Examples 1 to 4 in which tan δ1, the storage rigidity K′ds2 of the second viscoelastic damper, and the loss coefficient tan δ2 are adjusted so as to satisfy the conditions of the present invention, It can be seen that tan δa / tan δ1 and tan δa / tan δ2 are both 50% or more, and good attenuation characteristics can be exhibited. In contrast, Kbs1, Kbs2, K′ds1, tan δ1, K′ds2, and tan δ2 are tan δa / tan δ1, which is a horizontal component that serves as an index of the attenuation characteristic in the frame of the comparative example that does not satisfy the conditions of the present invention. It can be seen that tan δa / tan δ2 is less than 50%, and good attenuation characteristics cannot be exhibited. Also, from Tables 1 and 2, it can be seen that the maximum horizontal strength Fdsmax generated in the frame 1 in Examples 1 to 4 is sufficiently smaller than the allowable horizontal strength Fs (30 kN) of the frame 1. .

なお、本発明の軽量鉄骨住宅の制震構造の構成は、上記実施形態の態様に何ら限定されるものではなく、枠組フレームや粘弾性ダンパー等の構成を、本発明の趣旨を逸脱しない範囲で適宜変更することができる。   In addition, the structure of the light-damped steel house vibration control structure of the present invention is not limited to the aspect of the above-described embodiment, and the structure of the frame frame, the viscoelastic damper, and the like is within the scope of the present invention. It can be changed as appropriate.

たとえば、本発明においては、粘弾性ダンパーの貯蔵剛性K’dsの値を枠組フレームの取付剛性Kbsの値に合わせて適宜調整することが可能である。それゆえ、粘弾性ダンパーの特性を、用途に合わせて適宜変更することができる。したがって、ゴム系、アスファルト系、アクリル系、スチレン系等の各種の高分子化合物を粘弾性体として好適に用いることができる。また、粘弾性ダンパーも、上記実施形態の如く、外筒部材の内部に内芯部材を挿入し、その内芯部材と外筒部材との隙間に粘弾性体を介在させたものに限定されず、芯プレートと一対の外プレートとの間に粘弾性体を介在させたものや、表裏一対のプレートの間に粘弾性体を介在させたもの等に変更することも可能である。   For example, in the present invention, the value of the storage rigidity K′ds of the viscoelastic damper can be appropriately adjusted according to the value of the mounting rigidity Kbs of the frame frame. Therefore, the characteristics of the viscoelastic damper can be appropriately changed according to the application. Therefore, various polymer compounds such as rubber, asphalt, acrylic, and styrene can be suitably used as the viscoelastic body. Further, the viscoelastic damper is not limited to the one in which the inner core member is inserted into the outer cylinder member and the viscoelastic body is interposed in the gap between the inner core member and the outer cylinder member as in the above embodiment. It is also possible to change to a structure in which a viscoelastic body is interposed between the core plate and the pair of outer plates, or a structure in which a viscoelastic body is interposed between the pair of front and back plates.

加えて、本発明の制震構造に採用される枠組フレームは、上記実施形態の如く水平材の上下に同一の構造を有する粘弾性ダンパーを取り付けたものに限定されず、構造や特性の異なる粘弾性ダンパーを取り付けたものに変更することも可能である。かかる場合でも、Kbs1,Kbs2,K’ds1,K’ds2,tanδ1,tanδ2が上記所定の関係を満たすように調整されていれば、枠組フレームは十分な減衰性能を発揮することができるものとなる。   In addition, the frame used in the seismic control structure of the present invention is not limited to the one in which viscoelastic dampers having the same structure are attached to the top and bottom of the horizontal member as in the above-described embodiment, but the structure and characteristics are different. It is also possible to change it to one with an elastic damper attached. Even in such a case, as long as Kbs1, Kbs2, K′ds1, K′ds2, tan δ1, and tan δ2 are adjusted so as to satisfy the predetermined relationship, the frame frame can exhibit sufficient attenuation performance. .

本発明の枠組フレームを直列水平換算バネとしてモデル化して示す説明図である。It is explanatory drawing which models and shows the frame of this invention as a series horizontal conversion spring. 本発明の枠組フレームを示す模式図である。It is a schematic diagram which shows the frame frame of this invention. 実施例1の枠組フレームの正面図である。It is a front view of the frame frame of Example 1. (a)は実施例1の第一粘弾性ダンパー(第二粘弾性ダンパー)の正面図であり、(b)は(a)におけるA−A線断面図である。(A) is a front view of the 1st viscoelastic damper (2nd viscoelastic damper) of Example 1, (b) is the sectional view on the AA line in (a). 実施例2の枠組フレームの正面図である。It is a front view of the frame frame of Example 2. (a)は実施例2の第一粘弾性ダンパー(第二粘弾性ダンパー)の正面図であり、(b)は(a)におけるB−B線断面図である。(A) is a front view of the 1st viscoelastic damper (2nd viscoelastic damper) of Example 2, (b) is the BB sectional view taken on the line in (a). 実施例3の枠組フレームの正面図である。It is a front view of the frame frame of Example 3. 実施例4の枠組フレームの正面図である。It is a front view of the frame frame of Example 4.

符号の説明Explanation of symbols

1・・枠組フレーム、2・・柱材、3・・横架材、4・・中桟、5a,15a,25a,35a,45a・・第一粘弾性ダンパー、5b,15b,25b,35b,45b・・第二粘弾性ダンパー、6・・外筒部材、7・・内芯部材、8・・粘弾性体。   1. Frame frame 2. Column material 3. Horizontal frame 4. Middle rail 5a, 15a, 25a, 35a, 45a ... First viscoelastic damper, 5b, 15b, 25b, 35b, 45b ··· second viscoelastic damper, ··· outer cylinder member, ··· inner core member, ··· viscoelastic body.

Claims (3)

左右の柱材と上下の横架材とから構成される枠組フレームに、内部を上下に二分割する中桟を架設し、その中桟の上下において、片側の柱材と中桟との仕口と、反対側の柱材と上側の横架材との仕口とを結ぶように第一粘弾性ダンパーを傾斜状に設置するとともに、その第一粘弾性ダンパーに対して中桟を中心として上下対称となるように、第二粘弾性ダンパーを、片側の柱材と中桟との仕口と、反対側の柱材と下側の横架材との仕口とを結ぶように傾斜状に設置した軽量鉄骨住宅の制震構造であって、
層間変形角が1/200radである場合に、下式1〜6を満たすことを特徴とする軽量鉄骨住宅の制震構造。
40kN/cm≦Kbs1≦200kN/cm ・・1
40kN/cm≦Kbs2≦200kN/cm ・・2
1.5≦Kbs1/K’ds1≦10 ・・3
1.5≦Kbs2/K’ds2≦10 ・・4
tanδ1≧0.6 ・・5
tanδ2≧0.6 ・・6
(但し、Kbs1,Kbs2は、それぞれ、第一粘弾性ダンパーの取付部分の取付剛性、第二粘弾性ダンパーの取付部分の取付剛性であり、K’ds1,K’ds2は、それぞれ、第一粘弾性ダンパーの貯蔵剛性、第二粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2は、それぞれ、第一粘弾性ダンパーの損失係数、第二粘弾性ダンパーの損失係数である)
An intermediate beam that divides the inside vertically into two frames is built on a frame that consists of left and right column members and upper and lower horizontal members, and the joint between the column material on one side and the intermediate beam is located above and below the intermediate beam. The first viscoelastic damper is installed in an inclined shape so as to connect the column of the opposite side column and the upper horizontal member, and the upper and lower sides of the first viscoelastic damper are centered on the middle rail. In order to be symmetrical, the second viscoelastic damper is inclined so as to connect the joint between the pillar material on one side and the middle rail and the joint between the pillar material on the opposite side and the lower horizontal member. It is an anti-seismic structure for the installed lightweight steel house,
When the interlayer deformation angle is 1/200 rad, the light-damping structure for a light steel frame house satisfying the following formulas 1 to 6.
40 kN / cm ≦ Kbs1 ≦ 200 kN / cm 1
40 kN / cm ≦ Kbs2 ≦ 200 kN / cm 2
1.5 ≦ Kbs1 / K′ds1 ≦ 10 3
1.5 ≦ Kbs2 / K′ds2 ≦ 10 4
tan δ1 ≧ 0.6 ・ ・ 5
tan δ2 ≧ 0.6 ・ ・ 6
(However, Kbs1 and Kbs2 are the attachment rigidity of the attachment part of the first viscoelastic damper and the attachment rigidity of the attachment part of the second viscoelastic damper, respectively, and K′ds1 and K′ds2 are respectively the first viscosity. (The storage stiffness of the elastic damper and the storage stiffness of the second viscoelastic damper, where tan δ1 and tan δ2 are the loss coefficient of the first viscoelastic damper and the loss coefficient of the second viscoelastic damper, respectively)
層間変形角が1/100radである場合に、下式7を満たすことを特徴とする請求項1に記載の軽量鉄骨住宅の制震構造。
Fdsmax<Fs ・・7
(但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
The light-damped steel house vibration control structure according to claim 1, wherein when the interlayer deformation angle is 1/100 rad, the following expression 7 is satisfied.
Fdsmax <Fs 7
(Where Fdsmax is the maximum horizontal strength generated in the frame and Fs is the allowable horizontal strength of the frame)
前記第一粘弾性ダンパーおよび前記第二粘弾性ダンパーが、外筒部材の内部に内芯部材を挿入し、その内芯部材と外筒部材との隙間に粘弾性体を介在させたものであることを特徴とする請求項1、または請求項2に記載の建物の制震構造。   In the first viscoelastic damper and the second viscoelastic damper, an inner core member is inserted into the outer cylinder member, and a viscoelastic body is interposed in a gap between the inner core member and the outer cylinder member. The building vibration control structure according to claim 1 or claim 2, wherein
JP2005104275A 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house Active JP4456514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104275A JP4456514B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104275A JP4456514B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Publications (2)

Publication Number Publication Date
JP2006283374A JP2006283374A (en) 2006-10-19
JP4456514B2 true JP4456514B2 (en) 2010-04-28

Family

ID=37405571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104275A Active JP4456514B2 (en) 2005-03-31 2005-03-31 Seismic control structure of lightweight steel house

Country Status (1)

Country Link
JP (1) JP4456514B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060323B2 (en) * 2008-01-30 2012-10-31 株式会社東芝 Metal closed switchgear
JP2009228276A (en) * 2008-03-21 2009-10-08 Tokai Rubber Ind Ltd Vibration control damper and mounting structure thereof
ES2357591B2 (en) * 2008-08-07 2012-05-30 Universidad De Granada SISMIC ENERGY SINK FOR A PRIMARY RESISTANT STRUCTURE OF A CONSTRUCTION.

Also Published As

Publication number Publication date
JP2006283374A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US20140000185A1 (en) Composite damper
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP4456514B2 (en) Seismic control structure of lightweight steel house
JP4464307B2 (en) Seismic control structure of lightweight steel house
JP4456515B2 (en) Seismic control structure of lightweight steel house
JP4603918B2 (en) Seismic control structure of lightweight steel house
JP2012042016A (en) Three-dimensional base isolation device
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP4551258B2 (en) Seismic control structure of lightweight steel house
JP4703971B2 (en) Energy absorbing brace damping device and energy absorbing device
JP5918282B2 (en) Long-period building
JP2007077745A (en) Framework connection component
JP5727690B2 (en) Long-period building
JP4959636B2 (en) Damping member
JP2017160652A (en) Buckling restraint type damper for bridge
JP6037298B1 (en) Energy absorption mechanism
WO2009142040A1 (en) Earthquake-proof structure
JP4573709B2 (en) Passive damper
JP2005314917A (en) Vibration control stud
JP4609628B2 (en) Seismic shock absorber and seismic joint device using the same
JP2010242381A (en) Vibration control structure of building and building equipped therewith
JP5053554B2 (en) Vibration control device
CN214034066U (en) Steel structure component for building
JP3245445U (en) Vibration damping structure
KR102673242B1 (en) Laminated steel dampers for seismic retrofit of existing old buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350