JP2007077745A - Framework connection component - Google Patents

Framework connection component Download PDF

Info

Publication number
JP2007077745A
JP2007077745A JP2005269776A JP2005269776A JP2007077745A JP 2007077745 A JP2007077745 A JP 2007077745A JP 2005269776 A JP2005269776 A JP 2005269776A JP 2005269776 A JP2005269776 A JP 2005269776A JP 2007077745 A JP2007077745 A JP 2007077745A
Authority
JP
Japan
Prior art keywords
frame
component
connecting portion
joint component
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005269776A
Other languages
Japanese (ja)
Other versions
JP3890073B1 (en
Inventor
Toru Iwakawa
徹 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Eisei Center Co Ltd
Original Assignee
Nippon Eisei Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Eisei Center Co Ltd filed Critical Nippon Eisei Center Co Ltd
Priority to JP2005269776A priority Critical patent/JP3890073B1/en
Application granted granted Critical
Publication of JP3890073B1 publication Critical patent/JP3890073B1/en
Publication of JP2007077745A publication Critical patent/JP2007077745A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component to connect framework structural members together, which component absorbs the impacts of external forces applied to structural frameworks and improves their deformation abilities for external force energies applied. <P>SOLUTION: The framework connection component 10 is installed between the fixing parts 2 installed on the surfaces of two framework members 1 to be connected together. It is provided with a connection part 3 that bends by external forces applied to the framework. The connection part 3 rises from the fixing part 2, and a viscoelastic material 6 is provided within a clearance 4 between the connection part 3 and the framework members 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、骨組接合部品に係り、特に、骨組構成部材相互を接合する骨組接合部品に関する。   The present invention relates to a frame joint component, and more particularly, to a frame joint component that joins frame components to each other.

空間を覆う構造体は、構造体及びそれに取り付く外皮の自重や、外部から加わる荷重に対して抵抗する。一般的には、構造体は、骨組構成部材からなる骨組を構成し、内部空間が崩壊しないように保護する。例えば、人体においては、骨からなる骨組構成部材が結合され骨格という骨組を構成し、体重を支え、運動や衝突等により人体に加わる荷重に抵抗し、脳、肺、内臓等の人体の内部空間が崩壊しないように保護する。また、例えば、建造物においては、柱や梁からなる骨組構成部材が結合され骨組を構成し、骨組構成部材や仕上材等の建造物の自重を支え、地震、台風、積雪等の外力に抵抗し、建造物の内部空間が崩壊しないように保護する。ここで、建造物とは、建築物、土木構造物、工作物等、人工的に空間を覆う構造体を総称する。   The structure covering the space resists the weight of the structure and the outer skin attached to the structure and the load applied from the outside. In general, the structure forms a frame made up of frame components and protects the internal space from collapsing. For example, in a human body, a framework component member composed of bones is combined to form a framework called a skeleton, supports the weight, resists loads applied to the human body due to exercise or collision, and the internal space of the human body such as the brain, lungs, and internal organs Protect it from collapsing. Also, for example, in a building, a frame component consisting of columns and beams is combined to form a frame, supporting the weight of the building such as the frame component and finishing material, and resisting external forces such as earthquakes, typhoons, and snowfall. And protect the internal space of the building from collapsing. Here, the building is a general term for a structure that artificially covers a space, such as a building, a civil engineering structure, or a workpiece.

このような骨組構成部材は、一般的に、ある断面形状を有する線材であり、直線状ないしは曲線状の部材から構成される。したがって、骨組構成部材は、このような部材を相互に接合するための骨組接合部品を要する。例えば、人体であれば、骨を接合する関節が相当するが、骨折した骨相互の接合部品や、補強材と骨との接合部品も骨組接合部品に含まれる。また、建造物においては、骨組構成部材には、例えば、柱、梁、ブレース、小梁、間柱等の外力に対して抵抗する部材が総て含まれる。また、骨組接合部品には、柱同士あるいは梁同士の継手の接合部品だけではなく、柱と梁の仕口あるいは柱と梁とブレースの仕口における接合部品、さらには、間柱と梁の接合部品、小梁と梁の接合部品も含まれる。また、接合金物や接合金具と称されるものも骨組接合部品に含まれる。また、建造物の骨組構成部材は、木材、鉄骨、コンクリート等の各種の建築材料から成り、その骨組接合部品も木材、金属、プラスチック等の各種の建築材料から成る。   Such a frame component member is generally a wire having a certain cross-sectional shape, and is composed of a linear or curved member. Therefore, a frame component member requires a frame joint component for joining such members to each other. For example, in the case of a human body, a joint that joins bones corresponds, but a joined part between fractured bones and a joined part between a reinforcing material and a bone are also included in the framework joined parts. Moreover, in a building, all the members which resist external force, such as a pillar, a beam, a brace, a small beam, a stud, etc. are contained in a frame structural member, for example. In addition, not only for joints between columns or beams, but also for joints between columns and beams, or for joints between columns, beams, and braces, as well as inter-column and beam joints. Also included are small beam-to-beam joints. Moreover, what is called a joint metal or a joint metal fitting is also included in the frame joint component. In addition, the structural members of the building are made of various building materials such as wood, steel frames, and concrete, and the frame joint parts are made of various building materials such as wood, metal, and plastic.

人体には、その骨組接合部品である関節において、外力に対して変形が生じ、外力により発生する衝撃を吸収するメカニズムを有する。すなわち、肘関節や膝関節などは、いわゆるヒンジ構造であり、一方の骨(関節頭)が他方の骨(関節窩)にはまり込むようになっている。この滑り合う双方の骨の表面には弾力のある関節軟骨と潤滑油のような液体が存在し、これらを介して骨相互が接合され衝撃を和らげている。   The human body has a mechanism that deforms against external force in a joint that is a framework joint component and absorbs an impact generated by the external force. That is, an elbow joint, a knee joint, etc. are what is called a hinge structure, and one bone (joint head) fits in the other bone (glenoid fossa). There are elastic articular cartilage and a fluid such as lubricating oil on the surfaces of both of the bones that slide together, and the bones are joined together to alleviate the impact.

建造物においては、日本古来の五重塔に代表されるような、柱や梁が、貫、長押、斗、肘木などとともに用いられる、耐震性の高い構法がある。この構法では、各形状の木材からなる骨組接合部品が複雑に組み合わされ、地震等に対して変形能力の高い構法となっている。また、地震等に対して各骨組接合部品が互いに擦れ合い変形が生じる構法となっている。一方、現在の建造物では、接合部を固定する方法としてボルト接合を用いるのが一般的である。これらのボルトの径に対してボルト孔は、施工誤差を吸収するため、一定のクリアランスをとっている。このため、地震等に対して、ボルトがこのクリアランス内で滑ることで、骨組接合部品において変形が生じる場合もあり得る。   In buildings, there is a highly earthquake-resistant construction in which pillars and beams, such as those in ancient Japanese five-storied pagodas, are used in combination with perforations, long presses, doughs, and elbows. In this construction method, frame-jointed parts made of wood of various shapes are combined in a complicated manner, and the construction method has a high deformability against earthquakes and the like. In addition, the frame joining parts rub against each other against an earthquake or the like to cause deformation. On the other hand, in current buildings, it is common to use bolt joining as a method of fixing the joint. Bolt holes take a certain clearance with respect to the diameters of these bolts in order to absorb construction errors. For this reason, a deformation | transformation may arise in a frame joining component because a volt | bolt slips within this clearance with respect to an earthquake etc.

一般に、建造物においては、外力に対して各骨組接合部品間での擦れ合いや滑りなどの変形が生じることは、建造物の変形能力を高め、耐震性の高い建造物となる。すなわち、骨組接合部品が一種のダンパとなり、地震等の振動エネルギを熱エネルギ等に変換して減衰させる、一種の制震構造となるからである。また、変形能力が高いということは、建造物全体の固有周期を長周期化させ、耐震性の高い建造物となる。すなわち、固有周期が長周期化することで、地震等に対して建造物全体がゆっくりと揺れ、地震等の衝撃を和らげる一種の免震構造となるからである。   In general, in a building, deformation such as rubbing and sliding between each frame joint component with respect to external force increases the deformation capability of the building, resulting in a building with high earthquake resistance. That is, the frame-joined component becomes a kind of damper, and becomes a kind of seismic control structure that converts vibration energy such as an earthquake into heat energy or the like and attenuates it. In addition, the high deformability means that the natural period of the entire building is lengthened, resulting in a building with high earthquake resistance. That is, when the natural period is lengthened, the entire building slowly shakes with respect to an earthquake or the like, resulting in a kind of seismic isolation structure that softens the impact such as an earthquake.

一方、例えば、特許文献1には、木構造の接合金具が開示され、特許文献2には、超塑性合金による木造住宅用制震ダンパが開示され、特許文献3には、粘弾性材ダンパが取付けられた木造家屋耐震補強構造が開示されている。   On the other hand, for example, Patent Document 1 discloses a wooden structure fitting, Patent Document 2 discloses a vibration damping damper for a wooden house using a superplastic alloy, and Patent Document 3 discloses a viscoelastic material damper. An attached wooden house seismic reinforcement structure is disclosed.

特許文献1に開示されている木構造の接合金具の概要を図9に示す。接合部の木部11、12に金具14,15が固定され、それぞれの金具の輪16,17と係合するU字型の板バネ18が設けられている。この板バネは、圧縮コイルバネ20により、自然乾燥により収縮する木造部材相互を引き寄せる方向に付勢される。また、木造部材が離間する方向に外力が作用しても、その負荷は金具16,17に係合する楔係合板19と圧縮コイルバネ20により剛体として受ける。   FIG. 9 shows an outline of a wood-structured joint fitting disclosed in Patent Document 1. Metal parts 14 and 15 are fixed to the wood parts 11 and 12 of the joint part, and U-shaped leaf springs 18 that engage with the rings 16 and 17 of the respective metal parts are provided. The leaf springs are urged by the compression coil springs 20 in the direction of pulling together the wooden members that contract by natural drying. Even if an external force acts in the direction in which the wooden members are separated, the load is received as a rigid body by the wedge engaging plate 19 and the compression coil spring 20 that engage with the metal fittings 16 and 17.

特許文献2に開示されている制震ダンパには、降伏荷重が小さく変形能力に優れた低降伏点鋼等の超塑性合金が用いられている。これは、地震等に対し、低降伏点鋼を降伏させ、荷重履歴に伴う非線形な挙動により地震等のエネルギを吸収するものである。すなわち、低降伏点鋼等の超塑性合金を用いることは、意図的に接合強度の低い部分を設けることで、外力に対して変形による塑性化で振動エネルギを吸収させる手法である。   For the damping damper disclosed in Patent Document 2, a superplastic alloy such as a low yield point steel having a small yield load and excellent deformability is used. This yields low yield point steel against earthquakes and absorbs energy such as earthquakes by non-linear behavior associated with load history. That is, using a superplastic alloy such as low yield point steel is a method of absorbing vibration energy by plasticizing by deformation with respect to external force by intentionally providing a portion having low joint strength.

特許文献3に開示されている粘弾性ダンパに用いられる粘弾性材とは、流体のような粘性とスプリングのような弾性を合わせもった力学的挙動をする高分子材料をいい、免震ダンパの積層ゴム等にも用いられている。この粘弾性材に応力が加わった場合、その荷重履歴に伴う非線形な挙動により地震等のエネルギを吸収するものである。すなわち、接合部分に粘弾性材を組み込むことは、上記と同様に、意図的に粘性を有する粘弾性材を設けることで、外力に対して変形による塑性化で振動エネルギを吸収させる手法である。   The viscoelastic material used in the viscoelastic damper disclosed in Patent Document 3 refers to a polymer material that has a mechanical behavior that combines a fluid-like viscosity and a spring-like elasticity. It is also used for laminated rubber. When stress is applied to this viscoelastic material, energy such as earthquake is absorbed by non-linear behavior associated with the load history. That is, incorporating a viscoelastic material into the joint is a method of absorbing vibration energy by plasticizing due to deformation with respect to external force by intentionally providing a viscoelastic material having viscosity as described above.

特開2004−143893号公報JP 2004-143893 A 特開2005−42403号公報JP-A-2005-42403 特開2000−160683号公報JP 2000-160683 A

骨組構成部材同士を接合する骨組接合部品は、外力を伝達するため、骨組構成部材の部材強度と同等以上の接合強度が要求される。一般的な骨組接合部品では、外力に対してその一部に大きな変形が生じることは、その部品の一部に過度の応力度が発生していることであり、骨組接合部品の接合強度が部分的に不足していることを意味する。すなわち、一般的には、骨組接合部品の接合強度と変形能力は相反する関係にある。したがって、通常の骨組接合部品では、接合強度を確保しつつ建造物全体の変形能力を上げることは難しい。また、地震等に対するボルト接合部の滑りは、ボルトによる締め付け不良などの原因もあり、その発生については不確実なものである。   In order to transmit external force, the frame joining component that joins the frame constituting members is required to have a joint strength equal to or higher than the member strength of the frame constituting member. In general frame joint parts, a large deformation in a part with respect to external force means that an excessive stress is generated in a part of the part. It means that there is a shortage. That is, generally, the joint strength and deformation ability of the frame joint component are in a contradictory relationship. Therefore, it is difficult to increase the deformation capacity of the entire building while securing the joint strength with a normal frame joint component. In addition, slipping of the bolt joint portion due to an earthquake or the like may cause a poor tightening due to the bolt, and the occurrence thereof is uncertain.

また、特許文献1に開示されている木構造の接合金具は、木造部材相互を引寄せるように変形させるものの、地震等の外力が作用した場合には、剛体として機能する。つまり、この開示技術では、接合金物の変形を許容しない構造であり、構造体の骨組に加わる外力による衝撃を吸収し、建造物全体の変形能力を上げることは難しい。   Moreover, although the wooden joint fitting disclosed in Patent Document 1 is deformed so as to draw the wooden members together, it functions as a rigid body when an external force such as an earthquake acts. In other words, this disclosed technique has a structure that does not allow deformation of the joint hardware, and it is difficult to absorb the impact caused by the external force applied to the framework of the structure and increase the deformation capacity of the entire building.

また、特許文献2に開示されている、骨組接合部品に低降伏点鋼等の超塑性合金を用いることは、外力が加わった場合に、接合強度を期待しない部分に限定され、骨組構成部材の部材強度と同等以上の接合強度が要求される骨組接合部品として用いることは難しい。   In addition, the use of a superplastic alloy such as low yield point steel for the frame joint component disclosed in Patent Document 2 is limited to a portion that does not expect joint strength when an external force is applied. It is difficult to use as a frame joint component that requires a joint strength equal to or higher than the member strength.

さらに、特許文献3に開示されている、骨組接合部品に粘弾性材を組み込むことも、同様に、外力が加わった場合に、応力を伝達しない部位に限定され、骨組構成部材の部材強度と同等以上の接合強度が要求される骨組接合部品として用いることは難しい。   Furthermore, incorporation of a viscoelastic material into a frame joint component disclosed in Patent Document 3 is similarly limited to a portion where stress is not transmitted when an external force is applied, and is equivalent to the member strength of the frame component member. It is difficult to use as a frame joint component requiring the above-mentioned joint strength.

本願の目的は、かかる課題を解決し、構造体の骨組に加わる外力による衝撃を吸収し、構造体の変形能力を上げ、外力のエネルギを吸収する、骨組構造部材相互を接続する骨組接合部品を提供することである。   The purpose of the present application is to solve the above problems, absorb the impact caused by the external force applied to the frame of the structure, increase the deformation capacity of the structure, and absorb the energy of the external force. Is to provide.

上記目的を達成するため、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を負担する骨組構成部材相互を接合する骨組接合部品であって、双方の骨組構成部材の表面に固定されて取り付く固定部と、固定部相互の間に設けられ、骨組に加わる外力により曲げ変形可能な連結部とを備えることを特徴とする。   In order to achieve the above object, a frame joint component according to the present invention is a frame joint component that joins the frame components that bear the weight of the frame and the external force applied to the frame, and is fixed to the surfaces of both frame components. And a fixing portion provided between the fixing portions and a connecting portion that can be bent and deformed by an external force applied to the frame.

また、骨組接合部品は、固定部と、連結部とは一体の板材から成り、連結部は、固定部より起立していることが好ましく、その連結部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることが好ましい。   Further, in the frame joint component, the fixed portion and the connection portion are made of an integral plate material, and the connection portion preferably stands up from the fixed portion, and the gap between the connection portion and the frame component member Is preferably provided with a viscoelastic material.

また、骨組接合部品は、固定部と、連結部とは別の板材から成り、連結部は、固定部より起立していることが好ましく、その連結部と、固定部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることが好ましい。   Further, the frame joining component is made of a plate material different from the fixed portion and the connecting portion, and the connecting portion is preferably erected from the fixed portion, and the connecting portion, the fixed portion, and the frame component member It is preferable that a viscoelastic material is provided in the space between them.

また、骨組接合部品は、2枚の骨組接合部品が重ね合わされ、双方の連結部が対向して粘弾性材を収納することが好ましい。   In addition, it is preferable that the frame-joined component is composed of two frame-joined components that are overlapped, and that both connecting portions face each other to store the viscoelastic material.

さらに、これらの骨組接合部品は、連結部の断面形状が、略半円であることが好ましい。   Furthermore, it is preferable that the cross-sectional shape of a connection part is a substantially semicircle in these frame joining components.

上記構成により、骨組接合部品は、相互に接合される骨組構成部材に固定された固定部相互の間に設けられた連結部が、骨組に加わる外力により曲げ変形する。これにより、骨組接合部品において外力による衝撃を吸収するメカニズムが可能となる。また、特に、建造物においては、骨組接合部品が一種のダンパとなり地震等の振動エネルギを減衰させる一種の制震構造となり、耐震性の高い建造物が可能となる。さらに、構造体の各骨組接合部品が変形することで、建造物全体の固有周期が長周期化し、地震等に対して建造物全体がゆっくりと揺れ、地震等の衝撃を和らげる一種の免震構造となり、耐震性の高い建造物が可能となる。   With the above-described configuration, in the frame joint component, the connecting portion provided between the fixed portions fixed to the frame component members to be bonded to each other is bent and deformed by an external force applied to the frame. As a result, a mechanism for absorbing an impact caused by an external force in the frame joint component is possible. In particular, in a building, the frame joint component becomes a kind of damper and becomes a kind of damping structure that attenuates vibration energy such as an earthquake, so that a building having high earthquake resistance becomes possible. In addition, by deforming each frame joint part of the structure, the natural period of the whole building becomes longer, the whole building slowly shakes against earthquakes, etc., a kind of seismic isolation structure that softens the impact of earthquakes, etc. Thus, a building with high earthquake resistance becomes possible.

また、骨組接合部品は、固定部と連結部とが一体となった板材であり、かつ連結部は固定部から起立している。これにより、後述するように、骨組に加わる外力により、固定部には板面内に引張又は圧縮応力が生じるが、連結部においては、引張又は圧縮応力に加えて、固定部から起立した距離に引張又は圧縮応力を乗じた曲げモーメントが生じる。すなわち、連結部は、引張又は圧縮応力による変形に加え、この曲げモーメントにより、より大きな変形が生じる。この連結部の変形により、外力による衝撃を吸収するメカニズムが可能となる。また、特に、建造物においては、骨組接合部品が一種のダンパとなり地震等の振動エネルギを減衰させる一種の制震構造となる。さらに、構造体の各骨組接合部品が変形することで、建造物全体の固有周期が長周期化し、地震等に対して建造物全体がゆっくりと揺れ、地震等の衝撃を和らげる一種の免震構造となり、耐震性の高い建造物が可能となる。   Further, the frame joint component is a plate material in which the fixing portion and the connecting portion are integrated, and the connecting portion stands up from the fixing portion. As a result, as will be described later, tensile force or compressive stress is generated in the plate surface of the fixed portion due to external force applied to the framework, but in the connecting portion, in addition to the tensile or compressive stress, the distance from the fixed portion rises. A bending moment is generated by multiplying the tensile or compressive stress. That is, the connecting portion is deformed by the bending moment in addition to deformation due to tensile or compressive stress. Due to the deformation of the connecting portion, a mechanism for absorbing an impact caused by an external force becomes possible. In particular, in a building, the frame joint part becomes a kind of damper and becomes a kind of damping structure that attenuates vibration energy such as an earthquake. In addition, by deforming each frame joint part of the structure, the natural period of the whole building becomes longer, the whole building slowly shakes against earthquakes, etc., a kind of seismic isolation structure that softens the impact of earthquakes, etc. Thus, a building with high earthquake resistance becomes possible.

また、骨組接合部品は、固定部と連結部とは別の板材であっても、連結部が固定部と接続し、かつ連結部が固定部より起立していることで、上記と同様の効果が発生する。   In addition, even if the frame joining component is a plate material different from the fixing portion and the connecting portion, the connecting portion is connected to the fixing portion, and the connecting portion is erected from the fixing portion. Will occur.

さらに、連結部と骨組構成部材との間の空隙、あるいは、連結部と固定部と骨組構成部材との間の空隙、一対の連結部の間の空隙、つまり、連結部の変形と一体的に挙動する部分に粘弾性材を設ける。この粘弾性材は、後述するように、構造体に加わる外力により変形し、その荷重履歴に伴う非線形な挙動により地震等のエネルギを吸収する制震ダンパとして機能する。これにより地震等の振動エネルギを熱エネルギ等に変換して減衰させることが可能となる。   Furthermore, the gap between the connecting portion and the frame component member, or the gap between the connecting portion, the fixing portion and the frame component member, the gap between the pair of connecting portions, that is, integrally with the deformation of the connecting portion. A viscoelastic material is provided in the moving part. As will be described later, the viscoelastic material is deformed by an external force applied to the structure, and functions as a vibration damper that absorbs energy such as an earthquake by a non-linear behavior associated with the load history. As a result, vibration energy such as an earthquake can be converted into thermal energy and attenuated.

また、この粘弾性材による効果は、連結部の変形と同種の効果であり、相乗効果をもたらす。本構成により、骨組構成部材の部材強度と同等以上の接合強度が要求される骨組構成部品に、接合強度が期待できない粘弾性材を用いることが可能となる。   Moreover, the effect by this viscoelastic material is an effect of the same kind as a deformation | transformation of a connection part, and brings about a synergistic effect. With this configuration, it is possible to use a viscoelastic material that cannot be expected to have a bonding strength for a frame component that requires a bonding strength equal to or higher than the member strength of the frame component.

以上のように、本発明による骨組接合部品によれば、構造体の骨組に加わる外力による衝撃を吸収し、構造体の変形能力を上げ、外力のエネルギを吸収することが可能となる。   As described above, according to the frame joint component according to the present invention, it is possible to absorb the impact caused by the external force applied to the frame of the structure, increase the deformability of the structure, and absorb the energy of the external force.

以下に、図面を用いて本発明に係る実施の形態につき、詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1に骨組接合部品10の構成を示す。骨組接合部品10は、接合される2つの骨組構成部材1のそれぞれの表面にボルト5により固定されて取り付く固定部2、及び2つの固定部2の間に設けられた連結部3から構成され、固定部2と連結部3とは、一体の板材から成っている。また、連結部3が固定部2より起立していることから、連結部3と骨組構成部材1との間には、空隙4が生じる。   FIG. 1 shows the configuration of the frame joint component 10. The frame joint component 10 is composed of a fixed portion 2 fixed by bolts 5 to each surface of two frame constituent members 1 to be bonded, and a connecting portion 3 provided between the two fixed portions 2. The fixed portion 2 and the connecting portion 3 are made of an integral plate material. In addition, since the connecting portion 3 stands up from the fixed portion 2, a gap 4 is generated between the connecting portion 3 and the frame component 1.

骨組構成部材1は、本実施形態では、木製の角材である。この骨組構成部材1同士は、相互に腰掛鎌継といった木造の在来工法により接合されているか、単に突き合わされているか、あるいは、相互に離間して接合されているか、いずれであっても良い。また、骨組構成部材1は、例えば、人体の骨であっても良く、建造物の場合には、例えば、普通鋼板、亜鉛めっき鋼板、ステンレス鋼、アルミニウムといった材料であっても良い。また、骨組構成部材1の断面形状は、例えば、円形、多角形、I型、H型、その他建造物に用いられる骨組構成部材1であれば総て含まれる。また、中空材であるか中実材であるか、開断面であるか閉断面であるかを問わない。さらには、骨組構成部材1は、直線材であるか、曲線材であるかも問わない。   In this embodiment, the frame component 1 is a wooden square. The frame constituent members 1 may be joined to each other by a conventional wooden construction method such as a sitting sickle joint, or simply joined together, or may be joined apart from each other. In addition, the frame component 1 may be, for example, a human bone, and in the case of a building, for example, may be a material such as a normal steel plate, a galvanized steel plate, stainless steel, or aluminum. Moreover, the cross-sectional shape of the frame component member 1 includes, for example, a circle, a polygon, an I type, an H type, or any other frame component member 1 used in a building. Moreover, it does not ask | require whether it is a hollow material or a solid material, it is an open section or a closed section. Furthermore, it does not ask | require whether the frame structural member 1 is a linear material or a curved material.

固定部2は、上記骨組構成部材1の表面に、その形状に合わせて固定される。本実施形態では、図1において、木製の角材に合わせてラグスクリューボルトによる接合例を示す。図1では、骨組接合部品10は、角材の4辺に取付けているが、相対する2辺のみであっても良い。固定部2の材料は、例えば、普通鋼板、亜鉛めっき鋼板、ステンレス鋼、アルミニウムといった通常骨組の接合に使用される材料である。接合方法は、例えば、高力ボルト、普通ボルト、Zボルト、コーチスクリューボルトなどのボルト接合、あるいは、平板に歯形の突起を設けたネイルプレートによる接合など、その骨組構成部材1に通常使用される接合方法の総てが含まれる。また、固定部2の形状は、骨組構成部材1の断面形状に合わせて、平板、曲面板等となる。   The fixing | fixed part 2 is fixed to the surface of the said frame structural member 1 according to the shape. In this embodiment, in FIG. 1, the example of joining by a lag screw bolt is shown according to a wooden square. In FIG. 1, the frame joining component 10 is attached to the four sides of the square member, but may be only two opposite sides. The material of the fixing portion 2 is a material used for joining ordinary frames such as a normal steel plate, a galvanized steel plate, stainless steel, and aluminum. The joining method is usually used for the framework component 1 such as a bolt joint such as a high-strength bolt, a normal bolt, a Z bolt, or a coach screw bolt, or a joint using a nail plate having a tooth-shaped projection on a flat plate. All joining methods are included. Moreover, the shape of the fixing | fixed part 2 becomes a flat plate, a curved-surface board, etc. according to the cross-sectional shape of the frame structural member 1. FIG.

連結部3は、本実施形態では、略半円の形状である。図2に連結部3の形状の他の実施形態の例を示す。連結部3は、図に示すように山形であっても、あるいは、楕円形であっても良い。すなわち、一方の固定部2から起立し、また他方の固定部2からも起立していれば、その間の形状は任意である。したがって、連結部3の形状は、固定部2の断面形状に合わせて3次元の曲面板等となる。   In the present embodiment, the connecting portion 3 has a substantially semicircular shape. FIG. 2 shows an example of another embodiment of the shape of the connecting portion 3. The connecting portion 3 may be mountain-shaped as shown in the figure, or may be elliptical. That is, as long as it stands up from one fixed part 2 and also stands up from the other fixed part 2, the shape between them is arbitrary. Accordingly, the shape of the connecting portion 3 is a three-dimensional curved plate or the like according to the cross-sectional shape of the fixed portion 2.

図3には、骨組構成部材1に部材力(引張力T及び曲げモーメントM)が加わった場合に、骨組接合部品10の固定部2と連結部3に発生する応力を図示する。骨組構成部材1の両側の固定部2には、接続するボルトを介して、それぞれFt1=T/2+M/d、Ft2=T/2−M/dの応力が発生する。ここに、dは、両側の固定部2の板厚の中心間距離である。連結部3の任意の要素では、このFt1(又はFt2)×Lの付加曲げモーメントが発生する。ここに、Lは固定部2の板厚の中心から連結部3の任意の要素の中心までの距離である。したがって、連結部3の各要素は、引張力Ft(又は圧縮力Fc)による軸方向変形に加えて、この付加曲げモーメントによる変形が生じる。   FIG. 3 illustrates the stress generated in the fixed portion 2 and the connecting portion 3 of the frame joint component 10 when a member force (tensile force T and bending moment M) is applied to the frame component member 1. Stresses of Ft1 = T / 2 + M / d and Ft2 = T / 2−M / d are generated in the fixing portions 2 on both sides of the frame constituent member 1 through the connecting bolts, respectively. Here, d is the distance between the centers of the thicknesses of the fixing portions 2 on both sides. An arbitrary bending moment of Ft1 (or Ft2) × L is generated in an arbitrary element of the connecting portion 3. Here, L is the distance from the center of the plate thickness of the fixed portion 2 to the center of any element of the connecting portion 3. Accordingly, each element of the connecting portion 3 is deformed by this additional bending moment in addition to the axial deformation by the tensile force Ft (or the compressive force Fc).

骨組接合部品10では、設計上、固定部2と連結部3とを同厚の板材とすることが可能である。連結部3は、固定部2に発生する引張力Ft(又は圧縮力Fc)に加えて付加曲げモーメントを受けるため、これらの合力に耐え得る部材断面が要求される。しかし、固定部2は、骨組構成部材1との接合のために、引張力に対してボルト孔の欠損を考慮した部材断面としなければならない。連結部3では、固定部2から起立していることからボルト接合のためこの欠損を考慮する必要がない。したがって、固定部2と連結部3とを、経済性を損なわずに同厚の板材とすることが可能である。   In the frame joint component 10, the fixed portion 2 and the connecting portion 3 can be made to have the same thickness by design. Since the connecting portion 3 receives an additional bending moment in addition to the tensile force Ft (or compressive force Fc) generated in the fixed portion 2, a member cross section that can withstand these resultant forces is required. However, the fixing portion 2 must have a member cross-section in consideration of the deficiency of the bolt hole with respect to the tensile force for joining with the frame constituent member 1. In the connection part 3, since it stands up from the fixing | fixed part 2, it is not necessary to consider this defect | deletion for bolt joining. Therefore, the fixed portion 2 and the connecting portion 3 can be made of the same thickness without impairing the economy.

このことから、外力が加わった場合に、連結部3に曲げモーメントによる大きな変形が発生するが、連結部3自体の接合強度は確保されることが明らかである。したがって、本発明に係る骨組接合部品10は、接合強度を確保しつつ建造物全体の変形能力を上げることが可能となる。   From this, it is clear that when an external force is applied, a large deformation due to a bending moment occurs in the connecting portion 3, but the joining strength of the connecting portion 3 itself is ensured. Therefore, the frame joint component 10 according to the present invention can increase the deformation capacity of the entire building while ensuring the joint strength.

図4に、骨組構成部材1に引張力T及び圧縮力Cが加わった場合の、骨組接合部品10の連結部3の変形を模式的に示す。図中、破線は変形前、実線は変形後を表す。引張力Tが加わった場合(図5(a))は、連結部3は、引張力T/2の方向へと伸びるとともに、曲げモーメントMt=T/2×Lにより引張力と直角方向へ落ち込む。一方、圧縮力Cが加わった場合(図5(b))は、連結部3は、圧縮力C/2の方向へと縮むとともに、曲げモーメントMc=T/2×Lにより引張力と直角方向へ膨れ上がる。ここに、Lは固定部2の板厚の中心から連結部3の任意の要素の中心までの距離である。   FIG. 4 schematically shows the deformation of the connecting portion 3 of the frame joint component 10 when the tensile force T and the compression force C are applied to the frame component 1. In the figure, a broken line represents before deformation, and a solid line represents after deformation. When the tensile force T is applied (FIG. 5A), the connecting portion 3 extends in the direction of the tensile force T / 2 and falls in a direction perpendicular to the tensile force due to the bending moment Mt = T / 2 × L. . On the other hand, when the compressive force C is applied (FIG. 5B), the connecting portion 3 is contracted in the direction of the compressive force C / 2, and at the same time as the tensile force due to the bending moment Mc = T / 2 × L. Swell up. Here, L is the distance from the center of the plate thickness of the fixed portion 2 to the center of any element of the connecting portion 3.

この連結部3と骨組構成部材1との間の空隙4に粘弾性材6が充填されている場合、連結部3の変形に追従して、粘弾性材6も形状が変化する。骨組接合部品10は、通常、骨組構成部材1と同等以上の強度を有するように設計される。したがって、設計上、地震時であっても弾性範囲内で挙動し塑性化しない。一方、粘弾性材6は、変形能力が高く、その履歴特性は、微小変形から非線形性を示し、連結部3が弾性変形の範囲であっても塑性化する。したがって、荷重履歴に伴う非線形な挙動により地震等のエネルギを吸収する制震ダンパとして機能する。   When the gap 4 between the connecting portion 3 and the frame component 1 is filled with the viscoelastic material 6, the shape of the viscoelastic material 6 also changes following the deformation of the connecting portion 3. The frame joint component 10 is usually designed to have a strength equal to or greater than that of the frame component 1. Therefore, by design, even during an earthquake, it behaves within the elastic range and does not become plastic. On the other hand, the viscoelastic material 6 has a high deformability, and its hysteresis characteristic shows non-linearity from minute deformation, and plasticizes even if the connecting portion 3 is in the range of elastic deformation. Therefore, it functions as a damping damper that absorbs energy such as earthquakes by non-linear behavior associated with the load history.

図5に骨組接合部品10の他の実施形態を示す。骨組接合部品10は、接合される2つの骨組構成部材1のそれぞれの表面にボルト5により固定されて取り付く固定部2、及び2つの固定部2の間に設けられた連結部3から構成されるが、固定部2と連結部3とは、別の板材から成り、連結部3は固定部2に、例えば溶接により接続されている。また、連結部3が固定部2より起立していることから、固定部2と連結部3と骨組構成部材1との間には、空隙4が生じる。   FIG. 5 shows another embodiment of the frame joint component 10. The frame joint component 10 includes a fixed portion 2 fixed by bolts 5 to each surface of two frame component members 1 to be bonded, and a connecting portion 3 provided between the two fixed portions 2. However, the fixing | fixed part 2 and the connection part 3 consist of another board | plate material, and the connection part 3 is connected to the fixing | fixed part 2 by welding, for example. In addition, since the connecting portion 3 stands up from the fixing portion 2, a gap 4 is generated between the fixing portion 2, the connecting portion 3, and the frame constituent member 1.

図6に骨組接合部品10の他の実施形態を示す。骨組構成部材1の一辺に2枚の骨組接合部品10を、連結部3が対向するように重ね合わせることにより、相互の連結部3から形成される空隙4が生じる。2枚の骨組接合部品10の固定部2は、重ね合わされて骨組構成部材1にボルト5を介して接合される。   FIG. 6 shows another embodiment of the frame joint component 10. A gap 4 formed from the mutual connecting portion 3 is generated by superimposing the two frame joining components 10 on one side of the frame constituting member 1 so that the connecting portion 3 faces each other. The fixing portions 2 of the two frame joint components 10 are overlapped and joined to the frame constituent member 1 via bolts 5.

図7は、建造物の柱と梁の仕口に骨組接合部品10を取付けた実施形態の概略図である。この場合、図6に示す継手の骨組構成部材1がI字型に接合するのに対して、骨組構成部材1がT字型に接合する。骨組接合部品10もそのT字型の骨組構成部材1に合わせて折り曲げた形状となる。外力が加わった場合、柱と梁の仕口では、曲げモーメントが支配的な応力となるが、この曲げモーメントに対して、骨組接合部品10は火打ち材として機能し、図中に示すように連結材3に対して引張力又は圧縮力が作用する。この引張力又は圧縮力により、上述したように連結部3に曲げ変形が発生する。この実施例でも、連結部3は、図2に示すような山形であっても、あるいは、楕円形であっても良く、双方の連結部3が、それぞれ一方の固定部2から起立し、また他方の固定部2からも起立していれば、その間の形状は任意である。   FIG. 7 is a schematic view of an embodiment in which a frame joint component 10 is attached to a column and beam joint of a building. In this case, the framework component 1 of the joint shown in FIG. 6 is joined in an I shape, whereas the framework component 1 is joined in a T shape. The frame joint component 10 also has a shape bent according to the T-shaped frame component 1. When an external force is applied, the bending moment becomes the dominant stress in the column and beam joints, but the frame joint component 10 functions as a fire-fired material against this bending moment and is connected as shown in the figure. A tensile force or a compressive force acts on the material 3. This tensile force or compressive force causes bending deformation in the connecting portion 3 as described above. Also in this embodiment, the connecting portion 3 may be mountain-shaped as shown in FIG. 2 or may be elliptical, and both connecting portions 3 stand from one fixed portion 2 respectively. As long as it stands up from the other fixed part 2, the shape between them is arbitrary.

図8は、建造物の柱と梁の仕口においてブレース7の端部に骨組接合部品10を取付けた実施形態の概略図である。外力が加わった場合に、ブレース7には、軸力が発生し、柱と梁の仕口にその軸力を伝達する。図8では、ブレース7は端部においてブレース取り付け金物9に取付けられ、このブレース取り付け金物9は、ピン8を介して骨組接合部品10の固定部2に取り付く。また、骨組接合部品10の他方の固定部2は、柱及び梁にボルトを介して取り付く。双方の固定部2は、連結部3がL字型に接続している。   FIG. 8 is a schematic view of an embodiment in which the frame joint component 10 is attached to the end of the brace 7 at the column and beam joint of the building. When an external force is applied, an axial force is generated in the brace 7, and the axial force is transmitted to the column and beam joints. In FIG. 8, the brace 7 is attached to the brace attachment metal 9 at the end, and this brace attachment 9 is attached to the fixing part 2 of the frame joint component 10 via the pin 8. Moreover, the other fixing | fixed part 2 of the frame joining component 10 is attached to a pillar and a beam through a volt | bolt. As for both the fixing | fixed part 2, the connection part 3 is connected to the L-shape.

ブレースに引張力又は圧縮力が発生した場合には、上述したように連結部3に曲げ変形が発生する。連結部3は、L字型でなくても骨組接合部品10内でブレースからの軸力が伝達する部位に取付ければ、本実施形態と同様の効果が生じる。この実施態様でも、連結部3は、図2に示すように山形であっても、あるいは、楕円形であっても良く、双方の連結部3が、それぞれ一方の固定部2から起立し、また他方の固定部2からも起立していれば、その間の形状は任意である。   When tensile force or compressive force is generated in the brace, bending deformation occurs in the connecting portion 3 as described above. Even if the connecting portion 3 is not L-shaped, if it is attached to a portion where the axial force from the brace is transmitted within the frame joint component 10, the same effect as in the present embodiment occurs. Also in this embodiment, the connecting portion 3 may be mountain-shaped as shown in FIG. 2 or may be elliptical, and both connecting portions 3 stand up from one fixed portion 2 respectively. As long as it stands up from the other fixed part 2, the shape between them is arbitrary.

本発明に係る骨組接合部品の、柱継手及び梁継手の一実施例の構成を示す概略図である。It is the schematic which shows the structure of one Example of the column joint and beam joint of the frame joining component which concerns on this invention. 連結部の他の実施形態の構成を示す概略図である。It is the schematic which shows the structure of other embodiment of a connection part. 骨組接合部品に生じる荷重状態を示す説明図である。It is explanatory drawing which shows the load state which arises in frame joining components. 連結部の変形を示す模式図である。It is a schematic diagram which shows the deformation | transformation of a connection part. 柱継手及び梁継手の他の実施例の構成を示す概略図である。It is the schematic which shows the structure of the other Example of a column joint and a beam joint. 柱継手及び梁継手の他の実施例の構成を示す概略図である。It is the schematic which shows the structure of the other Example of a column joint and a beam joint. 骨組接合部品を柱と梁の仕口に用いた実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment which used the frame joining component for the joint of the column and the beam. 骨組接合部品を柱と梁の仕口に取り付くブレースの端部に用いた実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment used for the edge part of the brace which attaches a frame joining component to the joint of a column and a beam. 従来技術である木構造の接合金具の概略図である。It is the schematic of the joining bracket of the wooden structure which is a prior art.

符号の説明Explanation of symbols

1 骨組構成部材、2 固定部、3 連結部、4 空隙、5 ボルト、6 粘弾性材、7 ブレース、8 ピン、9 ブレース取付け金物、10 骨組接合部品、11,12 木部、14,15 金具、16,17 金具の輪、18 板バネ、 19 楔係合板、 20 圧縮コイルバネ。     DESCRIPTION OF SYMBOLS 1 Frame component member, 2 fixed part, 3 connection part, 4 space | gap, 5 bolt, 6 viscoelastic material, 7 brace, 8 pin, 9 brace attachment hardware, 10 frame connection parts, 11,12 wood part, 14,15 metal fittings 16, 17 Metal ring, 18 leaf spring, 19 wedge engagement plate, 20 compression coil spring.

上記目的を達成するため、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を負担する骨組構成部材相互を接合する骨組接合部品であって、双方の骨組構成部材の表面に固定されて取り付く固定部と、固定部と一体の板材から成り、固定部より起立して、骨組に加わる外力により曲げ変形可能な連結部とを備え、連結部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることを特徴とする。 In order to achieve the above object, a frame joint component according to the present invention is a frame joint component that joins the frame components that bear the weight of the frame and the external force applied to the frame, and is fixed to the surfaces of both frame components. A fixing portion that is attached to the fixing portion, and a plate portion that is integral with the fixing portion, and includes a connecting portion that stands up from the fixing portion and can be bent and deformed by an external force applied to the frame, and a gap between the connecting portion and the frame component member the, characterized Rukoto viscoelastic material is provided.

また、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を負担する骨組構成部材相互を接合する骨組接合部品であって、双方の骨組構成部材の表面に固定されて取り付く固定部と、固定部とは別の板材から成り、固定部より起立して、骨組に加わる外力により曲げ変形可能な連結部とを備え、連結部と、固定部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることを特徴とする。 Further, the frame joint component according to the present invention is a frame joint component that joins the frame component members that bear the weight of the frame and the external force applied to the frame, and is fixed to and attached to the surfaces of both frame component members. And a connecting portion that is made of a plate material different from the fixing portion, stands up from the fixing portion, and can be bent and deformed by an external force applied to the frame, and a gap between the connection portion, the fixing portion, and the frame component member Is characterized in that a viscoelastic material is provided.

また、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を負担する骨組構成部材相互を接合する骨組接合部品であって、双方の骨組構成部材の表面に、固定されて取り付く固定部と、固定部と一体の板材から成り、固定部より起立して、骨組に加わる外力により曲げ変形可能な連結部とを備え、2枚の骨組接合部品が重ね合わされ、対向する双方の連結部の間の空隙には、粘弾性材が設けられることを特徴とする。また、この固定部は、柱の表面に固定される柱固定部と、梁の表面に固定される梁固定部とから成り、連結部は、柱固定部と梁固定部との間に設けられ、固定部より起立し、柱梁の接合部に発生する曲げモーメントに対して軸方向力により抵抗し、曲げ変形可能であることが好ましい。 Further, the frame joint component according to the present invention is a frame joint component that joins the frame component members that bear the weight of the frame and the external force applied to the frame, and is fixed to the surfaces of both frame component members. And a connecting portion that is made of a plate material integral with the fixing portion, stands up from the fixing portion, and can be bent and deformed by an external force applied to the frame, and the two frame connecting parts are overlapped and opposed to each other A viscoelastic material is provided in the space between the two. The fixing portion includes a column fixing portion fixed to the surface of the column and a beam fixing portion fixed to the surface of the beam, and the connecting portion is provided between the column fixing portion and the beam fixing portion. , standing from the fixing portion, and resisted by the axial force to the bending moment occurring at the junction of the beam-to-column, bending deformable der Rukoto are preferred.

また、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を柱梁の接合部で接合する骨組接合部品であって、柱の表面に固定される柱固定部と、梁の表面に固定される梁固定部と、ブレースの端部が取り付くブレース接続部と、柱固定部と、梁固定部と、ブレース接続部との間に設けられ、柱固定部及び梁固定部より起立し、ブレースに生じる引張力に抵抗し、曲げ変形可能な連結部と、を備え、2枚の骨組接合部品が重ね合わされ、対向する双方の連結部の間の空隙には、粘弾性材が設けられることを特徴とする。また、この連結部は、柱固定部と、梁固定部と、ブレース固定部との間にL字型に設けられることが好ましい。
Further, the frame joint component according to the present invention is a frame joint component that joins the weight of the frame and the external force applied to the frame at the column beam joint, the column fixing part fixed to the surface of the column, and the beam surface It is provided between the beam fixing part fixed to the brace, the brace connecting part to which the end of the brace is attached, the column fixing part, the beam fixing part and the brace connecting part, and stands up from the column fixing part and the beam fixing part. A connecting portion that resists a tensile force generated in the brace and can be bent and deformed, and two frame joint parts are overlapped with each other, and a viscoelastic material is provided in a gap between the opposing connecting portions. It is characterized by that. Further, the connecting portion includes a pillar fixed portion, and the beam fixing portion, Rukoto preferably provided in an L-shape between the brace fixing part.

また、本発明に係る骨組接合部品は、骨組の自重及び骨組に加わる外力を負担する柱、梁及びブレースを柱梁の接合部で接合する骨組接合部品であって、柱の表面に固定される柱固定部と、梁の表面に固定される梁固定部と、ブレースの端部が取り付くブレース接続部と、柱固定部と、梁固定部と、ブレース接続部との間に設けられ、柱固定部及び梁固定部より起立し、ブレースに生じる引張力に抵抗し、曲げ変形可能な連結部と、を備え、2枚の骨組接合部品が重ね合わされ、対向する双方の連結部の間の空隙には、粘弾性材が設けられることを特徴とする。また、この連結部は、柱固定部と、梁固定部と、ブレース接続部との間にL字型に設けられることが好ましい。 Further, the frame joint component according to the present invention is a frame joint component that joins a column, a beam, and a brace that bear the weight of the frame and an external force applied to the frame at a joint portion of the column beam, and is fixed to the surface of the column. It is provided between the column fixing part, the beam fixing part fixed to the surface of the beam, the brace connecting part to which the end of the brace is attached, the column fixing part, the beam fixing part, and the brace connecting part. And a joint that can stand up from the beam and the beam fixing part, resists the tensile force generated in the brace, and can be deformed by bending. Is characterized in that a viscoelastic material is provided. Moreover, it is preferable that this connection part is provided in L shape between a pillar fixing | fixed part, a beam fixing | fixed part, and a brace connection part.

Claims (7)

骨組の自重及び骨組に加わる外力を負担する骨組構成部材相互を接合する骨組接合部品であって、
双方の骨組構成部材の表面に固定されて取り付く固定部と、
固定部相互の間に設けられ、骨組に加わる外力により曲げ変形可能な連結部と、
を備えることを特徴とする骨組接合部品。
A frame joint component that joins the frame components that bear the weight of the frame and the external force applied to the frame,
A fixing portion fixed to and attached to the surfaces of both frame components;
A connecting portion that is provided between the fixed portions and can be bent and deformed by an external force applied to the frame;
A framework joint component comprising:
請求項1に記載の骨組接合部品において、
固定部と、連結部とは一体の板材から成り、連結部は、固定部より起立していることを特徴とする骨組接合部品。
The frame joint component according to claim 1,
The fixed part and the connecting part are made of an integral plate material, and the connecting part stands up from the fixing part.
請求項1または2に記載の骨組接合部品において、
連結部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることを特徴とする骨組接合部品。
The frame joint component according to claim 1 or 2,
A frame joint component, wherein a viscoelastic material is provided in a gap between the connecting portion and the frame component member.
請求項1に記載の骨組接合部品において、
固定部と、連結部とは別の板材から成り、連結部は、固定部より起立していることを特徴とする骨組接合部品。
The frame joint component according to claim 1,
A frame joint component comprising: a fixed portion and a plate material different from the connecting portion, wherein the connecting portion stands up from the fixing portion.
請求項1または4に記載の骨組接合部品において、
連結部と、固定部と、骨組構成部材との間の空隙には、粘弾性材が設けられていることを特徴とする骨組接合部品。
The frame joint component according to claim 1 or 4,
A framework joint component, wherein a viscoelastic material is provided in a gap between the connecting portion, the fixing portion, and the framework constituent member.
請求項2又は4に記載の骨組接合部品において、
2枚の骨組接合部品が重ね合わされ、双方の連結部が対向して粘弾性材を収納することを特徴とする骨組接合部品。
In the frame joint component according to claim 2 or 4,
A frame-joined component in which two frame-joined components are superposed, and both connecting portions face each other to store a viscoelastic material.
請求項1から6のいずれか1に記載の骨組接合部品において、
連結部の断面形状は、略半円であることを特徴とする骨組接合部品。

















The frame joint component according to any one of claims 1 to 6,
The cross-sectional shape of a connection part is a substantially semicircle, The frame joining component characterized by the above-mentioned.

















JP2005269776A 2005-09-16 2005-09-16 Frame joint parts Active JP3890073B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269776A JP3890073B1 (en) 2005-09-16 2005-09-16 Frame joint parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269776A JP3890073B1 (en) 2005-09-16 2005-09-16 Frame joint parts

Publications (2)

Publication Number Publication Date
JP3890073B1 JP3890073B1 (en) 2007-03-07
JP2007077745A true JP2007077745A (en) 2007-03-29

Family

ID=37929927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269776A Active JP3890073B1 (en) 2005-09-16 2005-09-16 Frame joint parts

Country Status (1)

Country Link
JP (1) JP3890073B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516798A (en) * 2017-04-13 2020-06-11 ノベル・ストラクチャーズ・エルエルシー Stacked fusion connection between members
CN114476016A (en) * 2022-03-04 2022-05-13 沃飞长空科技(成都)有限公司 Method for connecting components and aircraft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005585B2 (en) 2009-12-08 2018-06-26 Chep Technology Pty Limited Wooden pallet with nail plates and related methods
CN110230351B (en) * 2019-05-24 2020-10-09 保定中桥重钢结构制造有限公司 Assembled building steel structure system and installation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516798A (en) * 2017-04-13 2020-06-11 ノベル・ストラクチャーズ・エルエルシー Stacked fusion connection between members
JP7175962B2 (en) 2017-04-13 2022-11-21 ノベル・ストラクチャーズ・エルエルシー part-to-part connection assembly
CN114476016A (en) * 2022-03-04 2022-05-13 沃飞长空科技(成都)有限公司 Method for connecting components and aircraft
CN114476016B (en) * 2022-03-04 2024-04-12 成都沃飞天驭科技有限公司 Method for connecting components and aircraft

Also Published As

Publication number Publication date
JP3890073B1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP4861067B2 (en) Steel frame
Rahnavard et al. Evaluation on eccentrically braced frame with single and double shear panels
Aristizabal-Ochoa Disposable knee bracing: improvement in seismic design of steel frames
Elghazouli et al. Experimental monotonic and cyclic behaviour of blind-bolted angle connections
Zahrai et al. Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
TW201400678A (en) Composite damping joint
JP3890073B1 (en) Frame joint parts
Lin et al. Bolted beam-to-column connections for built-up columns constructed of H-SA700 steel
Choi et al. An analytical study on rotational capacity of beam-column joints in unit modular frames
Kim et al. Design of special truss moment frames considering progressive collapse
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
Tsai et al. Experimental and analytical investigations of steel panel dampers for seismic applications in steel moment frames
JP2006283408A (en) Vibration control structure
Ismail An elastoplastic bracing system for structural vibration control
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP2001182359A (en) Earthquake-resistant brace device
JP2010222802A (en) Earthquake resistant brace and earthquake resistant structure
Kurata et al. Minimal‐disturbance seismic rehabilitation of steel moment‐resisting frames using light‐weight steel elements
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
Uang et al. Seismic design of steel structures
JP4456514B2 (en) Seismic control structure of lightweight steel house
JP2017082904A (en) Rod-like vibration isolation member
JP2007169899A (en) Wooden framework bearing wall
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JPH1171934A (en) Vibration control structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3890073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250