JP4456249B2 - Power unit support device - Google Patents

Power unit support device Download PDF

Info

Publication number
JP4456249B2
JP4456249B2 JP2000292830A JP2000292830A JP4456249B2 JP 4456249 B2 JP4456249 B2 JP 4456249B2 JP 2000292830 A JP2000292830 A JP 2000292830A JP 2000292830 A JP2000292830 A JP 2000292830A JP 4456249 B2 JP4456249 B2 JP 4456249B2
Authority
JP
Japan
Prior art keywords
liquid
seal mount
liquid seal
starting
mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000292830A
Other languages
Japanese (ja)
Other versions
JP2002106627A (en
Inventor
喜樹 角田
哲也 小池
幸光 南端
和俊 佐鳥
淳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yamashita Rubber Co Ltd
Original Assignee
Honda Motor Co Ltd
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yamashita Rubber Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000292830A priority Critical patent/JP4456249B2/en
Publication of JP2002106627A publication Critical patent/JP2002106627A/en
Application granted granted Critical
Publication of JP4456249B2 publication Critical patent/JP4456249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はパワーユニットの前後に液封マウントを設けたパワーユニット支持装置に関する。
【0002】
【従来の技術】
パワーユニットの前後等を複数の液封マウントで支持することは公知である。また、液封マウントの構造として、仕切壁で区画された主液室と副液室、これら両液室をエンジンのアイドル時に連通して液柱共振を発生するアイドルオリフィス通路、弾性変形により主液室の内圧を吸収する弾性可動膜であってその膜剛性を可変とする剛性可変膜、並びにアイドル時にアイドルオリフィス通路を開くアイドル側開閉部材及び剛性可変膜を自由状態又は変形規制状態にして膜剛性を変化させる膜剛性可変手段とを備えたものも公知である(一例として、特開平10−38017号がある)。
【0003】
なお、本願において、開閉式のアイドルオリフィス通路とアイドル側開閉部材を有する液封マウントをコントロールマウントといい、そのうちさらに剛性可変膜とその膜剛性可変手段をも有するものを特に複式コントロールマウントということにする。
【0004】
【発明が解決しようとする課題】
上記従来例のように剛性可変膜とその膜剛性可変手段を備えると、アイドル時に剛性可変膜を弾性変形不能に固定することによりアイドルオリフィス通路へ送り込む液体流量を大量にして良好な液柱共振を発生させ、その後通常走行時におけるようなより高周波側の振動に対しては剛性可変膜を弾性変形自由にして主液室の内圧を吸収して低動バネ化することができる。
【0005】
しかしながら、本願発明者らは鋭意研究の結果、エンジン振動による車両の振動及び騒音低減に対する液封マウントの弾性制御は、単にアイドル時と一般走行時の切換では足りず、アイドル状態から発進時に移行して急激にエンジンの回転数が増大したとき、液封マウントの剛性が高くなってパワーユニットから車体への振動伝達が大きくなるため、かかる発進時における液封マウントの振動低減能力の増大もしくは低動バネ化を図り、パワーユニットから車体への振動伝達を阻止もしくは低減することが極めて重要であることを見出した。
【0006】
また、このような複式コントロールマウントをパワーユニットの前後等へそれぞれ独立して複数配置しても、個々に制御するためパワーユニット支持装置全体として高減衰や低動バネを任意に得ることはできず、予め設定された全体の動特性、例えば高減衰又は低動バネを得られるに過ぎなかった。しかも、クランク軸の回転による振動を有効に吸収するには前後の液封マウント間における位相差制御が必要になる場合もあるがこのようなことも容易にはできないから、複数の複式コントロールマウントの相乗効果により全体の動特性を任意に変化できることが望まれる。本願発明はこのような要請の実現を目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本願のパワーユニット支持装置に係る第1の発明は、複数の液封マウントによりパワーユニットを車体へ支持するとともに、クランク軸を挟んで互いに反対側となる位置へ配置された第1液封マウントと第2液封マウントを備えるパワーユニット支持装置において、前記第1液封マウント及び第2液封マウントはそれぞれ、仕切壁で区画された主液室と副液室、これら両液室をを常時連通している減衰オリフィス通路と、エンジンのアイドル時に連通して液柱共振を発生するアイドルオリフィス通路、発進時に前記アイドル時の液柱共振よりも高周波側で液柱共振を発生する発進時共振手段及び弾性変形により主液室の内圧を吸収する弾性可動膜であってその膜剛性を可変とする剛性可変膜、並びにアイドル時にアイドルオリフィス通路を開くアイドル側開閉部材及び剛性可変膜を自由状態又は変形規制状態にして膜剛性を変化させる膜剛性可変手段とを備え、アイドル時に前記アイドル側開閉部材を前記第1液封マウント及び第2液封マウント間で時間差をもって又は同期させて制御するとともに、発進時に前記膜剛性可変手段を前記第1液封マウント及び第2液封マウント間で時間差をもって又は同期させて制御し、
アイドル時における前記アイドル側開閉部材の制御と、発進時における前記膜剛性可変手段の制御を前記第1液封マウント及び第2液封マウント間で相互に関連づけておこなうとともに、
前記第1液封マウント及び第2液封マウントの前記各膜剛性可変手段のみについて前記第1液封マウント及び第2液封マウント間で時間差をもって制御し、又は前記アイドル側開閉部材及び膜剛性可変手段を前記第1液封マウント及び第2液封マウントにてそれぞれ同時にかつ前記第1液封マウント及び第2液封マウント間で時間差をもって制御することを特徴とする。
【0008】
第2の発明は上記第1の発明において、前記発進時共振手段は、前記主液室又は副液室へ連通して液体流動を許容する発進オリフィス通路とその一端を閉塞して液体流動により弾性変形する発進オリフィス用可動膜で構成され、前記剛性可変膜は、前記発進オリフィス用可動膜とは別に主液室に臨んで設けられることを特徴とする。
【0009】
第3の発明は上記第1の発明において、前記発進時共振手段は、前記主液室又は副液室へ連通して液体流動を許容する発進オリフィス通路と、この発進オリフィス通路の前記主液室又は副液室へ連通する開口部に対する発進側開閉部材とを備えたことを特徴とする。
【0010】
【発明の効果】
第1の発明によれば、第1液封マウントと第2液封マウントをそれぞれ複式コントロールマウントとし、かつ発進時共振手段を設けたので、アイドル時から発進時へ移行してエンジンの回転数が急激に上昇しても、アイドル時の液柱共振よりも高周波側で発進時共振手段による液柱共振を発生して低動バネとなり、発進時におけるより高周波側の振動を有効に吸収できる。
【0011】
そのうえ、第1液封マウントと第2液封マウントをそれぞれクランク軸を挟んで互いにパワーユニットの反対側に位置させ、各アイドル側開閉部材及び膜剛性可変手段を相互に関連づけて制御するので、例えばアイドル時に第1液封マウントと第2液封マウントの各アイドル側開閉部材を同時制御すれば、アイドル時における全体の動特性が低動バネとなり、時間差をもって異なるタイミングで時間差制御すれば、第1液封マウントと第2液封マウントにおける反力ベクトルの位相差を変化させ、合成ベクトルを減少する振動位相制御により全体入力を低減する(以下、これを簡単にして全体入力低減という)。
【0012】
また、発進時に第1液封マウントと第2液封マウントの各膜剛性可変手段を時差制御すれば振動位相制御により全体の動特性が高減衰になり、クランク軸の回転に伴って変化する前後の振動を効果的に吸収できる
【0013】
したがって、発進時におけるパワーユニットから車体への振動伝達を阻止もしくは低減することができるとともに、第1液封マウントと第2液封マウントを関連づけて制御することにより、パワーユニット支持装置全体として相乗効果のある全体入力低減や低動バネの動特性を得ることができ、全体の動特性を任意に変化させることができる。
【0014】
第2の発明によれば、発進時共振手段を主液室又は副液室へ連通して液体流動を許容する発進オリフィス通路とその一端を閉塞して液体流動により弾性変形する発進オリフィス用可動膜で構成したので、発進オリフィス用可動膜の弾性変形により発進オリフィス通路内の液体が流動して所定の周波数で液柱共振を発生することができ、発進時共振手段を簡単な構造にできる。また、剛性可変膜を発進オリフィス用可動膜とは別に設けたので、発進時共振手段と独立して制御可能になるため、剛性可変膜に対する制御の自由度が大きくなり、制御が容易になる。
【0015】
第3の発明によれば、発進オリフィス通路に発進側開閉部材を設けたので、発進側開閉部材を閉じれば、発進オリフィス通路内における液体流動が止まり、オリフィス通路としての機能せず、発進時共振手段は機能しない。また、発進側開閉部材を開けば、発進オリフィス通路内における液体流動が生じ、発進時共振手段として機能する。このためアイドル時に発進側開閉部材を閉じれば、主液室内の液体をアイドルオリフィス通路へより大量に送り込んで強く液柱共振を発生させることができ、発進時に発進側開閉部材を開けば、発進オリフィス通路の液柱共振により発進時の振動をより確実に吸収できる。
【0016】
【発明の実施の形態】
以下、図面に基づいて実施例を説明する。図1はパワーユニットの支持構造を概略的に示すものであり、パワーユニット1はそのエンジン1aにおけるクランク軸1bの軸方向を車体の左右方向へ向けた横置きエンジン形式であり、クランク軸1bを挟んだ前後位置を第1液封マウント2及び第2液封マウント3で支持され、かつ左右を他のマウント4,5で支持されている。これらのマウントは車体6側へ取付けられている。本実施例においては第1液封マウント2をパワーユニットの前側に設け、第2液封マウント3を後側へ設けるものとして説明する。
【0017】
第1液封マウント2及び第2液封マウント3はいずれも後述する複式コントロールマウントであり、各第1制御部及び第2制御部は電磁ソレノイド等の適宜切換部材7a,7b,8a,8bにより大気開放又はエンジンの吸気負圧等の負圧源への接続のいずれかに切換制御される。なお、切換部材7a,7b,8a,8bは便宜的に示したものであり、後述する同時切換関係にあるもの相互は共通化されるため、実際はこれよりも使用数が削減可能である。
【0018】
図2は本実施例における複式コントロールマウントの一例を示し、この複式コントロールマウント10はパワーユニット側へ取付けられる第1取付部材11と、車体側に取付けられる第2取付部材12の間をゴム等の弾性本体部13で連結し、この弾性本体部13を壁の一部とする主液室14を設けてある。主液室14は仕切り部材15に設けた減衰オリフィス16により副液室17と常時連通する。副液室17は仕切り部材15とダイヤフラム18の間に形成される。主液室14及び副液室17内には公知の非圧縮性液体が封入される。減衰オリフィス16は、一般走行時のような比較的低周波数域における振動により液柱共振を発生して振動を減衰させる。
【0019】
仕切り部材15にはアイドルオリフィス通路20が設けられ、その副液室17側の開口部をアイドル側開閉部材である開閉バルブ21によりダイヤフラム18の一部をアイドルオリフィス通路20の出口へ接離させることにより開閉される。開閉バルブ21は内側に密閉空間である制御室22を形成し、底部に形成された通路23を介して切換部材7a(8a)と接続し、負圧と大気へ接続切換して開閉バルブ21を図の上下方向へ移動させることによりアイドルオリフィス通路20の出口を開閉する。開閉バルブ21を開くとアイドルオリフィス通路20内で液体流動が生じて液柱共振する。この液柱共振は、減衰オリフィス16が対象とするよりも高周波側に発生するアイドル時におけるものであって、これによりアイドル時の入力振動を吸収する。
【0020】
さらに仕切り部材15には主液室14へ開放されたオリフィスホール24が形成され、その底部にゴム等の適宜弾性部材からなり、主液室14の内圧変動をその弾性変形で吸収する発進オリフィス用可動膜25が設けられている。この発進オリフィス用可動膜25は膜剛性を変化するものではなく、本願発明の発進オリフィス通路であるオリフィスホール24と共もに発進時共振手段を構成する。
【0021】
発進時共振手段は、アイドル時から発進時へ移行してエンジンの振動数が急激に上昇したとき、主液室14内の液体流動によってオリフィスホール24内の液体が液柱共振を発生して、アイドル時の液柱共振よりも高周波側で低動バネとなり、発進時におけるより高周波側の振動を吸収する。なお、この液柱共振における共振周波数は発進オリフィス用可動膜25の膜特性及びオリフィスホール24の開口面積並びに高さで決まる容積によって自由に設定できる。
【0022】
さらに、主液室14に臨む弾性本体部13の一部が主液室14の内圧変動に応じて弾性変形自在の剛性可変膜26をなし、この剛性可変膜26は、外方に設けられた制御室27を切換部材7b(8b)へ接続することにより、大気開放状態で自由に弾性変形でき、負圧状態では、制御室27内のストッパ28へ密着固定されることにより膜剛性を高くして弾性変形不能もしくは弾性変形しにくくなっている。すなわち、剛性可変膜26は膜剛性可変の部材であり、制御室27及びストッパ28が膜剛性可変手段となる。
【0023】
アイドル時以外で剛性可変膜26の膜剛性を下げて自由に弾性変形させれば、主液室14の内圧上昇を吸収することにより低動バネ化でき、逆にアイドル時において制御室27内を負圧にしてストッパ28へ密着固定することにより膜剛性を高くすれば、主液室14からアイドルオリフィス通路20内へ送り込む液体量を増大させて液柱共振のエネルギーを大きくすることができる。
【0024】
主液室14内には、第1の取付部材11と一体化された傘部材19が設けられ、オリフィスホール24内における液柱共振よりも高周波側の600Hz程度で液柱共振を発生する。なお、4気筒4サイクルエンジンの場合におけるアイドル時及び発進時における周波数は、二次振動を基準にしている。したがって、高次振動を考慮した場合には、エンジンの回転数で定義することが妥当であり、この場合には、アイドル時を500〜1000rpm、発進時を1000〜2000rpmとすることもできる。
【0025】
図3は複式コントロールマウントの別例であり、共通部は共通符号を付すにとどめ、相違点のみ説明する。この複式コントロールマウント30は、仕切り部材15に形成されたオリフィスホール24が主液室14と入り口32を介して連通し、出口25で副液室17と連通するとともに、この入り口32は側部可動膜33の弾性変形を利用して進退する開閉部材31で開閉される。この開閉部材31は本願発明の発進側開閉部材に相当する。
【0026】
側部可動膜33は図2における剛性可変膜26と同様であり、膜剛性を変化させて主液室14内の内圧を吸収する機能を有するとともに、開閉部材31を動作させるためのものでもあり、側部可動膜33を負圧で吸引するか大気開放させれば開閉部材31を開閉移動できる。この負圧又は大気開放への切り換えは、図2における制御室27等と同様構造の作動部34を介して行われ、作動部34を図1の切換部材7b(8b)と接続して負圧と大気へ接続切換することにより側部可動膜33の作動を制御する。
【0027】
但し、開閉部材31を直接ソレノイド等で移動させることもできる。開閉部材31を直接ソレノイド等で動作させる場合は、作動部34ソレノイドやモータ等の部材となり、切換部材7b(8b)は大気と負圧の間を切換るバルブではなくリレーなどの制御用部材になる。なお、制御室22側は図2と同様に切換部材7a(8a)と接続されて開閉バルブ21を作動制御するようにになっている。
【0028】
このようにすると、開閉部材31の移動により入り口32を開いたときのみオリフィスホール24が主液室14と副液室17を連通し、内部でアイドルオリフィス通路20よりも高周波側の液柱共振を生じて低動バネになる。また、入り口32を閉じれば、オリフィス通路としての機能はなくなるから、アイドル時に入り口32を閉じかつアイドルオリフィス通路20を開けば、主液室14からアイドルオリフィス通路20へ流れ込む流量を増大させることができる。
【0029】
なお、図1における第1液封マウント2及び第2液封マウント3には、図2の複式コントロールマウント10又は図3の複式コントロールマウント30のいずれか又は双方を組み合わせて用いることができる。
【0030】
図4は前後の第1液封マウント2及び第2液封マウント3のアイドル時における制御例を示す動バネ曲線のグラフであり、横軸に周波数(Hz)、縦軸に動バネ係数(K)と位相をとり、上下2段に第1液封マウント2と第2液封マウント3を同じ周波数で表示してある。なお、以下の説明では第1液封マウント2及び第2液封マウント3にそれぞれ図2の複式コントロールマウント10を用いるものとする。
【0031】
この例では、第1液封マウント2について、アイドル時に開閉バルブ21を負圧により図2の下方へ移動させてアイドルオリフィス通路20を開くことにより、周波数f01で液柱共振し、動バネ係数は極小値(以下、これを動バネボトムという)となる。その後、開閉バルブ21を開いたままにすると一点鎖線で示すように周波数f11近傍で反共振による動バネ係数の極大値(以下、これを動バネピークという)が生じるところ、開閉バルブ21をf02で開から閉へ切り換えると、グラフの実線に示すように動バネピークをカットできる。図中の破線は位相であり、周波数f01で180°、f02で0°近傍になる。
【0032】
一方、第2液封マウント3では、アイドルオリフィス通路20の動作に時間差を設けることにより、周波数f11で液柱共振によるボトムが生じるタイミングで切換制御し、その後の位相が0°近傍になる周波数f12で開閉バルブ21を開から閉へ切り換える。
【0033】
これにより、第1液封マウント2と第2液封マウント3では、周波数f11において動バネ曲線の動バネピークと動バネボトムが重なり、かつ位相差が略150°となるから、振動位相制御により、全体の動特性は高減衰となる。なお、図示しないが、第1液封マウント2と第2液封マウント3を同時切換すれば、振動位相制御がされない代わりに全体の動特性は低動バネとなる。
【0034】
図5は発進時における制御例を示す同様の動バネ曲線のグラフであり、この例では、アイドル時までは予め第1液封マウント2及び第2液封マウント3の各制御室27を負圧にして各剛性可変膜26をストッパ28へ密着固定しておくとともに、予め第1液封マウント2は周波数f21で動バネピークを生じ、第2液封マウント3では同f22で生じるように時間差を設けておき、発進時の特定周波数f22で大気開放するよう前後同時切換する。このため、第1液封マウント2及び第2液封マウント3の剛性可変膜26はいずれも膜剛性が低下し、動バネ係数が周波数f22で急下降し、全体の動特性を低動バネにできる。
【0035】
図6は発進時において振動位相制御する例であり、この例ではアイドル時より予め第1液封マウント2と第2液封マウント3の各剛性可変膜26を大気開放して自由な変形を許容しておき、発進時において各剛性可変膜26を時間差をもって負圧固定することにより、第1液封マウント2における剛性可変膜26を周波数f32でフリーから固定に切り換えると、オリフィスホール24内における液柱共振によりその後周波数f31で動バネボトムが生じる。
【0036】
第2液封マウント3では、周波数f31近傍となりかつ逆位相となる周波数f42で剛性可変膜26をフリーから固定に切り換えると、オリフィスホール24内における液柱共振によりで動バネボトムが生じる。このとき第1液封マウント2は動バネピークが生じている。このため、第1液封マウント2及び第2液封マウント3に位相差が生じるので、振動位相制御できることになる。
【0037】
表1は第1液封マウント2と第2液封マウント3における切換制御の組み合わせたケースを一覧にした表であり、この表中、アイドル側開閉部材におけるf02(閉)又はf12(閉)とは、動バネボトムの周波数がf02又はf12の直前又は直後となるタイミングでアイドルオリフィス通路20のバルブ21を開から閉に切換制御することを意味する。
【0038】
また、膜剛性可変手段においてf22(開)とは、周波数f22でで剛性可変膜26を負圧により固定していた状態から大気開放により自由な弾性変形を許容する状態へ切換制御することを意味する。
【0039】
f32(負)及びf42(負)とは、動バネボトムの周波数がf31及びf41の直前となるタイミングで剛性可変膜26を大気開放による自由な変形を許容する状態から負圧により固定する状態へ切換制御することを意味する。
【0040】
f02(開/負)及びf12(開/負)は、動バネボトムの周波数がf01及びf11の直前又は直後となるタイミングで剛性可変膜26を負圧により固定していた状態から大気開放により自由な弾性変形を許容する状態へ切換制御するか逆に剛性可変膜26を大気開放による自由な変形を許容する状態から負圧により固定する状態へ切換制御するのいずれかにすることを意味する。
【0041】
ケース1は、図4と図5の制御を組み合わせた例であり、アイドル時における振動位相制御と、発進時における低動バネを実現できる。ケース2は、図4と図6を組み合わせた例であり、アイドル時及び発進時のいずれかにおいても振動位相制御できる。
【0042】
ケース3は、前後の第1液封マウント2及び第2液封マウント3において、アイドル側開閉部材と膜剛性可変手段を同時切換する例であり、アイドル時及び発進時のいずれにおいても低動バネにできる。ケース4は第1液封マウント2と第2液封マウント3の各アイドル側開閉部材を同時切換し、各膜剛性可変手段は図6における時差切換する例であり、これによりアイドル時の低動バネと、発進時の振動位相制御ができる。
【0043】
ケース5は第1液封マウント2及び第2液封マウント3の各アイドル側開閉部材及び膜剛性可変手段を全て同時切換する例であり、これによりアイドル時から発進時を低動バネ化できる。ケース6は第1液封マウント2のアイドル側開閉部材と膜剛性可変手段を同時切換し、第2液封マウント3はこれと異なるタイミングで時間差をもってアイドル側開閉部材と膜剛性可変手段を同時切換する例である。これにより、アイドル時から発進時まで振動位相制御できる。
【0044】
次に、本実施例の作用を説明する。第1液封マウント2と第2液封マウント3をそれぞれ複式コントロールマウントとし、かつ発進時共振手段を設けたので、アイドル時から発進時へ移行してエンジンの振動数が急激に上昇しても、アイドル時の液柱共振よりも高周波側で発進時共振手段による液柱共振を発生して低動バネとなり、発進時におけるより高周波側の振動を有効に吸収できる。
【0045】
このとき、各液封マウントを図2のように構成すれば、発進時共振手段をオリフィスホール24とその一端を閉塞して液体流動により弾性変形する発進オリフィス用可動膜25で構成したので、発進オリフィス用可動膜25の弾性変形によりオリフィスホール24内の液体が流動して所定の周波数で液柱共振を発生させることができ、発進時共振手段を簡単な構造にできる。また、剛性可変膜26を発進オリフィス用可動膜25とは別に設けたので、発進時共振手段と独立して制御可能になるため、剛性可変膜に対する制御の自由度が大きくなり、制御が容易になる。
【0046】
一方、各液封マウントを図3のように構成すれば、開閉部材31により発進オリフィスの機能を停止又は発揮の切換を明確にできるため、アイドルオリフィス通路20と発進オリフィス通路であるオリフィスホール24の機能を明確に分離でき、かつ相互の影響を生じないようにできるため、設定が容易になる。
【0047】
そのうえ、第1液封マウント2と第2液封マウント3をそれぞれクランク軸1bを挟んで互いにパワーユニットの反対側となる前後に位置させ、各開閉バルブ21及び剛性可変膜26を相互に関連づけて制御するので、アイドル時に第1液封マウント2と第2液封マウント3の各開閉バルブ21を同時に開閉制御すれば、アイドル時における全体の動特性が低動バネとなり、時間差をもって異なるタイミングで時間差制御すれば、振動位相制御により全体入力低減となる。
【0048】
また、発進時に第1液封マウント2と第2液封マウント3の各膜剛性可変手段を同時制御すれば、発進時において全体の動特性が低動バネとなり、時差制御すれば振動位相制御により全体入力低減になり、クランク軸1bの回転に伴って変化する前後の振動を効果的に吸収できる。したがって、アイドル時と発進時においてそれぞれ動特性を低動バネと全体入力低減のいずれかを自由に設定できる。
【0049】
したがって、発進時におけるパワーユニット1から車体への振動伝達を阻止もしくは低減することができるとともに、第1液封マウント2と第2液封マウント3を関連づけて制御することにより、パワーユニット支持装置全体として相乗効果のある全体入力低減や低動バネの動特性を得ることができ、全体の動特性を任意に変化させることができる。
【0050】
なお、第1液封マウント2と第2液封マウント3の各アイドル側開閉部材と膜剛性可変手段相互を同時切換する場合には、切換部材を共通にできる。ケース1では、第1液封マウント2の制御室27に通じる切換部材7bと8bを共通化でき、これにより、切換部材の使用個数を削減できるので、部品点数の削減により構造が簡素化し、かつコストダウンが可能になる。
【0051】
同様にケース3では切換部材7aと8a及び切換部材7bと8bを共通化できる。ケース4では切換部材7aと8aを共通化できる。ケース5では切換部材7a,7b,8a,8bを全て共通化できる。ケース6では切換部材7aと7b、切換部材8aと8bをそれぞれ共通化できる。さらに、上記実施例は横置きエンジンに関するものであるが、縦置きにした場合にはクランク軸の左右へ第1液封マウント2と第2液封マウント3を配置すればよい。
【0052】
【表1】

Figure 0004456249

【図面の簡単な説明】
【図1】 パワーユニットの支持構造を概略的に示す図
【図2】 複式コントロールマウントの全断面図
【図3】 別の複式コントロールマウントの全断面図
【図4】 アイドル時の制御例を示す図
【図5】 発進時の制御例を示す図
【図6】 発進時における別の制御例を示す図
【符号の説明】
1:パワーユニット、2:第1液封マウント、3:第2液封マウント、6:車体、7a:切換部材、7b:切換部材、8a:切換部材、8b:切換部材、15:仕切り部材、20:アイドルオリフィス通路、21:開閉バルブ、24:オリフィスホール、25:発進オリフィス用可動膜、26:剛性可変膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power unit support device in which a liquid seal mount is provided before and after a power unit.
[0002]
[Prior art]
Supporting the front and rear of the power unit with a plurality of liquid seal mounts is well known. In addition, the structure of the liquid seal mount includes a main liquid chamber and a sub liquid chamber partitioned by a partition wall, an idle orifice passage that generates a liquid column resonance by communicating both the liquid chambers when the engine is idle, and a main liquid by elastic deformation. Rigidity variable membrane that absorbs the internal pressure of the chamber and makes its stiffness variable, and the idle side opening and closing member that opens the idle orifice passage at idle and the stiffness variable membrane in the free state or deformation restriction state, membrane stiffness Also known is a device provided with a film stiffness varying means for changing the thickness (for example, Japanese Patent Laid-Open No. 10-38017).
[0003]
In the present application, a liquid seal mount having an open / close type idle orifice passage and an idle side open / close member is referred to as a control mount, and one having a variable rigidity film and a variable film rigidity means is particularly referred to as a dual control mount. To do.
[0004]
[Problems to be solved by the invention]
If the stiffness variable membrane and the membrane stiffness variable means are provided as in the above-described conventional example, the fluid flow rate fed to the idle orifice passage is increased by fixing the stiffness variable membrane so that it cannot be elastically deformed during idling. Then, with respect to vibrations on the higher frequency side, such as during normal running, the rigidity variable membrane can be freely elastically deformed to absorb the internal pressure of the main liquid chamber and reduce the dynamic spring.
[0005]
However, as a result of diligent research, the inventors of the present application have found that the elastic control of the liquid seal mount for vehicle vibration and noise reduction due to engine vibration is not sufficient for switching between idling and general driving, and shifts from the idling state to the starting time. When the engine speed increases abruptly, the rigidity of the liquid ring mount increases and the vibration transmission from the power unit to the vehicle body increases. It has been found that it is extremely important to prevent or reduce vibration transmission from the power unit to the vehicle body.
[0006]
Also, even if a plurality of such multiple control mounts are arranged independently on the front and rear of the power unit, etc., it is not possible to arbitrarily obtain high damping and low dynamic springs as a whole power unit support device because it is individually controlled. It was only possible to obtain the set dynamic characteristics, for example high damping or low dynamic springs. In addition, in order to effectively absorb the vibration caused by the rotation of the crankshaft, phase difference control between the front and rear liquid seal mounts may be necessary, but this is not easy. It is desired that the overall dynamic characteristics can be arbitrarily changed by a synergistic effect. The present invention aims to realize such a demand.
[0007]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, a first invention according to the power unit support device of the present application is configured such that the power unit is supported on the vehicle body by a plurality of liquid seal mounts, and is disposed at positions opposite to each other across the crankshaft. In a power unit support device including a liquid ring mount and a second liquid ring mount, the first liquid ring mount and the second liquid ring mount are respectively divided into a main liquid chamber and a sub liquid chamber divided by a partition wall. Attenuating orifice passage that always communicates with the engine, an idle orifice passage that communicates when the engine is idling and generates liquid column resonance, and when starting, generates liquid column resonance at a higher frequency than the liquid column resonance during idling Resonance means and an elastic movable film that absorbs the internal pressure of the main liquid chamber by elastic deformation, and a variable stiffness film that makes the film rigidity variable, An idle side opening / closing member that opens the orifice passage, and a membrane stiffness varying means for changing the membrane stiffness with the stiffness variable membrane in a free state or a deformation restricted state, and the idle side opening / closing member at the time of idling, the first liquid seal mount, Control with a time difference or synchronized between the second liquid seal mount, and control the film stiffness variable means with a time difference or synchronous between the first liquid seal mount and the second liquid seal mount at the start,
While performing the control of the idle side opening and closing member at the time of idling and the control of the film stiffness varying means at the time of start-up between the first liquid seal mount and the second liquid seal mount,
Only the film rigidity variable means of the first liquid seal mount and the second liquid seal mount is controlled with a time difference between the first liquid seal mount and the second liquid seal mount, or the idle side opening / closing member and the film rigidity variable. Means for the first liquid seal mount and the second liquid seal mount, respectively,Control is performed with a time difference between the first liquid ring mount and the second liquid ring mount.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the start-up resonance means closes the start orifice passage and the one end thereof that communicate with the main liquid chamber or the sub-liquid chamber and allow the liquid flow, and is elastic by the liquid flow The movable film for the starting orifice is deformed, and the rigidity variable film is provided facing the main liquid chamber separately from the movable film for the starting orifice.
[0009]
In a third aspect based on the first aspect, the starting resonance means communicates with the main liquid chamber or the sub liquid chamber to allow a liquid flow, and the main liquid chamber of the starting orifice passage. Alternatively, a start-side opening / closing member for the opening communicating with the auxiliary liquid chamber is provided.
[0010]
【The invention's effect】
According to the first invention, since the first liquid seal mount and the second liquid seal mount are respectively the dual control mounts and the starting resonance means is provided, the engine speed is changed from the idling time to the starting time. Even if it rises rapidly, the liquid column resonance by the starting resonance means is generated on the higher frequency side than the liquid column resonance at the time of idling to become a low dynamic spring, and the vibration on the higher frequency side at the time of starting can be effectively absorbed.
[0011]
In addition, the first liquid seal mount and the second liquid seal mount are respectively positioned on opposite sides of the power unit with the crankshaft interposed therebetween, and the idle side opening / closing members and the membrane stiffness varying means are controlled in association with each other. If the idle side opening and closing members of the first liquid seal mount and the second liquid seal mount are sometimes controlled at the same time, the overall dynamic characteristic during idling becomes a low dynamic spring, and if the time difference control is performed at different timings with a time difference, the first liquid The total input is reduced by vibration phase control that changes the phase difference between the reaction force vectors in the seal mount and the second liquid seal mount and decreases the combined vector (hereinafter, this is simply referred to as total input reduction).
[0012]
  Further, each film stiffness variable means of the first liquid seal mount and the second liquid seal mount at the time of startWhenIf differential control is performed, the overall dynamic characteristics will be highly damped by vibration phase control, and vibrations before and after changing with rotation of the crankshaft can be effectively absorbed..
[0013]
Therefore, vibration transmission from the power unit to the vehicle body at the start can be prevented or reduced, and the power unit support device as a whole has a synergistic effect by controlling the first liquid seal mount and the second liquid seal mount in association with each other. The overall input reduction and the dynamic characteristics of the low dynamic spring can be obtained, and the overall dynamic characteristics can be arbitrarily changed.
[0014]
According to the second aspect of the present invention, the starting orifice passage allowing the starting resonance means to communicate with the main liquid chamber or the sub liquid chamber and allowing the liquid flow, and the movable film for the starting orifice which closes one end thereof and is elastically deformed by the liquid flow. Therefore, the liquid in the starting orifice passage flows due to the elastic deformation of the moving film for the starting orifice, so that liquid column resonance can be generated at a predetermined frequency, and the starting resonance means can have a simple structure. Further, since the variable stiffness film is provided separately from the movable film for the starting orifice, it can be controlled independently of the starting resonance means, so that the degree of freedom in controlling the variable stiffness film is increased and the control is facilitated.
[0015]
According to the third aspect of the present invention, since the starting side opening / closing member is provided in the starting orifice passage, if the starting side opening / closing member is closed, the liquid flow in the starting orifice passage is stopped, so that it does not function as the orifice passage, and resonance occurs at the start. Means do not work. Further, when the start side opening / closing member is opened, a liquid flow occurs in the start orifice passage and functions as a start time resonance means. Therefore, if the start side opening / closing member is closed during idling, a large amount of liquid in the main liquid chamber can be sent to the idle orifice passage to cause strong liquid column resonance, and if the starting side opening / closing member is opened during start, the starting orifice is opened. The vibration at the start can be more reliably absorbed by the liquid column resonance of the passage.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments will be described below with reference to the drawings. FIG. 1 schematically shows a support structure of a power unit. The power unit 1 is a horizontal engine type in which the axial direction of a crankshaft 1b in the engine 1a is directed in the left-right direction of the vehicle body, and sandwiches the crankshaft 1b. The front and rear positions are supported by the first liquid seal mount 2 and the second liquid seal mount 3, and the left and right positions are supported by other mounts 4 and 5. These mounts are attached to the vehicle body 6 side. In this embodiment, the first liquid seal mount 2 is provided on the front side of the power unit, and the second liquid seal mount 3 is provided on the rear side.
[0017]
Each of the first liquid seal mount 2 and the second liquid seal mount 3 is a dual control mount which will be described later, and each of the first control unit and the second control unit is appropriately switched by a switching member 7a, 7b, 8a, 8b such as an electromagnetic solenoid. The control is switched to either open to the atmosphere or connection to a negative pressure source such as an intake negative pressure of the engine. Note that the switching members 7a, 7b, 8a, and 8b are shown for convenience, and those that are in the simultaneous switching relationship described later are shared, so that the number of uses can actually be reduced more than this.
[0018]
FIG. 2 shows an example of a dual control mount in the present embodiment. The dual control mount 10 has an elastic property such as rubber between a first mounting member 11 mounted on the power unit side and a second mounting member 12 mounted on the vehicle body side. A main liquid chamber 14 is provided which is connected by a main body 13 and uses the elastic main body 13 as a part of a wall. The main liquid chamber 14 is always in communication with the sub liquid chamber 17 through an attenuation orifice 16 provided in the partition member 15. The auxiliary liquid chamber 17 is formed between the partition member 15 and the diaphragm 18. A known incompressible liquid is enclosed in the main liquid chamber 14 and the sub liquid chamber 17. The damping orifice 16 dampens vibration by generating liquid column resonance due to vibration in a relatively low frequency range as in general traveling.
[0019]
The partition member 15 is provided with an idle orifice passage 20, and a part of the diaphragm 18 is brought into contact with and separated from the outlet of the idle orifice passage 20 by an opening / closing valve 21 serving as an idle side opening / closing member. It is opened and closed by. The opening / closing valve 21 forms a control chamber 22 which is a sealed space inside, and is connected to the switching member 7a (8a) via a passage 23 formed at the bottom, and is switched to a negative pressure and the atmosphere to switch the opening / closing valve 21. The outlet of the idle orifice passage 20 is opened and closed by moving in the vertical direction in the figure. When the on-off valve 21 is opened, a liquid flow is generated in the idle orifice passage 20 and the liquid column resonates. This liquid column resonance is during idling that occurs on the higher frequency side than the target of the damping orifice 16, and thereby absorbs input vibration during idling.
[0020]
Further, an orifice hole 24 opened to the main liquid chamber 14 is formed in the partition member 15, and is formed of an appropriate elastic member such as rubber at the bottom thereof, for a starting orifice that absorbs fluctuations in the internal pressure of the main liquid chamber 14 by its elastic deformation. A movable film 25 is provided. This starting orifice movable film 25 does not change the film rigidity, and constitutes a starting resonance means together with the orifice hole 24 which is the starting orifice passage of the present invention.
[0021]
The starting resonance means shifts from the idling time to the starting time, and when the engine frequency rapidly increases, the liquid in the orifice hole 24 causes liquid column resonance due to the liquid flow in the main liquid chamber 14, It becomes a low dynamic spring on the higher frequency side than the liquid column resonance during idling, and absorbs vibration on the higher frequency side when starting. The resonance frequency in this liquid column resonance can be freely set by the volume determined by the film characteristics of the starting orifice movable film 25 and the opening area and height of the orifice hole 24.
[0022]
Further, a part of the elastic main body 13 facing the main liquid chamber 14 forms a rigidity variable film 26 that can be elastically deformed in accordance with fluctuations in internal pressure of the main liquid chamber 14, and this rigidity variable film 26 is provided on the outside. By connecting the control chamber 27 to the switching member 7b (8b), it can be elastically deformed freely in the open air state, and in the negative pressure state, the membrane rigidity is increased by being tightly fixed to the stopper 28 in the control chamber 27. It is not elastically deformable or difficult to elastically deform. That is, the stiffness variable membrane 26 is a membrane stiffness variable member, and the control chamber 27 and the stopper 28 serve as membrane stiffness variable means.
[0023]
If the membrane rigidity of the variable stiffness membrane 26 is lowered and freely elastically deformed at times other than idling, the spring can be lowered by absorbing the increase in the internal pressure of the main liquid chamber 14. If the membrane rigidity is increased by making a negative pressure and tightly fixing to the stopper 28, the amount of liquid fed from the main liquid chamber 14 into the idle orifice passage 20 can be increased and the energy of liquid column resonance can be increased.
[0024]
An umbrella member 19 integrated with the first mounting member 11 is provided in the main liquid chamber 14, and generates a liquid column resonance at about 600 Hz on the higher frequency side than the liquid column resonance in the orifice hole 24. In the case of a four-cylinder four-cycle engine, the frequency at the time of idling and starting is based on the secondary vibration. Therefore, when high-order vibration is taken into consideration, it is appropriate to define it by the engine speed. In this case, the idling time can be set to 500 to 1000 rpm, and the starting time can be set to 1000 to 2000 rpm.
[0025]
FIG. 3 shows another example of the dual control mount. The common parts are only given common reference numerals, and only the differences will be described. In the dual control mount 30, the orifice hole 24 formed in the partition member 15 communicates with the main liquid chamber 14 via the inlet 32, and the outlet 25 communicates with the sub liquid chamber 17. It is opened and closed by an opening and closing member 31 that moves forward and backward using elastic deformation of the film 33. The opening / closing member 31 corresponds to the starting side opening / closing member of the present invention.
[0026]
The side movable film 33 is the same as the rigidity variable film 26 in FIG. 2 and has a function of absorbing the internal pressure in the main liquid chamber 14 by changing the film rigidity and also for operating the opening / closing member 31. The opening / closing member 31 can be opened and closed by sucking the side movable film 33 with a negative pressure or opening it to the atmosphere. The switching to the negative pressure or open to the atmosphere is performed via the operating portion 34 having the same structure as the control chamber 27 in FIG. 2, and the operating portion 34 is connected to the switching member 7b (8b) in FIG. The operation of the side movable film 33 is controlled by switching the connection to the atmosphere.
[0027]
  However, the opening / closing member 31 can also be moved directly by a solenoid or the like. When the opening / closing member 31 is directly operated by a solenoid or the like, the operating unit 34 is operated.IsIt becomes a member such as a solenoid or a motor, and the switching member 7b (8b) is not a valve for switching between the atmospheric pressure and the negative pressure but a control member such as a relay. The control chamber 22 side is connected to the switching member 7a (8a) in the same manner as in FIG.
[0028]
In this way, the orifice hole 24 communicates with the main liquid chamber 14 and the sub liquid chamber 17 only when the inlet 32 is opened by the movement of the opening / closing member 31, and the liquid column resonance on the higher frequency side than the idle orifice passage 20 is performed inside. This is a low dynamic spring. Further, if the inlet 32 is closed, the function as an orifice passage is lost. Therefore, when the inlet 32 is closed and the idle orifice passage 20 is opened at the time of idling, the flow rate flowing from the main liquid chamber 14 into the idle orifice passage 20 can be increased. .
[0029]
In addition, the 1st liquid seal mount 2 and the 2nd liquid seal mount 3 in FIG. 1 can use either the dual control mount 10 of FIG. 2 or the dual control mount 30 of FIG.
[0030]
FIG. 4 is a dynamic spring curve graph showing an example of control during idling of the front and rear first liquid seal mount 2 and the second liquid seal mount 3, with the horizontal axis representing frequency (Hz) and the vertical axis representing dynamic spring coefficient (K). The first liquid seal mount 2 and the second liquid seal mount 3 are displayed at the same frequency in the upper and lower two stages. In the following description, the dual control mount 10 of FIG. 2 is used for the first liquid seal mount 2 and the second liquid seal mount 3, respectively.
[0031]
In this example, when the first liquid seal mount 2 is idle, the open / close valve 21 is moved downward in FIG. 2 by negative pressure to open the idle orifice passage 20 to resonate the liquid column at the frequency f01, and the dynamic spring coefficient is The minimum value (hereinafter, this is referred to as a dynamic spring bottom). After that, if the on-off valve 21 is left open, a maximum value of the dynamic spring coefficient due to anti-resonance (hereinafter referred to as a dynamic spring peak) occurs near the frequency f11 as shown by a one-dot chain line. When switching from to closed, the dynamic spring peak can be cut as shown by the solid line in the graph. A broken line in the figure is a phase, which is 180 ° at a frequency f01 and near 0 ° at f02.
[0032]
On the other hand, in the second liquid seal mount 3, by providing a time difference in the operation of the idle orifice passage 20, switching control is performed at the timing at which a bottom due to liquid column resonance occurs at the frequency f 11, and the frequency f 12 at which the subsequent phase becomes near 0 °. To switch the open / close valve 21 from open to closed.
[0033]
As a result, in the first liquid seal mount 2 and the second liquid seal mount 3, the dynamic spring peak and the dynamic spring bottom of the dynamic spring curve overlap at the frequency f11 and the phase difference becomes approximately 150 °. The dynamic characteristic is highly attenuated. Although not shown, if the first liquid ring mount 2 and the second liquid ring mount 3 are simultaneously switched, the vibration characteristics are not controlled and the overall dynamic characteristics are low dynamic springs.
[0034]
FIG. 5 is a graph of a similar dynamic spring curve showing an example of control at the time of starting. In this example, the control chambers 27 of the first liquid seal mount 2 and the second liquid seal mount 3 are previously subjected to negative pressure until idling. Each rigid variable film 26 is closely fixed to the stopper 28, and the first liquid seal mount 2 has a dynamic spring peak at the frequency f21 in advance, and the second liquid seal mount 3 has a time difference so as to occur at f22. In addition, the front and rear are simultaneously switched so that the atmosphere is released at the specific frequency f22 when starting. For this reason, both the stiffness variable membranes 26 of the first liquid seal mount 2 and the second liquid seal mount 3 have reduced membrane stiffness, the dynamic spring coefficient rapidly drops at the frequency f22, and the overall dynamic characteristics are reduced to a low dynamic spring. it can.
[0035]
FIG. 6 shows an example in which the vibration phase is controlled at the time of starting. In this example, the rigidity variable films 26 of the first liquid seal mount 2 and the second liquid seal mount 3 are opened to the atmosphere in advance from the time of idling to allow free deformation. When the rigidity variable film 26 in the first liquid seal mount 2 is switched from free to fixed at the frequency f32 by fixing each rigidity variable film 26 with a time difference at the time of starting, the liquid in the orifice hole 24 is set. Due to the column resonance, a dynamic spring bottom is subsequently generated at the frequency f31.
[0036]
In the second liquid seal mount 3, when the stiffness variable film 26 is switched from free to fixed at a frequency f 42 in the vicinity of the frequency f 31 and in the opposite phase, a dynamic spring bottom is generated due to liquid column resonance in the orifice hole 24. At this time, the first liquid seal mount 2 has a dynamic spring peak. For this reason, a phase difference is generated between the first liquid seal mount 2 and the second liquid seal mount 3, so that the vibration phase can be controlled.
[0037]
Table 1 is a table that lists cases in which the switching control of the first liquid seal mount 2 and the second liquid seal mount 3 is combined. In this table, f02 (closed) or f12 (closed) in the idle side opening / closing member is listed. Means that the valve 21 of the idle orifice passage 20 is switched from open to closed at a timing at which the frequency of the dynamic spring bottom is immediately before or after f02 or f12.
[0038]
In the membrane stiffness varying means, f22 (open) means switching control from a state where the stiffness variable membrane 26 is fixed at a frequency f22 by negative pressure to a state where free elastic deformation is allowed by opening to the atmosphere. To do.
[0039]
f32 (negative) and f42 (negative) are switched from a state in which the variable stiffness film 26 is allowed to be freely deformed by opening to the atmosphere to a state in which it is fixed by negative pressure at the timing when the frequency of the dynamic spring bottom is immediately before f31 and f41. Means to control.
[0040]
f02 (open / negative) and f12 (open / negative) can be freely released from the state in which the stiffness variable film 26 is fixed by negative pressure at the timing when the frequency of the dynamic spring bottom is immediately before or after f01 and f11. This means switching control to a state allowing elastic deformation or conversely switching control from a state allowing free deformation due to release to the atmosphere to a state where it is fixed by negative pressure.
[0041]
Case 1 is an example in which the controls of FIGS. 4 and 5 are combined, and can realize vibration phase control during idling and a low dynamic spring during start-up. Case 2 is an example in which FIG. 4 and FIG. 6 are combined, and vibration phase control can be performed at either idling or starting.
[0042]
The case 3 is an example in which the idle side opening / closing member and the membrane stiffness varying means are simultaneously switched in the front and rear first liquid seal mount 2 and the second liquid seal mount 3. Can be. The case 4 is an example in which the idle side opening / closing members of the first liquid seal mount 2 and the second liquid seal mount 3 are simultaneously switched, and each film stiffness varying means is a time difference switching in FIG. Spring and vibration phase control at start can be performed.
[0043]
The case 5 is an example in which all the idle side opening / closing members and the film stiffness varying means of the first liquid seal mount 2 and the second liquid seal mount 3 are simultaneously switched, and thereby, a low dynamic spring can be achieved from the idling time to the starting time. The case 6 simultaneously switches between the idle side opening / closing member and the membrane stiffness variable means of the first liquid seal mount 2, and the second liquid seal mount 3 simultaneously switches between the idle side opening / closing member and the membrane stiffness variable means at a different timing. This is an example. Thereby, the vibration phase can be controlled from the idling time to the start time.
[0044]
Next, the operation of this embodiment will be described. Since the first liquid seal mount 2 and the second liquid seal mount 3 are each a dual control mount and provided with a starting resonance means, even if the engine frequency suddenly increases after shifting from idling to starting The liquid column resonance by the starting resonance means is generated at a higher frequency side than the liquid column resonance at the time of idling to form a low dynamic spring, and the vibration on the higher frequency side at the time of starting can be effectively absorbed.
[0045]
At this time, if each liquid ring mount is configured as shown in FIG. 2, the starting resonance means is constituted by the orifice hole 24 and the movable film 25 for the starting orifice that is elastically deformed by liquid flow by closing one end thereof. The liquid in the orifice hole 24 flows due to the elastic deformation of the orifice movable film 25 and liquid column resonance can be generated at a predetermined frequency, and the start-up resonance means can have a simple structure. Further, since the variable stiffness film 26 is provided separately from the starting orifice movable film 25, it can be controlled independently of the starting resonance means, so the degree of freedom of control of the variable stiffness film is increased and the control is easy. Become.
[0046]
On the other hand, if each liquid seal mount is configured as shown in FIG. 3, the opening / closing member 31 can be used to stop the function of the starting orifice or to clearly switch the function, so that the idle orifice passage 20 and the orifice hole 24 serving as the starting orifice passage are provided. Since functions can be clearly separated and mutual influences can be prevented, setting is facilitated.
[0047]
In addition, the first liquid seal mount 2 and the second liquid seal mount 3 are respectively positioned on the opposite sides of the power unit with the crankshaft 1b interposed therebetween, and the open / close valves 21 and the rigidity variable film 26 are associated with each other and controlled. Therefore, if the open / close valves 21 of the first liquid seal mount 2 and the second liquid seal mount 3 are simultaneously controlled to open / close during idling, the overall dynamic characteristic during idling becomes a low dynamic spring, and the time difference control is performed at different timings with time differences. Then, the overall input is reduced by the vibration phase control.
[0048]
Further, if the film rigidity variable means of the first liquid seal mount 2 and the second liquid seal mount 3 are simultaneously controlled at the time of starting, the overall dynamic characteristic becomes a low dynamic spring at the time of starting, and if time difference control is performed, vibration phase control is performed. The overall input is reduced, and vibrations before and after changing with the rotation of the crankshaft 1b can be effectively absorbed. Therefore, at the time of idling and at the time of starting, the dynamic characteristics can be freely set to either the low dynamic spring or the overall input reduction.
[0049]
Therefore, vibration transmission from the power unit 1 to the vehicle body at the time of starting can be prevented or reduced, and the first liquid seal mount 2 and the second liquid seal mount 3 are controlled in association with each other, so that the power unit support device as a whole is synergistic. Effective overall input reduction and low dynamic spring dynamic characteristics can be obtained, and the entire dynamic characteristics can be arbitrarily changed.
[0050]
In addition, when switching each idle side opening-and-closing member of the 1st liquid seal mount 2 and the 2nd liquid seal mount 3 and membrane rigidity variable means simultaneously, a switching member can be made common. In the case 1, the switching members 7b and 8b communicating with the control chamber 27 of the first liquid seal mount 2 can be made common, thereby reducing the number of switching members used, thereby simplifying the structure by reducing the number of parts, and Cost reduction is possible.
[0051]
Similarly, in case 3, switching members 7a and 8a and switching members 7b and 8b can be shared. In case 4, the switching members 7a and 8a can be shared. In case 5, all the switching members 7a, 7b, 8a, and 8b can be shared. In case 6, switching members 7a and 7b and switching members 8a and 8b can be made common. Furthermore, although the said Example is related with a horizontal installation engine, when set up vertically, the 1st liquid seal mount 2 and the 2nd liquid seal mount 3 should just be arrange | positioned on the right and left of a crankshaft.
[0052]
[Table 1]
Figure 0004456249

[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a support structure of a power unit
[Fig. 2] Full sectional view of the double control mount
FIG. 3 is a sectional view of another dual control mount.
FIG. 4 is a diagram showing an example of control during idling
FIG. 5 is a diagram showing an example of control when starting
FIG. 6 is a diagram showing another control example at the time of start
[Explanation of symbols]
1: power unit, 2: first liquid seal mount, 3: second liquid seal mount, 6: vehicle body, 7a: switching member, 7b: switching member, 8a: switching member, 8b: switching member, 15: partition member, 20 : Idle orifice passage, 21: Open / close valve, 24: Orifice hole, 25: Movable membrane for starting orifice, 26: Rigid variable membrane

Claims (3)

複数の液封マウントによりパワーユニットを車体へ支持するとともに、クランク軸を挟んで互いに反対側となる位置へ配置された第1液封マウントと第2液封マウントを備えるパワーユニット支持装置において、
前記第1液封マウント及び第2液封マウントはそれぞれ、仕切壁で区画された主液室と副液室、
これら両液室を常時連通している減衰オリフィス通路と、エンジンのアイドル時に連通して液柱共振を発生するアイドルオリフィス通路、
発進時に前記アイドル時の液柱共振よりも高周波側で液柱共振を発生する発進時共振手段及び弾性変形により主液室の内圧を吸収する弾性可動膜であってその膜剛性を可変とする剛性可変膜、
並びにアイドル時にアイドルオリフィス通路を開く開閉自在のアイドル側開閉部材
及び剛性可変膜を自由状態又は変形規制状態にして膜剛性を変化させる膜剛性可変手段とを備え、
アイドル時に前記アイドル側開閉部材を前記第1液封マウント及び第2液封マウント間で時間差をもって又は同期させて制御するとともに、
発進時に前記膜剛性可変手段を前記第1液封マウント及び第2液封マウント間で時間差をもって又は同期させて制御し、
アイドル時における前記アイドル側開閉部材の制御と、発進時における前記膜剛性可変手段の制御を前記第1液封マウント及び第2液封マウント間で相互に関連づけておこなうとともに、
前記第1液封マウント及び第2液封マウントの前記各膜剛性可変手段のみについて前記第1液封マウント及び第2液封マウント間で時間差をもって制御し、又は前記アイドル側開閉部材及び膜剛性可変手段を前記第1液封マウント及び第2液封マウントにてそれぞれ同時にかつ前記第1液封マウント及び第2液封マウント間で時間差をもって制御することを特徴とするパワーユニット支持装置。
In a power unit support device comprising a first liquid seal mount and a second liquid seal mount that are disposed at positions opposite to each other across the crankshaft while supporting the power unit to the vehicle body by a plurality of liquid seal mounts,
The first liquid seal mount and the second liquid seal mount are respectively a main liquid chamber and a sub liquid chamber partitioned by a partition wall,
A damping orifice passage that communicates these two fluid chambers at all times, and an idle orifice passage that communicates when the engine is idling to generate liquid column resonance.
Resonance means at start-up that generates liquid column resonance at a higher frequency than the liquid column resonance at the time of start-up, and an elastic movable film that absorbs the internal pressure of the main liquid chamber by elastic deformation, and the rigidity of the membrane is variable Variable membrane,
And an openable / closable idle side opening / closing member that opens the idle orifice passage during idling, and a membrane stiffness variable means for changing the membrane stiffness by setting the stiffness variable membrane in a free state or a deformation regulation state,
While controlling the idle side opening and closing member at the time difference or in synchronization between the first liquid seal mount and the second liquid seal mount during idle,
Controlling the film stiffness varying means at the time of starting with a time difference or in synchronization between the first liquid seal mount and the second liquid seal mount;
While performing the control of the idle side opening and closing member at the time of idling and the control of the film stiffness varying means at the time of start-up between the first liquid seal mount and the second liquid seal mount,
Only the film rigidity variable means of the first liquid seal mount and the second liquid seal mount is controlled with a time difference between the first liquid seal mount and the second liquid seal mount, or the idle side opening / closing member and the film rigidity variable. The power unit supporting device is characterized in that the means is controlled simultaneously with the first liquid seal mount and the second liquid seal mount and with a time difference between the first liquid seal mount and the second liquid seal mount.
前記発進時共振手段は、前記主液室又は副液室へ連通して液体流動を許容する発進オリフィス通路とその一端を閉塞して液体流動により弾性変形する発進オリフィス用可動膜で構成され、
前記剛性可変膜は、前記発進オリフィス用可動膜とは別に主液室へ臨んで設けられることを特徴とする請求項1に記載したパワーユニット支持装置。
The starting resonance means includes a starting orifice passage that communicates with the main liquid chamber or the sub liquid chamber and allows liquid flow, and a movable film for the starting orifice that closes one end and elastically deforms by liquid flow,
2. The power unit support device according to claim 1, wherein the stiffness variable film is provided facing the main liquid chamber separately from the movable film for the starting orifice.
前記発進時共振手段は、前記主液室又は副液室へ連通して液体流動を許容する発進オリフィス通路と、この発進オリフィス通路を開閉するための発進側開閉部材とを備えたことを特徴とする請求項1に記載したパワーユニット支持装置。  The starting resonance means includes a starting orifice passage communicating with the main liquid chamber or the sub liquid chamber and allowing liquid flow, and a starting side opening / closing member for opening and closing the starting orifice passage. The power unit support device according to claim 1.
JP2000292830A 2000-09-26 2000-09-26 Power unit support device Expired - Fee Related JP4456249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292830A JP4456249B2 (en) 2000-09-26 2000-09-26 Power unit support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292830A JP4456249B2 (en) 2000-09-26 2000-09-26 Power unit support device

Publications (2)

Publication Number Publication Date
JP2002106627A JP2002106627A (en) 2002-04-10
JP4456249B2 true JP4456249B2 (en) 2010-04-28

Family

ID=18775711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292830A Expired - Fee Related JP4456249B2 (en) 2000-09-26 2000-09-26 Power unit support device

Country Status (1)

Country Link
JP (1) JP4456249B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2732181B1 (en) * 2011-07-12 2017-04-12 BeijingWest Industries Co. Ltd. A magnetorheological fluid-based mount apparatus including rate dip track passage
CN108843722B (en) * 2018-08-01 2024-02-23 江阴海达橡塑股份有限公司 Electrically controlled variable throttle hole type semi-active suspension

Also Published As

Publication number Publication date
JP2002106627A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP2843088B2 (en) Fluid-filled mounting device
US6527260B2 (en) Liquid-sealing type vibration isolating apparatus
JPS61191424A (en) Damping device for power unit
JPH04302728A (en) Liquid sealed vibration isolation device
JP4456249B2 (en) Power unit support device
JP4303880B2 (en) Power unit support device
JP6110272B2 (en) Active vibration isolator and engine mount control device
JP4303878B2 (en) Power unit support device
KR100525480B1 (en) Active control engine mount and method for controlling thereof
JP4540864B2 (en) Liquid seal vibration isolator
JP3134799B2 (en) Liquid filled type vibration damping device
JP3603173B2 (en) Liquid filled type vibration damping device
EP1036952B1 (en) Hydraulic vibration isolator
JP2000018310A (en) Hydraulic shock absorbing type motor supporting device
JP4437892B2 (en) Vibration isolator
JP3570105B2 (en) Liquid filled type vibration damping device
JP2004332884A (en) Vibration isolation device
JP4356967B2 (en) Liquid seal vibration isolator
JP3560038B2 (en) Liquid filled type vibration damping device
JPH05139165A (en) Suspension device for vehicle engine
JP3513655B2 (en) Anti-vibration support device
JP4364547B2 (en) Liquid seal vibration isolator and resonance control method thereof
JPS59117931A (en) Liquid-sealed vibration isolating device
JPH0814321A (en) Vibration proof supporting device
JP2004324823A (en) Vibrationproof device for vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees