JP4540864B2 - Liquid seal vibration isolator - Google Patents

Liquid seal vibration isolator Download PDF

Info

Publication number
JP4540864B2
JP4540864B2 JP2001049041A JP2001049041A JP4540864B2 JP 4540864 B2 JP4540864 B2 JP 4540864B2 JP 2001049041 A JP2001049041 A JP 2001049041A JP 2001049041 A JP2001049041 A JP 2001049041A JP 4540864 B2 JP4540864 B2 JP 4540864B2
Authority
JP
Japan
Prior art keywords
laterally movable
orifice passage
liquid chamber
opening
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001049041A
Other languages
Japanese (ja)
Other versions
JP2002250391A (en
Inventor
和俊 佐鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2001049041A priority Critical patent/JP4540864B2/en
Publication of JP2002250391A publication Critical patent/JP2002250391A/en
Application granted granted Critical
Publication of JP4540864B2 publication Critical patent/JP4540864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は自動車のエンジンマウント等に使用される液封防振装置に係り、特に開閉オリフィス通路による液柱共振の効果を広範囲の周波数域において発揮させるようにしたものに関する。
【0002】
【従来の技術】
このような液封防振装置の一例であるエンジンマウントにおいて、振動発生側であるエンジンへ取付けられる第1取付部材と、振動受け側へ取付けられる第2取付部材と、これらの間に介在される弾性本体部材と、この弾性本体部材を壁の一部とする主液室と、この主液室と仕切り部材で仕切られ、可撓膜部材で覆われる副液室とを備え、これら両液室をアイドル振動周波数域で開閉されるアイドルオリフィス通路で連絡するとともに、主液室を囲む周囲壁に内圧吸収用の横可動膜を設けて、この横可動膜を囲んで設けた制御室内を吸気負圧又は大気へ接続切り換えすることにより、自由な弾性変形を可能にする開放状態として主液室の内圧変動を吸収させ、又は自由な弾性変形を規制する固定状態としてアイドルオリフィス通路へ流れ込む液体流量を増大させて液柱共振を良好にするものが公知である。また、横可動膜に開閉弁を設け、横可動膜の弾性変形によって開閉弁を移動させて前記アイドルオリフィス通路と別に設けられた別の開閉式オリフィス通路を開閉させるものも公知である。
【0003】
【発明が解決しようとする課題】
ところで上記横可動膜を備える形式の場合、アイドル状態に続く発進時に固定状態にすると、発進時に増大する振動を有効に遮断できる。図4の二点鎖線はこれを示し、アイドル域より高い発進域の周波数a近傍で動バネ定数が第1動バネボトムB1を生じ、かつ位相は第1位相ピークP1を生じて高位相になる。しかしながら、この場合でもアイドルオリフィス通路における液柱共振の効果はあまり広い周波数域まで及ぶことはできず、横可動膜を再び自由にする周波数bまでに限定される。そこでより広範囲な周波数域まで低動バネ化し、かつ高位相にして振動遮断を効果的に行うことが望ましい。本願発明はこのような要請の実現を目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため本願の液封防振装置に係る請求項1の発明は、振動発生側又は振動受け側のいずれか一方側へ取付けられる第1取付部材と、他方側へ取付けられる第2取付部材と、これらの間に介在される弾性本体部材と、この弾性本体部材を壁の一部とする主液室と、この主液室と仕切り部材で仕切られ、可撓膜部材で覆われる副液室とを備え、これら両液室をアイドル振動周波数域で開閉される第1開閉オリフィス通路で連絡した液封防振装置において、
前記主液室を囲む周囲壁に内圧吸収用の横可動膜を複数設け、それぞれを前記主液室内に臨ませ、かつアイドル域より高い発進域の周波数にて、自由な弾性変形を可能にする開放状態と自由な弾性変形を規制する固定状態とに切り換え可能にするとともに、これら横可動膜の状態を相互間で異なる周波数にて切り換える換えるようにしたことを特徴とする。
【0005】
請求項2の発明は、上記請求項1にいて、前記横可動膜のうちのいずれかに、前記第1開閉オリフィス通路と別に設けられた第2開閉オリフィス通路の開閉弁を設けたことを特徴とする。
【0006】
請求項3の発明は上記請求項1において、第2開閉オリフィス通路及び前記開閉弁並びにこの開閉弁を設けた横可動膜をそれぞれ複数設けたことを特徴とする。
【0007】
請求項4の発明は上記請求項1において、前記横可動膜は、隣接して設けられ共通の制御室で囲まれる複数を備え、この制御室内を横可動膜毎に区画して各区画室を直列に配置するとともに、隣り合う区画室を区画壁に設けた連通路で接続し、かつ一端部の区画室に設けた外部の切り換え手段に接続する一つの通路を通して内部気圧を可変にするようにしたことを特徴とする。
【0008】
【発明の効果】
請求項1の発明によれば、横可動膜を複数設け、これらを主液室内に臨ませ、かつアイドル域より高い発進域の周波数にて、相互間で異なる周波数にて切り換えるので、これまで生じていた第1動バネボトムと第1位相ピークに加えてより高周波数側に第2動バネボトム及び第2位相ピークが生じ、低動バネかつ高位相の範囲を高周波数側へ拡大でき、その結果、広範囲で振動の伝達を効果的に遮断できる。
【0009】
請求項2の発明によれば、横可動膜のうちのいずれかに第1開閉オリフィス通路と別に設けられた第2開閉オリフィス通路の開閉弁を設けたので、異なる周波数にて第2開閉オリフィス通路を開閉すれば、第1開閉オリフィス通路における液柱共振と第2開閉オリフィス通路を開くことによって別の周波数で発生する液柱共振を連成させることができるので、さらに広範囲の周波数域における振動遮断が可能になる。
【0010】
請求項3の発明によれば、第2開閉オリフィス通路、そのの開閉弁及びこれを設けた横可動膜の組合せを複数設け、それぞれを異なる周波数にて制御することにより、動バネボトム及び位相ピークを高周波数側へ複数生じさせることができるので、それだけ低動バネかつ高位相の範囲を高周波数側へさらに拡大でき、より広範囲の周波数域における振動遮断が可能になる。
【0011】
請求項4の発明によれば、共通の制御室内に複数の横可動膜を個々に区画する区画室を直列に配置して隣り合う区画室を区画壁に設けた連通路で接続したので、一端部の区画室に設けた一つの通路を通して外部の切り換え手段により内部気圧を可変にすると、気圧切り換えの効果が連通路を通じて時間差を生じながら各区画へ伝達されるので、各横可動膜の状態を時間差を持って切り換えできる。したがって、複数の横可動膜を設けてもこれを作動させる手段を共通化できるので、それだけ部品点数を削源できコストダウンが可能になる。
【0012】
【発明の実施の形態】
図1は第1実施例における複式コントロールマウントの概略平面図、図2は図1の2−2線の沿う断面図、図3は図2の3−3線相当部の概略断面図である。この複式コントロールマウント10は振動源である図示しないエンジンへ取付けられる第1取付部材11と、振動を受ける側となる図示しない車体側に取付けられる第2取付部材12の間をゴム等の弾性本体部13で連結し、この弾性本体部13を壁の一部とする主液室14を設けてある。主液室14は仕切り部材15に設けた減衰オリフィス16により副液室17と常時連通する。副液室17は仕切り部材15とダイヤフラム18の間に形成される。主液室14及び副液室17内には公知の非圧縮性液体が封入される。減衰オリフィス16は、一般走行時のような比較的低周波数域(10Hz程度)における振動により液柱共振を発生して振動を減衰させる。
【0013】
仕切り部材15にはアイドルオリフィス通路20が設けられ、その入り口24は主液室14へ開口し(図3)、出口25は副液室17へ臨む。この出口25はダイヤフラム18の中央部をアイドル側開閉部材である開閉バルブ21により接離させることにより開閉される。開閉バルブ21は内側に密閉空間である制御室22を形成し、底部に形成された通路23を介して3方向弁のような図示しない切換部材と接続し、負圧と大気へ接続切換して開閉バルブ21を図の上下方向へ移動させることによりアイドルオリフィス通路20の出口を開閉する。開閉バルブ21を開くとアイドルオリフィス通路20内で液体流動が生じて液柱共振する。この液柱共振は、減衰オリフィス16が対象とするよりも高周波側に発生するアイドル時におけるものであって、これによりアイドル時の入力振動を吸収する。
【0014】
さらに、主液室14に臨む弾性本体部13の一部が主液室14の内圧変動に応じて弾性変形自在の第1横可動膜26をなし、この第1横可動膜26は、外方に設けられた第1密閉室27のパイプ部27aを、例えば、3方向弁のような図示しない切換部材によりエンジンの吸気通路又は大気へ接続することにより、大気開放状態で自由に弾性変形でき、負圧状態では、第1密閉室27内の第1ストッパ28へ密着固定されることにより膜剛性を高くして弾性変形不能もしくは弾性変形しにくくなっている。すなわち、第1横可動膜26は膜剛性可変の部材であり、第1密閉室27及び第1ストッパ28が膜剛性可変手段となり、これら全体で第1内圧制御部29をなす。
【0015】
アイドル時以外で横可動膜26の膜剛性を下げて自由に弾性変形させれば、主液室14の内圧上昇を吸収することにより低動バネ化でき、逆にアイドル時において密閉室27内を負圧にしてストッパ28へ密着固定することにより膜剛性を高くすれば、主液室14からアイドルオリフィス通路20内へ送り込む液体量を増大させて液柱共振のエネルギーを大きくすることができる。
【0016】
主液室14内には、第1の取付部材11と一体化された傘部材19が設けられ、アイドルオリフィス通路20内における液柱共振よりも高周波側の600Hz程度で液柱共振を発生する。なお、4気筒4サイクルエンジンの場合におけるアイドル時及び発進時における周波数は、二次振動を基準にしている。したがって、高次振動を考慮した場合には、エンジンの回転数で定義することが妥当であり、この場合には、アイドル時を500〜1000rpm、発進時を1000〜2000rpmとすることもできる。
【0017】
図3に明らかなように、第1内圧制御部29に隣接して第2横可動膜36、第2密閉室37が設けられ、第2密閉室37内には第2ストッパ38が設けられている。これらは第2内圧制御部39をなし、第1内圧制御部29を構成する第1横可動膜26、第1密閉室27及び第1ストッパ28とそれぞれ同構造であり同様に作動制御され、第1内圧制御部29と同様に機能する。
【0018】
これら第1横可動膜26及び第2横可動膜36の近傍かつそれぞれからほぼ等距離の位置にアイドルオリフィス通路20の入り口24が開口している。アイドルオリフィス通路20はこの入り口24から仕切り部材15の中央に向かってその内部を平面視で弧を描きながら斜め下方に貫通している。
なお、図3中には取付部材11の周壁部を構成する金属部材として第2取付部材12のみを代表的に表示し、他の重なり合う部材は省略してある(以下の図5、6も同様)。
【0019】
次に、本実施例の作用を説明する。図4は共通の周波数を横軸にとり、縦軸方向上段に動バネ定数(K)、下段に位相(°)を示したグラフであり、実線が本実施例、二点鎖線が比較例であり、本実施例から第2内圧制御部39を除いた(第1内圧制御部29のみを設けた)ものである。
【0020】
まず、参考例において、アイドル状態から発進するとき、第1密閉室27を負圧にして第1横可動膜26を第1ストッパ28へ密接させる(以下、この状態を横可動膜についてONと表現する)、と、アイドルオリフィス通路20へ送り込む液量を多くして、液柱共振を発生するので、動バネ定数は発振域の周波数(約30Hz近傍)aの近傍で第1動バネボトムB1が生じ、かつ位相は第1位相ピークP1となる。その後さらに高周波数側の周波数bで第1密閉室27を大気開放して、第1横可動膜26を開放する(以下、この状態を横可動膜についてOFFと表現する)と動バネ定数は高原状態で一定となり、位相は0°近傍に下がって一定となる。
【0021】
一方、本実施例では第1横可動膜26の制御を参考例と一致させるが、第2横可動膜36は周波数aまでOFFとし、周波数aから高周波数側でONにする。その結果、周波数aまでは第2横可動膜36が弾性変形自由に開放されているため、主液室14内の内圧変動を吸収し、参考例よりも若干高い数値で動バネボトムB1を生じるとともに、周波数aで動バネ定数の極大値となり、かつ第1位相ピークP1を参考例よりも低い数値で生じる。
【0022】
周波数aより高周波数側では第2横可動膜36を固定したことにより、アイドルオリフィス通路20へ流入する液量がさらに増大するので、周波数aとbの中間部で2回目のアイドルオリフィス通路20による液柱共振が生じて、第2動バネボトムB2を生じ、かつ周波数b近傍にて参考例とほぼ同じ高さの第2位相ピークP2を生じる。
【0023】
周波数bより高周波数では再び動バネ定数が増大するので、第1横可動膜26及び第2横可動膜36の双方を同時にOFFにして開放する。これにより動バネ定数は高原状態で一定となり、位相は0°近傍に下がって一定となる。
【0024】
このようにすると、周波数b近傍に第2動バネボトムB2を生じさせるので、低動バネとなる周波数域を拡大でき、かつ周波数b近傍にて第2位相ピークP2を生じさせるので、周波数a近傍から周波数cまでの範囲を高位相にでき、その結果、参考例よりも広範囲の周波数域において振動の車体側に対する伝達を効果的に遮断できる。これらの効果は第1横可動膜26及び第2横可動膜36の各作用が連成することによって生じる。
【0025】
図5は第2実施例に係る図3に対応する図であり、この例では、第2横可動膜36に発進オリフィス開閉弁40を一体に取付けてある。第2横可動膜36の作動制御は前実施例と同じく第2密閉室37を設けて内部を負圧又は大気開放に切り換えることにより行う。但し、ソレノイド等の機械的手段などを用いて直接第2横可動膜36を作動させることもできる。
【0026】
図6は図5の6−6線に沿う断面図であり、発進オリフィス開閉弁40は第2横可動膜36と一体化され、第2横可動膜36の弾性変形に応じて仕切り部材15の表面上をその半径方向へ摺動自在になっており、発進オリフィス通路41の入り口42を開閉する。発進オリフィス通路41は仕切り部材15を上下に貫通して入り口42で主液室14と通じ、出口43で副液室17と通じる液体通路であり、その共振周波数を発進時の振動周波数域(略40Hz近傍)に設定してある。
【0027】
発進オリフィス開閉弁40は、第2横可動膜36がOFFの開放状態で仕切り部材15の半径方向内方へ摺動して前進した位置にあり、発進オリフィス通路41の入り口42を閉じている。なお第2横可動膜36が内圧吸収のため弾性変形する程度では入り口42を閉じていることができるように入り口42を広めに覆っている。第2横可動膜36をONにした固定状態では第2横可動膜36が弾性変形することに伴って発進オリフィス開閉弁40も半径方向外方へ摺動して後退し、入り口42を開放するようになっている。発進オリフィス通路41の出口43は副液室17へ連通している。
【0028】
次に、本実施例の作用を説明する。図4において二点鎖線は本実施例を示し、第1横可動膜26はアイドル周波数域から周波数aまでOFFとし、周波数a〜cをON、周波数cから上を再びOFFにする。一方、第2横可動膜36は周波数aまでOFF、周波数dまでON、dから高周波数側でOFFにする。周波数dは周波数cよりも高周波数側である。
【0029】
このようにすると、アイドルオリフィス通路20の液柱共振による第1動バネボトムB1がほぼ前実施例と同じく周波数a近傍で生じるとともに、第1横可動膜26及び第2横可動膜36が同時にONとなる周波数aより高周波数側では、第1横可動膜26を固定したことによる液体流量増大によりオリフィス通路20における液柱共振と、第2横可動膜36を固定することにより発進オリフィス開閉弁40が入り口42を開放することにより発進オリフィス通路41内で生じる液柱共振の連成により、周波数c近傍において第2動バネボトムB2を生じ、周波数cとdの間に第2位相ピークP2を生じる。周波数dより高周波数側では、動バネ定数は高原状態で一定となり、位相は0°近傍に下がって一定となる。
【0030】
第2動バネボトムB2は前実施例のものより動バネ定数がより小さくかつより高周波数側に生じる。また、第2位相ピークP2も、前実施例のものより高位相かつ高周波数側に生じる。したがって、前実施例よりもさらに低動バネ領域を高周波数側へ拡大でき、かつ位相もより高位相にできかつその高位相領域を高周波数側まで拡大できるので、発進時における振動の車体側に対する伝達をさらに効果的に遮断できる。このとき、オリフィス通路20の共振周波数と発進オリフィス通路41の共振周波数を異ならせることにより連成効果をより広い周波数域に拡大できる。
【0031】
図7は第3実施例に係り、図6に対応して示す図である、この例では、前実施例に対して第2内圧制御部39と同様の第3内圧制御部59を追加してある。すなわち第3内圧制御部59は第2内圧制御部39に隣接して設けられ、第3横可動膜56、第3密閉室57が設けられる。第3密閉室57は第2密閉室37と共通のケース51内へ一体に形成され、両室の隔壁54に形成したジェット又は小孔からなる連通部55にて相互に連通する。ケース51のうち第2密閉室37の壁部に設けられた通路54を切り換え手段へ接続することにより、第2密閉室37を負圧又は大気開放すると、第3密閉室57は時間差を形成して負圧又は大気開放されるようになっている。
【0032】
第3横可動膜56には第2発進オリフィス開閉弁50が一体に取付けられており、仕切り部材15に形成された第2発進オリフィス通路の入り口52を開閉する。これら第3横可動膜56、第2発進オリフィス開閉弁50及び第2発進オリフィス通路の構造や機能は第2制御部39と同じである。但し、第2発進オリフィス通路の共振周波数は発進オリフィス通路41よりもより高周波数側に設定してある。
【0033】
このようにすると、図8に概略傾向を示すように、動バネ定数は、オリフィス通路20による第1動バネボトムB1、発進オリフィス通路41による第2動バネボトムB2に加えてさらに高周波数側に第2発進オリフィス通路による第3動バネボトムB3を生じさせることができる。また位相は、同じく第1位相ピークP1及び第2位相ピークP2に加えて第3位相ピークP3をより高周波数側により高位相で生じさせることができる。
【0034】
したがって、さらに広範囲の周波数域において振動の車体側に対する伝達を効果的に遮断できる。しかも第2密閉室37と第3密閉室57に対する負圧又は大気の切り換え手段を共通化できるので、全体のコストを低減できる。
【0035】
なお、本願発明は上記の各実施例に限定されるものではなく、発明の原理内において種々に変形や応用が可能である。例えば、横可動膜の数は2以上の複数であればいくつでもよく、多ければ多いほど効果をより広い周波数域へ拡大できる。また、発進オリフィス開閉弁のあるものとないものの組合せ方も自由にできる。但し、個々に専用の発進オリフィス通路を設けることのできる発進オリフィス開閉弁付の方が設定を容易にできるからより好ましい。さらに、発進オリフィス開閉弁を設ける場合は必ずしもこれを横可動膜へ取付ける必要はなく、ソレノイド等のアクチュエータによって作動する単純な開閉弁とすることができる。但しこの場合は全ての制御部を開閉弁式とするのではなく、複数の制御部の少なくとも1以上を横可動膜とし、内圧吸収効果を維持できる組合せにする。また、エンジンマウント以外の防振装置、例えばサスペンション用等に適用でき、さらには車両用以外の種々な防振用途に適用できる。
【図面の簡単な説明】
【図1】 本願発明に係るエンジンマウントの概略平面図
【図2】 第1実施例に係る図1の2−2線相当部に沿う断面図
【図3】 図2の2−2線に沿う概略断面図
【図4】 第1及び第2実施例の作用を示すグラフ
【図5】 第2実施例に係る図3相当図
【図6】 図5の6−6線相当部に沿う断面図
【図7】 第3実施例に係る図5相当図
【図8】 第3実施例の作用を示すグラフ
【符号の説明】
10:エンジンマウント、15:仕切り部材、20:アイドルオリフィス通路(第1開閉オリフィス通路)、21:開閉バルブ、24:入り口、25:出口、26:第1横可動膜、27:第1密閉室、28:第1ストッパ、29:第1制御部、36:第2横可動膜、37:第2密閉室、38:第3ストッパ、39:第2制御部、40:発進オリフィス開閉弁(開閉部材)、41:発進オリフィス通路(第2開閉オリフィス通路)、50:第2発進オリフィス開閉弁(開閉部材)、52:第2発進オリフィス通路の入り口、56:第3横可動膜、57:第3密閉室、59:第3制御部、56:第3横可動膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid seal vibration isolator for use in an automobile engine mount or the like, and more particularly to an apparatus that exhibits the effect of liquid column resonance by an open / close orifice passage in a wide frequency range.
[0002]
[Prior art]
In an engine mount which is an example of such a liquid seal vibration isolator, a first attachment member attached to the engine on the vibration generating side, a second attachment member attached to the vibration receiving side, and interposed therebetween. An elastic main body member, a main liquid chamber having the elastic main body member as a part of a wall, and a sub liquid chamber partitioned by the main liquid chamber and a partition member and covered with a flexible film member, both of these liquid chambers Is connected by an idle orifice passage that is opened and closed in the idle vibration frequency range, and a lateral movable film for absorbing internal pressure is provided on the peripheral wall surrounding the main liquid chamber, and the control chamber provided surrounding the lateral movable film is suctioned negatively. By switching the connection to pressure or atmosphere, the internal pressure fluctuation in the main liquid chamber is absorbed as an open state that enables free elastic deformation, or flows into the idle orifice passage as a fixed state that restricts free elastic deformation Which increases the body flow for good by liquid column resonance are known. It is also known that an open / close valve is provided in the laterally movable membrane, and the open / close valve is opened / closed separately from the idle orifice passage by moving the open / close valve by elastic deformation of the laterally movable membrane.
[0003]
[Problems to be solved by the invention]
By the way, in the case of the type provided with the above-mentioned laterally movable film, if the fixed state is set at the start following the idle state, the vibration that increases at the start can be effectively cut off. The two-dot chain line in FIG. 4 indicates this, and the dynamic spring constant produces the first dynamic spring bottom B1 in the vicinity of the frequency a in the starting range higher than the idle range, and the phase becomes the high phase by generating the first phase peak P1. However, even in this case, the effect of the liquid column resonance in the idle orifice passage cannot reach a very wide frequency range, and is limited to a frequency b that makes the laterally movable film free again. Therefore, it is desirable to reduce the dynamic spring to a wider frequency range, and to effectively isolate the vibration by setting it to a high phase. The present invention aims to realize such a demand.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 relating to the liquid seal vibration isolator of the present application includes a first attachment member attached to either the vibration generating side or the vibration receiving side, and a second attachment attached to the other side. An attachment member, an elastic main body member interposed therebetween, a main liquid chamber having the elastic main body member as a part of a wall, the main liquid chamber and a partition member, and being covered with a flexible film member In a liquid seal vibration isolator comprising a sub liquid chamber and communicating both the liquid chambers with a first opening / closing orifice passage that is opened and closed in an idle vibration frequency range,
A plurality of laterally movable membranes for absorbing internal pressure are provided on the peripheral wall surrounding the main liquid chamber, each facing the main liquid chamber, and allowing free elastic deformation at a frequency in the starting region higher than the idle region. It is possible to switch between an open state and a fixed state that restricts free elastic deformation, and the state of these laterally movable films can be switched between different frequencies .
[0005]
According to a second aspect of the present invention, in the first aspect of the present invention, an opening / closing valve for a second opening / closing orifice passage provided separately from the first opening / closing orifice passage is provided in any of the lateral movable films. And
[0006]
According to a third aspect of the present invention, in the first aspect of the present invention, the second open / close orifice passage, the open / close valve, and a plurality of laterally movable films provided with the open / close valve are provided.
[0007]
According to a fourth aspect of the present invention, in the first aspect, the laterally movable membrane includes a plurality of adjacent movable membranes surrounded by a common control chamber . The control chamber is divided into laterally movable membranes, and the compartments are connected in series. The internal pressure is made variable through one passage connected to the external switching means provided in the compartment at one end, and the adjacent compartments are connected by a communication passage provided in the compartment wall. It is characterized by that.
[0008]
【The invention's effect】
According to the first aspect of the present invention, a plurality of laterally movable membranes are provided, these are faced in the main liquid chamber, and are switched at frequencies different from each other at a frequency in the starting region higher than the idle region. second dynamic Banebotomu and second phase peak at a higher frequency side in addition to the first dynamic Banebotomu a first phase peak had the Ji live, can extend the range of the low dynamic spring and high phase to the high frequency side, as a result , Can effectively block the transmission of vibrations in a wide range.
[0009]
According to the second aspect of the present invention, since the opening / closing valve of the second opening / closing orifice passage provided separately from the first opening / closing orifice passage is provided in any of the lateral movable membranes, the second opening / closing orifice passage at a different frequency. Can open and close the liquid column resonance in the first opening / closing orifice passage and the liquid column resonance generated at a different frequency by opening the second opening / closing orifice passage. Is possible.
[0010]
According to the invention of claim 3, by providing a plurality of combinations of the second opening / closing orifice passage, its opening / closing valve, and the laterally movable membrane provided with this, the dynamic spring bottom and the phase peak are controlled by controlling each at a different frequency. Since a plurality of vibrations can be generated on the high frequency side, the range of the low dynamic spring and the high phase can be further expanded to the high frequency side, and vibration can be cut off in a wider frequency range.
[0011]
According to the fourth aspect of the present invention, the compartments that individually divide the plurality of laterally movable films are arranged in series in the common control chamber, and the adjacent compartments are connected by the communication path provided on the compartment wall. If the internal air pressure is made variable by an external switching means through one passage provided in the compartment of the section, the effect of the air pressure switching is transmitted to each compartment with a time difference through the communication passage. Can be switched with a time difference. Therefore, even if a plurality of laterally movable films are provided, the means for operating them can be made common, so that the number of parts can be reduced and the cost can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 is a schematic plan view of a dual control mount in the first embodiment, FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1, and FIG. 3 is a schematic cross-sectional view taken along line 3-3 in FIG. This dual control mount 10 has an elastic main body portion such as rubber between a first mounting member 11 attached to an engine (not shown) which is a vibration source and a second mounting member 12 attached to a vehicle body (not shown) which is a vibration receiving side. A main liquid chamber 14 is provided which is connected at 13 and has the elastic main body 13 as a part of the wall. The main liquid chamber 14 is always in communication with the sub liquid chamber 17 through an attenuation orifice 16 provided in the partition member 15. The auxiliary liquid chamber 17 is formed between the partition member 15 and the diaphragm 18. A known incompressible liquid is enclosed in the main liquid chamber 14 and the sub liquid chamber 17. The damping orifice 16 dampens vibration by generating liquid column resonance due to vibration in a relatively low frequency range (about 10 Hz) as in general traveling.
[0013]
The partition member 15 is provided with an idle orifice passage 20, the inlet 24 thereof opens to the main liquid chamber 14 (FIG. 3), and the outlet 25 faces the sub liquid chamber 17. The outlet 25 is opened and closed by bringing the central portion of the diaphragm 18 into contact with and separating from the opening / closing valve 21 which is an idle side opening / closing member. The on-off valve 21 forms a control chamber 22 which is a sealed space inside, and is connected to a switching member (not shown) such as a three-way valve through a passage 23 formed at the bottom, and is switched to connect to negative pressure and atmosphere. The outlet of the idle orifice passage 20 is opened and closed by moving the open / close valve 21 in the vertical direction in the figure. When the on-off valve 21 is opened, a liquid flow is generated in the idle orifice passage 20 and the liquid column resonates. This liquid column resonance is during idling that occurs on the higher frequency side than the target of the damping orifice 16, and thereby absorbs input vibration during idling.
[0014]
Further, a part of the elastic main body 13 facing the main liquid chamber 14 forms a first laterally movable film 26 that can be elastically deformed in accordance with fluctuations in the internal pressure of the main liquid chamber 14. By connecting the pipe portion 27a of the first sealed chamber 27 provided to the engine to the intake passage or the atmosphere of the engine by a switching member (not shown) such as a three-way valve, it can be elastically deformed freely in an open state, In the negative pressure state, the film rigidity is increased by being tightly fixed to the first stopper 28 in the first sealed chamber 27 so that the film cannot be elastically deformed or hardly elastically deformed. That is, the first laterally movable membrane 26 is a member having variable membrane stiffness, and the first sealed chamber 27 and the first stopper 28 serve as membrane stiffness variable means, and the first internal pressure controller 29 is formed as a whole.
[0015]
If the membrane rigidity of the laterally movable membrane 26 is lowered and freely elastically deformed at times other than idling, the spring can be lowered by absorbing the increase in the internal pressure of the main liquid chamber 14, and conversely, the inside of the sealed chamber 27 can be maintained in idling. If the membrane rigidity is increased by making a negative pressure and tightly fixing to the stopper 28, the amount of liquid fed from the main liquid chamber 14 into the idle orifice passage 20 can be increased and the energy of liquid column resonance can be increased.
[0016]
An umbrella member 19 integrated with the first mounting member 11 is provided in the main liquid chamber 14, and generates a liquid column resonance at about 600 Hz on the high frequency side of the liquid column resonance in the idle orifice passage 20 . In the case of a four-cylinder four-cycle engine, the frequency at the time of idling and starting is based on the secondary vibration. Therefore, when high-order vibration is taken into consideration, it is appropriate to define it by the engine speed. In this case, the idling time can be set to 500 to 1000 rpm, and the starting time can be set to 1000 to 2000 rpm.
[0017]
As apparent from FIG. 3, a second laterally movable film 36 and a second sealed chamber 37 are provided adjacent to the first internal pressure control unit 29, and a second stopper 38 is provided in the second sealed chamber 37. Yes. These form the second internal pressure control unit 39, and the first lateral movable film 26, the first sealed chamber 27, and the first stopper 28 constituting the first internal pressure control unit 29 have the same structure and are similarly operated and controlled. It functions similarly to the 1 internal pressure control unit 29.
[0018]
The inlet 24 of the idle orifice passage 20 is opened in the vicinity of the first lateral movable film 26 and the second lateral movable film 36 and at a substantially equal distance from each. The idle orifice passage 20 penetrates diagonally downward while drawing an arc in plan view from the entrance 24 toward the center of the partition member 15.
In FIG. 3, only the second mounting member 12 is representatively shown as a metal member constituting the peripheral wall portion of the mounting member 11, and other overlapping members are omitted (the same applies to FIGS. 5 and 6 below). ).
[0019]
Next, the operation of this embodiment will be described. FIG. 4 is a graph in which the horizontal axis is the common frequency, the dynamic spring constant (K) is shown in the upper part of the vertical axis, and the phase (°) is shown in the lower part. The solid line is the present example, and the two-dot chain line is the comparative example. In this embodiment, the second internal pressure control unit 39 is excluded (only the first internal pressure control unit 29 is provided).
[0020]
First, in the reference example, when starting from the idle state, the first sealed chamber 27 is set to a negative pressure to bring the first laterally movable film 26 into close contact with the first stopper 28 (hereinafter, this state is expressed as ON for the laterally movable film). The liquid spring resonance is generated by increasing the amount of liquid fed into the idle orifice passage 20, so that the first dynamic spring bottom B1 is generated in the vicinity of the oscillation region frequency (approximately 30 Hz) a. The phase is the first phase peak P1. Thereafter, when the first sealed chamber 27 is opened to the atmosphere at the frequency b on the higher frequency side and the first laterally movable film 26 is opened (hereinafter, this state is expressed as OFF for the laterally movable film), the dynamic spring constant becomes the plateau. It becomes constant in the state, and the phase drops to around 0 ° and becomes constant.
[0021]
On the other hand, in the present embodiment, the control of the first lateral movable film 26 is matched with the reference example, but the second lateral movable film 36 is turned off to the frequency a and turned on from the frequency a to the higher frequency side. As a result, since the second laterally movable film 36 is open to elastic deformation freely up to the frequency a, the internal pressure fluctuation in the main liquid chamber 14 is absorbed, and the dynamic spring bottom B1 is generated at a slightly higher value than the reference example. The dynamic spring constant becomes the maximum value at the frequency a, and the first phase peak P1 is generated with a numerical value lower than that of the reference example.
[0022]
Since the second laterally movable film 36 is fixed on the higher frequency side than the frequency a, the amount of liquid flowing into the idle orifice passage 20 is further increased. Therefore, the second idle orifice passage 20 is formed at the intermediate portion between the frequencies a and b. Liquid column resonance occurs, the second dynamic spring bottom B2 is generated, and the second phase peak P2 having the same height as the reference example is generated in the vicinity of the frequency b.
[0023]
Since the dynamic spring constant increases again at a frequency higher than the frequency b, both the first lateral movable film 26 and the second lateral movable film 36 are simultaneously turned off and opened. As a result, the dynamic spring constant becomes constant in the plateau state, and the phase decreases to near 0 ° and becomes constant.
[0024]
In this way, since the second dynamic spring bottom B2 is generated in the vicinity of the frequency b, the frequency range that becomes the low dynamic spring can be expanded, and the second phase peak P2 is generated in the vicinity of the frequency b. The range up to the frequency c can be set to a high phase, and as a result, transmission of vibrations to the vehicle body side can be effectively cut off in a wider frequency range than the reference example. These effects are caused by the combined action of the first lateral movable film 26 and the second lateral movable film 36.
[0025]
FIG. 5 is a view corresponding to FIG. 3 according to the second embodiment. In this example, the starting orifice on-off valve 40 is integrally attached to the second lateral movable membrane 36. The operation control of the second lateral movable film 36 is performed by providing the second sealed chamber 37 as in the previous embodiment and switching the inside to a negative pressure or open to the atmosphere. However, the second laterally movable film 36 can also be operated directly using mechanical means such as a solenoid.
[0026]
6 is a cross-sectional view taken along line 6-6 in FIG. 5. The starting orifice on / off valve 40 is integrated with the second laterally movable film 36, and the partition member 15 of the partitioning member 15 is changed according to the elastic deformation of the second laterally movable film 36. It is slidable in the radial direction on the surface, and opens and closes the entrance 42 of the starting orifice passage 41. The starting orifice passage 41 is a liquid passage that vertically penetrates the partition member 15 and communicates with the main liquid chamber 14 at the inlet 42 and communicates with the sub liquid chamber 17 at the outlet 43. 40 Hz vicinity).
[0027]
The starting orifice opening / closing valve 40 is in a position advanced by sliding inward in the radial direction of the partition member 15 in the open state in which the second lateral movable film 36 is OFF, and closes the inlet 42 of the starting orifice passage 41. In addition, the entrance 42 is broadly covered so that the entrance 42 can be closed to the extent that the second laterally movable film 36 is elastically deformed to absorb internal pressure. In the fixed state in which the second lateral movable film 36 is turned on, the starting orifice on / off valve 40 slides backward in the radial direction as the second lateral movable film 36 is elastically deformed to open the inlet 42. It is like that. The outlet 43 of the starting orifice passage 41 communicates with the auxiliary liquid chamber 17.
[0028]
Next, the operation of this embodiment will be described. In FIG. 4, the alternate long and two short dashes line shows this embodiment, and the first laterally movable film 26 is turned off from the idle frequency region to the frequency a, the frequencies a to c are turned on, and the frequency c is turned off again. On the other hand, the second lateral movable film 36 is turned off to the frequency a, turned on to the frequency d, and turned off on the high frequency side from d. The frequency d is higher than the frequency c.
[0029]
In this way, the first dynamic spring bottom B1 due to the liquid column resonance of the idle orifice passage 20 is generated in the vicinity of the frequency a as in the previous embodiment, and the first lateral movable film 26 and the second lateral movable film 36 are simultaneously turned on. On the higher frequency side than the frequency a, the liquid orifice resonance in the orifice passage 20 due to the increase in the liquid flow rate due to the fixing of the first laterally movable film 26 and the start orifice opening / closing valve 40 by fixing the second laterally movable film 36. By coupling the liquid column resonance generated in the starting orifice passage 41 by opening the inlet 42, a second dynamic spring bottom B2 is generated in the vicinity of the frequency c, and a second phase peak P2 is generated between the frequencies c and d. On the higher frequency side than the frequency d, the dynamic spring constant is constant in the plateau state, and the phase is reduced to near 0 ° and becomes constant.
[0030]
The second dynamic spring bottom B2 has a smaller dynamic spring constant than that of the previous embodiment and occurs on the higher frequency side. The second phase peak P2 also occurs on the higher phase and higher frequency side than in the previous embodiment. Therefore, the low dynamic spring region can be further expanded to the high frequency side than the previous embodiment, the phase can be increased to the higher phase, and the high phase region can be expanded to the high frequency side. Transmission can be blocked more effectively. At this time, the coupling effect can be expanded to a wider frequency range by making the resonance frequency of the orifice passage 20 different from the resonance frequency of the starting orifice passage 41.
[0031]
FIG. 7 relates to the third embodiment and is a view corresponding to FIG. 6. In this example, a third internal pressure control unit 59 similar to the second internal pressure control unit 39 is added to the previous embodiment. is there. That is, the third internal pressure control unit 59 is provided adjacent to the second internal pressure control unit 39, and the third lateral movable film 56 and the third sealed chamber 57 are provided. The third sealed chamber 57 is integrally formed in the case 51 shared with the second sealed chamber 37, and communicates with each other through a communication portion 55 formed of a jet or a small hole formed in the partition wall 54 of both chambers. By connecting the passage 54 provided in the wall portion of the second sealed chamber 37 in the case 51 to the switching means, when the second sealed chamber 37 is opened to the negative pressure or the atmosphere, the third sealed chamber 57 forms a time difference. It is designed to be exposed to negative pressure or the atmosphere.
[0032]
A second starting orifice opening / closing valve 50 is integrally attached to the third laterally movable film 56, and opens and closes the inlet 52 of the second starting orifice passage formed in the partition member 15. The structures and functions of the third laterally movable film 56, the second starting orifice opening / closing valve 50, and the second starting orifice passage are the same as those of the second control unit 39. However, the resonance frequency of the second starting orifice passage is set higher than that of the starting orifice passage 41.
[0033]
In this case, as shown in FIG. 8, the dynamic spring constant is further increased to the higher frequency side in addition to the first dynamic spring bottom B 1 by the orifice passage 20 and the second dynamic spring bottom B 2 by the starting orifice passage 41. A third dynamic spring bottom B3 can be generated by the starting orifice passage. Similarly, in addition to the first phase peak P1 and the second phase peak P2, the phase can cause the third phase peak P3 to occur at a higher phase on the higher frequency side.
[0034]
Therefore, transmission of vibration to the vehicle body side can be effectively cut off in a wider frequency range. In addition, since the negative pressure or air switching means for the second sealed chamber 37 and the third sealed chamber 57 can be shared, the overall cost can be reduced.
[0035]
The present invention is not limited to the above-described embodiments, and various modifications and applications can be made within the principle of the invention. For example, the number of the lateral movable films may be any number as long as it is a plurality of 2 or more, and the effect can be expanded to a wider frequency range as the number is increased. Moreover, the combination of the one with and without the starting orifice opening / closing valve can be freely performed. However, it is more preferable to use a start orifice opening / closing valve in which a dedicated start orifice passage can be provided individually because the setting can be facilitated. Further, when the starting orifice opening / closing valve is provided, it is not always necessary to attach the starting orifice opening / closing valve to the lateral movable membrane, and a simple opening / closing valve operated by an actuator such as a solenoid can be obtained. However, in this case, not all the control units are open / close valve type, but at least one or more of the plurality of control units is a laterally movable film so that the internal pressure absorbing effect can be maintained. Further, the present invention can be applied to a vibration isolator other than the engine mount, for example, for a suspension, etc., and can be applied to various vibration isolating uses other than for a vehicle.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an engine mount according to the present invention. FIG. 2 is a cross-sectional view taken along the line 2-2 in FIG. 1 according to a first embodiment. FIG. 4 is a graph showing the operation of the first and second embodiments. FIG. 5 is a diagram corresponding to FIG. 3 according to the second embodiment. FIG. 6 is a sectional view taken along the line 6-6 in FIG. FIG. 7 is a diagram corresponding to FIG. 5 according to the third embodiment. FIG. 8 is a graph showing the operation of the third embodiment.
10: engine mount, 15: partition member, 20: idle orifice passage (first opening / closing orifice passage), 21: opening / closing valve, 24: inlet, 25: outlet, 26: first laterally movable membrane, 27: first sealed chamber 28: 1st stopper, 29: 1st control part, 36: 2nd lateral movable film | membrane, 37: 2nd sealed chamber, 38: 3rd stopper, 39: 2nd control part, 40: Starting orifice on-off valve (opening / closing Members), 41: starting orifice passage (second opening / closing orifice passage), 50: second starting orifice opening / closing valve (opening / closing member), 52: entrance of the second starting orifice passage, 56: third laterally movable membrane, 57: first 3 sealed chambers, 59: third control unit, 56: third laterally movable membrane

Claims (4)

振動発生側又は振動受け側のいずれか一方側へ取付けられる第1取付部材と、他方側へ取付けられる第2取付部材と、これらの間に介在される弾性本体部材と、この弾性本体部材を壁の一部とする主液室と、この主液室と仕切り部材で仕切られ、可撓膜部材で覆われる副液室とを備え、これら両液室をアイドル振動周波数域で開閉される第1開閉オリフィス通路で連絡した液封防振装置において、
前記主液室を囲む周囲壁に内圧吸収用の横可動膜を複数設け、それぞれを前記主液室内に臨ませ、かつアイドル域より高い発進域の周波数にて、自由な弾性変形を可能にする開放状態と自由な弾性変形を規制する固定状態とに切り換え可能にするとともに、これら横可動膜の状態を相互間で異なる周波数にて切り換えるようにしたことを特徴とする液封防振装置。
A first mounting member that is mounted on either the vibration generation side or the vibration receiving side, a second mounting member that is mounted on the other side, an elastic main body member that is interposed therebetween, and the elastic main body member that is attached to the wall A main liquid chamber that is a part of the first liquid chamber, and a sub liquid chamber that is partitioned by the main liquid chamber and a partition member and is covered with a flexible membrane member. In the liquid seal vibration isolator connected through the opening and closing orifice passage,
A plurality of laterally movable membranes for absorbing internal pressure are provided on the peripheral wall surrounding the main liquid chamber, each facing the main liquid chamber, and allowing free elastic deformation at a frequency in the starting region higher than the idle region. A liquid-sealed vibration isolating device characterized in that it can be switched between an open state and a fixed state that restricts free elastic deformation, and the state of these laterally movable membranes is switched at different frequencies .
前記横可動膜のうちのいずれかに、前記第1開閉オリフィス通路と別に設けられた第2開閉オリフィス通路の開閉弁を設けたことを特徴とする請求項1に記載した液封防振装置。 2. The liquid seal vibration isolator according to claim 1, wherein an opening / closing valve of a second opening / closing orifice passage provided separately from the first opening / closing orifice passage is provided in any of the lateral movable films. 前記第2開閉オリフィス通路及び前記開閉弁並びにこの開閉弁を設けた横可動膜をそれぞれ複数設けたことを特徴とする請求項2に記載した液封防振装置。 3. The liquid seal vibration isolator according to claim 2, wherein a plurality of the second open / close orifice passage, the open / close valve, and a plurality of laterally movable films provided with the open / close valve are provided. 前記横可動膜は、隣接して設けられ共通の制御室で囲まれる複数を備え、この制御室内を横可動膜毎に区画して各区画室を直列に配置するとともに、隣り合う区画室を区画壁に設けた連通路で接続し、かつ一端部の区画室に設けた外部の切り換え手段に接続する一つの通路を通して内部気圧を可変にするようにしたことを特徴とする請求項1に記載した液封防振装置。The laterally movable membrane includes a plurality of adjacent movable membranes that are surrounded by a common control chamber. The laterally movable membrane is divided into laterally movable membranes, and the compartments are arranged in series. 2. The liquid according to claim 1, wherein the internal air pressure is made variable through one passage connected to the external switching means provided in the compartment at one end and connected to the communication passage provided at the end. Seal vibration isolator.
JP2001049041A 2001-02-23 2001-02-23 Liquid seal vibration isolator Expired - Fee Related JP4540864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049041A JP4540864B2 (en) 2001-02-23 2001-02-23 Liquid seal vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049041A JP4540864B2 (en) 2001-02-23 2001-02-23 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2002250391A JP2002250391A (en) 2002-09-06
JP4540864B2 true JP4540864B2 (en) 2010-09-08

Family

ID=18910205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049041A Expired - Fee Related JP4540864B2 (en) 2001-02-23 2001-02-23 Liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP4540864B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571573A (en) * 1991-09-09 1993-03-23 Bridgestone Corp Vibration isolating device
JPH0914335A (en) * 1994-06-28 1997-01-14 Yamashita Gomme Kk Liquid filling type vibration isolation rubber device
JPH09242810A (en) * 1996-03-11 1997-09-16 Toyo Tire & Rubber Co Ltd Liquid sealed type vibration-control mount
JPH1038017A (en) * 1996-07-26 1998-02-13 Tokai Rubber Ind Ltd Fluid seal type mount device
JPH10281214A (en) * 1997-04-08 1998-10-23 Yamashita Rubber Kk Duplex liquid-sealed control mount
JP2002005224A (en) * 2000-06-16 2002-01-09 Tokai Rubber Ind Ltd Active vibration control equipment of fluid filled-system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571573A (en) * 1991-09-09 1993-03-23 Bridgestone Corp Vibration isolating device
JPH0914335A (en) * 1994-06-28 1997-01-14 Yamashita Gomme Kk Liquid filling type vibration isolation rubber device
JPH09242810A (en) * 1996-03-11 1997-09-16 Toyo Tire & Rubber Co Ltd Liquid sealed type vibration-control mount
JPH1038017A (en) * 1996-07-26 1998-02-13 Tokai Rubber Ind Ltd Fluid seal type mount device
JPH10281214A (en) * 1997-04-08 1998-10-23 Yamashita Rubber Kk Duplex liquid-sealed control mount
JP2002005224A (en) * 2000-06-16 2002-01-09 Tokai Rubber Ind Ltd Active vibration control equipment of fluid filled-system

Also Published As

Publication number Publication date
JP2002250391A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP2843088B2 (en) Fluid-filled mounting device
CN105531499B (en) Isolation mounting
KR101288997B1 (en) Switching engine mount apparatus
KR20160059225A (en) Active engine mount for vehicle
JP2006258184A (en) Fluid sealed type vibration damper
US20080054152A1 (en) Series-type engine mount and method of manufacturing series-type engine mount
KR20130003751A (en) Switching engine mount apparatus
JPH04302728A (en) Liquid sealed vibration isolation device
JP4921341B2 (en) Liquid-filled vibration isolator
JP4540864B2 (en) Liquid seal vibration isolator
JP4579962B2 (en) Liquid-filled vibration isolator
JP2944470B2 (en) Liquid sealing rubber device
EP1036952B1 (en) Hydraulic vibration isolator
JP4456249B2 (en) Power unit support device
JP4303878B2 (en) Power unit support device
JP4303880B2 (en) Power unit support device
JP4210851B2 (en) Fluid-filled engine mount for vehicles
JP2004332884A (en) Vibration isolation device
JP3692919B2 (en) Liquid filled vibration isolator
JP3570105B2 (en) Liquid filled type vibration damping device
JP3586810B2 (en) Liquid filled type vibration damping device
KR20090131165A (en) Hydraulic active engine mounting apparatus
JP5468513B2 (en) Liquid-filled vibration isolator
JPH04272532A (en) Liquid-sealed vibrationproof device
JP2002070931A (en) Liquid-sealed vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees