JP4455352B2 - Manufacturing method of substrate for electronic device - Google Patents

Manufacturing method of substrate for electronic device Download PDF

Info

Publication number
JP4455352B2
JP4455352B2 JP2005015332A JP2005015332A JP4455352B2 JP 4455352 B2 JP4455352 B2 JP 4455352B2 JP 2005015332 A JP2005015332 A JP 2005015332A JP 2005015332 A JP2005015332 A JP 2005015332A JP 4455352 B2 JP4455352 B2 JP 4455352B2
Authority
JP
Japan
Prior art keywords
substrate
hole
thin film
metal thin
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005015332A
Other languages
Japanese (ja)
Other versions
JP2006203112A (en
Inventor
喜一 土井
喜代志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Kagaku Kogyo Co Ltd
Original Assignee
Tateyama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Kagaku Kogyo Co Ltd filed Critical Tateyama Kagaku Kogyo Co Ltd
Priority to JP2005015332A priority Critical patent/JP4455352B2/en
Publication of JP2006203112A publication Critical patent/JP2006203112A/en
Application granted granted Critical
Publication of JP4455352B2 publication Critical patent/JP4455352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、半導体加速度センサや複数のICチップ、その他の電子部品を搭載したモジュール等の電子素子用基板製造方法に関する。 This invention relates to a semiconductor acceleration sensor or a plurality of IC chips, a method of manufacturing a substrate for an electronic device, such as other modules with electronic components.

従来、例えば圧力センサや加速度センサ等のセンサ素子を作る場合、センサ素子の基板としてシリコンと安定に接合するガラス基板が用いられる。このセンサ素子から信号を取り出すためには、センサ内部から外部への電気配線が必要となる。この配線方法として、特許文献1に示すように、基板の厚み方向に配線を設けた構造の電子素子用基板があった。この電子素子用基板は、ガラス板等の絶縁性の基板に、所定の電極形状が形成されたシリコン等の半導体薄板が積層され、前記基板の前記半導体薄板の積層面とは反対側から、前記半導体薄板に達する複数の透孔を前記基板に形成したものである。そして、前記基板の裏面側に、前記透孔内及び前記半導体薄板に接する裏面電極を、金属薄膜等により形成したものである。この電子素子用基板の製造方法は、前記半導体薄板の積層面とは反対側から前記基板の厚み方向に前記半導体薄板が露出するようにサンドブラスト等で複数の透孔を形成し、この後前記透孔内及び前記露出した半導体薄板に接する裏面電極を、アルミニウムの金属薄膜等で形成するものである。   Conventionally, when making a sensor element such as a pressure sensor or an acceleration sensor, a glass substrate that is stably bonded to silicon is used as the sensor element substrate. In order to extract a signal from the sensor element, electrical wiring from the inside of the sensor to the outside is required. As this wiring method, as shown in Patent Document 1, there is an electronic element substrate having a structure in which wiring is provided in the thickness direction of the substrate. The electronic element substrate is formed by laminating a semiconductor thin plate such as silicon having a predetermined electrode shape on an insulating substrate such as a glass plate, and from the side opposite to the laminated surface of the semiconductor thin plate of the substrate, A plurality of through holes reaching the semiconductor thin plate are formed in the substrate. And the back surface electrode which touches the inside of the said through-hole and the said semiconductor thin plate is formed in the back surface side of the said board | substrate with the metal thin film. In this method for manufacturing an electronic device substrate, a plurality of through holes are formed by sandblasting or the like so that the semiconductor thin plate is exposed in the thickness direction of the substrate from the opposite side of the laminated surface of the semiconductor thin plates, and then the transparent substrate is formed. The back electrode in contact with the exposed semiconductor thin plate in the hole is formed of an aluminum metal thin film or the like.

また、特許文献2に示すように、ガラス製の絶縁基板の表面に、電極や配線等の導体パターンが形成され、この導体パターンに接続した引出用電極を表面に備え、絶縁基板の表面にシリコンによるセンサ本体が接合されたものも提案されている。
特開2003−152162号公報 特開2004−309306号公報
Moreover, as shown in Patent Document 2, a conductor pattern such as an electrode or wiring is formed on the surface of a glass insulating substrate, and a lead electrode connected to the conductor pattern is provided on the surface, and silicon is formed on the surface of the insulating substrate. Also proposed is a sensor body joined by the above.
JP 2003-152162 A JP 2004-309306 A

上記従来の技術の前者の場合、ガラス基板と透孔の境界部で金属薄膜に亀裂が生じる場合があり、接続不良等を起こすことがあり、電気的接続の信頼性のより高いものが求められていた。また、上記従来の技術の後者の場合、ガラス基板の表面に引き出し電極が形成されるため、気密性が要求される電子素子においては、シリコンの本体との接合部の隙間を埋める必要があり、製造工程が複雑になる等の問題があった。   In the former case of the above prior art, the metal thin film may be cracked at the boundary between the glass substrate and the through-hole, which may cause poor connection and the like, and a higher electrical connection reliability is required. It was. Further, in the latter case of the above conventional technique, since the lead electrode is formed on the surface of the glass substrate, in an electronic element that requires airtightness, it is necessary to fill the gap between the joint portion with the silicon body, There were problems such as complicated manufacturing processes.

この発明は、上記従来の技術の問題点に鑑みて成されたもので、簡単な工程で基板の厚み方向の導電性を得ることができ、電気的信頼性が高い電子素子用基板製造方法を提供することを目的とする。 The present invention, said been made in view of the problems of the prior art, it is possible to obtain a conductive in the thickness direction of the substrate by a simple process, electrical reliability high manufacturing method of an electronic device substrate The purpose is to provide.

この発明は、絶縁性の基板の一方の側の面の所定位置に、サンドブラストにより底部が細径に形成された有底の穴を形成し、前記穴が形成された側の前記基板面及び前記穴内面に金属薄膜を形成し、この後、前記基板の前記穴が形成された側とは反対側の面から前記基板面にサンドブラストにより、前記金属薄膜が露出する程度に穴を形成して、前記基板に略鼓状の透孔を形成し、前記透孔の細径部で前記金属薄膜により前記透孔が仕切られ、前記基板両面の前記穴の開口部以外を保護膜で被覆し、前記透孔内を銅等のメッキ金属により充填し、この後、前記保護膜を除去する電子素子用基板の製造方法である。   According to the present invention, a bottomed hole having a bottom having a small diameter is formed by sandblasting at a predetermined position on a surface on one side of an insulating substrate, and the substrate surface on the side where the hole is formed and Forming a metal thin film on the inner surface of the hole, and then forming a hole to the extent that the metal thin film is exposed by sandblasting from the surface opposite to the side of the substrate on which the hole is formed; A substantially drum-shaped through-hole is formed in the substrate, the through-hole is partitioned by the metal thin film at a small-diameter portion of the through-hole, and other than the opening portions of the hole on both surfaces of the substrate are covered with a protective film, In this method of manufacturing an electronic device substrate, the inside of a through hole is filled with a plating metal such as copper, and then the protective film is removed.

前記メッキ金属は、前記基板に形成された前記透孔内の前記金属薄膜の両側から、前記透孔内にメッキを成長させるものである。   The plating metal grows plating in the through hole from both sides of the metal thin film in the through hole formed in the substrate.

また前記保護膜の除去に際して、前記金属薄膜を所定形状パターン形状に残して、前記基板表面の導体パターンを形成するものである。   In removing the protective film, the metal thin film is left in a predetermined pattern shape to form a conductor pattern on the substrate surface.

この発明は、基板の表裏の電気的導通を確実に図ることができるとともに、メッキ金属により形成した導体が略鼓状の透孔内に充填され、抜けることがなく電気的信頼性も高い。また、サンドブラストにより透孔を形成するため、基板の材料を選ばず、適用範囲が広く、パターンの変更等の設計変更に対しても柔軟に対応することができるものである。さらに、表面実装可能な基板を容易に提供することができる。これにより、電子素子の小型化及び実装密度の向上に大きく寄与する。   According to the present invention, electrical conduction between the front and back sides of the substrate can be ensured, and the conductor formed of the plated metal is filled in the substantially drum-shaped through-hole, so that it does not come out and has high electrical reliability. In addition, since the through holes are formed by sandblasting, the material of the substrate is not selected, the application range is wide, and it is possible to flexibly cope with design changes such as pattern changes. Furthermore, it is possible to easily provide a surface mountable substrate. This greatly contributes to downsizing of electronic devices and improvement of mounting density.

以下、この発明の一実施の形態の電子素子用基板について、図1〜図3を基にして説明する。この実施形態の電子素子用基板10は、パイレックス(登録商標)ガラスや線膨張率をシリコンに近づけた調整ガラスであるガラス板等の絶縁性基板11の所定の電極引き出し位置に、絶縁性基板11の厚み方向に形成された透孔12が形成されている。この透孔12は鼓状に形成され、鼓状の細径部の一方の側の内表面には、円錐台状に金属薄膜14が設けられている。この金属薄膜14は、Cr、Ni、Au等の金属を、蒸着やスパッタリング等の真空薄膜形成技術により設けたものである。さらに、透孔12の内側は、円錐台状の金属薄膜14の内側、及び透孔12の反対側の円錐台状部分が、各々銅メッキ16により埋められている。そして、透孔12の金属薄膜14及び銅メッキ16は、絶縁性基板11の表面に形成された金属薄膜14による電極や配線等の導体パターン18に繋がっている。   Hereinafter, an electronic device substrate according to an embodiment of the present invention will be described with reference to FIGS. The substrate 10 for an electronic element of this embodiment has an insulating substrate 11 at a predetermined electrode drawing position of the insulating substrate 11 such as a Pyrex (registered trademark) glass or a glass plate that is an adjustment glass whose linear expansion coefficient is close to that of silicon. A through-hole 12 formed in the thickness direction is formed. The through-hole 12 is formed in a drum shape, and a metal thin film 14 is provided in a truncated cone shape on the inner surface on one side of the small diameter portion of the drum shape. The metal thin film 14 is made of a metal such as Cr, Ni, Au, etc., by a vacuum thin film forming technique such as vapor deposition or sputtering. Further, the inside of the through hole 12 is filled with copper plating 16 in the inside of the truncated conical metal thin film 14 and the truncated cone portion on the opposite side of the through hole 12. The metal thin film 14 and the copper plating 16 in the through hole 12 are connected to a conductor pattern 18 such as an electrode or a wiring formed by the metal thin film 14 formed on the surface of the insulating substrate 11.

この実施形態の電子素子用基板10の製造方法は、先ず図2(a)に示すように、適宜の厚さのガラス板である絶縁性基板11に、図2(b)に示すように、サンドブラストにより透孔12用の円錐台状の穴12aを形成する。穴12aは、絶縁性基板11を貫通しないように、ほぼ中央部で止める。この後、図2(c)に示すように、絶縁性基板11の穴12aを形成した側の面及び穴12aの内面に、蒸着やスパッタリングにより、Cr、Ni、Au等による金属薄膜14を設ける。そして、図2(d)に示すように、絶縁性基板11の金属薄膜14の表面側に感光性の耐メッキ性保護膜20を塗布する。   As shown in FIG. 2 (a), the manufacturing method of the electronic device substrate 10 of this embodiment is as follows. First, as shown in FIG. 2 (b), an insulating substrate 11 which is a glass plate having an appropriate thickness is used. A frustoconical hole 12a for the through hole 12 is formed by sandblasting. The hole 12a is stopped substantially at the center so as not to penetrate the insulating substrate 11. Thereafter, as shown in FIG. 2C, a metal thin film 14 made of Cr, Ni, Au or the like is provided on the surface of the insulating substrate 11 on the side where the holes 12a are formed and the inner surface of the holes 12a by vapor deposition or sputtering. . Then, as shown in FIG. 2D, a photosensitive plating-resistant protective film 20 is applied to the surface side of the metal thin film 14 of the insulating substrate 11.

次に、図2(e)に示すように、絶縁性基板11の反対側の面に、穴12aに対応した位置に、サンドブラストにより透孔12用の円錐台状の穴12bを形成する。穴12bも、穴12aとほぼ同様の形状である。穴12bの底部は、穴12aの底部の金属薄膜14に届くように形成し、穴12bには金属薄膜14が露出する。そして、絶縁性基板11の穴12bを形成した側にも、全面に耐メッキ性保護膜20を塗布する。   Next, as shown in FIG. 2 (e), a truncated cone-shaped hole 12 b for the through hole 12 is formed by sandblasting at a position corresponding to the hole 12 a on the opposite surface of the insulating substrate 11. The hole 12b has substantially the same shape as the hole 12a. The bottom of the hole 12b is formed so as to reach the metal thin film 14 at the bottom of the hole 12a, and the metal thin film 14 is exposed in the hole 12b. A plating-resistant protective film 20 is applied to the entire surface of the insulating substrate 11 on the side where the holes 12b are formed.

次に、図3(a)に示すように、図示しないフォトマスクを施して、透孔12が形成された箇所を紫外線により露光し、現像して露光した部分の耐メッキ性保護膜20を除去する。露光は、穴12a側では穴12aの開口部の径とほぼ等しいか僅かに大きい径に露光し、穴12bでは、その開口部よりも大きな径に露光して、各々耐メッキ性保護膜20を除去するようにする。そして、図3(b)に示すように、透孔12の穴12a,12bを銅メッキ16により埋める。このとき、金属薄膜14を負極側に接続し、金属薄膜14をメッキベースとして銅メッキ16を成長させる。透孔12の穴12b側も、細径部で露出した金属薄膜14がベースとなって銅メッキ16が成長し、穴12bを埋める。   Next, as shown in FIG. 3 (a), a photomask (not shown) is applied, the portion where the through holes 12 are formed is exposed with ultraviolet rays, developed, and the exposed portion of the plating-resistant protective film 20 is removed. To do. For the exposure, the hole 12a is exposed to a diameter that is approximately equal to or slightly larger than the diameter of the opening of the hole 12a, and the hole 12b is exposed to a diameter that is larger than the opening. Try to remove it. Then, as shown in FIG. 3 (b), the holes 12 a and 12 b of the through hole 12 are filled with copper plating 16. At this time, the metal thin film 14 is connected to the negative electrode side, and the copper plating 16 is grown using the metal thin film 14 as a plating base. Also on the hole 12b side of the through hole 12, the copper thin film 16 grows based on the metal thin film 14 exposed at the small diameter portion, and fills the hole 12b.

次に、耐メッキ性保護膜20に再び紫外線を露光して、図3(c)に示すように、これを除去する。このとき、所定のフォトマスクにより電極や配線等の導体パターン18に対応する部分を残して露光し、その部分の金属薄膜14を残す。そして、図3(d)に示すように、絶縁性基板11の不要な金属薄膜14や銅メッキ16を、エッチングにより除去する。また、銅メッキ16が絶縁性基板11表面から大きく突出しないように、エッチング時間を調整して形状を整える。この後、図3(e)に示すように、電極や配線等の導体パターン18上の耐メッキ性保護膜20を除去し、表面を洗浄して電子素子用基板10を形成する。   Next, the plating-resistant protective film 20 is again exposed to ultraviolet rays to remove it as shown in FIG. At this time, exposure is performed by leaving a portion corresponding to the conductor pattern 18 such as an electrode and wiring by a predetermined photomask, and the metal thin film 14 of the portion is left. Then, as shown in FIG. 3D, the unnecessary metal thin film 14 and copper plating 16 on the insulating substrate 11 are removed by etching. Further, the shape is adjusted by adjusting the etching time so that the copper plating 16 does not protrude greatly from the surface of the insulating substrate 11. Thereafter, as shown in FIG. 3E, the plating-resistant protective film 20 on the conductor pattern 18 such as electrodes and wiring is removed, and the surface is washed to form the electronic element substrate 10.

この実施形態の電子素子用基板10を利用する電子素子として、例えば半導体加速度センサがある。以下、電子素子用基板10を用いた加速度センサ22について説明する。この半導体加速度センサは、図1に示すように、電子素子用基板10に、シリコンをエッチングして形成したセンサ本体21が設けられている。センサ本体21は、矩形の枠部24と、その内側中央部に設けられた重り部26と、枠部24の四方の角部から一体に延びて重り部26に一体につながって重り部26を保持した梁部28、及び重り部26から四方に対称に延びた薄板状の電極部29から成る。枠部24は、電子素子用基板10の周縁部に陽極接合等により気密状態で接合されている。また、電子素子用基板10の表裏面には、各透孔12の銅メッキ16と接続した電極や、半導体加速度センサ22の電極部29との間で容量を形成する電極、他の回路基板に接続される電極等の導体パターン18が、金属薄膜14により形成されている。そして、枠部24の表面側にはガラス板32が接合されている。   As an electronic element using the electronic element substrate 10 of this embodiment, for example, there is a semiconductor acceleration sensor. Hereinafter, the acceleration sensor 22 using the electronic element substrate 10 will be described. As shown in FIG. 1, the semiconductor acceleration sensor is provided with a sensor body 21 formed by etching silicon on a substrate 10 for electronic elements. The sensor body 21 includes a rectangular frame portion 24, a weight portion 26 provided at an inner central portion thereof, and integrally extends from four corners of the frame portion 24 and is integrally connected to the weight portion 26. It consists of a held beam portion 28 and a thin plate-like electrode portion 29 extending symmetrically from the weight portion 26 in all directions. The frame portion 24 is joined to the peripheral portion of the electronic element substrate 10 in an airtight state by anodic bonding or the like. Further, on the front and back surfaces of the electronic element substrate 10, electrodes connected to the copper plating 16 of the through holes 12, electrodes that form capacitance with the electrode portion 29 of the semiconductor acceleration sensor 22, and other circuit boards A conductive pattern 18 such as an electrode to be connected is formed by the metal thin film 14. A glass plate 32 is bonded to the surface side of the frame portion 24.

この実施形態の加速度センサ22の製造方法は、センサ本体21を形成するシリコン基板をエッチングして、重り部26、梁部28、電極部29を一体に形成する。次に、このセンサ本体21とガラス板32、及び電子素子用基板10を接合する。接合方法は、陽極接合(約400℃)、Auロウ、高温ハンダ、あるいは低融点ガラスを用いて密着接合する方法等を適宜選択する。加速度センサ22内を真空にするには、この接合作業を真空状態で行うことにより実現できる。   In the manufacturing method of the acceleration sensor 22 of this embodiment, the silicon substrate forming the sensor body 21 is etched, and the weight portion 26, the beam portion 28, and the electrode portion 29 are integrally formed. Next, the sensor body 21, the glass plate 32, and the electronic element substrate 10 are joined. As a bonding method, anodic bonding (about 400 ° C.), Au brazing, high-temperature solder, or a method of tight bonding using low-melting glass is appropriately selected. The inside of the acceleration sensor 22 can be evacuated by performing this joining operation in a vacuum state.

この発明の電子素子用基板10及びこれを用いた電子素子である加速度センサ22は、センサ内の気密封止を容易且つ確実に行うことができ、製造工程が簡単であり、製造コストも削減することができる。また、この電子素子用基板10を用いて、表面実装される電子素子は、その内部を容易に気密状態に保持することができ、熱歪み等による影響も小さくすることができ、電子素子の耐久性を向上させることができる。   The electronic element substrate 10 of the present invention and the acceleration sensor 22 which is an electronic element using the substrate 10 can easily and reliably perform hermetic sealing in the sensor, have a simple manufacturing process, and reduce manufacturing costs. be able to. In addition, the electronic device mounted on the surface by using the electronic device substrate 10 can easily keep the inside of the electronic device in an airtight state, can be less affected by thermal distortion, and the like. Can be improved.

なお、この発明の電子素子用基板は、前記実施形態に限らず、透孔内のメッキ成長は、基板表裏面で別々に行っても良い。また透孔内に基板表裏両面側から金属薄膜を形成しても良く、その場合、基板両面に金属薄膜による導体パターンを形成しても良い。また、透孔を形成するには、サンドブラストによる加工・形成が生産効率等の点から見て最も現実的手段であるが、ドリル等による加工・形成でも可能であることは言うまでもない。   The electronic device substrate of the present invention is not limited to the above embodiment, and the plating growth in the through holes may be performed separately on the front and back surfaces of the substrate. Moreover, a metal thin film may be formed in the through-holes from both the front and back sides of the substrate, and in that case, a conductor pattern made of the metal thin film may be formed on both surfaces of the substrate. Moreover, in order to form a through-hole, processing / formation by sandblasting is the most realistic means from the viewpoint of production efficiency, but it goes without saying that processing / formation by a drill or the like is also possible.

さらにこの発明の電子素子用基板は、加速度センサ以外のジャイロセンサ、圧力センサ等、内部を気密状態に維持する必要がある電子素子には特に有効に利用可能である。絶縁性基板は、ガラス系の材料の他、用途によりシリコンやセラミックス等を用いても良い。また、裏面電極は金属薄膜以外の導電体で構成しても良い。   Furthermore, the electronic device substrate of the present invention can be used particularly effectively for electronic devices that need to maintain an airtight state, such as a gyro sensor and a pressure sensor other than an acceleration sensor. As the insulating substrate, silicon, ceramics, or the like may be used depending on the application in addition to the glass-based material. Moreover, you may comprise a back surface electrode with conductors other than a metal thin film.

この発明の一実施形態の電子素子用基板を用いた半導体加速度センサを示す斜視図である。It is a perspective view which shows the semiconductor acceleration sensor using the board | substrate for electronic devices of one Embodiment of this invention. この発明の一実施形態の電子素子用基板の概略製造工程の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of schematic manufacturing process of the board | substrate for electronic devices of one Embodiment of this invention. この発明の一実施形態の電子素子用基板の次の概略製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the next general manufacturing process of the board | substrate for electronic devices of one Embodiment of this invention.

10 電子素子用基板
11 絶縁性基板
12 透孔
12a,12b 穴
14 金属薄膜
16 銅メッキ
18 導体パターン
20 耐メッキ性保護膜
22 加速度センサ
DESCRIPTION OF SYMBOLS 10 Substrate for electronic devices 11 Insulating substrate 12 Through-hole 12a, 12b Hole 14 Metal thin film 16 Copper plating 18 Conductive pattern 20 Plating-resistant protective film 22 Acceleration sensor

Claims (3)

絶縁性の基板の一方の側の面の所定位置に、サンドブラストにより底部が細径に形成された有底の穴を形成し、前記穴が形成された側の前記基板面及び前記穴内面に金属薄膜を形成し、この後、前記基板の前記穴が形成された側とは反対側の面から前記基板面にサンドブラストにより、前記金属薄膜が露出する程度に穴を形成して、前記基板に略鼓状の透孔を形成し、前記透孔の細径部で前記金属薄膜により前記透孔が仕切られ、前記基板両面の前記穴の開口部以外を保護膜で被覆し、前記透孔内をメッキ金属により充填し、この後、前記保護膜を除去することを特徴とする電子素子用基板の製造方法。   A bottomed hole with a bottom having a small diameter is formed by sandblasting at a predetermined position on the surface on one side of the insulating substrate, and a metal is formed on the substrate surface on the side where the hole is formed and on the inner surface of the hole. After forming a thin film, a hole is formed in the substrate surface from the surface opposite to the side where the hole is formed by sandblasting to the extent that the metal thin film is exposed, and the substrate is substantially A drum-shaped through-hole is formed, and the through-hole is partitioned by the metal thin film at the small-diameter portion of the through-hole, and the openings other than the openings of the holes on both sides of the substrate are covered with a protective film, and the inside of the through-hole is formed A method for producing a substrate for an electronic device, comprising filling with a plating metal and thereafter removing the protective film. 前記基板に形成された前記透孔内の前記金属薄膜の両側から、前記透孔内にメッキを成長させることを特徴とする請求項1記載の電子素子用基板の製造方法。   The method for manufacturing a substrate for an electronic device according to claim 1, wherein plating is grown in the through-hole from both sides of the metal thin film in the through-hole formed in the substrate. 前記保護膜の除去に際して、前記金属薄膜を所定形状パターン形状に残して、前記基板表面の導体パターンを形成することを特徴とする請求項1記載の電子素子用基板の製造方法。   2. The method of manufacturing a substrate for an electronic device according to claim 1, wherein when the protective film is removed, the conductive pattern on the surface of the substrate is formed while leaving the metal thin film in a predetermined pattern shape.
JP2005015332A 2005-01-24 2005-01-24 Manufacturing method of substrate for electronic device Expired - Fee Related JP4455352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015332A JP4455352B2 (en) 2005-01-24 2005-01-24 Manufacturing method of substrate for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015332A JP4455352B2 (en) 2005-01-24 2005-01-24 Manufacturing method of substrate for electronic device

Publications (2)

Publication Number Publication Date
JP2006203112A JP2006203112A (en) 2006-08-03
JP4455352B2 true JP4455352B2 (en) 2010-04-21

Family

ID=36960803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015332A Expired - Fee Related JP4455352B2 (en) 2005-01-24 2005-01-24 Manufacturing method of substrate for electronic device

Country Status (1)

Country Link
JP (1) JP4455352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135722A (en) * 2008-11-05 2010-06-17 Toshiba Corp Semiconductor device
JP5973479B2 (en) 2013-05-27 2016-08-23 三ツ星ベルト株式会社 Hole-filled substrate having conductive film, method for producing the same, and method for suppressing swelling or peeling
JP6541530B2 (en) 2015-09-24 2019-07-10 三ツ星ベルト株式会社 Via-filled substrate, method for producing the same, and precursor thereof

Also Published As

Publication number Publication date
JP2006203112A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4539155B2 (en) Manufacturing method of sensor system
JP2012222828A (en) Micro electromechanical system microphone and manufacturing method of the same
JP4741621B2 (en) Electronic component sealing substrate, electronic device using the same, and electronic device manufacturing method
WO2018164159A1 (en) Module
JP4455352B2 (en) Manufacturing method of substrate for electronic device
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
JP4010293B2 (en) Metal package manufacturing method
JP2006186357A (en) Sensor device and its manufacturing method
JP2010081127A (en) Crystal oscillator and method of manufacturing same
JP2006201158A (en) Sensor
JP4126459B2 (en) Electronic component sealing substrate, electronic device using the same, and electronic device manufacturing method
JP2015122413A (en) Package and manufacturing method of the same
JP2008135594A (en) Board for sealing micro electromechanical part, multi-pattern board for sealing micro electromechanical part, micro electromechanical device, and method for manufacturing micro electromechanical device
JP2013162295A (en) Base substrate, electronic device, manufacturing method of base substrate, and manufacturing method of electronic device
JP2008147466A (en) Electronic element package
JP2007184810A (en) Method for manufacturing piezoelectric vibrator
JP2009111931A (en) Piezoelectric vibrator and method for manufacturing piezoelectric vibrator
JP2014086963A (en) Package and method of manufacturing package
CN102403977A (en) Electronic component package sealing member, electronic component package, and method for producing electronic component package sealing member
JP2006332932A (en) Quartz resonator with seating
JP2006162628A (en) Sensor system
JP2015088987A (en) Method for manufacturing package and package
JP6449620B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2006133236A (en) Sensor system
JP2017022334A (en) Multi-piece wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees