JP4454776B2 - Hydrophilic ferritic stainless steel - Google Patents

Hydrophilic ferritic stainless steel Download PDF

Info

Publication number
JP4454776B2
JP4454776B2 JP2000091156A JP2000091156A JP4454776B2 JP 4454776 B2 JP4454776 B2 JP 4454776B2 JP 2000091156 A JP2000091156 A JP 2000091156A JP 2000091156 A JP2000091156 A JP 2000091156A JP 4454776 B2 JP4454776 B2 JP 4454776B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
steel material
less
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000091156A
Other languages
Japanese (ja)
Other versions
JP2001279389A (en
Inventor
直人 平松
宏紀 冨村
誠一 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2000091156A priority Critical patent/JP4454776B2/en
Publication of JP2001279389A publication Critical patent/JP2001279389A/en
Application granted granted Critical
Publication of JP4454776B2 publication Critical patent/JP4454776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面の親水性に優れたフェライト系ステンレス鋼材に関するものである。
【0002】
【従来の技術】
ステンレス鋼は素材そのものが優れた耐食性を呈することから、めっきや塗装等の表面処理を施さずに、無垢のままで使用される用途が大半を占めている。近年では建築物や車両の外装材としても無垢のステンレス鋼材が積極的に使用されるようになってきた。ただし、これら外装材の用途では、しばしば「発銹」が見られ、ステンレス鋼の特長である美麗な金属外観を損なう場合がある。無垢のステンレス鋼材に見られるこのような「発銹」は、海塩粒子や粉塵などが鋼材表面に付着した場合に生じやすいことが知られている。
【0003】
上記のような発銹を改善する手段として、i)ステンレス鋼の化学組成を調整して素材の耐食性レベルを向上させる方法、ii)ステンレス鋼材表面にめっきや塗装等の表面処理を施す方法などが種々試みられている。
【0004】
【発明が解決しようとする課題】
しかし、上記i)の方法で素材の耐食性レベルを向上させたとしても、海塩粒子や粉塵などの外的要因に起因する発銹は必ずしも防止できるとは限らない。耐食性レベルを大幅に向上させると、確かに発銹の程度は軽減されるが、それには高価な元素の添加が必要となって材料コストの大幅な増加を招くことから、i)の方法には自ずと限界がある。
一方、上記ii)のようにめっきや塗装等の表面処理を施す方法では、表面処理によるコストアップが避けられず、また、表面外観もステンレス鋼本来の金属外観とは異なったものとなってしまう。
【0005】
ところで、建築物のいくつかの部位に同じ無垢のステンレス鋼材を使用した場合、例えば屋根上面や壁面下部のように、雨水によって付着物が洗い流されやすい環境にある部位では他の部位よりも発銹が生じにくい、ということも経験的事実の示すところである。そうであれば、海塩粒子等の付着物が容易に洗い流されるような表面性状が実現できれば、上記i)ii)のような手段によらずとも、ステンレス鋼材表面の耐発銹性を抜本的に改善することが可能になるであろう。
【0006】
そのような性状の表面として、水滴との濡れ性が良好な表面、すなわち親水性の良好な表面が考えられる。親水性の良好な表面では、雨水等の水滴は鋼材表面と広い面積で接触しようとするため、鋼材表面と付着物粒子のわずかな間隙にも浸透しやすく、その結果、付着物は浮き上げられて洗い流されやすくなる。本発明は、このような表面状態を実現すべく、親水性に優れたフェライト系ステンレス鋼材を提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは種々検討の結果、無垢のフェライト系ステンレス鋼材に、SiまたはMnが適量濃化した表層部を形成することによって、親水性を付与することができることを知見した。またその表層部は例えば光輝焼鈍によって形成できることを確認した。本発明は、これらの基礎的知見に基づいて完成したものである。
【0008】
すなわち、上記目的を達成するために、請求項1の発明は、C:0.15質量%以下,Cr:10.0〜50.0質量%,N:0.15質量%以下,Si:5.0質量%以下,Mn:10.0質量%以下で、かつ、少なくともSiまたはMnのいずれかを0.3質量%以上含み残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼材の鋼素地表面に、研磨による粗面化後に光輝焼鈍されたSi,Mnの1種または2種が濃化した表面構造を有し、表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度が5.0質量%以上である親水性フェライト系ステンレス鋼材である。
【0009】
ここで、「表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度」とは、最表面から深さ100nmまでの表層部を構成する全元素に占めるSiの割合(質量%)とMnの割合(質量%)の合計値を意味するが、具体的には、例えばGDS(グロー放電発光分光分析装置)を用いて、表面から深さ方向に掘り進みながら元素分析を行い、深さ0〜100nmの間のSi濃度の平均値およびMn濃度の平均値を求め、それらの和を算出することによって特定することができる。なお、SiあるいはMnのいずれか一方の平均濃度がゼロであっても構わない。
【0012】
ここで、「鋼素地表面」とは、めっきや塗装等の表面被覆を有していない、いわゆる無垢(裸)の状態のステンレス鋼材表面をいう。「Si,Mnの1種または2種が濃化した表面構造」とは、Si,Mnの少なくとも一方が、表面から深さ100nmまでの領域において鋼材中の平均濃度よりも高濃度になっていることを意味する。
【0013】
請求項の発明は、請求項の発明において、鋼材が、さらにNi:4.0質量%以下,Mo:4.0質量%以下,Cu:4.0質量%以下の1種または2種以上を含有するものである点を規定したものである。
請求項の発明は、請求項の発明において、鋼材が、さらにTi,Al,Nb,V,Zr,B,REM(希土類元素)の1種または2種以上を合計1.0質量%以下含有するものである点を規定したものである。
【0014】
請求項の発明は、請求項1〜3のいずれかに記載の親水性フェライト系ステンレス鋼材が、特に建築物または車両の外装用鋼板である点を規定したものである。
請求項5の発明は、請求項1〜3のいずれかに記載の親水性フェライト系ステンレス鋼材が、特に建築物または車両の雨水が表面を流れる部位に使用される外装用鋼板である点を規定したものである。
【0015】
【発明の実施の形態】
表1に示す化学組成のフェライト系ステンレス鋼を真空溶解炉にて溶製し、鍛造,熱延,中間焼鈍,冷延を施して板厚1mmの冷延板とした。各冷延板について表面を#600研磨して、概ねRa:0.27μm,Rz:1.47μm,Rmax:2.43μmの粗面化表面とした後、100%水素雰囲気中、880℃で300秒保持する光輝焼鈍を行った。光輝焼鈍においては、露点を種々変化させることによって試料表面のSi+Mn濃度を変化させた。
なお、表1中、F11〜F13は、SiおよびMnのいずれもが0.3質量%に満たない鋼であり、請求項3〜5の対象を外れるものである。
【0016】
【表1】

Figure 0004454776
【0017】
光輝焼鈍した試料から、親水性試験用試料と表面分析用試料を採取した。
親水性試験用試料は、屋外において、太陽光が直接当たる位置(周辺建物・障害物の影が発生しない位置)に30日間暴露した後、埃等を洗い流さずにそのままの表面状態で親水性試験に供した。
親水性試験は、温度20℃,湿度60%の部屋で、水平に置いた試料表面に蒸留水100μL(マイクロリットル)を滴下し、60秒後にCCDカメラにて試料表面上の水滴を真横から観察し、その拡大画像から濡れ角度を求める方法で行った。濡れ角度の定義は図1に示すとおりである。
一方、光輝焼鈍した試料の表面分析は、GDS(グロー放電発光分光分析装置)を用いて、表面から深さ方向に掘り進みながら元素分析する方法で行った。そして、深さ0〜100nmの間のSi濃度の平均値およびMn濃度の平均値を求め、それらの和を「表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度(質量%)」の値とした。
表2に、光輝焼鈍時の露点と、上記試験結果を示す。また、図2には、表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度と、濡れ角度の関係をプロットしてある。
【0018】
【表2】
Figure 0004454776
【0019】
表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度が5質量%以上である本発明例の鋼材では、水滴粒子の濡れ角度が45度以下と小さくなり、30日間屋外に暴露した状態において高い親水性を呈することがわかる。これに対し、同Si+Mnの平均濃度が5質量%に満たない比較例の鋼材では、濡れ角度が大きく、親水性に劣る。比較例のうちNo.14〜16は鋼材中のSiおよびMnの含有量がいずれも0.3質量%未満のものであるが、これらは本発明例のものと同レベルの露点条件で光輝焼鈍を行ったにもかかわらず、表層部のSi+Mn濃度は非常に低く、良好な親水性は付与されていない。つまり、表層部のSi+Mn濃度を高めるためには、鋼材中に少なくともSiまたはMnのいずれかを0.3質量%以上含有させることが望ましいと言える。
【0020】
上記の実験例において屋外に30日間暴露した直後の試料表面外観についても、親水性試験を行う前に、目視により観察している。その結果、表2に示した本発明例のものは、比較例のものと比べ、埃の付着量が少ないことがわかった。これは30日間の暴露期間中に観測された3回の降雨によって、埃の洗い流され方に差が出たものと考えられる。すなわち、親水性の良好な本発明例のものでは、付着物が洗い流されやすくなっていることが確認された。
【0021】
上記実験例では、光輝焼鈍前に#600研磨を施して粗面化したが、発明者らの別途実験によると、表面粗度をさらに粗くすることによって濡れ角度は一層小さくなる傾向を示すことが確かめられている。
【0022】
以下、鋼材中の主な成分元素について簡単に説明する。
Cは、溶製時にスクラップ等から不可避的に混入するが、含有量が多くなると成形性や耐食性を害するようになるので、0.15質量%以下とすることが望ましい。
Siは、ステンレス鋼の溶製においては一般に脱酸目的で添加されるが、本発明では鋼材表層部に濃化させることで親水性を発現させる役割を担う。光輝焼鈍等の加熱処理によって比較的容易に表面に濃化させるためには、0.3質量%以上の含有が望ましい。ただし過剰の含有は固溶強化によって加工性を劣化させるので、Si含有量は0.3〜5.0質量%の範囲とするのが良い。
Mnは、本発明ではSiと並んで鋼材表層部に濃化させることで親水性を発現させる。そのためにはSiと同様に0.3質量%以上の含有が望ましい。ただし、添加量が多くなると溶製時にMnヒュームが発生するなどして製造性を悪化させるので、Mn含有量は0.3〜10.0質量%とするのが良い。
なお、SiおよびMnは必ずしも0.3質量%以上の含有を必要とするのではなく、結果として鋼材表層部にSiまたはMnが前記規定のとおり濃化すれば十分である。
【0023】
Niは、フェライト系ステンレス鋼材の靱性改善に有効であるが、多量の含有は高温および常温でオーステナイト相を安定化させてしまうので、4.0質量%以下とするのが望ましい。
Crは、ステンレス鋼材の耐食性を確保するために不可欠な元素であり、その含有量が10.0質量%未満では耐食性が不十分になりやすい。一方、50.0質量%を超えると冷間加工性や靱性の劣化を招くので、Cr含有量は10.0〜50.0質量%とするのが良い。
Moは、耐食性を改善するのに有効な元素であるが、過度の含有は高温での固溶強化や動的再結晶の遅滞を招き、熱間加工性を劣化させるので、4.0質量%以下とすることが望ましい。
Cuは、使用原料によって不可避的に混入することがあるが、過度の含有は熱間加工性や耐食性を劣化させるので、4.0質量%以下とすることが望ましい。
【0024】
Nは、Cと同様にスクラップ等から不可避的に混入するが、過度の含有は成形性や耐食性に有害となるので、0.15質量%以下とすることが望ましい。
Ti,Nb,Vは固溶Cを炭化物として固定することにより加工性を向上させ、Al,Zrは鋼中の酸素を酸化物として捕らえることにより加工性や靱性を向上させ、B,REMは熱間加工性を向上させる元素である。ただし、これらはいずれも多量に含有すると製造性を劣化させる元素でもある。したがって、これらの元素は各々1.0質量%以下とし、これらの合計含有量も1.0質量%以下に抑えることが望ましい。
【0025】
【発明の効果】
本発明によれば、優れた親水性を安定して発現する無垢のフェライト系ステンレス鋼材が提供できるようになった。この鋼材は、表面の付着物が雨水や洗浄水により容易に洗い流されるため、例えば建築物や車両の外装材に適している。また、素材自体に比較的安価な成分組成の鋼種を用いた場合でも、日常の簡単なメンテナンス(洗浄等)により、非常に高価な高耐食性鋼種を用いた従来の鋼材を上回る耐発銹性を維持することも可能となる。したがって本発明は、特に外装用ステンレス鋼材として非常にコストパフォーマンスの高い材料の提供に貢献するものである。
【図面の簡単な説明】
【図1】鋼材表面上の水滴における濡れ角度の定義を表す模式図である。
【図2】表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度と、濡れ角度の関係を表すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel material having excellent surface hydrophilicity.
[0002]
[Prior art]
Since stainless steel exhibits excellent corrosion resistance, the majority of uses are made of pure steel without any surface treatment such as plating or painting. In recent years, solid stainless steel materials have been actively used as exterior materials for buildings and vehicles. However, in these uses of exterior materials, “fogging” is often observed, and the beautiful metallic appearance that is a feature of stainless steel may be impaired. It is known that such “fogging” found in a solid stainless steel material is likely to occur when sea salt particles or dust adhere to the surface of the steel material.
[0003]
As a means for improving the above-mentioned generation, i) a method of adjusting the chemical composition of stainless steel to improve the corrosion resistance level of the material, ii) a method of performing surface treatment such as plating or coating on the surface of the stainless steel material, etc. Various attempts have been made.
[0004]
[Problems to be solved by the invention]
However, even if the corrosion resistance level of the material is improved by the above method i), it is not always possible to prevent the occurrence of the occurrence due to external factors such as sea salt particles and dust. If the level of corrosion resistance is significantly improved, the degree of rusting is certainly reduced, but this requires the addition of expensive elements and causes a significant increase in material costs. Naturally there is a limit.
On the other hand, in the method of performing surface treatment such as plating and painting as in the above ii), the cost increase due to the surface treatment is unavoidable, and the surface appearance is also different from the original metal appearance of stainless steel. .
[0005]
By the way, when the same solid stainless steel material is used for some parts of the building, it is more likely to occur in parts where the deposits are easily washed away by rainwater, such as the upper surface of the roof or the lower part of the wall. Empirical facts also show that it is hard to occur. If so, if the surface properties can be realized so that the deposits such as sea salt particles can be easily washed away, the rust resistance of the surface of the stainless steel material can be drastically improved without using means such as i) ii) above. It will be possible to improve.
[0006]
As the surface having such a property, a surface having good wettability with water droplets, that is, a surface having good hydrophilicity can be considered. On surfaces with good hydrophilicity, water droplets such as rainwater try to contact the steel surface over a wide area, so that they can easily penetrate even a small gap between the steel surface and the particles of deposits. Easily washed away. An object of this invention is to provide the ferritic stainless steel material excellent in hydrophilicity in order to implement | achieve such a surface state.
[0007]
[Means for Solving the Problems]
As a result of various studies, the inventors have found that hydrophilicity can be imparted by forming a surface layer portion in which an appropriate amount of Si or Mn is concentrated on a pure ferritic stainless steel material. Moreover, it confirmed that the surface layer part could be formed by bright annealing, for example. The present invention has been completed based on these basic findings.
[0008]
That is, in order to achieve the above object, the invention of claim 1 includes C: 0.15 mass% or less, Cr: 10.0 to 50.0 mass%, N: 0.15 mass% or less, Si: 5.0 mass% or less, Mn: 10.0 mass %, And at least 0.3% by mass of either Si or Mn, and the surface of the ferritic stainless steel material comprising Fe and unavoidable impurities is brightly annealed after roughening by polishing. Is a hydrophilic ferritic stainless steel material having a concentrated surface structure and an average Si + Mn concentration of 5.0% by mass or more in the surface layer portion from the surface to a depth of 100 nm.
[0009]
Here, the “average concentration of Si + Mn in the surface layer part from the surface to a depth of 100 nm” means the ratio (mass%) of Si and the ratio of Mn to all elements constituting the surface layer part from the outermost surface to a depth of 100 nm This means the total value of (mass%). Specifically, for example, using GDS (glow discharge emission spectroscopic analyzer), elemental analysis is performed while digging in the depth direction from the surface, and the depth is 0 to 100 nm. The average value of the Si concentration and the average value of the Mn concentration can be obtained by calculating the sum of them. Note that the average concentration of either Si or Mn may be zero.
[0012]
Here, the “steel substrate surface” refers to a surface of a so-called solid (bare) stainless steel material that does not have a surface coating such as plating or painting. “Surface structure where one or two of Si and Mn are concentrated” means that at least one of Si and Mn has a higher concentration than the average concentration in steel in the region from the surface to a depth of 100 nm. Means that.
[0013]
The invention of claim 2 is the invention of claim 1 , wherein the steel material further contains one or more of Ni: 4.0 mass% or less, Mo: 4.0 mass% or less, Cu: 4.0 mass% or less. It defines a certain point.
The invention of claim 3 is the invention of claim 1 , wherein the steel material further contains one or more of Ti, Al, Nb, V, Zr, B, and REM (rare earth elements) in a total amount of 1.0% by mass or less. It defines what is a thing.
[0014]
Invention of Claim 4 prescribes | regulates that the hydrophilic ferritic stainless steel material in any one of Claims 1-3 is a steel plate for exteriors of a building or a vehicle especially.
Invention of Claim 5 prescribes | regulates that the hydrophilic ferritic stainless steel material in any one of Claims 1-3 is the steel plate for exteriors used especially in the site | part through which the rainwater of a building or a vehicle flows. It is a thing.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Ferritic stainless steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace and subjected to forging, hot rolling, intermediate annealing, and cold rolling to obtain a cold rolled plate having a thickness of 1 mm. The surface of each cold-rolled sheet is polished by # 600 to obtain a roughened surface of approximately Ra: 0.27 μm, Rz: 1.47 μm, Rmax: 2.43 μm, and then held at 880 ° C. for 300 seconds in a 100% hydrogen atmosphere. Bright annealing was performed. In bright annealing, the Si + Mn concentration on the sample surface was changed by variously changing the dew point.
In Table 1, F11 to F13 are steels in which both Si and Mn are less than 0.3% by mass, and are outside the scope of claims 3-5.
[0016]
[Table 1]
Figure 0004454776
[0017]
A sample for hydrophilicity test and a sample for surface analysis were collected from the brightly annealed sample.
Samples for hydrophilicity testing are exposed to sunlight directly (positions where shadows of surrounding buildings and obstacles do not occur) for 30 days, and then the hydrophilicity test is performed on the surface without washing off dust. It was used for.
In the hydrophilicity test, 100 μL (microliter) of distilled water was dropped on the surface of the sample placed horizontally in a room at a temperature of 20 ° C and a humidity of 60%. After 60 seconds, water droplets on the sample surface were observed from the side using a CCD camera. The wet angle was obtained from the enlarged image. The definition of the wetting angle is as shown in FIG.
On the other hand, the surface analysis of the brightly annealed sample was performed by elemental analysis using a GDS (Glow Discharge Optical Emission Spectrometer) while digging in the depth direction from the surface. Then, the average value of the Si concentration and the average value of the Mn concentration between 0 to 100 nm in depth are obtained, and the sum of them is the value of “average concentration of Si + Mn (mass%) in the surface layer part from the surface to the depth of 100 nm” It was.
Table 2 shows the dew point during bright annealing and the test results. FIG. 2 also plots the relationship between the average concentration of Si + Mn and the wetting angle in the surface layer from the surface to a depth of 100 nm.
[0018]
[Table 2]
Figure 0004454776
[0019]
In the steel material of the present invention example in which the average concentration of Si + Mn in the surface layer part from the surface to a depth of 100 nm is 5% by mass or more, the wetting angle of the water droplet particles is reduced to 45 degrees or less, and is high when exposed outdoors for 30 days. It turns out that it exhibits hydrophilicity. On the other hand, in the steel material of the comparative example whose average concentration of Si + Mn is less than 5% by mass, the wetting angle is large and the hydrophilicity is inferior. Among the comparative examples, Nos. 14 to 16 are those in which the contents of Si and Mn in the steel material are both less than 0.3% by mass, and these are subjected to bright annealing under the same dew point conditions as in the examples of the present invention. Nevertheless, the Si + Mn concentration in the surface layer is very low, and good hydrophilicity is not imparted. In other words, in order to increase the Si + Mn concentration in the surface layer portion, it can be said that it is desirable to contain at least one of Si and Mn in the steel material by 0.3% by mass or more.
[0020]
In the above experimental example, the sample surface appearance immediately after being exposed outdoors for 30 days is also visually observed before the hydrophilic test. As a result, it was found that the examples of the present invention shown in Table 2 had less dust adhesion than the comparative examples. This is thought to be due to the difference in how the dust was washed away by the three rainfalls observed during the 30-day exposure period. That is, it was confirmed that in the example of the present invention having good hydrophilicity, the deposits were easily washed away.
[0021]
In the above experimental example, the surface was roughened by # 600 polishing before bright annealing, but according to the inventors' separate experiment, the wetting angle tends to be further reduced by further increasing the surface roughness. It has been confirmed.
[0022]
Hereinafter, main component elements in the steel material will be briefly described.
C is inevitably mixed from scrap and the like at the time of melting, but if the content is increased, the moldability and corrosion resistance are impaired, so 0.15 mass% or less is desirable.
Si is generally added for the purpose of deoxidation in the melting of stainless steel, but in the present invention, it plays a role of developing hydrophilicity by concentrating the steel surface layer. In order to concentrate the surface relatively easily by heat treatment such as bright annealing, the content is preferably 0.3% by mass or more. However, excessive content deteriorates workability by solid solution strengthening, so the Si content is preferably in the range of 0.3 to 5.0 mass%.
In the present invention, Mn is made to be hydrophilic along with Si by concentrating on the steel surface layer. For that purpose, it is desirable to contain 0.3% by mass or more like Si. However, if the amount added is increased, Mn fume is generated at the time of melting and the manufacturability is deteriorated, so the Mn content is preferably 0.3 to 10.0% by mass.
Si and Mn do not necessarily need to be contained in an amount of 0.3% by mass or more, and as a result, it is sufficient if Si or Mn is concentrated in the steel surface layer portion as defined above.
[0023]
Ni is effective in improving the toughness of the ferritic stainless steel material, but if contained in a large amount, the austenite phase is stabilized at high and normal temperatures, so 4.0 mass% or less is desirable.
Cr is an indispensable element for ensuring the corrosion resistance of the stainless steel material, and if its content is less than 10.0% by mass, the corrosion resistance tends to be insufficient. On the other hand, if it exceeds 50.0 mass%, cold workability and toughness are deteriorated, so the Cr content is preferably 10.0 to 50.0 mass%.
Mo is an element effective for improving the corrosion resistance, but excessive inclusion causes solid solution strengthening at high temperatures and delay of dynamic recrystallization, and deteriorates hot workability. It is desirable to do.
Cu may be inevitably mixed depending on the raw material used, but excessive content deteriorates hot workability and corrosion resistance, so it is desirable to make it 4.0% by mass or less.
[0024]
N is inevitably mixed from scrap and the like as in C. However, excessive content is harmful to formability and corrosion resistance, so 0.15% by mass or less is desirable.
Ti, Nb, V improve workability by fixing solute C as carbide, Al, Zr improve workability and toughness by capturing oxygen in steel as oxide, B, REM are heat It is an element that improves hot workability. However, any of these is an element that deteriorates the productivity when contained in a large amount. Therefore, it is desirable that each of these elements is 1.0% by mass or less and the total content thereof is also suppressed to 1.0% by mass or less.
[0025]
【The invention's effect】
According to the present invention, it is possible to provide a pure ferritic stainless steel material that stably exhibits excellent hydrophilicity. This steel material is suitable for an exterior material of a building or a vehicle, for example, because the surface deposits are easily washed away by rain water or washing water. In addition, even when steel grades with a relatively inexpensive composition are used for the raw material itself, it is possible to achieve a higher resistance to galling than conventional steel grades that use extremely expensive high-corrosion-resistant grades due to simple daily maintenance (cleaning, etc.). It can also be maintained. Accordingly, the present invention contributes to the provision of a material having a very high cost performance as a stainless steel material for exterior use.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the definition of the wetting angle of water droplets on the surface of a steel material.
FIG. 2 is a graph showing the relationship between the average concentration of Si + Mn and the wetting angle in the surface layer part from the surface to a depth of 100 nm.

Claims (5)

C:0.15質量%以下,Cr:10.0〜50.0質量%,N:0.15質量%以下,Si:5.0質量%以下,Mn:10.0質量%以下で、かつ、少なくともSiまたはMnのいずれかを0.3質量%以上含み残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼材の鋼素地表面に、研磨による粗面化後に光輝焼鈍されたSi,Mnの1種または2種が濃化した表面構造を有し、表面から深さ100nmまでの表層部におけるSi+Mnの平均濃度が5.0質量%以上である親水性フェライト系ステンレス鋼材。C: 0.15 mass% or less, Cr: 10.0-50.0 mass%, N: 0.15 mass% or less, Si: 5.0 mass% or less, Mn: 10.0 mass% or less, and at least one of Si or Mn is 0.3 mass% The surface of the ferritic stainless steel material comprising the remaining Fe and unavoidable impurities as described above has a surface structure in which one or two of Si and Mn, which are brightly annealed after roughening by polishing, are concentrated. A hydrophilic ferritic stainless steel material having an average concentration of Si + Mn of 5.0% by mass or more in the surface layer portion from 1 to 100 nm in depth. 鋼材が、さらにNi:4.0質量%以下,Mo:4.0質量%以下,Cu:4.0質量%以下の1種または2種以上を含有するものである、請求項1に記載の親水性フェライト系ステンレス鋼材。  The hydrophilic ferritic stainless steel material according to claim 1, wherein the steel material further contains one or more of Ni: 4.0% by mass or less, Mo: 4.0% by mass or less, and Cu: 4.0% by mass or less. . 鋼材が、さらにTi,Al,Nb,V,Zr,B,REMの1種または2種以上を合計1.0質量%以下含有するものである、請求項1または2に記載の親水性フェライト系ステンレス鋼材。  The hydrophilic ferritic stainless steel material according to claim 1 or 2, wherein the steel material further contains one or more of Ti, Al, Nb, V, Zr, B, and REM in a total of 1.0 mass% or less. . 建築物または車両の外装用鋼板である請求項1〜3のいずれかに記載の親水性フェライト系ステンレス鋼材。  The hydrophilic ferritic stainless steel material according to any one of claims 1 to 3, which is a steel plate for an exterior of a building or a vehicle. 建築物または車両の雨水が表面を流れる部位に使用される外装用鋼板である請求項1〜3のいずれかに記載の親水性フェライト系ステンレス鋼材。  The hydrophilic ferritic stainless steel material according to any one of claims 1 to 3, wherein the hydrophilic ferritic stainless steel material is an exterior steel plate used at a site where rain water of a building or a vehicle flows on the surface.
JP2000091156A 2000-03-29 2000-03-29 Hydrophilic ferritic stainless steel Expired - Lifetime JP4454776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091156A JP4454776B2 (en) 2000-03-29 2000-03-29 Hydrophilic ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091156A JP4454776B2 (en) 2000-03-29 2000-03-29 Hydrophilic ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2001279389A JP2001279389A (en) 2001-10-10
JP4454776B2 true JP4454776B2 (en) 2010-04-21

Family

ID=18606653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091156A Expired - Lifetime JP4454776B2 (en) 2000-03-29 2000-03-29 Hydrophilic ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP4454776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210093592A (en) 2020-01-20 2021-07-28 한양대학교 산학협력단 Hydrophilic stainless steel and manufacturing method by the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295155B2 (en) 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210093592A (en) 2020-01-20 2021-07-28 한양대학교 산학협력단 Hydrophilic stainless steel and manufacturing method by the same

Also Published As

Publication number Publication date
JP2001279389A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
JP6836600B2 (en) Hot stamping material
RU2635499C2 (en) Galvanised hot dipping and alloyed steel sheet and method of its manufacture
JP3817152B2 (en) High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
JP2012132092A (en) Method for manufacturing cold rolled steel sheet, cold rolled steel sheet and automobile member
JP4454777B2 (en) Hydrophilic austenitic stainless steel
JP2010065314A (en) High-strength hot-dip-galvanized steel sheet and production method thereof
JP5053213B2 (en) High-strength steel with excellent corrosion resistance during painting in the coastal area and its manufacturing method
JP3731560B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JPH11279706A (en) High strength stainless steel strip and steel sheet with double phase structure excellent in hydrophilic property and production thereof
JP5835545B2 (en) Method for producing Si-containing hot-rolled steel sheet
JP4454776B2 (en) Hydrophilic ferritic stainless steel
WO2019021695A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP5532086B2 (en) Hot-dip galvanized steel pipe
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP3367608B2 (en) Weather resistant steel
JP5797877B2 (en) Weatherproof steel with excellent corrosion resistance in high humidity environments
KR102398869B1 (en) Cold rolled steel sheet and manufacturing method thereof
JP4352597B2 (en) High weather resistant steel
JP5682366B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP2004277839A (en) Zinc based metal-coated steel
JP2005281867A (en) Steel sheet superior in workability and shape freezability, and manufacturing method therefor
JP4655432B2 (en) Ferritic stainless steel sheet excellent in adhesion and corrosion resistance of paint film and method for producing the same
JP2000219950A (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AFTER COATING
JP5835548B2 (en) Method for producing Si-containing cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term