JP4454377B2 - Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor - Google Patents

Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor Download PDF

Info

Publication number
JP4454377B2
JP4454377B2 JP2004126476A JP2004126476A JP4454377B2 JP 4454377 B2 JP4454377 B2 JP 4454377B2 JP 2004126476 A JP2004126476 A JP 2004126476A JP 2004126476 A JP2004126476 A JP 2004126476A JP 4454377 B2 JP4454377 B2 JP 4454377B2
Authority
JP
Japan
Prior art keywords
nucleic acid
probe
fluorescent dye
acid probe
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004126476A
Other languages
Japanese (ja)
Other versions
JP2005304394A (en
Inventor
光春 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2004126476A priority Critical patent/JP4454377B2/en
Publication of JP2005304394A publication Critical patent/JP2005304394A/en
Application granted granted Critical
Publication of JP4454377B2 publication Critical patent/JP4454377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、チオプリンメチルトランスフェラーゼ(TPMT)の変異の検出法およびそのためのキットに関する。   The present invention relates to a method for detecting a mutation in thiopurine methyltransferase (TPMT) and a kit therefor.

TPMTは、白血病などの治療に用いられる6−メルカプトプリン(6MP)やアザチオプリンなどの薬剤の代謝不活性化を担っている酵素である。   TPMT is an enzyme responsible for metabolic inactivation of drugs such as 6-mercaptopurine (6MP) and azathioprine used for the treatment of leukemia and the like.

この酵素の遺伝子に、719番目AがGに置換する変異(A719G変異)が存在すると、酵素活性が低下する。そのため、変異ホモ接合体の患者では、様々な薬剤の代謝効率が変化するため薬剤投与時の副作用のリスクが上昇する。   If there is a mutation (A719G mutation) in which the 719th A is substituted for G in the gene of this enzyme, the enzyme activity decreases. Therefore, in patients with mutant homozygotes, the metabolic efficiency of various drugs changes, increasing the risk of side effects during drug administration.

A719G変異の検出方法として、TPMT遺伝子の719番目の塩基を含む部分を増幅するよう設計されたプライマーを用いてPCRを行い、719番目の塩基の変異の有無で切断の有無が分かれるような制限酵素で切断し、その後電気泳動で切断されたかどうかを検出するという方法(PCR-RFLP)が知られている。   As a method for detecting A719G mutation, a restriction enzyme that performs PCR using a primer designed to amplify the portion containing the 719th base of the TPMT gene, and the presence or absence of cleavage is determined by the presence or absence of the mutation at the 719th base. There is known a method (PCR-RFLP) of detecting whether or not it has been cleaved by electrophoresis and then cleaved by electrophoresis.

PCRは数分子の鋳型から数10億倍もの分子を増幅するため、増幅産物がほんの少し混入した場合でも偽陽性、偽陰性の原因になり得る。PCR-RFLPはPCR反応後に増幅産物を取り出して制限酵素処理を行うという必要があるため、増幅産物が次の反応系に混入する恐れがある。よって、偽陽性、偽陰性の結果が得られてしまうことがある。さらに、PCR終了後、制限酵素で処理を行い、その後電気泳動を行うため、検出に必要な時間も非常に長くかかってしまう。また、操作が複雑なため、自動化が困難である。   Since PCR amplifies billions of times from several molecules of template, even a small amount of amplified product can cause false positives and false negatives. Since PCR-RFLP needs to take out the amplification product after PCR reaction and perform restriction enzyme treatment, the amplification product may be mixed into the next reaction system. Therefore, false positive and false negative results may be obtained. In addition, after PCR is completed, treatment with a restriction enzyme is performed, and then electrophoresis is performed. Therefore, it takes a very long time for detection. Moreover, since the operation is complicated, automation is difficult.

A719G変異の検出方法として、また、TPMT遺伝子の719番目の塩基に相補的な塩基を3'末端に持つプライマーを用いてPCRを行い、その後増幅されたかどうかを検出するという方法(ASP-PCR)が知られている(特許文献2)。   As a method for detecting A719G mutation, PCR is performed using a primer having a base complementary to the 719th base of the TPMT gene at the 3 'end, and then it is detected whether it has been amplified (ASP-PCR) Is known (Patent Document 2).

この方法は増幅反応を、AとGそれぞれで1反応ずつ行わなければならないため、試薬が倍量必要である。また、用いる鋳型量が異なると反応条件が異なってくるなど反応条件の設定が困難で、結果の信頼性が低い。   In this method, since the amplification reaction must be performed for each of A and G, a double amount of reagent is required. In addition, when the amount of template used is different, it is difficult to set reaction conditions such as different reaction conditions, and the reliability of the results is low.

一方、一般に、変異を含む領域をPCRで増幅した後、蛍光色素で標識された核酸プローブを用いて融解曲線分析を行い、融解曲線分析の結果に基づいて変異を解析する方法が知られている(非特許文献1、特許文献1)。
クリニカルケミストリー(Clinical Chemistry)、2000年、第46巻、第5号、p.631−635 特開2002−119291号公報 特開2001−17185号公報
On the other hand, a method is generally known in which a region containing a mutation is amplified by PCR, a melting curve analysis is performed using a nucleic acid probe labeled with a fluorescent dye, and the mutation is analyzed based on the result of the melting curve analysis. (Non-patent document 1, Patent document 1).
Clinical Chemistry, 2000, 46, 5, p. 631-635 JP 2002-119291 A JP 2001-17185 A

本発明の課題は、A719G変異を検出するのに有効な消光プローブを特定し、A719G変異を
検出する方法およびそのためのキットを提供することを課題とする。
An object of the present invention is to identify a quenching probe effective for detecting the A719G mutation, and to provide a method for detecting the A719G mutation and a kit therefor.

上述のプローブを用いる方法に関する文献においては、プローブの設計に関し、末端部が蛍光色素により標識された消光プローブが標的核酸にハイブリダイゼーションしたとき、末端部分においてプローブ−核酸ハイブリッドの複数塩基対が少なくとも一つのGとCのペアを形成するように設計するという教示があるのみである。本発明者らは、A719G変異に関し、上記条件を満たす消光プローブを設計し、検出を試みたが、容易に検出を可能とする消光プローブは得られなかった。   In the literature on the method using a probe, regarding the probe design, when a quenching probe labeled with a fluorescent dye at the end is hybridized to a target nucleic acid, at least one probe-nucleic acid hybrid has at least one base pair at the end. There is only teaching to design to form two G and C pairs. The inventors of the present invention designed a quenching probe that satisfies the above conditions for the A719G mutation and tried to detect it. However, a quenching probe that enables easy detection was not obtained.

本発明者は、A719G変異を含む特定の領域に基づいて消光プローブを設計することにより、消光プローブを用いる融解曲線分析によりA719G変異を検出できることを見出し、本発明を完成した。
本発明は、以下のものを提供する。
The inventor has found that the A719G mutation can be detected by melting curve analysis using a quenching probe by designing a quenching probe based on a specific region containing the A719G mutation, and the present invention has been completed.
The present invention provides the following.

(1)末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブであって、下記(a)〜(c)のいずれかを満たす前記核酸プローブ。(a)配列番号2に示す塩基配列において塩基番号181から始まる6〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(b)配列番号2に示す塩基配列において塩基番号176から始まる11〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(c)配列番号2に示す塩基配列において塩基番号168から始まる19〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(1) A nucleic acid probe whose end is labeled with a fluorescent dye and whose fluorescence decreases when hybridized, and satisfies any of the following (a) to (c). (a) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 6 to 50 bases starting from base number 181 and the 3 ′ end is labeled with a fluorescent dye.
(b) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 11 to 50 bases starting from base number 176, and the 3 'end is labeled with a fluorescent dye.
(c) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 19 to 50 bases starting from base number 168, and the 3 'end is labeled with a fluorescent dye.

(2)核酸プローブが、配列番号5〜7のいずれかに示す塩基配列を有する(1)の核酸プローブ。   (2) The nucleic acid probe according to (1), wherein the nucleic acid probe has the base sequence shown in any one of SEQ ID NOs: 5 to 7.

(3)一塩基多型の部位を有する核酸について、蛍光色素で標識された核酸プローブを用いて、蛍光色素の蛍光を測定することにより融解曲線分析を行い、融解曲線分析の結果に基づいて変異を検出する方法であって、一塩基多型は、TPMT遺伝子の719位の変異であり、核酸プローブは、(1)または(2)の核酸プローブである前記方法。   (3) Using a nucleic acid probe labeled with a fluorescent dye, the nucleic acid having a single nucleotide polymorphism site is subjected to melting curve analysis by measuring the fluorescence of the fluorescent dye, and the mutation is based on the result of the melting curve analysis. Wherein the single nucleotide polymorphism is a mutation at position 719 of the TPMT gene, and the nucleic acid probe is the nucleic acid probe of (1) or (2).

(4)試料に含まれる核酸における一塩基多型の部位を含む領域を増幅して一塩基多型を有する核酸を得ることを含む(3)の方法。   (4) The method according to (3), comprising amplifying a region containing a single nucleotide polymorphism site in a nucleic acid contained in a sample to obtain a nucleic acid having a single nucleotide polymorphism.

(5)増幅をDNAポリメラーゼを用いる方法により行う(4)の方法。   (5) The method according to (4), wherein the amplification is performed by a method using a DNA polymerase.

(6)増幅を核酸プローブの存在下で行う(5)の方法。   (6) The method of (5), wherein the amplification is performed in the presence of a nucleic acid probe.

(7)末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブであって、下記(a)〜(c)のいずれかを満たす前記核酸プローブを含む、(3)の方法のためのキット。
(a)配列番号2に示す塩基配列において塩基番号181から始まる6〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(b)配列番号2に示す塩基配列において塩基番号176から始まる11〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(c)配列番号2に示す塩基配列において塩基番号168から始まる19〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(7) a nucleic acid probe whose end is labeled with a fluorescent dye and whose fluorescence decreases when hybridized, the nucleic acid probe satisfying any of the following (a) to (c): ) Kit for the method.
(a) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 6 to 50 bases starting from base number 181 and the 3 ′ end is labeled with a fluorescent dye.
(b) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 11 to 50 bases starting from base number 176, and the 3 'end is labeled with a fluorescent dye.
(c) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 19 to 50 bases starting from base number 168, and the 3 'end is labeled with a fluorescent dye.

(8)核酸プローブが、配列番号5〜7のいずれかに示す塩基配列を有する(7)のキ
ット。
(8) The kit according to (7), wherein the nucleic acid probe has the base sequence shown in any one of SEQ ID NOs: 5 to 7.

(9)TPMT遺伝子の719位の変異を含む領域を、DNAポリメラーゼを用いる方法で増幅するためのプライマーをさらに含む(7)または(8)のキット。   (9) The kit according to (7) or (8), further comprising a primer for amplifying a region containing a mutation at position 719 of the TPMT gene by a method using DNA polymerase.

本発明によれば、A719G変異を検出するのに有効な消光プローブが提供され、さらに、それを用いるA719G変異を検出する方法およびそのためのキットが提供される。   According to the present invention, a quenching probe effective for detecting the A719G mutation is provided, and further, a method for detecting the A719G mutation using the probe and a kit for the same are provided.

Tm解析は数十秒で完了するため、検出に必要な時間が大幅に短縮出来る。プローブの存在下での核酸の増幅とTm解析を組み合わせる本発明の好ましい態様によれば、核酸の増幅後にプローブのTmを解析するだけなので、反応終了後増幅産物を取り扱う必要がない。よって、増幅産物による汚染の心配がない。また、さらに、増幅に必要な機器と同じ機器で検出することが可能なので、容器を移動する必要すらない。よって、自動化も容易である。その上、1の一塩基多型のタイピングに1反応を行うだけでよいので、用いる試薬量も少なくて済む。   Since Tm analysis is completed in tens of seconds, the time required for detection can be greatly reduced. According to a preferred embodiment of the present invention that combines nucleic acid amplification and Tm analysis in the presence of a probe, it is only necessary to analyze the Tm of the probe after amplification of the nucleic acid, so there is no need to handle the amplification product after the reaction is complete. Therefore, there is no worry of contamination by amplification products. Furthermore, since it can be detected by the same equipment as that required for amplification, it is not necessary to move the container. Therefore, automation is also easy. In addition, since only one reaction needs to be performed for typing one single nucleotide polymorphism, the amount of reagent used can be reduced.

<1>本発明プローブおよび本発明検出方法
本発明プローブは、末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブであって、下記(a)〜(c)のいずれかを満たすことを特徴とする。
(a)配列番号2に示す塩基配列において塩基番号181から始まる6〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(b)配列番号2に示す塩基配列において塩基番号176から始まる11〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
(c)配列番号2に示す塩基配列において塩基番号168から始まる19〜50塩基長の塩基配列に相補的な配列を有し、3’末端が蛍光色素で標識されている。
<1> Probe of the Present Invention and Detection Method of the Present Invention The probe of the present invention is a nucleic acid probe whose end is labeled with a fluorescent dye and the fluorescence of the fluorescent dye decreases when hybridized, and includes the following (a) to (c) Any one of the above is satisfied.
(a) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 6 to 50 bases starting from base number 181 and the 3 ′ end is labeled with a fluorescent dye.
(b) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 11 to 50 bases starting from base number 176, and the 3 'end is labeled with a fluorescent dye.
(c) The base sequence shown in SEQ ID NO: 2 has a sequence complementary to a base sequence having a length of 19 to 50 bases starting from base number 168, and the 3 'end is labeled with a fluorescent dye.

本明細書において、相補的な塩基配列とは、対象の塩基配列の全長に対して相補的であることを意味する。   In this specification, a complementary base sequence means that it is complementary to the full length of the target base sequence.

本発明プローブは、配列番号1に示す塩基配列(A719G変異における野生型(正常型)の塩基を有する配列)または配列番号2に示す塩基配列(A719G変異における変異型の塩基を有する配列)において上記(a)〜(c)に特定された配列を有する他は、特許文献1に記載された消光プローブと同様でよい。本発明に使用される消光プローブの塩基配列の例としては、配列番号5〜7のいずれかに示すものが挙げられる。蛍光色素としては、特許文献1に記載されたものが使用できるが、具体例としては、FAM(商標)、TAMRA(商標)、BODIPY(商標) FL等が挙げられる。蛍光色素のオリゴヌクレオチドへの結合方法は、通常の方法、例えば特許文献1に記載の方法に従って行うことができる。   The probe of the present invention is the above in the nucleotide sequence shown in SEQ ID NO: 1 (sequence having a wild type (normal type) base in A719G mutation) or the nucleotide sequence shown in SEQ ID NO: 2 (sequence having a mutant type base in A719G mutation). Other than having the sequences specified in (a) to (c), it may be the same as the quenching probe described in Patent Document 1. Examples of the base sequence of the quenching probe used in the present invention include those shown in any of SEQ ID NOs: 5 to 7. As the fluorescent dye, those described in Patent Document 1 can be used, and specific examples include FAM (trademark), TAMRA (trademark), BODIPY (trademark) FL, and the like. The method for binding the fluorescent dye to the oligonucleotide can be performed according to a conventional method, for example, the method described in Patent Document 1.

本発明検出方法は、一塩基多型の部位を有する核酸について、蛍光色素で標識された核酸プローブを用いて、蛍光色素の蛍光を測定することにより融解曲線分析を行い、融解曲線分析の結果に基づいて変異を検出する方法であって、一塩基多型は、A719G変異であり、核酸プローブは本発明プローブであることを特徴とする。   In the detection method of the present invention, a melting curve analysis is performed on a nucleic acid having a single nucleotide polymorphism site by measuring the fluorescence of the fluorescent dye using a nucleic acid probe labeled with the fluorescent dye. A method for detecting a mutation based on the single nucleotide polymorphism is an A719G mutation, and the nucleic acid probe is a probe of the present invention.

本発明検出方法は、A719G変異を含む領域を増幅すること、および、本発明プローブを用いることの他は、通常の核酸増幅および融解曲線分析(Tm解析)の方法に従って行うことができる。   The detection method of the present invention can be carried out according to the usual methods of nucleic acid amplification and melting curve analysis (Tm analysis) other than amplifying a region containing the A719G mutation and using the probe of the present invention.

核酸増幅の方法としては、ポリメラーゼを用いる方法が好ましく、その例としては、PCR、ICAN、LAMP等が挙げられる。ポリメラーゼを用いる方法により増幅する場合は、本発明プローブの存在下で増幅を行うことが好ましい。用いるプローブに応じて、増幅の反応条件等を調整することは当業者であれば容易である。これにより、核酸の増幅後にプローブのTmを解析するだけなので、反応終了後増幅産物を取り扱う必要がない。よって、増幅産物による汚染の心配がない。また、増幅に必要な機器と同じ機器で検出することが可能なので、容器を移動する必要すらない。よって、自動化も容易である。   As a method for nucleic acid amplification, a method using a polymerase is preferred, and examples thereof include PCR, ICAN, LAMP and the like. When amplification is performed by a method using a polymerase, amplification is preferably performed in the presence of the probe of the present invention. It is easy for those skilled in the art to adjust the amplification reaction conditions and the like according to the probe used. As a result, only the Tm of the probe is analyzed after amplification of the nucleic acid, so that it is not necessary to handle the amplification product after the reaction is completed. Therefore, there is no worry of contamination by amplification products. Moreover, since it can detect with the same apparatus as an apparatus required for amplification, it is not necessary to move a container. Therefore, automation is also easy.

以下、PCRを用いる場合を例として、さらに説明する。PCRに用いるプライマー対は、本発明プローブがハイブリダイゼーションできる領域が増幅されるようにする他は、通常のPCRにおけるプライマー対の設定方法と同様にして設定することができる。プライマーの長さおよびTmは、通常には、12mer〜40merで40〜70℃、好ましくは16mer〜30merで55〜60℃である。プライマー対の各プライマーの長さは同一でなくてもよいが、両プライマーのTmはほぼ同一(通常には、相違が2℃以内)であることが好ましい。なお、Tm値は最近接塩基対(Nearest Neighbor)法により算出した値である。プライマー対の例としては、配列番号3および4に示す塩基配列を有するプライマーからなるものが挙げられる。   Hereinafter, the case where PCR is used will be further described as an example. The primer pair used for PCR can be set in the same manner as the primer pair setting method in ordinary PCR, except that the region where the probe of the present invention can hybridize is amplified. The length and Tm of the primer are usually 12 to 40 mer and 40 to 70 ° C., preferably 16 to 30 mer and 55 to 60 ° C. The length of each primer in the primer pair may not be the same, but the Tm of both primers is preferably substantially the same (usually, the difference is within 2 ° C.). The Tm value is a value calculated by the nearest base pair (Nearest Neighbor) method. Examples of primer pairs include those consisting of primers having the base sequences shown in SEQ ID NOs: 3 and 4.

PCRは、本発明で使用される本発明プローブの存在下で行うことが好ましい。これにより、増幅反応終了後に増幅産物を取り扱う操作を行うことなくTm解析を行うことができる。用いるプローブに応じて、プライマーのTmやPCRの反応条件を調整することは当業者であれば容易である。   PCR is preferably performed in the presence of the probe of the present invention used in the present invention. Thus, Tm analysis can be performed without performing an operation for handling the amplification product after the amplification reaction is completed. It is easy for those skilled in the art to adjust the Tm of the primer and the PCR reaction conditions according to the probe to be used.

代表的なPCR反応液の組成を挙げれば、以下の通りである。   A typical PCR reaction solution composition is as follows.

Figure 0004454377
Figure 0004454377

また、代表的な温度サイクルを挙げれば、以下の通りであり、この温度サイクルを通常25〜40回繰り返す。
(1) 変性、90〜98℃、1〜60秒
(2) アニーリング、60〜70℃、10〜60秒
(3) 伸長、60〜75℃、10〜180秒
Moreover, if a typical temperature cycle is mentioned, it will be as follows and this temperature cycle will be repeated 25-40 times normally.
(1) Denaturation, 90-98 ° C, 1-60 seconds
(2) Annealing, 60-70 ° C, 10-60 seconds
(3) Elongation, 60-75 ° C, 10-180 seconds

アニーリングおよび伸長を一ステップで行う場合には、60〜70℃、10〜180秒の条件が挙げられる。   When annealing and elongation are performed in one step, the conditions are 60 to 70 ° C. and 10 to 180 seconds.

Tm解析は、本発明プローブの蛍光色素の蛍光を測定する他は通常の方法に従って行うことができる。蛍光の測定は、蛍光色素に応じた波長の励起光を用い発光波長の光を測定す
ることに行うことができる。Tm解析における昇温速度は、通常には、0.1〜1℃/秒である。Tm解析を行うときの反応液の組成は、プローブとその塩基配列に相補的な配列を有する核酸とのハイブリダイゼーションが可能であれば特に制限されないが、通常には、一価の陽イオン濃度が1.5〜5 mM、pHが7〜9である。PCR等のDNAポリメラーゼを用いる増幅方法の反応液は、通常、この条件を満たすので、増幅後の反応液をそのままTm解析に用いることができる。
The Tm analysis can be performed according to a usual method except that the fluorescence of the fluorescent dye of the probe of the present invention is measured. The fluorescence can be measured by measuring light having an emission wavelength using excitation light having a wavelength corresponding to the fluorescent dye. The rate of temperature increase in Tm analysis is usually 0.1-1 ° C./second. The composition of the reaction solution for performing Tm analysis is not particularly limited as long as hybridization between the probe and a nucleic acid having a sequence complementary to the base sequence is possible, but usually the monovalent cation concentration is 1.5-5 mM, pH is 7-9. Since the reaction solution of the amplification method using DNA polymerase such as PCR normally satisfies this condition, the amplified reaction solution can be used as it is for Tm analysis.

Tm解析の結果に基づくA719G変異の検出は通常の方法に従って行うことができる。本発明における検出とは、変異の有無の検出の他、変異型DNAの定量、正常型DNAと変異型DNAの割合の測定も包含する。   Detection of the A719G mutation based on the result of Tm analysis can be performed according to a usual method. The detection in the present invention includes not only detection of the presence or absence of mutation, but also quantification of mutant DNA and measurement of the ratio of normal DNA to mutant DNA.

<2>本発明キット
本発明キットは、本発明の検出方法に用いるためのキットである。このキットは、末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブ(消光プローブ)であって、上記(a)〜(b)のいずれかを満たす核酸プローブを含むことを特徴とする。
<2> Kit of the Present Invention The kit of the present invention is a kit for use in the detection method of the present invention. This kit is a nucleic acid probe (quenching probe) whose end is labeled with a fluorescent dye and the fluorescence of the fluorescent dye decreases when it hybridizes, and a nucleic acid probe that satisfies any of the above (a) to (b) It is characterized by including.

消光プローブについては、本発明プローブに関し、上記に説明した通りである。   The quenching probe is as described above for the probe of the present invention.

本発明検出キットは、消光プローブの他に、本発明の検出方法における核酸増幅を行うのに必要とされる試薬類、特にDNAポリメラーゼを用いる増幅のためのプライマーをさらに含んでいてもよい。   In addition to the quenching probe, the detection kit of the present invention may further contain reagents necessary for performing nucleic acid amplification in the detection method of the present invention, particularly primers for amplification using DNA polymerase.

本発明検出キットにおいて消光プローブ、プライマーおよびその他の試薬類は、別個に収容されていてもよいし、それらの一部が混合物とされていてもよい。   In the detection kit of the present invention, the quenching probe, primer and other reagents may be separately accommodated, or a part of them may be a mixture.

以下に、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

TPMT遺伝子の719位のA→G変異(A719G変異)の部位を含む塩基配列(配列番号1(野生型)又は配列番号2(変異型)、塩基番号186がTPMT遺伝子の719位に相当)に基づき、A719G変異を含む部分を増幅できるように表2に示すプライマーを設計した。表2中、位置は、配列番号1または2に示す塩基配列における塩基番号を示す。   A base sequence (SEQ ID NO: 1 (wild type) or SEQ ID NO: 2 (mutant), base number 186 corresponds to position 719 of the TPMT gene) containing the site of the A → G mutation (A719G mutation) at position 719 of the TPMT gene Based on this, the primers shown in Table 2 were designed so that the portion containing the A719G mutation could be amplified. In Table 2, the position indicates the base number in the base sequence shown in SEQ ID NO: 1 or 2.

Figure 0004454377
Figure 0004454377

次に、表3に示す、末端部にCを有するプローブを設計した。表3中、位置は、配列番号1または2に示す塩基配列における塩基番号を示す。また、塩基配列中の大文字は、A719G変異の部位を示し、3'末端のPは、リン酸化されていることを示す。BODIPY FL及びTAMRAによる標識は、常法に従って行った。   Next, probes having C at the end shown in Table 3 were designed. In Table 3, the position indicates the base number in the base sequence shown in SEQ ID NO: 1 or 2. The capital letters in the base sequence indicate the A719G mutation site, and P at the 3 ′ end indicates phosphorylation. Labeling with BODIPY FL and TAMRA was performed according to a conventional method.

Figure 0004454377
Figure 0004454377

精製ヒトゲノム(GFX Genomic Blood DNA Purification Kitダイレクト法にて全血から抽出)をサンプルとして、Smart Cycler System(Cephied)を用い、以下の条件でPCRおよびTm解析を行った。Tm解析における励起波長および検出波長は、それぞれ450〜495 nmおよび505〜537 nm(BODIPY FL)、または、それぞれ527〜555 nmおよび565〜605 nm(TAMRA)であった。   Using purified human genome (extracted from whole blood by GFX Genomic Blood DNA Purification Kit direct method) as a sample, PCR and Tm analysis were performed using Smart Cycler System (Cephied) under the following conditions. The excitation and detection wavelengths in Tm analysis were 450-495 nm and 505-537 nm (BODIPY FL), respectively, or 527-555 nm and 565-605 nm (TAMRA), respectively.

Figure 0004454377
Figure 0004454377

Figure 0004454377
Figure 0004454377

各プローブを用いてPCRおよびTm解析を行った結果、プローブ3T-mt-R1-25、3T-mt-R2-27、3FL-mt-R2-27および3T-mt-R3-30を用いたとき、Tm解析で解析の可能な蛍光強度の変化が認められた。なお、各プローブのA719G変異を含む塩基配列に対する配置を図1に示す。また、Tm解析で解析の可能な蛍光強度の変化が認められなかったプローブのA719G変異を含む塩基配列に対する配置を図2に示す。図1および2中、野生型配列および変異型配列は、それぞれ配列番号1および2の塩基配列の塩基番号166〜205の塩基配列である。また、図中、Fは蛍光色素を示す。プローブがTm解析で使用できるかどうかは、蛍光色素を結合させたCの位置に依存すると考えられ、プローブの長さは、多型部位を含む限り、あまり重要でないと考えられる。   As a result of PCR and Tm analysis using each probe, when using probes 3T-mt-R1-25, 3T-mt-R2-27, 3FL-mt-R2-27 and 3T-mt-R3-30 Changes in fluorescence intensity that can be analyzed by Tm analysis were observed. In addition, the arrangement | positioning with respect to the base sequence containing the A719G mutation of each probe is shown in FIG. In addition, FIG. 2 shows the arrangement of the probe with no change in fluorescence intensity that can be analyzed by Tm analysis with respect to the base sequence containing the A719G mutation. 1 and 2, the wild type sequence and the mutant type sequence are the base sequences of base numbers 166 to 205 of the base sequences of SEQ ID NOs: 1 and 2, respectively. In the figure, F represents a fluorescent dye. Whether the probe can be used in Tm analysis is considered to depend on the position of C to which the fluorescent dye is bound, and the length of the probe is considered to be less important as long as the polymorphic site is included.

サンプルとして、正常型配列を有するDNA(wt/wt)ならびに変異型配列および正常型配列の両方を有するDNA(wt/mt)を調製し、プローブ3FL-mt-R2-27を用いてタイピングを行った。結果を図3に示す。また、血液の量を変えて(0.01〜1μl)定量を行った結果を図4に示す。図3及び4において、NCは対照である。これらの結果から、この定量方法は再現性がよく、感度が高いことが分かる。その他の、Tm解析で解析の可能な蛍光強度の変化が認められたプローブを用いた場合も同様の結果が得られた。   Prepare DNA (wt / wt) with normal sequence and DNA with both mutant and normal sequence (wt / mt) as samples, and perform typing using probe 3FL-mt-R2-27 It was. The results are shown in FIG. Moreover, the result of having carried out fixed_quantity | quantitative_assay by changing the quantity of blood (0.01-1 microliter) is shown in FIG. In FIGS. 3 and 4, NC is the control. From these results, it can be seen that this quantification method has good reproducibility and high sensitivity. Similar results were obtained with other probes that showed a change in fluorescence intensity that could be analyzed by Tm analysis.

なお、図3及び4において縦軸は、蛍光強度の一次導関数の逆符号の値(-dF/dt)、横軸は温度(℃)である。   3 and 4, the vertical axis represents the value of the inverse sign of the first derivative of fluorescence intensity (-dF / dt), and the horizontal axis represents temperature (° C).

変異の識別可能な消光プローブの位置を示す。The positions of quenching probes that can identify mutations are indicated. 変異の識別不可能な消光プローブの位置を示す。The position of the quenching probe indistinguishable from the mutation is indicated. 実施例1の方法の再現性を示す。The reproducibility of the method of Example 1 is shown. 実施例1の方法のゲノムDNAの絶対量に関する感度を示す。The sensitivity regarding the absolute amount of genomic DNA of the method of Example 1 is shown.

Claims (7)

末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブであって、配列番号5〜7のいずれかに示す塩基配列からなり、3'末端が蛍光色素で標識されている核酸プローブ A nucleic acid probe whose end is labeled with a fluorescent dye and whose fluorescence decreases when hybridized, comprising a base sequence shown in any of SEQ ID NOs: 5 to 7, and its 3 ′ end is labeled with a fluorescent dye and a nucleic acid probe. 一塩基多型の部位を有する核酸について、蛍光色素で標識された核酸プローブを用いて、蛍光色素の蛍光を測定することにより融解曲線分析を行い、融解曲線分析の結果に基づいて変異を検出する方法であって、一塩基多型は、チオプリンメチルトランスフェラーゼ遺伝子の719位の変異であり、核酸プローブは、請求項に記載の核酸プローブである前記方法。 Using a nucleic acid probe labeled with a fluorescent dye, nucleic acid having a single nucleotide polymorphism site is used to perform melting curve analysis by measuring the fluorescence of the fluorescent dye, and to detect mutations based on the results of the melting curve analysis The method according to claim 1 , wherein the single nucleotide polymorphism is a mutation at position 719 of the thiopurine methyltransferase gene, and the nucleic acid probe is the nucleic acid probe according to claim 1 . 試料に含まれる核酸における一塩基多型の部位を含む領域を増幅して一塩基多型を有する核酸を得ることを含む請求項記載の方法。 The method according to claim 2 , comprising amplifying a region containing a single nucleotide polymorphism site in a nucleic acid contained in a sample to obtain a nucleic acid having a single nucleotide polymorphism. 増幅をDNAポリメラーゼを用いる方法により行う請求項記載の方法。 The method according to claim 3, wherein the amplification is performed by a method using a DNA polymerase. 増幅を核酸プローブの存在下で行う請求項記載の方法。 The method according to claim 4 , wherein the amplification is performed in the presence of a nucleic acid probe. 末端が蛍光色素で標識され、ハイブリダイゼーションしたときに蛍光色素の蛍光が減少する核酸プローブであって、配列番号5〜7のいずれかに示す塩基配列からなり、3'末端が蛍光色素で標識されている核酸プローブを含む、請求項記載の方法のためのキット A nucleic acid probe whose end is labeled with a fluorescent dye and whose fluorescence decreases when hybridized, comprising a base sequence shown in any of SEQ ID NOs: 5 to 7, and its 3 ′ end is labeled with a fluorescent dye and comprising a nucleic acid probe is a kit for the method of claim 2 wherein. チオプリンメチルトランスフェラーゼ遺伝子の719位の変異を含む領域を、DNAポリメラーゼを用いる方法で増幅するためのプライマーをさらに含む請求項記載のキット。 The kit according to claim 6 , further comprising a primer for amplifying a region containing a mutation at position 719 of the thiopurine methyltransferase gene by a method using a DNA polymerase.
JP2004126476A 2004-04-22 2004-04-22 Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor Expired - Fee Related JP4454377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126476A JP4454377B2 (en) 2004-04-22 2004-04-22 Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126476A JP4454377B2 (en) 2004-04-22 2004-04-22 Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor

Publications (2)

Publication Number Publication Date
JP2005304394A JP2005304394A (en) 2005-11-04
JP4454377B2 true JP4454377B2 (en) 2010-04-21

Family

ID=35433870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126476A Expired - Fee Related JP4454377B2 (en) 2004-04-22 2004-04-22 Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor

Country Status (1)

Country Link
JP (1) JP4454377B2 (en)

Also Published As

Publication number Publication date
JP2005304394A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4505838B2 (en) Method for detecting NAT2 * 6 mutation and nucleic acid probe and kit therefor
JP4454366B2 (en) MDR1 gene mutation detection method and nucleic acid probe and kit therefor
JP5900908B2 (en) Single nucleotide repeat polymorphism analysis method and single nucleotide polymorphism analysis method
JP5319148B2 (en) Method and array for detecting mutations in target nucleic acid
JP4437207B2 (en) CYP2D6 mutation detection method and nucleic acid probe and kit therefor
JP4336877B2 (en) Method for detecting β3 adrenergic receptor mutant gene and nucleic acid probe and kit therefor
JP4505839B2 (en) CYP2D6 * 4 mutation detection method and nucleic acid probe and kit therefor
JP2005261354A (en) Fluorescence detection method for nucleic acid
JP5047448B2 (en) CYP2C19 mutation detection method and nucleic acid probe therefor
Pocsai et al. Rapid genotyping of paraoxonase 55 and 192 mutations by melting point analysis using real time PCR technology
JP4454377B2 (en) Method for detecting mutation of thiopurine methyltransferase and nucleic acid probe and kit therefor
USRE44894E1 (en) Method of detecting or quantitatively determining mitochondrial DNA 3243 variation, and kit therefor
JP5047450B2 (en) CYP2C19 * 3 allele detection method and nucleic acid probe therefor
JP4437206B2 (en) CYP2C9 mutation detection method and nucleic acid probe and kit therefor
JP4517175B2 (en) NAT2 * 7 mutation detection method and nucleic acid probe and kit therefor
JP4454249B2 (en) Method for detecting pancreatic islet amyloid protein mutant gene and nucleic acid probe and kit therefor
JP4517176B2 (en) Method for detecting NAT2 * 5 mutation and nucleic acid probe and kit therefor
JP4454365B2 (en) CYP2D6 * 2 mutation detection method and nucleic acid probe and kit therefor
JP2005328758A (en) Method for nucleic acid amplification and method for analyzing single nucleotide polymorphism utilizing the same
JP2005323565A (en) Method for detecting presence of monobasic mutational polymorphism in target dna sequence, and kit
JP4276874B2 (en) Method for detecting mitochondrial DNA 3243 mutation and nucleic acid probe and kit therefor
WO2006070667A1 (en) Method of detecting mutation in egfr gene and detection kit
JP5641465B2 (en) Single nucleotide repeat polymorphism analysis method and single nucleotide polymorphism analysis method
CN110656183A (en) STR locus set for dogs and application
KR101596474B1 (en) Method for detecting a plurality of nucleotide polymorphisms at a single wavelength using a plurality of oligonucleotides modified with fluorescent dye having the same or close detection wavelength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees