JP4453270B2 - Small diameter drill for printed circuit board processing - Google Patents

Small diameter drill for printed circuit board processing Download PDF

Info

Publication number
JP4453270B2
JP4453270B2 JP2003116371A JP2003116371A JP4453270B2 JP 4453270 B2 JP4453270 B2 JP 4453270B2 JP 2003116371 A JP2003116371 A JP 2003116371A JP 2003116371 A JP2003116371 A JP 2003116371A JP 4453270 B2 JP4453270 B2 JP 4453270B2
Authority
JP
Japan
Prior art keywords
hard film
printed circuit
small
circuit board
diameter drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116371A
Other languages
Japanese (ja)
Other versions
JP2004322226A (en
Inventor
誠 瀬戸山
直也 大森
治世 福井
和弘 広瀬
吉生 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003116371A priority Critical patent/JP4453270B2/en
Publication of JP2004322226A publication Critical patent/JP2004322226A/en
Application granted granted Critical
Publication of JP4453270B2 publication Critical patent/JP4453270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板の穴あけ加工に用いる小径ドリルに関するものである。特に、耐摩耗性及び耐溶着性に優れ、長時間の使用に亘り、穴位置精度や穴内壁品位を維持することができるプリント基板加工用小径ドリルに関するものである。
【0002】
【従来の技術】
従来、プリント基板の穴あけ加工に、刃径が2.0mm以下程度の超硬合金製の小径ドリルが用いられている。プリント基板の穴あけ加工では、長時間の使用に亘り、穴内壁品位や穴位置精度が維持されることが重要であり、これら品位や位置精度の劣化により小径ドリルの寿命が決められることが多い。従来のプリント基板加工用小径ドリルでは、基材表面が硬質膜で被覆されていないものが多く使われているが、近年、長寿命化のために基材表面にダイヤモンド膜を被覆した超硬合金製ドリル(特許文献1参照)や、その他の硬質膜を被覆した超硬合金製ドリル(特許文献2参照)が使われている。
【0003】
【特許文献1】
特開平03-60907号公報(特許請求の範囲参照)
【特許文献2】
特公昭59-43246号公報(特許請求の範囲参照)
【0004】
【発明が解決しようとする課題】
近年、被削材であるプリント基板がより高強度になってきている。このような被削材の高強度化に伴い、これを加工するプリント基板加工用小径ドリルなどの工具の使用環境は、過酷になりつつあり、従来の工具では、寿命が十分であると言えなくなってきている。また、加工能率を向上するために、より速い回転速度、送り速度による高速・高能率加工も検討されており、このこともまた使用環境を過酷なものとしており、工具寿命のより延長化が望まれている。
【0005】
そこで、本発明の主目的は、耐摩耗性や耐溶着性を向上して、多くの加工穴に対して穴位置精度や穴内壁品位を維持することができるプリント基板加工用小径ドリルを提供することにある。
【0006】
【課題を解決するための手段】
本発明は、基材表面に被覆する硬質膜に特定の元素、具体的には、塩素を含有する層を具えることで上記の目的を達成する。
【0007】
即ち、本発明プリント基板加工用小径ドリルは、基材表面の切削に作用する部位に硬質膜を具える。前記基材のうち先端部は、超硬合金にて形成する。前記硬質膜は、周期律表IVa、Va、VIa族金属の窒化物、炭化物及び炭窒化物から選択される化合物からなる一層以上にて構成する。前記化合物からなる層には、塩素を含有する層を具える。そして、刃径をφ0.01mm以上3.0mm以下とする。
【0008】
穴位置精度や穴内壁品位は、プリント基板加工用小径ドリルの工具寿命を左右する。従って、プリント基板加工用小径ドリルの工具寿命をより延長するには、長時間の使用に亘り、穴位置精度や穴内壁品位を維持できることが有用である。長時間の使用において穴位置精度や穴内壁品位を維持するためには、工具の刃先形状を維持するための耐摩耗性と、被削材の切り粉に対する耐溶着性とに優れていることが好適である。そこで、本発明者らが種々検討した結果、基材表面の切削に関与する部位に硬質膜を被覆すると共に、周期律表IVa、Va、VIa族の窒化物、炭化物及び炭窒化物から選択される化合物層で塩素を含有する層を硬質膜に具えることで、耐摩耗性や耐溶着性を向上し、多数の使用に亘り穴位置精度や穴内壁品位の維持が可能であることを見出した。本発明は、上記知見に基づき規定するものである。以下、本発明をより詳しく説明する。
【0009】
本発明において先端部を形成する基材材料は、硬度及び靭性、被削材との反応性の面を考慮して、超硬合金を用いる。その他の部分を形成する基材材料は、先端部と同一組成の超硬合金やハイス鋼などが挙げられる。従って、基材全体を同一材料からなる超硬合金で形成してもよいし、先端部を超硬合金で形成し、それ以外の部分をハイス鋼などで形成してもよい。なお、先端部とは、切れ刃、逃げ面、すくい面及びチゼルエッジによって構成される部分で、実際の切削作用をする部分である。
【0010】
超硬合金としては、例えば、以下に示すものが挙げられる。
▲1▼炭化タングステン(WC):70〜99重量%と、1種以上の鉄系金属からなる結合相:1〜30重量%と、不可避的不純物とからなるもの。
▲2▼WC:60〜98.99重量%と、クロム(Cr)、Crの炭化物、バナジウム(V)及びVの炭化物から選ばれる少なくとも1種:0.01〜10重量%、1種以上の鉄系金属からなる結合相:1〜30重量%と、不可避的不純物とからなるもの。
【0011】
なお、上記の超硬合金組成範囲は、一般的に工業的に製造されている範囲を記述したものである。この範囲を逸脱しても本発明の効果を得ることができる。
【0012】
上記基材表面には、後述する硬質膜を設ける。硬質膜を設ける部分は、基材表面の切削に関与する部位とする。具体的には、実際の切削にかかわる先端部の表面、切り粉が接触する溝部(フルート部)の表面に設けることである。より具体的には、図1に示すように刃径をdとするとき、少なくとも先端1から長さdの範囲内や、少なくとも先端1から長さ5dの範囲内の溝部2が挙げられる。もちろん、基材の全体、即ち、先端から溝部が形成されている、通常ボディ3と呼ばれる部分、及びドリルが取り付けられる駆動装置に装着されるシャンク4と呼ばれる部分に亘り硬質膜を設けてもよいし、ボディ3のみに設けてもよい。硬質膜を設けない部分は、膜形成時に、適宜マスキングしたり、一旦膜を形成した後、研磨などにより膜を取り除くとよい。
【0013】
本発明において硬質膜は、周期律表IVa、Va、VIa族金属の窒化物、炭化物及び炭窒化物から選択される化合物にて形成する。このような硬質膜は、単層でもよいし、複数層から構成してもよい。
【0014】
周期律表IVa、Va、VIa族金属の窒化物、炭化物及び炭窒化物から選択される化合物にて形成される薄膜は、ビッカース硬度Hvが2000〜3000程度と非常に高硬度であることからドリルの刃先の耐摩耗性を向上させることができる。特に、周期律表IVa、Va、VIa族金属の炭化物層又は炭窒化物層は、上記のように高硬度であることから化合物層自身が摩耗しにくいことに加えて、プリント基板を構成するガラス繊維と擦り合わせた際の摩擦係数が非常に低く、溶着が少ないため、更に望ましい。
【0015】
また、周期律表IVa、Va、VIa族金属の炭窒化物にて形成される薄膜は、膜中の炭素含有量及び窒素含有量の総量に対する炭素含有量の割合(原子%)が高いほど、耐摩耗性、耐溶着性に優れる傾向にある。具体的には、炭素及び窒素の総量に対する炭素量の割合が0.3以上1.0以下、特に、0.5以上1.0以下であることが好ましい。しかし、炭素の割合が多くなりすぎると、膜の靭性が劣化し、剥離し易くなる恐れがある。そこで、上記割合は、0.3以上0.7以下、特に、0.5以上0.7以下であることがより好ましい。
【0016】
そして、本発明では、上記周期律表IVa、Va、VIaの窒化物、炭化物及び炭窒化物から選択される化合物層のうち、少なくとも一層が塩素を含む層とする。本発明者らが検討した結果、塩素を含有した上記化合物層を具えることで、プリント基板を構成するガラス繊維以外の材料、例えば、エポキシなどの樹脂、銅やアルミニウムなどの軟質金属との耐溶着性を格段に向上することができるとの知見を得た。これは、塩素の含有により、上記化合物層の化学的安定性が高まったためと推測される。また、上記化合物層に塩素を含有させると、ガラス繊維との摩擦係数が小さくなるとの知見を得た。これらの知見から、本発明では、塩素を含有させた上記化合物層を基材表面に被覆し、摩耗を低減すると共に、耐溶着性を向上させ、穴位置精度、穴内壁品位、穴径精度などのばらつきを小さくすることを実現する。従って、本発明小径ドリルは、長時間の使用に亘り、穴位置精度や穴内壁品位を維持し、工具寿命を大幅に延長することができる。
【0017】
上記塩素を含有する化合物層中の塩素の濃度は、低すぎると耐溶着性の向上効果が得られにくく、逆に高すぎると周期律表IVa、Va、VIa族金属の窒化物、炭化物及び炭窒化物から選択される化合物層の特性、例えば、硬度などを大きく劣化させる恐れがある。そのため、塩素の濃度、即ち、硬質膜全体に対する原子量の割合(原子%)は、0.0001原子%以上10原子%以下が望ましく、特に、0.001原子%以上1原子%以下であることが望ましい。このような塩素濃度の化合物層は、単層でもよいし、複数層具えていてもよい。塩素を含有する化合物層を複数層具える場合、総濃度は、上記の濃度を満たすことが好ましい。塩素の濃度は、種々の方法で測定することができる。測定法として、例えば、XPS法(X線光電子分光法)、SIMS法(二次イオン質量分析法)、ICP法(誘導結合プラズマ質量分析法)などが挙げられる。
【0018】
本発明において硬質膜は、物理的蒸着法(PVD)、化学的蒸着法(CVD)に代表される気相合成法により形成するとよい。硬質膜を複数層とする場合、少なくとも一層は、気相合成法により形成することが好ましい。特に、塩素を含有した上記化合物層の形成は、例えば、塩素ガス、気体の塩化物及び気化させた塩化物の少なくとも一種を原料に用いて、CVD、特に熱CVD法にて行うことが挙げられる。このように上記原料を用いて膜形成の際に塩素を膜中に含有させることで、化合物層の特性をほとんど劣化させることない。
【0019】
塩素の濃度の制御は、成膜の際の基材温度、原料とするガスの流量比(単位時間当たりに炉内に導入するガスの容積(リットル)比)を調整することで行うことができる。基材温度は、500℃以上980℃以下が望ましい。特に、700℃以上890℃以下であることが好適である。成膜の際における基材温度は、使用する原料ガスの種類、蒸着炉の特性などの諸条件で最適値を持つが、980℃を超える温度で形成すると、膜中に塩素がほとんど含有されなくなり、500℃未満で形成すると、塩素は含有されるが、脆く密着力が低い膜しか得られない。ガスの流量比は、用いる周期律表IVa、Va、VIa族金属種で変化させる。例えば、TiCl4、N2、H2を用いてTiN層を形成する場合は、TiCl4:0.5〜5%、N2:20〜50%、H2:残り、より好ましくは、TiCl4:0.5〜2%、N2:20〜50%、H2:残りとすることが挙げられる。
【0020】
硬質膜は、薄すぎると、長時間の使用に亘り、十分な耐摩耗性や耐溶着性を維持しにくく、逆に厚すぎると剥離し易くなったり、工具の切れ味を劣化させる恐れがある。そこで、硬質膜は、0.05μm以上10μm以下、特に、0.1μm以上1μm以下であることが好ましい。また、硬質膜を複数層にて構成する場合、硬質膜全体として望ましい膜厚は、10μm以下である。また、膜厚は、成膜の際の保持時間を変化させることで、適宜変化させることができる。
【0021】
更に、硬質膜が高い密着性を確保しつつ、耐摩耗性と耐溶着性との両立を図るには、基材表面直上、又は基材表面側に密着性が高い中間層を具え、この中間層の外側に耐摩耗性及び耐溶着性に優れる外層を具えることが好ましい。このような中間層として、TiN層、外層として、TiCN層が挙げられる。そして、TiCN層には、耐摩耗性及び耐溶着性を向上するために、塩素が含まれることが好ましい。もちろん、TiN層及びTiCN層の双方に塩素が含まれていてもよい。このような硬質膜は、高い密着性が要求される部分、例えば、刃先先端の摩耗の激しい部分、溝部内の切り粉が流れる部分などに設けることが好ましい。上記TiN層は、厚さが0.01μm以上1.0μm以下であることが好ましい。0.01μm未満であると、密着性を向上させる効果が少ない。一方、TiC層は、TiN層よりも高硬度であるため、耐摩耗性を向上させる場合、硬質膜におけるTiC層の割合がTiN層の割合よりも高いことが好ましい。従って、TiN層が1.0μm超であると、硬質膜におけるTiN層の割合が増加するため、耐摩耗性を劣化させる恐れがある。
【0022】
基材表面に被覆する硬質膜の表面は、被削材の摺動性を高めることができるように平滑であることが望ましい。特に、刃径をdとするとき、少なくとも先端から長さdの範囲内や、少なくとも先端から長さ5dの範囲内における溝部に硬質膜を具えておき、上記範囲内の硬質膜表面が平滑であることが望ましい。具体的には、表面粗さがRz=0.35μm以下であることが好ましい。硬質膜表面は、平滑であればあるほど望ましいが、Rz=0.01μm未満にするのは、現実的に生産上の困難が生じたり、製造できても非常に高価なものとなることがある。従って、生産性、経済性を考慮するとRz=0.01μm以上とするとよい。上記表面粗さに制御する方法として、例えば、成膜条件を制御することが挙げられる。具体的には、例えば、TiCl4、N2の濃度を下げたり、基材温度を低めにすることが挙げられる。
【0023】
上記表面粗さの測定は、触針式の表面形状測定、レーザー顕微鏡を用いた方法、走査型電子顕微鏡を用いた方法、鏡面研磨した断面から表面形状を顕微鏡測定して算出する方法などの各種の方法が適用できる。
【0024】
硬質膜の表面を平滑にするには、上記のように膜の表面そのものを平滑にさせる、即ち、表面粗さを小さくすることが重要であるが、質も考慮することが望ましい。例えば、硬質膜の膜厚をtとする場合、膜厚tと同程度超の高さを有する突起が膜表面にあると、この突起が溶着の起点となり、硬質膜の剥離その他折損や異常摩耗の起点となり易い。従って、硬質膜の表面に突起を有する場合、この突起の高さは、t以下とすることが好ましい。また、突起の直径がt超である場合も、同様に溶着、折損や異常摩耗の起点となり易い。従って、突起の直径もt以下とすることが好ましい。即ち、硬質膜の表面に突起を有する場合、この突起の直径及び高さの少なくとも一方は、t以下とすることが好ましい。突起の高さや直径を小さくするには、適宜ラッピング処理を行うことが挙げられる。より具体的には、例えば、バフ、ブラシ、バレルや弾性砥石などによる研磨処理、マイクロブラスト、イオンビーム照射による表面改質処理を適用することが挙げられる。このように硬質膜の表面粗さの制御だけでなく、必要な箇所にラッピング処理を施すことで、硬質膜の表面をより平滑にすることができ、穴あけ加工の際の摩擦係数を低減することができる。上記突起の高さ及び直径は、電子顕微鏡や表面粗さ計などを用いて測定することができる。
【0025】
本発明小径ドリルは、プリント基板加工に用いるものとする。そして、この加工に適した大きさとして、刃径を0.01mm以上3.0mm以下に規定する。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例1)
刃径φ0.3mmの超硬合金製小径ドリル基材を用意し、この基材の表面全体に表1に示す硬質膜を形成して、被覆膜を具える小径ドリルを作製した。
【0027】
小径ドリル基材は、以下のようにして得た。本例では、基材全体の組成を同一とした。具体的には、重量%で、WC:93.0%、Co:6.0%、Cr3C2:0.5%、VC:0.5%及び不可避的不純物からなる材料粉末を10Hr湿式混合した後、成形型に充填し、1,000kg/cm2の圧力にてプレス成形し、真空中で4.0℃/minの昇温速度で1400℃まで昇温し、真空中でその温度を60分間保持してから、真空中で冷却を行った。得られた合金に対し、ダイヤモンド砥石を用いて刃径φ0.3mmのドリル基材を製造した。このようなドリル基材を複数用意した。
【0028】
試料No.1-1に示す被覆膜を具える小径ドリルは、以下のようにして得た。上記ドリル基材を通常の熱CVD炉内にセットし、十分に真空引きしてから、炉内の温度を調整し、基材温度を900℃として加熱・保持した後、TiCl4、N2、H2をそれぞれ流量比4%、35%、61%で炉内に導入し、炉内圧力を30kPaとして1時間保持した。そして、TiCl4、N2、H2ガスを排気してから、炉内で十分に冷却した後、ドリルを取り出した。上記の手順により、塩素を含むTiN層を具える小径ドリルが得られた。
【0029】
試料No.1-2に示す被覆膜を具える小径ドリルは、基材温度を1050℃とした以外は上記試料No.1-1と同様の手順で、基材表面にTiN層をまず形成した後、引き続き、基材温度:850℃とし、TiCl4、CH3CN、N2、H2をそれぞれ流量比2%、1%、20%、77%で炉内に導入し、炉内圧力を10kPaとして5時間保持した。そして、上記ガスを排気した後、炉内で十分に冷却してからドリルを取り出し、塩素を含まないTiN層及び塩素を含むTiCN層を具える小径ドリルが得られた。
【0030】
試料No.1-3〜1-11は、試料No.1-2と基材温度及びガスの流量比、保持時間を変化させることで、塩素の濃度、硬質膜の膜厚を変化させた。
【0031】
試料No.1-12に示す被覆膜を具える小径ドリルは、まず、試料No.1-1と同様の手順で基材表面に塩素を含むTiN層を形成し、続いて、試料No.1-2と同様の手順で塩素を含むTiCN層を形成した。その後、引き続き、基材温度を820℃とし、TiCl4、C2H2、H2をそれぞれ流量比で3%、3%、94%として炉内に導入し、炉内圧力を10kPaとして3時間保持した。そして、同様に上記のガスを排気した後、炉内で十分に冷却してからドリルを取り出し、更に塩素を含むTiC層を具える小径ドリルが得られた。TiN層及びTiCN層の形成の際、基材温度及びガスの流量比、保持時間を変化させることで、塩素の濃度、硬質膜の膜厚を変化させた。
【0032】
試料No.1-13、1-14に示す被覆膜を具える小径ドリルは、試料No.1-12と同様の手順で硬質膜を形成して得た。そして、硬質膜の基材温度及びガス流量比、保持時間を変化させることで、塩素の濃度、硬質膜の膜厚を変化させた。
【0033】
試料No.1-15に示す被覆膜を具える小径ドリルは、以下のようにして得た。上記試料No.1-1〜1-14と同じ基材を準備し、同様の手順で被覆膜を形成した。具体的には、基材温度を1000℃とし、TiCl4、N2、H2をそれぞれ流量比2%、25%、73%で炉内に導入し、炉内圧力を20kPaとして2.5時間保持した後、上記ガスを排気して炉内で十分に冷却した後、取り出すことで、塩素を含まないTiN層を具える小径ドリルが得られた。
【0034】
試料No.1-16は、上記試料No.1-1〜1-15と同じ基材を準備し、硬質膜の形成を行わない基材のままの状態とした試料である。
【0035】
上記試料No.1-1〜1-15について、硬質膜を構成する各層の塩素の濃度は、SIMS法によって測定した。表1において、塩素濃度の欄に記載される「−」の記号は、SIMS法による検出限界以下であり、ほぼ0と見なせる。後述する実施例2の表6、実施例3の表8についても同様である。
【0036】
硬質膜に炭窒化物層を具える試料No.1-2〜1-14において、炭素含有量及び窒素含有量の総量に対する炭素含有量の割合(原子%)を求めた。この割合は、XPS法、又はSIMS法により測定した。また、試料No.1-1〜1-16において、基材と同様の組成からなる超硬合金製の平板状のテストピースを用意し、試料No.1-1〜1-15に対応するテストピースには、試料No.1-1〜1-15の硬質膜を形成した同じ炉内で同時に試料No.1-1〜1-15と同じ硬質膜を形成した。試料No.1-16に対応するテストピースには、硬質膜を形成しなかった。これらテストピースを用いて表面硬度、ガラスに対する摩擦係数を確認した。
【0037】
表面硬度は、ナノインデンターにより、摩擦係数は、ガラスピンをディスク材(テストピース)に押し付けて回転させることで測定するピンオンディスク試験により確認した。表1に表面硬度及び摩擦係数を示す。また、表2にピンオンディスク試験の測定条件を記す。
【0038】
【表1】

Figure 0004453270
【0039】
【表2】
Figure 0004453270
【0040】
表1及び2に示すように塩素を含む層を具える硬質膜を基材表面に設けた試料No.1-1〜1-14は、高硬度であると共に摩擦係数が小さいことがわかる。即ち、摩耗しにくく、加工の際、被削材の切り粉が滑り易いと推測される。
【0041】
(試験例1)
得られた試料No.1-1〜1-16のそれぞれについて、表3に示す条件によるプリント基板穴あけ加工を行い、工具寿命を評価した。寿命の判定は、以下のように行った。即ち、1000穴加工する毎に穴位置精度、穴内壁品位を判定し、規格以内にあるものは継続して加工を行い、規格外になったものを寿命と判定した。また、加工途中で折損した場合は、その時点で寿命と判定した。工具寿命の評価試験の結果を表4に示す。また、工具寿命の判定規格を表5に示す。
【0042】
【表3】
Figure 0004453270
【0043】
【表4】
Figure 0004453270
【0044】
【表5】
Figure 0004453270
【0045】
表4に示すように基材表面に硬質膜を具える試料No.1-1〜1-15は、硬質膜を具えていない試料No.1-16よりも工具寿命が長いことがわかる。特に、硬質膜に塩素を含有する層を具える試料No.1-1〜1-14は、塩素を含有する層を具えていない試料No.1-15と比較して、工具寿命がより長いことがわかる。従って、本発明は、従来よりも工具寿命を大きく向上できることが確認された。
【0046】
また、表1及び4から、硬質膜は、10μm以下である方がより長寿命であることがわかる。また、塩素の濃度は、1原子%以下である方がより長寿命であることがわかる。
【0047】
(実施例2)
刃径φ0.1mmの超硬合金製小径ドリル基材を用意し、この基材の表面全体に表6に示す硬質膜を形成して、硬質膜を具える小径ドリルを作製した。
【0048】
本例で用いた基材は、全体の組成を同一とした。具体的には、重量%でWC:90.0%、Co:10.0%及び不可避的不純物からなる材料粉末を用意し、実施例1と同様にして刃径φ0.1mmのドリル基材を複数製造した。
【0049】
試料No.2-1〜2-8は、実施例1の試料No.1-1と同様の手順で基材表面に硬質膜を形成した。具体的には、上記基材を用い、基材温度を750〜920℃とし、原料ガスを炉内に導入し、炉内圧力を5〜35kPaとして、1〜10時間保持した後、原料ガスを排気して炉内で十分に冷却した後、取り出して、塩素を含む化合物層を具える小径ドリルを得た。原料ガスには、表6に示す周期律表IVa、Va、VIa族金属の塩化物ガスを用いた。Wなどの塩化物ガスを得にくい材質に関しては、WF6などのフッ化物ガスを用い、塩素ガスを別途導入した。なお、基材温度、炉内圧力、保持時間は、上記の範囲において適宜選択して成膜した。
【0050】
試料No.2-9は、上記試料No.2-1〜2-8と同じ基材を準備し、実施例1の試料No.1-15と同様の手順で硬質膜を形成した。具体的には、基材温度を1000℃とし、TiCl4、N2、H2をそれぞれ流量比2%、25%、73%で炉内に導入し、炉内圧力を20kPaとして100分保持した後、上記ガスを排気して炉内で十分に冷却した後取り出し、塩素を含まないTiN層を具える小径ドリルを得た。試料No.2-10は、上記試料No.2-1〜2-8と同じ基材を準備し、硬質膜の形成を行わない基材のままの状態とした試料である。
【0051】
上記試料No.2-1〜2-10について、実施例1と同様に硬質膜を構成する各層の塩素の濃度は、SIMS法によって測定した。表6に塩素濃度を示す。
【0052】
【表6】
Figure 0004453270
【0053】
(試験例2)
上記試料No.2-1〜2-10のそれぞれについて、表3に示す条件によるプリント基板穴あけ加工を行い、工具寿命を評価した。寿命の判定は、試験例1と同様に行った。寿命の判定を行う規定は、穴位置精度:平均値+3σ<75μm、穴内壁品位:内壁粗さ最大7μm以下とした。工具寿命の評価試験の結果を表7に示す。
【0054】
【表7】
Figure 0004453270
【0055】
表7に示すように基材表面に硬質膜を具える試料No.2-1〜2-9は、硬質膜を具えていない試料No.2-10よりも工具寿命が長いことがわかる。特に、硬質膜に塩素を含有している試料No.2-1〜2-8は、塩素を含有していない試料No.2-9と比較して、工具寿命がより長いことがわかる。従って、本発明は、従来よりも工具寿命を大きく向上できることが確認された。
【0056】
(実施例3)
刃径φ1.0mmの小径ドリル基材を用意し、この基材の表面全体に表8に示す硬質膜を形成して、硬質膜を具える小径ドリルを作製した。
【0057】
本例で用いた基材は、ボディを超硬合金、シャンクをハイス鋼とした。具体的には、ボディの形成材料として、重量%でWC:94.0%、Co:5.0%、Cr3C2:1.0%及び不可避的不純物からなる材料粉末を用意し、実施例1と同様にして刃径φ1.0mmのボディを形成し、別途用意したハイス鋼からなるシャンクを取り付けることで、ドリル基材を複数製造した。
【0058】
試料No.3−1は、上記基材を用い、実施例1の試料No.1−1と、試料No.3−2、3−3は、実施例1の試料No.1−6と同様にして塩素を含む化合物層を具える小径ドリルを得た。なお、硬質膜の基材温度及びガス流量比、保持時間を変化させることで、塩素の濃度、硬質膜の膜厚を変化させた。そして、得られた小径ドリルの硬質膜のうち、表8に示す部位において、ラッピング処理を施した。
【0059】
ラッピング処理は、8000番のダイヤモンド砥粒を用いてマイクロブラストによって行った。シャンクやその他のラッピングしない部分には、予め銀ペーストにてマスクしておき、ラッピング処理後、マスクを除去した。
【0060】
試料No.3-4は、上記試料No.3-1〜3-3と同じ基材を準備し、実施例1の試料No.1-15と同様の手順で硬質膜を形成した。具体的には、基材温度を1000℃とし、TiCl4、N2、H2をそれぞれ流量比2%、25%、73%で炉内に導入し、炉内圧力を20kPaとして70分保持した後、上記ガスを排気して炉内で十分に冷却した後取り出し、塩素を含まないTiN層を具える小径ドリルを得た。
【0061】
得られた試料No.3-1〜3-4において、走査型電子顕微鏡を用いて表面粗さ(Rz)の測定を行った。その結果を表8に示す。
【0062】
【表8】
Figure 0004453270
【0063】
また、試料No.3-1〜3-4の硬質膜の表面を調べたところ、突起が確認された。走査型電子顕微鏡を用いてこれら突起の高さ及び直径を調べたところ、試料No.3-1で確認された突起は、いずれも高さ及び直径の双方が1μm以下、試料No.3-2で確認された突起は、いずれも高さ及び直径の双方が2μm以下、試料No.3-2で確認された突起は、いずれも高さ及び直径の双方が0.5μm以下であった。これに対し、ラッピング処理を行っていない試料No.3-4で確認された突起には、高さ及び直径の双方が1μm以上のものがあった。
【0064】
(試験例3)
得られた試料No.3-1〜3-4のそれぞれについて、表9に示す条件によるプリント基板穴あけ加工を行い、工具寿命を評価した。寿命の判定は、試験例1と同様に行った。寿命の判定を行う規定は、穴位置精度:平均値+3σ<75μm、穴内壁品位:内壁粗さ最大8μm以下とした。工具寿命の評価試験の結果を表10に示す。
【0065】
【表9】
Figure 0004453270
【0066】
【表10】
Figure 0004453270
【0067】
表10に示すように各部位にラッピング処理を行った試料No.3-1〜3-3は、いずれもより長寿命であることが確認された。一方、塩素を含有しておらず、かつラッピング処理を施していない試料No.3-4は、途中で折損した。これは、切り粉が溝部内に目詰まりしたか、刃先の摩耗が進むに従って切削抵抗が高くなったためであると考えられる。即ち、硬質膜の表面をより平滑にすることで、耐摩耗性及び耐溶着性の向上に加えて、切り粉の目詰まりを抑制し、切削抵抗の増大を低減することができると推測できる。従って、本発明は、工具寿命をより延長することができることが確認された。
【0068】
【発明の効果】
以上、説明したように本発明プリント基板加工用小径ドリルによれば、硬質膜に塩素を含有する層を具えることで、耐摩耗性及び耐溶着性の双方の向上を図ることができるという優れた効果を奏し得る。そのため、本発明小径ドリルは、長時間の使用に対して、穴位置精度、穴内壁品位を良好に維持することができ、工具寿命の延長を図ることができる。
【0069】
更に、硬質膜の表面をより平滑にすることで、耐摩耗性及び耐溶着性だけでなく、切り粉の目詰まりを抑制したり、切削抵抗が増加することを低減することができるため、工具寿命を更に長くすることができる。
【図面の簡単な説明】
【図1】本発明小径ドリルの一例を示す正面図である。
【符号の説明】
1 先端 2 溝部 3 ボディ 4 シャンク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small-diameter drill used for drilling a printed circuit board. In particular, the present invention relates to a small-diameter drill for processing a printed circuit board that is excellent in wear resistance and welding resistance and can maintain hole position accuracy and hole inner wall quality over a long period of use.
[0002]
[Prior art]
Conventionally, cemented carbide small-diameter drills with a blade diameter of about 2.0 mm or less have been used for drilling printed circuit boards. In drilling a printed circuit board, it is important to maintain the quality of the inner wall of the hole and the accuracy of the hole position over a long period of use, and the life of the small-diameter drill is often determined by the deterioration of the quality and the position accuracy. Conventional drills for processing printed circuit boards are often used where the substrate surface is not coated with a hard film, but in recent years, cemented carbide with a diamond film coated on the surface of the substrate for longer life. A drill made of cemented carbide (see Patent Document 1) and a drill made of cemented carbide coated with another hard film (see Patent Document 2) are used.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 03-60907 (see claims)
[Patent Document 2]
Japanese Examined Patent Publication No.59-43246 (see claims)
[0004]
[Problems to be solved by the invention]
In recent years, printed circuit boards, which are work materials, have become stronger. With the increase in strength of such work materials, the usage environment of tools such as small-diameter drills for processing printed circuit boards that process these materials is becoming harsh, and conventional tools cannot be said to have a sufficient life. It is coming. In addition, in order to improve the machining efficiency, high-speed and high-efficiency machining with faster rotation speed and feed rate is also being studied, which also makes the operating environment harsh and hopes to extend the tool life. It is rare.
[0005]
Accordingly, a main object of the present invention is to provide a small-diameter drill for processing a printed circuit board that can improve the wear resistance and welding resistance and maintain the hole position accuracy and the hole inner wall quality for many processed holes. There is.
[0006]
[Means for Solving the Problems]
The present invention achieves the above-mentioned object by providing a layer containing a specific element, specifically chlorine, in a hard film coated on the surface of a substrate.
[0007]
That is, the small-diameter drill for processing a printed circuit board according to the present invention includes a hard film at a site acting on the cutting of the surface of the base material. The tip of the substrate is formed of a cemented carbide. The hard film is composed of one or more compounds made of a compound selected from nitrides, carbides and carbonitrides of Group IVa, Va and VIa group metals. The layer made of the compound includes a layer containing chlorine. The blade diameter is set to φ0.01 mm or more and 3.0 mm or less.
[0008]
Hole position accuracy and hole inner wall quality affect the tool life of small-diameter drills for printed circuit board processing. Therefore, in order to further extend the tool life of the small-diameter drill for printed circuit board processing, it is useful that the hole position accuracy and the hole inner wall quality can be maintained over a long period of use. In order to maintain the hole position accuracy and the hole inner wall quality over a long period of use, it must be excellent in wear resistance for maintaining the shape of the cutting edge of the tool and welding resistance to cutting chips of the work material. Is preferred. Therefore, as a result of various investigations by the present inventors, the hard film is coated on the part involved in the cutting of the substrate surface, and selected from the group IVa, Va, VIa group nitride, carbide and carbonitride. It has been found that a hard layer containing a chlorine-containing compound layer improves wear resistance and welding resistance and can maintain hole position accuracy and hole inner wall quality over many uses. It was. The present invention is defined based on the above findings. Hereinafter, the present invention will be described in more detail.
[0009]
In the present invention, a cemented carbide is used as the base material for forming the tip portion in consideration of hardness, toughness, and reactivity with the work material. Examples of the base material forming other portions include cemented carbide and high-speed steel having the same composition as the tip portion. Therefore, the entire substrate may be formed of a cemented carbide made of the same material, the tip portion may be formed of a cemented carbide, and the other portion may be formed of high-speed steel or the like. In addition, a front-end | tip part is a part comprised by a cutting edge, a flank, a rake face, and a chisel edge, and is a part which performs an actual cutting action.
[0010]
Examples of the cemented carbide include those shown below.
(1) Tungsten carbide (WC): 70 to 99% by weight, a binder phase composed of one or more iron-based metals: 1 to 30% by weight, and inevitable impurities.
(2) WC: 60 to 98.99% by weight and at least one selected from chromium (Cr), Cr carbide, vanadium (V) and V carbide: 0.01 to 10% by weight, from one or more iron-based metals A binder phase consisting of: 1 to 30% by weight and inevitable impurities.
[0011]
The cemented carbide composition range described above is a range that is generally industrially manufactured. Even if it deviates from this range, the effect of the present invention can be obtained.
[0012]
A hard film described later is provided on the surface of the base material. The portion where the hard film is provided is a portion involved in the cutting of the substrate surface. Specifically, it is to be provided on the surface of the tip part involved in actual cutting and the surface of the groove part (flute part) where the chips come into contact. More specifically, as shown in FIG. 1, when the blade diameter is d, the groove portion 2 is at least in the range from the tip 1 to the length d and at least in the range from the tip 1 to the length 5d. Of course, a hard film may be provided over the entire base material, that is, the part called the body 3 where the groove is formed from the tip, and the part called the shank 4 attached to the drive device to which the drill is attached. However, it may be provided only on the body 3. The portion where the hard film is not provided may be appropriately masked at the time of film formation, or the film may be removed by polishing after the film is once formed.
[0013]
In the present invention, the hard film is formed of a compound selected from nitrides, carbides and carbonitrides of periodic table groups IVa, Va and VIa metals. Such a hard film may be a single layer or a plurality of layers.
[0014]
A thin film formed of a compound selected from nitrides, carbides, and carbonitrides of Group IVa, Va, and VIa metals in the periodic table is a drill because it has a very high Vickers hardness Hv of about 2000 to 3000. The wear resistance of the cutting edge can be improved. In particular, the carbide layer or carbonitride layer of the periodic table IVa, Va, VIa metal is high hardness as described above, so that the compound layer itself is not easily worn, and the glass constituting the printed circuit board. It is further desirable because it has a very low coefficient of friction when it is rubbed with a fiber and has little welding.
[0015]
In addition, the thin film formed of the carbonitrides of the periodic table IVa, Va, Group VIa metal, the higher the ratio of carbon content to the total amount of carbon content and nitrogen content in the film (atomic%), It tends to be excellent in wear resistance and welding resistance. Specifically, the ratio of the carbon amount to the total amount of carbon and nitrogen is preferably 0.3 or more and 1.0 or less, and particularly preferably 0.5 or more and 1.0 or less. However, when the proportion of carbon is too large, the toughness of the film is deteriorated and it may be easy to peel off. Therefore, the ratio is more preferably 0.3 or more and 0.7 or less, and particularly preferably 0.5 or more and 0.7 or less.
[0016]
In the present invention, at least one of the compound layers selected from the nitrides, carbides, and carbonitrides of the periodic table IVa, Va, VIa is a layer containing chlorine. As a result of investigations by the present inventors, by providing the above-mentioned compound layer containing chlorine, it is possible to withstand materials other than glass fibers constituting the printed circuit board, for example, resins such as epoxy, soft metals such as copper and aluminum. The knowledge that weldability can be improved remarkably was acquired. This is presumably because the chemical stability of the compound layer was increased by the inclusion of chlorine. Moreover, the knowledge that a friction coefficient with glass fiber became small when chlorine was contained in the said compound layer was acquired. From these findings, in the present invention, the above compound layer containing chlorine is coated on the surface of the base material to reduce wear and improve welding resistance, hole position accuracy, hole inner wall quality, hole diameter accuracy, etc. It is possible to reduce the variation of. Therefore, the small diameter drill of the present invention can maintain the hole position accuracy and the hole inner wall quality over a long period of use, and can greatly extend the tool life.
[0017]
If the concentration of chlorine in the chlorine-containing compound layer is too low, it is difficult to obtain an effect of improving the welding resistance. On the other hand, if it is too high, nitrides, carbides and charcoals of Group IVa, Va and VIa metals There is a risk that the characteristics of the compound layer selected from nitrides, such as hardness, may be greatly deteriorated. Therefore, the chlorine concentration, that is, the ratio of atomic weight to the entire hard film (atomic%) is desirably 0.0001 atomic% to 10 atomic%, and particularly desirably 0.001 atomic% to 1 atomic%. Such a chlorine-concentrated compound layer may be a single layer or a plurality of layers. When a plurality of compound layers containing chlorine are provided, the total concentration preferably satisfies the above concentration. The concentration of chlorine can be measured by various methods. Examples of the measurement method include XPS method (X-ray photoelectron spectroscopy), SIMS method (secondary ion mass spectrometry), ICP method (inductively coupled plasma mass spectrometry) and the like.
[0018]
In the present invention, the hard film may be formed by a vapor phase synthesis method represented by physical vapor deposition (PVD) or chemical vapor deposition (CVD). When the hard film has a plurality of layers, at least one layer is preferably formed by a gas phase synthesis method. In particular, the formation of the compound layer containing chlorine includes, for example, performing CVD, particularly thermal CVD, using at least one of chlorine gas, gaseous chloride, and vaporized chloride as a raw material. . In this way, by containing chlorine in the film during film formation using the above raw materials, the characteristics of the compound layer are hardly deteriorated.
[0019]
The concentration of chlorine can be controlled by adjusting the base material temperature during film formation and the flow rate ratio of the raw material gas (the volume (liter) ratio of gas introduced into the furnace per unit time). . The substrate temperature is preferably 500 ° C. or higher and 980 ° C. or lower. In particular, the temperature is preferably 700 ° C. or higher and 890 ° C. or lower. The substrate temperature at the time of film formation has an optimum value in various conditions such as the type of raw material gas used and the characteristics of the evaporation furnace, but if it is formed at a temperature exceeding 980 ° C, the film contains almost no chlorine. When formed at less than 500 ° C., chlorine is contained, but only a brittle film with low adhesion can be obtained. The flow rate ratio of the gas is changed depending on the periodic table IVa, Va, and VIa group metal species used. For example, TiCl Four , N 2 , H 2 When using TiN to form a TiN layer, TiCl Four : 0.5-5%, N 2 : 20-50%, H 2 : The rest, more preferably TiCl Four : 0.5-2%, N 2 : 20-50%, H 2 : It may be left.
[0020]
If the hard film is too thin, it will be difficult to maintain sufficient wear resistance and welding resistance over a long period of use, and conversely if it is too thick, it may be easily peeled off or the sharpness of the tool may be deteriorated. Therefore, the hard film is preferably 0.05 μm or more and 10 μm or less, particularly preferably 0.1 μm or more and 1 μm or less. When the hard film is composed of a plurality of layers, the desirable film thickness as the entire hard film is 10 μm or less. Further, the film thickness can be appropriately changed by changing the holding time during film formation.
[0021]
Furthermore, in order to achieve both wear resistance and welding resistance while ensuring high adhesion of the hard film, an intermediate layer having high adhesion is provided directly on the substrate surface or on the substrate surface side. It is preferable to provide an outer layer having excellent wear resistance and welding resistance on the outside of the layer. An example of such an intermediate layer is a TiN layer, and an example of an outer layer is a TiCN layer. And it is preferable that chlorine is contained in a TiCN layer in order to improve abrasion resistance and welding resistance. Of course, chlorine may be contained in both the TiN layer and the TiCN layer. Such a hard film is preferably provided in a portion where high adhesion is required, for example, a portion where the tip of the blade tip is heavily worn, a portion where chips in the groove flow. The TiN layer preferably has a thickness of 0.01 μm or more and 1.0 μm or less. If it is less than 0.01 μm, the effect of improving the adhesion is small. On the other hand, TiC N The layer is harder than the TiN layer, so when improving wear resistance, TiC in the hard film N It is preferred that the layer proportion is higher than the TiN layer proportion. Therefore, if the TiN layer is more than 1.0 μm, the ratio of the TiN layer in the hard film is increased, which may deteriorate the wear resistance.
[0022]
The surface of the hard film covering the substrate surface is desirably smooth so that the slidability of the work material can be enhanced. In particular, when the blade diameter is d, a hard film is provided in the groove at least within the range of the length d from the tip and at least within the range of the length 5d from the tip, and the hard film surface within the above range is smooth. It is desirable to be. Specifically, the surface roughness is preferably Rz = 0.35 μm or less. The hard film surface is preferably as smooth as possible. However, if Rz is less than 0.01 μm, production difficulties may actually occur or even if it can be manufactured, it may be very expensive. Therefore, in consideration of productivity and economy, it is preferable that Rz = 0.01 μm or more. As a method for controlling the surface roughness, for example, film forming conditions can be controlled. Specifically, for example, TiCl Four , N 2 And lowering the substrate temperature.
[0023]
The surface roughness is measured by various methods such as stylus-type surface shape measurement, a method using a laser microscope, a method using a scanning electron microscope, and a method of calculating the surface shape from a mirror-polished cross section by measuring the surface shape. The method can be applied.
[0024]
In order to smooth the surface of the hard film, it is important to smooth the surface of the film itself as described above, that is, to reduce the surface roughness, but it is desirable to consider the quality. For example, if the thickness of the hard film is t, and there is a protrusion on the film surface that is almost as high as the film thickness t, this protrusion becomes the starting point of welding, and the hard film is peeled or otherwise broken or abnormally worn. It is easy to become a starting point. Therefore, when a protrusion is formed on the surface of the hard film, the height of the protrusion is preferably t or less. Similarly, when the diameter of the protrusion exceeds t, it is likely to be the starting point of welding, breakage, and abnormal wear. Accordingly, it is preferable that the diameter of the protrusion is also t or less. That is, when the surface of the hard film has a protrusion, at least one of the diameter and height of the protrusion is preferably t or less. In order to reduce the height and diameter of the protrusions, a lapping treatment is appropriately performed. More specifically, for example, a polishing process using a buff, a brush, a barrel, an elastic grindstone, or the like, a microblasting, and a surface modification process using ion beam irradiation may be used. In addition to controlling the surface roughness of the hard film in this way, the surface of the hard film can be made smoother by applying lapping treatment to the necessary locations, and the friction coefficient during drilling can be reduced. Can do. The height and diameter of the protrusions can be measured using an electron microscope or a surface roughness meter.
[0025]
This invention small diameter drill shall be used for printed circuit board processing. Then, as a size suitable for this processing, the blade diameter is defined as 0.01 mm or more and 3.0 mm or less.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Example 1)
A small-diameter drill base material made of cemented carbide with a blade diameter of φ0.3 mm was prepared, and a hard film shown in Table 1 was formed on the entire surface of the base material to produce a small-diameter drill having a coating film.
[0027]
The small diameter drill base material was obtained as follows. In this example, the composition of the entire substrate is the same. Specifically, by weight%, WC: 93.0%, Co: 6.0%, Cr Three C 2 : 0.5%, VC: 0.5% and material powder consisting of unavoidable impurities are wet mixed for 10 hours, then filled into a mold, 1,000 kg / cm 2 Was press-molded at a pressure of 1400 ° C. at a rate of 4.0 ° C./min in vacuum, maintained at that temperature for 60 minutes in vacuum, and then cooled in vacuum. A drill base material having a blade diameter of 0.3 mm was manufactured from the obtained alloy using a diamond grindstone. A plurality of such drill base materials were prepared.
[0028]
A small-diameter drill including the coating film shown in Sample No. 1-1 was obtained as follows. After setting the above drill base in a normal thermal CVD furnace and sufficiently evacuating it, adjusting the temperature in the furnace, heating and holding the base temperature at 900 ° C, TiCl Four , N 2 , H 2 Were introduced into the furnace at flow rate ratios of 4%, 35% and 61%, respectively, and the furnace pressure was kept at 30 kPa and held for 1 hour. And TiCl Four , N 2 , H 2 After exhausting the gas, the drill was taken out after sufficiently cooling in the furnace. By the above procedure, a small diameter drill having a TiN layer containing chlorine was obtained.
[0029]
The small-diameter drill with the coating film shown in Sample No. 1-2 first forms a TiN layer on the substrate surface in the same procedure as Sample No. 1-1 except that the substrate temperature was set to 1050 ° C. Subsequently, the substrate temperature was set to 850 ° C. and TiCl Four , CH Three CN, N 2 , H 2 Were introduced into the furnace at flow rate ratios of 2%, 1%, 20% and 77%, respectively, and the furnace pressure was kept at 10 kPa for 5 hours. Then, after exhausting the gas, after sufficiently cooling in the furnace, the drill was taken out, and a small diameter drill including a TiN layer containing no chlorine and a TiCN layer containing chlorine was obtained.
[0030]
In Sample Nos. 1-3 to 1-11, the concentration of chlorine and the thickness of the hard film were changed by changing the base material temperature, the gas flow rate ratio, and the holding time from Sample No. 1-2.
[0031]
The small-diameter drill having the coating film shown in Sample No. 1-12 first forms a TiN layer containing chlorine on the substrate surface in the same procedure as Sample No. 1-1, and then Sample No. A TiCN layer containing chlorine was formed in the same procedure as in 1-2. Subsequently, the substrate temperature was changed to 820 ° C and TiCl Four , C 2 H 2 , H 2 Were introduced into the furnace at a flow rate ratio of 3%, 3%, and 94%, respectively, and the furnace pressure was maintained at 10 kPa for 3 hours. Similarly, after exhausting the above gas, the drill was taken out after sufficiently cooling in the furnace, and a small diameter drill having a TiC layer containing chlorine was obtained. During the formation of the TiN layer and the TiCN layer, the concentration of chlorine and the thickness of the hard film were changed by changing the substrate temperature, the gas flow ratio, and the holding time.
[0032]
Small diameter drills having the coating films shown in Sample Nos. 1-13 and 1-14 were obtained by forming a hard film in the same procedure as Sample No. 1-12. And the density | concentration of chlorine and the film thickness of the hard film were changed by changing the base-material temperature of a hard film, gas flow ratio, and holding time.
[0033]
A small-diameter drill including the coating film shown in Sample No. 1-15 was obtained as follows. The same substrate as Sample Nos. 1-1 to 1-14 was prepared, and a coating film was formed in the same procedure. Specifically, the substrate temperature is 1000 ° C., and TiCl Four , N 2 , H 2 Was introduced into the furnace at a flow rate ratio of 2%, 25%, and 73%, respectively, and the furnace pressure was kept at 20 kPa for 2.5 hours, then the gas was exhausted and sufficiently cooled in the furnace, and then taken out. A small diameter drill with a TiN layer containing no chlorine was obtained.
[0034]
Sample No. 1-16 is a sample prepared by preparing the same base material as the above sample Nos. 1-1 to 1-15 and leaving the base material without forming a hard film.
[0035]
With respect to Sample Nos. 1-1 to 1-15, the concentration of chlorine in each layer constituting the hard film was measured by the SIMS method. In Table 1, the symbol “−” described in the column of chlorine concentration is below the detection limit by the SIMS method and can be regarded as almost zero. The same applies to Table 6 of Example 2 and Table 8 of Example 3 described later.
[0036]
In sample Nos. 1-2 to 1-14 in which the hard film was provided with a carbonitride layer, the ratio of carbon content to the total amount of carbon content and nitrogen content (atomic%) was determined. This ratio was measured by XPS method or SIMS method. In addition, for sample Nos. 1-1 to 1-16, a test piece corresponding to sample Nos. 1-1 to 1-15 was prepared by preparing a test piece made of cemented carbide made of the same composition as the base material. In the piece, the same hard film as that of Sample Nos. 1-1 to 1-15 was simultaneously formed in the same furnace in which the hard film of Samples No. 1-1 to 1-15 was formed. A hard film was not formed on the test piece corresponding to Sample No. 1-16. Using these test pieces, the surface hardness and the coefficient of friction against glass were confirmed.
[0037]
The surface hardness was confirmed by a nanoindenter, and the friction coefficient was confirmed by a pin-on-disk test in which a glass pin was pressed against a disk material (test piece) and rotated. Table 1 shows the surface hardness and friction coefficient. Table 2 shows the measurement conditions for the pin-on-disk test.
[0038]
[Table 1]
Figure 0004453270
[0039]
[Table 2]
Figure 0004453270
[0040]
As shown in Tables 1 and 2, it can be seen that Sample Nos. 1-1 to 1-14 provided with a hard film having a layer containing chlorine on the substrate surface have high hardness and a small friction coefficient. That is, it is estimated that it is hard to be worn and the chips of the work material slip easily during processing.
[0041]
(Test Example 1)
Each of the obtained sample Nos. 1-1 to 1-16 was subjected to printed circuit board drilling under the conditions shown in Table 3, and the tool life was evaluated. The life was determined as follows. That is, every time 1000 holes were drilled, the hole position accuracy and the hole inner wall quality were determined, and those that were within the standard were continuously processed, and those that were out of the standard were determined to be the service life. Moreover, when it broke in the middle of processing, it determined with the lifetime at that time. Table 4 shows the results of the tool life evaluation test. Table 5 shows the tool life criteria.
[0042]
[Table 3]
Figure 0004453270
[0043]
[Table 4]
Figure 0004453270
[0044]
[Table 5]
Figure 0004453270
[0045]
As shown in Table 4, it can be seen that Sample Nos. 1-1 to 1-15 having a hard film on the substrate surface have a longer tool life than Samples No. 1-16 having no hard film. In particular, Sample Nos. 1-1 to 1-14 having a hard film containing a layer containing chlorine have a longer tool life than Samples No. 1-15 having no layer containing chlorine. I understand that. Therefore, it has been confirmed that the present invention can greatly improve the tool life compared to the prior art.
[0046]
Also, from Tables 1 and 4, it can be seen that the hard film has a longer lifetime when it is 10 μm or less. It can also be seen that the chlorine concentration is longer than 1 atomic%.
[0047]
(Example 2)
A small-diameter drill base material made of cemented carbide with a blade diameter of 0.1 mm was prepared, and a hard film shown in Table 6 was formed on the entire surface of the base material to produce a small-diameter drill having a hard film.
[0048]
The base material used in this example had the same overall composition. Specifically, material powders comprising WC: 90.0% by weight, Co: 10.0%, and inevitable impurities were prepared, and a plurality of drill base materials having a blade diameter of 0.1 mm were manufactured in the same manner as in Example 1.
[0049]
In Samples Nos. 2-1 to 2-8, a hard film was formed on the substrate surface in the same procedure as Sample No. 1-1 in Example 1. Specifically, using the above-mentioned base material, the base material temperature is set to 750 to 920 ° C., the raw material gas is introduced into the furnace, the furnace pressure is set to 5 to 35 kPa, and the raw material gas is maintained for 1 to 10 hours. After exhausting and sufficiently cooling in the furnace, it was taken out to obtain a small diameter drill having a compound layer containing chlorine. As the raw material gas, a chloride gas of periodic table IVa, Va, VIa metal shown in Table 6 was used. For materials that are difficult to obtain chloride gas such as W, WF 6 Chlorine gas was introduced separately using fluoride gas such as. The substrate temperature, furnace pressure, and holding time were appropriately selected within the above ranges to form a film.
[0050]
For Sample No. 2-9, the same substrate as Sample No. 2-1 to 2-8 was prepared, and a hard film was formed by the same procedure as Sample No. 1-15 of Example 1. Specifically, the substrate temperature is 1000 ° C., and TiCl Four , N 2 , H 2 Were introduced into the furnace at flow rate ratios of 2%, 25%, and 73%, respectively, and the furnace pressure was kept at 100 kPa for 100 minutes. Then, the gas was exhausted and cooled sufficiently in the furnace. A small diameter drill with no TiN layer was obtained. Sample No. 2-10 is a sample in which the same base material as Sample Nos. 2-1 to 2-8 was prepared, and the base material was not subjected to the formation of a hard film.
[0051]
For Sample Nos. 2-1 to 2-10, the chlorine concentration of each layer constituting the hard film was measured by the SIMS method as in Example 1. Table 6 shows the chlorine concentration.
[0052]
[Table 6]
Figure 0004453270
[0053]
(Test Example 2)
About each of said sample No.2-1 to 2-10, the printed circuit board drilling process on the conditions shown in Table 3 was performed, and the tool life was evaluated. The life was determined in the same manner as in Test Example 1. The rules for determining the service life are: hole position accuracy: average value + 3σ <75 μm, hole inner wall quality: inner wall roughness maximum 7 μm or less. Table 7 shows the results of the tool life evaluation test.
[0054]
[Table 7]
Figure 0004453270
[0055]
As shown in Table 7, it can be seen that Sample Nos. 2-1 to 2-9 having a hard film on the substrate surface have a longer tool life than Samples No. 2-10 having no hard film. In particular, it can be seen that Sample Nos. 2-1 to 2-8 containing chlorine in the hard film have a longer tool life than Sample No. 2-9 containing no chlorine. Therefore, it has been confirmed that the present invention can greatly improve the tool life compared to the prior art.
[0056]
(Example 3)
A small-diameter drill base material having a blade diameter of φ1.0 mm was prepared, and a hard film shown in Table 8 was formed on the entire surface of the base material to produce a small-diameter drill including the hard film.
[0057]
The base material used in this example is a cemented carbide body and a high-speed steel shank. Specifically, the body forming material is WC: 94.0% by weight, Co: 5.0%, Cr Three C 2 : Prepare material powder consisting of 1.0% and inevitable impurities, form a body with a blade diameter of φ1.0mm in the same way as Example 1, and attach a shank made of high-speed steel prepared separately, Several manufactured.
[0058]
Sample No. 3-1, sample No. 3-1 of Example 1 using the said base material. 1-1 and Sample No. 3-2 and 3-3 are sample Nos. 1- In the same manner as in No. 6, a small-diameter drill including a compound layer containing chlorine was obtained. In addition, the chlorine concentration and the film thickness of the hard film were changed by changing the substrate temperature of the hard film, the gas flow rate ratio, and the holding time. And the lapping process was performed in the site | part shown in Table 8 among the hard films | membranes of the obtained small diameter drill.
[0059]
The lapping process was performed by microblasting using No. 8000 diamond abrasive grains. The shank and other unwrapped portions were previously masked with a silver paste, and the mask was removed after the lapping process.
[0060]
For Sample No. 3-4, the same substrate as Sample No. 3-1 to 3-3 was prepared, and a hard film was formed by the same procedure as Sample No. 1-15 of Example 1. Specifically, the substrate temperature is 1000 ° C., and TiCl Four , N 2 , H 2 Were introduced into the furnace at flow rate ratios of 2%, 25%, and 73%, respectively, and maintained for 70 minutes at a furnace pressure of 20 kPa. Then, the above gas was exhausted, cooled sufficiently in the furnace, taken out, and contained chlorine. A small diameter drill with no TiN layer was obtained.
[0061]
In the obtained sample Nos. 3-1 to 3-4, the surface roughness (Rz) was measured using a scanning electron microscope. The results are shown in Table 8.
[0062]
[Table 8]
Figure 0004453270
[0063]
Further, when the surfaces of the hard films of Sample Nos. 3-1 to 3-4 were examined, protrusions were confirmed. When the height and diameter of these protrusions were examined using a scanning electron microscope, both the height and diameter of the protrusions confirmed in Sample No. 3-1 were 1 μm or less, and Sample No. 3-2 Both of the protrusions confirmed in (2) had a height and a diameter of 2 μm or less, and the protrusions confirmed in Sample No. 3-2 both had a height and a diameter of 0.5 μm or less. In contrast, the protrusions confirmed in sample No. 3-4 that had not been lapped had a height and a diameter of 1 μm or more.
[0064]
(Test Example 3)
About each of obtained sample No.3-1 to 3-4, the printed circuit board drilling process on the conditions shown in Table 9 was performed, and the tool life was evaluated. The life was determined in the same manner as in Test Example 1. The rules for determining the service life are: hole position accuracy: average value + 3σ <75 μm, hole inner wall quality: inner wall roughness maximum 8 μm or less. Table 10 shows the results of the tool life evaluation test.
[0065]
[Table 9]
Figure 0004453270
[0066]
[Table 10]
Figure 0004453270
[0067]
As shown in Table 10, it was confirmed that all of the sample Nos. 3-1 to 3-3 in which the lapping treatment was performed on each part had a longer life. On the other hand, Sample No. 3-4 which does not contain chlorine and which has not been subjected to the lapping treatment was broken in the middle. This is presumably because the cutting resistance became higher as the cutting powder was clogged in the groove or the wear of the cutting edge progressed. That is, it can be inferred that, by making the surface of the hard film smoother, clogging of chips can be suppressed and an increase in cutting resistance can be reduced in addition to improvement in wear resistance and welding resistance. Therefore, it was confirmed that the present invention can further extend the tool life.
[0068]
【The invention's effect】
As described above, according to the small-diameter drill for processing a printed circuit board according to the present invention, by providing the hard film with a layer containing chlorine, it is possible to improve both wear resistance and welding resistance. The effects can be achieved. Therefore, the small-diameter drill of the present invention can maintain the hole position accuracy and the hole inner wall quality satisfactorily for a long time use, and can extend the tool life.
[0069]
Furthermore, since the surface of the hard film is made smoother, not only wear resistance and welding resistance, but also clogging of chips can be suppressed, and increase in cutting resistance can be reduced. The lifetime can be further increased.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a small diameter drill of the present invention.
[Explanation of symbols]
1 Tip 2 Groove 3 Body 4 Shank

Claims (12)

基材表面の切削に関与する部位に硬質膜を具え、
先端部を形成する基材は、超硬合金からなり、
前記硬質膜は、周期律表IVa、Va、VIa族金属の窒化物、炭化物及び炭窒化物から選択される化合物からなる一層以上から構成され、
前記化合物からなる層には、塩素を含有する層を具え、
前記硬質膜のうち、少なくとも最外層は、前記化合物からなり、塩素を含有する層であり、
刃径がφ0.01mm以上3.0mm以下であることを特徴とするプリント基板加工用小径ドリル。
Provide a hard film on the part involved in the cutting of the substrate surface,
The base material that forms the tip is made of cemented carbide,
The hard film is composed of one or more layers made of a compound selected from nitrides, carbides and carbonitrides of Group IVa, Va, and VIa group metals,
The layer made of the compound includes a layer containing chlorine,
Among the hard films, at least the outermost layer is a layer comprising the compound and containing chlorine,
A small-diameter drill for processing a printed circuit board having a blade diameter of φ0.01 mm to 3.0 mm.
塩素の濃度が0.0001原子%以上10原子%以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing a printed circuit board according to claim 1, wherein the chlorine concentration is 0.0001 atomic% or more and 10 atomic% or less. 塩素の濃度が0.001原子%以上1原子%以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing printed circuit boards according to claim 1, wherein the chlorine concentration is 0.001 atomic% or more and 1 atomic% or less. 硬質膜の厚さが0.05μm以上10μm以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing a printed circuit board according to claim 1, wherein the thickness of the hard film is 0.05 µm or more and 10 µm or less. 硬質膜の厚さが0.1μm以上1μm以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing a printed circuit board according to claim 1, wherein the thickness of the hard film is 0.1 µm or more and 1 µm or less. 硬質膜は、基材側にTiN層と、TiN層の外側にTiCN層とを具え、少なくともTiCN層は、塩素を含有することを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  2. The small-diameter drill for processing a printed circuit board according to claim 1, wherein the hard film includes a TiN layer on the substrate side and a TiCN layer on the outside of the TiN layer, and at least the TiCN layer contains chlorine. TiN層の厚みが0.01μm以上1.0μm以下であることを特徴とする請求項6に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing a printed circuit board according to claim 6, wherein the thickness of the TiN layer is 0.01 µm or more and 1.0 µm or less. 硬質膜は、複数層からなり、そのうち少なくとも一層は、気相合成法で形成されたことを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  The small-diameter drill for processing a printed circuit board according to claim 1, wherein the hard film is composed of a plurality of layers, at least one of which is formed by a vapor phase synthesis method. 刃径をdとするとき、少なくとも先端から長さdの範囲内に硬質膜を具え、この範囲内の硬質膜の面粗さがRz=0.35μm以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  2. When the blade diameter is d, a hard film is provided at least in the range of length d from the tip, and the surface roughness of the hard film in this range is Rz = 0.35 μm or less. Small-diameter drill for printed circuit board processing described in 1. 刃径をdとするとき、少なくとも先端から長さ5dの範囲内における溝部に硬質膜を具え、この範囲内にある溝部の硬質膜の面粗さがRz=0.35μm以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  When the blade diameter is d, at least a groove in the range of 5d from the tip is provided with a hard film, and the surface roughness of the hard film in the groove in this range is Rz = 0.35 μm or less. The small-diameter drill for printed circuit board processing according to claim 1. 硬質膜の膜厚をtとするとき、硬質膜の表面に突起を有する場合、この突起は、直径及び高さの少なくとも一方がt以下であることを特徴とする請求項1に記載のプリント基板加工用小径ドリル。  2. The printed circuit board according to claim 1, wherein when the thickness of the hard film is t, when the protrusion has a protrusion on the surface of the hard film, at least one of the diameter and the height of the protrusion is t or less. Small diameter drill for machining. 塩素の濃度が0.25原子%以上であることを特徴とする請求項2又は3に記載のプリント基板加工用小径ドリル。The small-diameter drill for processing a printed circuit board according to claim 2 or 3, wherein the chlorine concentration is 0.25 atomic% or more.
JP2003116371A 2003-04-21 2003-04-21 Small diameter drill for printed circuit board processing Expired - Fee Related JP4453270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116371A JP4453270B2 (en) 2003-04-21 2003-04-21 Small diameter drill for printed circuit board processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116371A JP4453270B2 (en) 2003-04-21 2003-04-21 Small diameter drill for printed circuit board processing

Publications (2)

Publication Number Publication Date
JP2004322226A JP2004322226A (en) 2004-11-18
JP4453270B2 true JP4453270B2 (en) 2010-04-21

Family

ID=33496593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116371A Expired - Fee Related JP4453270B2 (en) 2003-04-21 2003-04-21 Small diameter drill for printed circuit board processing

Country Status (1)

Country Link
JP (1) JP4453270B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082207A (en) 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
DE112005003529T5 (en) * 2005-04-04 2008-05-15 Osg Corporation, Toyokawa drill
JP5177535B2 (en) * 2008-09-25 2013-04-03 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5310005B2 (en) * 2009-01-07 2013-10-09 株式会社デンソー Substrate division method
GB201010061D0 (en) 2010-06-16 2010-07-21 Element Six Ltd Rotary machine tools
EP3088108A4 (en) 2013-12-26 2017-08-09 Kyocera Corporation Cutting tool
JP6784928B2 (en) 2018-09-04 2020-11-18 株式会社タンガロイ Cover cutting tool
CN115488702B (en) * 2022-10-12 2024-03-08 沈阳飞机工业(集团)有限公司 Grinding method of twist drill with ultra-long cutting edge welded with alloy blade

Also Published As

Publication number Publication date
JP2004322226A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5414883B2 (en) Cutting tools
WO2006064724A1 (en) Surface-covered cutting tool
JP5295325B2 (en) Surface coated cutting tool
WO2006070538A1 (en) Surface coating cutter
WO2017122448A9 (en) Surface-coated cutting tool and method for producing same
JP2007260851A (en) Surface coated cutting tool
JP2004114268A (en) Coated cutting tool
JP4453270B2 (en) Small diameter drill for printed circuit board processing
JP2012144766A (en) Coated member
JP2005297145A (en) Surface-coated end mill and surface-coated drill
JP5597469B2 (en) Cutting tools
JP5419668B2 (en) Surface covering member
JP4351521B2 (en) Surface coated cutting tool
JP4845615B2 (en) Surface coated cutting tool
JP2008137129A (en) Surface coated cutting tool
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JPH10237648A (en) Surface coated cutting tool excellent in wear resistance
JP4845490B2 (en) Surface coated cutting tool
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP7373110B2 (en) Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance
JP2008137130A (en) Surface coated cutting tool
JP4484500B2 (en) Surface coated cutting tool
JP4185402B2 (en) Surface coated cutting tool
JP2001152209A (en) High adhesion surface coated sintered member and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees