JP4453113B2 - Sliding structure combining two sliding members and sliding bearing device using the same - Google Patents

Sliding structure combining two sliding members and sliding bearing device using the same Download PDF

Info

Publication number
JP4453113B2
JP4453113B2 JP27477698A JP27477698A JP4453113B2 JP 4453113 B2 JP4453113 B2 JP 4453113B2 JP 27477698 A JP27477698 A JP 27477698A JP 27477698 A JP27477698 A JP 27477698A JP 4453113 B2 JP4453113 B2 JP 4453113B2
Authority
JP
Japan
Prior art keywords
sliding
epoxy
epoxy resin
silicone oil
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27477698A
Other languages
Japanese (ja)
Other versions
JP2000104731A (en
Inventor
隆 中丸
義昭 山本
奈美子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP27477698A priority Critical patent/JP4453113B2/en
Priority to US09/262,349 priority patent/US6245836B1/en
Priority to IT1999RM000149A priority patent/IT1306801B1/en
Priority to KR10-1999-0008100A priority patent/KR100441341B1/en
Priority to TR1999/00567A priority patent/TR199900567A2/en
Priority to CNB991039696A priority patent/CN1135259C/en
Publication of JP2000104731A publication Critical patent/JP2000104731A/en
Priority to US09/833,655 priority patent/US6467961B2/en
Application granted granted Critical
Publication of JP4453113B2 publication Critical patent/JP4453113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、互いに摺動接触する摺動面がともに合成樹脂である二つの摺動部材を組み合わせた摺動構造および該摺動構造を用いたすべり支承装置に関する。
【0002】
摺動接触する二つの部材の組み合わせにおいて、一方の部材が合成樹脂である場合、他方の部材としては一般に鋼などの金属製のものが用いられる。しかしながら、種々の目的及び必要性、すなわち防錆、耐薬品、電気絶縁及び軽量化、さらには他の設計上の要請から、他方の部材そのものを合成樹脂としたり、あるいは少なくともその摺動面を合成樹脂とするなどの手段が採られることがある。
【0003】
例えば、合成樹脂の被膜を施した鋼製のシャフトと合成樹脂軸受との組み合わせ、ともに合成樹脂製の歯車の組み合わせ、合成樹脂パイプとその中に挿通されて押し引き(往復摺動)または回転摺動する、合成樹脂を被覆したワイヤーロープとの組み合わせからなるコントロールケーブルなどである。
【0004】
【発明が解決しようとする課題】
しかしながら、合成樹脂製の摺動部材同士の組み合わせの場合、低摩擦係数を有していることで知られる四フッ化エチレン樹脂においても、乾燥摩擦条件下でのすべりにおいて、動摩擦係数を0.1以下とすることは困難である。
【0005】
また、地震動に応答して構造物の変位をすべりによって逃がす機能を有するすべり支承装置においては、すべり面に働く摩擦係数が大きいとすべり変位が所望になされなくなり、効果的な免震が発揮されなくなるため、すべり面における摩擦抵抗が低いことが要求される。
【0006】
さらに、すべり支承装置においては、地震等により力が入力されるとき以外は作動しないため、安定した免震効果を得るためには、作動時の摩擦抵抗が安定していること、すなわち、静摩擦係数の経時変化が小さいことが要求される。すなわち、動摩擦係数が低いことと合わせて、静摩擦係数が低いことおよび安定していることが要求される。
【0007】
しかしながら、合成樹脂製の摺動部材同士の組み合わせの場合、一般に静摩擦係数は動摩擦係数の2倍以上の値を示す。さらに、荷重下にあってかつ常時は作動するようなことがないような場合では、両部材の長期間の接触による微視的なクリープにより静摩擦係数がしだいに大きくなっていく傾向にある。
【0008】
そこで、摺動面にグリースやオイル等の潤滑油を塗布することにより、静摩擦係数、動摩擦係数をともに低下させることができるが、短時間の摺動により潤滑油が摺動面から排出され、その効果を失ってしまう上、経時的な固化あるいは劣化の影響もあって、しだいに摩擦係数が上昇してしまう。
【0009】
本発明は、上記課題を解決するためになされたものであって、安定かつ低い静摩擦係数および動摩擦係数を有するとともに、すべりを必要とするときに、的確かつ効果的な低摩擦すべりが行なわれる、二つの摺動部材を組み合わせた摺動構造および該摺動構造を用いたすべり支承装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明によれば、上記目的は、摺動面が熱硬化性合成樹脂製の潤滑被膜からなる第一摺動部材と、摺動面が合成樹脂からなる第二摺動部材とからなり、前記潤滑被膜が、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールとからなる組成物の被膜であることを特徴とする、第一および第二摺動部材を組み合わせた摺動構造によって達成される。
【0011】
本発明によれば、上記目的はまた、上記の摺動構造を具備しており、地震時にすべりを発生し免震作用を行なうすべり支承装置によって達成される。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。まず、互いに摺動面で摺動接触する第一摺動部材と第二摺動部材とのうち、第一摺動部材の摺動面の熱硬化性合成樹脂製の潤滑被膜を構成する組成物について述べる。
【0013】
エポキシ樹脂としては、従来公知のものが使用でき、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環型エポキシ樹脂等が挙げられる。これらは、単独であるいは2種以上併せて用いられる。具体的には、油化シェルエポキシ社製のビスフェノールA型の液状または固形タイプのエポキシ樹脂「エピコート(商品名)」が挙げられる。エポキシ樹脂は、本発明の合成樹脂被膜の母体をなすものであり、また下地との接着剤として機能するものである。
【0014】
硬化剤としては、従来からエポキシ樹脂の硬化剤として用いられているものが使用でき、例えば、ポリアミン、酸無水物、フェノール樹脂、ポリアミド樹脂、メルカプタン系化合物が挙げられる。さらに、これら硬化剤とともに、三級アミン、イミダゾール誘導体、フッ化ホウ素錯塩類等の硬化促進剤を併用してもよい。
【0015】
ポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族ポリアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタンなどの脂環族アミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタフェニレンジアミンなどの芳香族アミン、アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどの複素環式アミン、ジシアンジアミドおよびこれらを変性したものが含まれる。変性の手法としては、例えば、エポキシ樹脂、エチレンオキシド、プロピレンオキシド、アクリロニトリル、ケトン類との付加物の形にすることが挙げられる。上記ポリアミンの具体例としては、油化シェルエポキシ社製の変性脂肪族ポリアミン「エピキュアT(商品名)」、変性脂環族アミン「エピキュア113(商品名)」、変性芳香族アミン「エピキュアW(商品名)」が挙げられる。
【0016】
酸無水物としては、ドデシル無水コハク酸、ポリアゼライン酸無水物などの脂肪族酸無水物、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸などの脂環族酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸などの芳香族酸無水物、テトラブロモ無水フタル酸、無水へット酸などのハロゲン系酸無水物が含まれ、一般に三級アミンやイミダゾール誘導体を硬化促進剤として用いる。具体例としては、油化シェルエポキシ社製の「エピキュア134A(商品名)」が挙げられる。
【0017】
フェノール樹脂としては、ノボラック型フェノール樹脂が挙げられ、一般に硬化促進剤が併用される。
【0018】
ポリアミド樹脂としては、不飽和脂肪酸の2量体であるダイマー酸とポリアミンから得られるポリアミドが挙げられる。
【0019】
メルカプタン系化合物とは、分子構造式の両端にメルカプト基−SHを有する脂肪族多硫化重合物のことであり、それ単独ではエポキシ樹脂と反応しないため、前記ポリアミンや三級アミンとの併用が必要である。メルカプタン系化合物の具体例としては、油化シェルエポキシ社製の「カップキュア3800(商品名)」が挙げられる。
【0020】
エポキシ樹脂と硬化剤との配合割合は、エポキシ樹脂中のエポキシ基または水酸基の数とこのエポキシ基または水酸基と反応する硬化剤中の官能基の数との比率により決定される。
【0021】
例えば、硬化剤としてポリアミンを用いる場合、エポキシ樹脂のエポキシ当量をE、ポリアミンのアミン当量をAとすると、エポキシ樹脂Egに対してポリアミン(0.8〜1.2)×Agである。ここで、エポキシ当量とは、エポキシ基1グラム当量を含むエポキシ樹脂のグラム数、アミン当量とは、エポキシ基と反応する活性水素1グラム当量を含むポリアミンのグラム数である。
【0022】
したがって、エポキシ樹脂と硬化剤との配合重量割合は、使用するエポキシ樹脂の種類および硬化剤の種類によって変化するが、次のように設定される。すなわち、エポキシ樹脂Egに対して表1に示す割合で配合される。ここで、Eはエポキシ樹脂のエポキシ当量の値である。
(以下余白)
【0023】
【表1】

Figure 0004453113
【0024】
また、硬化促進剤を併用する場合は、エポキシ樹脂Egに対して硬化促進剤を1〜20g配合すればよい。
【0025】
エポキシ基を有する反応性シリコーンオイルとは、ジメチルポリシロキサンのメチル基の一部をエポキシ基を含有する官能基で置換したシリコーンオイルである。例えば、下記式(1)、(2)または(3)で表される。
(以下余白)
【0026】
【化1】
Figure 0004453113
【0027】
式(1)、(2)および(3)中、Xはエポキシ基含有基、例えば、下記式(4)、(5)、(6)または(7)を示し、mは5〜10000の整数であり、nは2〜100の整数である。
(以下余白)
【0028】
【化2】
Figure 0004453113
【0029】
上述のエポキシ基を有する反応性シリコーンオイル中、下記式(8)および(9)のシリコーンオイルが好ましい。
【0030】
【化3】
Figure 0004453113
【0031】
式(8)および(9)中、mは5〜10000の整数であり、nは2〜100の整数である。
【0032】
エポキシ基を有する反応性シリコーンオイルは、リニア構造を有する油状物質であるが、後述するトリアジンチオールと反応することにより三次元網目構造化する。この三次元網目構造体はもはや油状ではないが、潤滑性は保持されている。また、この三次元網目構造体は潤滑被膜の靱性を向上させる役割も果たす。
【0033】
トリアジンチオールは、下記式(10)で表される。
【0034】
【化4】
Figure 0004453113
【0035】
式(10)中、Aは、メルカプト基−SH、ジブチルアミノ基−N(C、またはアニリノ基−NHCである。
【0036】
このトリアジンチオールは、前述のようにエポキシ基を有する反応性シリコーンオイルの架橋剤としての役割をもち、エポキシ基を有する反応性シリコーンオイルを三次元網目構造化させる。
【0037】
また、トリアジンチオールは、従来、特にゴムや塩化ビニルの架橋剤として、金属とゴムとの接着剤として、そして金属の表面処理剤としても用いられている。きわめて反応性に富み、本発明においては、潤滑被膜を形成する際に、エポキシ樹脂とも反応して前記エポキシ基を有する反応性シリコーンオイルの三次元網目構造体としっかり結合させるとともに、下地表面とも反応して下地と潤滑被膜との接着強度を向上させる役割をも果たしているものと考えられる。
【0038】
エポキシ基を有する反応性シリコーンオイルに対するトリアジンチオールの配合割合は、エポキシ基を有する反応性シリコーンオイルを架橋して三次元網目構造化するのに必要な量以上であればよく、好ましくは(トリアジンチオールの配合重量)/(エポキシ基を有する反応性シリコーンオイルの配合重量)=0.03〜1である。
【0039】
エポキシ基を有する反応性シリコーンオイルとトリアジンチオールとの配合量は、エポキシ樹脂と硬化剤との和を100重量部として、エポキシ基を有する反応性シリコーンオイルとトリアジンチオールとの配合量の和が、2〜30重量部、好ましくは、5〜20重量部である。配合割合が2重量部未満の場合は、配合効果が得られず、30重量部を超える場合は、潤滑被膜の機械的強度の低下が著しい。
【0040】
上記エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイル、トリアジンチオールに加えて、さらなる摩擦係数の低下を目的として、非反応性のシリコーンオイルを配合することが出来る。非反応性シリコーンオイルとは、ジメチルシリコーンオイルおよびジメチルポリシロキサンのメチル基の一部をポリエーテル基、フェニル基、アルキル基、アラルキル基、フッ素化アルキル基等で置換したシリコーンオイルであり、粘度(25℃)が100〜50000cSt、好ましくは500〜10000cStのものが使用される。
【0041】
この非反応性シリコーンオイルは、前記エポキシ基を有する反応性シリコーンオイルの三次元網目構造体に保持されて、摺動面へのブリードアウトが適度に抑えられるので、長期間にわたってその配合効果を保持できる。
【0042】
非反応性シリコーンオイルの配合量は、エポキシ樹脂と硬化剤との和を100重量部として、2〜10重量部、好ましくは、3〜7重量部である。2重量部未満の場合は、摺動特性の効果が得られず、10重量部を超える場合は、潤滑被膜の機械的強度が著しく低下する。
【0043】
さらに、必要に応じて無機および有機充填材粉末を配合することができる。無機および有機充填材粉末としては、黒鉛、窒化ホウ素等の無機質粉末、フッ素樹脂等の有機質粉末を例として挙げることができ、その配合量は、エポキシ樹脂と硬化剤との和を100重量部として、配合効果の観点から2重量部以上、そして潤滑被膜形成の作業性の観点から10重量部以下とする。
【0044】
熱硬化性合成樹脂製の潤滑被膜の形成方法について述べる。エポキシ樹脂、エポキシ基を有する反応性シリコーンオイル、必要に応じて非反応性シリコーンオイル、有機、無機充填材粉末を有機溶剤に溶解または分散させた後、硬化剤、トリアジンチオールを溶解させるか、またはエポキシ樹脂を有機溶剤に溶解した後、エポキシ基を有する反応性シリコーンオイル、硬化剤、トリアジンチオール、必要に応じて非反応性シリコーンオイル、有機、無機充填材粉末を溶解または分散させて、固形分が30〜40重量%、粘度(常温)が100〜200cSt程度の塗料液を調整する。
【0045】
有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、イソプロピルアルコール、n−ブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素系溶剤、テトラヒドロフランなどを挙げることができる。これらの有機溶剤は単独あるいは混合して使用される。
【0046】
上記塗料液を、例えば、ショットブラスト、脱脂など通常一般に行なわれている処理を施した鋼表面に刷毛塗り、吹き付けなどの手段により塗膜を形成し、硬化処理を行なって硬化被膜を得る。
【0047】
塗膜形成後の硬化処理条件は、どのような硬化剤を用いるかで様々な条件を採り得る。一例として、脂環族アミンを硬化剤として用いた場合を挙げると、塗膜形成後、自然乾燥によるか80℃で30分間程予備乾燥を行なって溶剤を飛ばし、次いで180℃で30分間加熱焼付けを行なうと所望の硬化被膜が得られる。
【0048】
被膜厚さは、5〜100μm、特に10〜50μm、もっとも好ましくは20〜40μmである。5μm未満では、被膜の均質性が損なわれたり、潤滑被膜としての耐久性が低下する。また、100μmを超える場合は、被膜の機械的強度を損なうことになり、摺動部材としての耐荷重性が低下する。
【0049】
次に、前記第一摺動部材と摺動接触する第二摺動部材の摺動面を構成する合成樹脂について述べる。合成樹脂としては特に限定されるものではなく、熱可塑性または熱硬化性のいずれの樹脂も使用することができる。例えば、フェノール樹脂、エポキシ樹脂、ポリオレフィン、ポリアセタール、ポリアミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルケトン、脂肪族ケトン、フッ素樹脂、ポリイミド樹脂、芳香族ポリエステル樹脂等が挙げられる。これら合成樹脂は2種以上を組み合わせて使用してもよい。
【0050】
また、これらに潤滑油剤、強化剤を配合したものが使用できる。潤滑油剤としては、潤滑油、グリース、ワックス、黒鉛、二硫化モリブデン、フッ素樹脂等が、また強化剤としては、ガラス粉末、ガラス繊維、炭素粉末、炭素繊維、アラミド繊維等が挙げられる。
【0051】
これら合成樹脂は、ブロック状あるいはプレート状の成形物を金属などの裏材に形成した凹部にその一部を突出させて埋設して使用したり、裏材表面に接着またはビス止めして使用したり、あるいは裏材表面に薄膜として被着させて使用するなど様々な適用形態が採られる。
【0052】
この薄膜タイプのものとしては、鋼板上に銅合金の多孔質焼結層を設け、この焼結層上に合成樹脂を供給して加圧、加熱焼成して樹脂薄膜を被着形成させた複層摺動部材、あるいは鋼などの裏材表面に直接上記合成樹脂の硬化被膜としたもの、例えばダイキン工業社製の四フッ化エチレン樹脂の溶剤分散タイプ(商品名:ポリフロンTFEエナメル)を塗着し、焼付けを行なって硬化被膜を形成したもの、などがあり、いずれも有効に使用し得るものである。
【0053】
本発明のすべり支承装置においては、互いに摺動接触する第一摺動部材と第二摺動部材との摺動面はそれぞれ、平面であってもよく、また、これに代えて、第一摺動部材は、所定の曲率半径を有した断面円弧状凹面を有し、第二摺動部材は、前記断面円弧状凹面と同一の曲率半径を有した断面円弧状凸面を有して、当該凸面が前記凹面に摺動接触するようになっていてもよい。
【0054】
【実施例】
以下、好ましい実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0055】
(第一摺動部材)
幅40mm、長さ280mm、厚さ10mmのプレート状のステンレス鋼板SUS304を下地とし、ショットブラスト、脱脂処理を施した面に表2〜4に示す(a)〜(m)の成分からなる組成物のメチルイソブチルケトンとトルエンとの混合溶剤希釈液(固形分33重量%)を吹き付け、80℃で30分間予備乾燥して溶剤を飛ばした後、180℃で30分間加熱焼付け処理を行ない、被膜厚さ40μmとした。
【0056】
表中、エポキシ樹脂は、油化シェルエポキシ社製「エピコート828(商品名)、エポキシ当量:190」を、ポリアミンは、油化シェルエポキシ社製の変性脂環族アミン「エピキュア113(商品名)」を、酸無水物は、ヘキサヒドロ無水フタル酸を、3級アミンは、ベンジルジメチルアミンを、KF−102は、信越化学工業社製の側鎖に脂環式エポキシ基を有するエポキシ変性シリコーンオイル「KF−102(商品名)、エポキシ当量:3600、粘度:4000cSt」を、KF−101は、信越化学工業社製の側鎖にグリシジル基を有するエポキシ変性シリコーンオイル「KF−101(商品名)、エポキシ当量:350、粘度:2000cSt」を、KF−96は、信越化学工業社製のジメチルシリコーンオイル 「KF−96(商品名)、粘度:5000cSt」を、SH510は、東レ・ダウコーニング・シリコーン社製のメチルフェニルシリコーンオイル「SH510(商品名)、粘度:500cSt」を、PTFEは、四フッ化エチレン樹脂を示す。
【0057】
【表2】
Figure 0004453113
【0058】
【表3】
Figure 0004453113
(以下余白)
【0059】
【表4】
Figure 0004453113
(以下余白)
【0060】
(第二摺動部材)
(A)ガラス繊維粉末として、直径10μm、平均長さ63μmの旭ファイバグラス社製「MF06JB1−20(商品名)」15重量%、ポリイミド樹脂粉末として、Lenzing社製「P84(商品名)」2重量%、残部三井デュポンフロロケミカル社製四フッ化エチレン樹脂「テフロン7AJ(商品名)」からなる樹脂組成物の成形物。直径10mm、高さ14mmのロッド状のものの端面を摺動面とした。
(B)上記ポリイミド樹脂粉末20重量%、残部四フッ化エチレン樹脂からなる樹脂組成物の成形物。直径10mm、高さ14mmのロッド状のものの端面を摺動面とした。
(C)三井デュポンフロロケミカル社製四フッ化エチレン樹脂「テフロン7AJ(商品名)」15重量%、ダイキン工業社製四フッ化エチレン樹脂「ルブロンL−5(商品名)」25重量%、残部トープレン社製ポリフェニレンサルファイド「トープレンPPST−4(商品名)」からなる樹脂組成物の成形物。直径10mm、高さ14mmのロッド状のものの端面を摺動面とした。
(D)鉱油5重量%、残部ポリプラスチックス社製ポリアセタール「ジュラコンM90(商品名)」からなる樹脂組成物の成形物。直径10mm、高さ14mmのロッド状のものの端面を摺動面とした。
(E)呉羽化学工業社製の直径18μm、長さ0.7mmの炭素繊維「クレハチョップM−107T(商品名)」20重量%、4×6mmの綿布細片25重量%、黒鉛5重量%、残部フェノール樹脂からなる樹脂組成物の成形物。直径10mm、高さ14mmのロッド状のものの端面を摺動面とした。
【0061】
上記、第一摺動部材と第二摺動部材との組み合わせについて、下記方法により摺動特性を評価した。
【0062】
往復摺動試験1:表5に記載の条件下で摩擦係数および摩耗量を測定した。
【0063】
【表5】
すべり速度:20cm/sec
荷 重:200kgf/cm
ストローク:220mm
サイクル数:500サイクル
【0064】
第一摺動部材と第二摺動部材との組み合わせおよび評価結果を表6〜12に示す。ここで、摩擦係数は試験開始後安定時の動摩擦係数を示し、摩耗量は500サイクル後の第一摺動部材の寸法変化量および第二摺動部材の重量変化量を示す。
【0065】
【表6】
Figure 0004453113
(以下余白)
【0066】
【表7】
Figure 0004453113
【0067】
【表8】
Figure 0004453113
【0068】
【表9】
Figure 0004453113
【0069】
【表10】
Figure 0004453113
【0070】
【表11】
Figure 0004453113
【0071】
【表12】
Figure 0004453113
【0072】
以上より、本発明例の組み合わせの場合は、いずれの場合も、低い摩擦係数を示し、摩耗量も第一摺動部材、第二摺動部材ともに低い値を示し、優れたものであった。これに対して、比較例の組み合わせの場合は、いずれの場合も摩擦係数が高く、第二摺動部材の摩耗量も多かった。さらに、C−mの組み合わせ以外は第一摺動部材の被膜が完全に摩耗して下地が露出してしまった。
【0073】
往復摺動試験2:表13に記載の条件下で摩擦係数を測定した。
【0074】
【表13】
すべり速度:20cm/sec
荷 重:200kgf/cm
ストローク:220mm
サイクル数:100サイクル運転、5分間休止の断続試験を5回行なった。
【0075】
第一摺動部材と第二摺動部材との組み合わせおよび評価結果を表14〜15に示す。ここで、摩擦係数は静摩擦係数を示す。
(以下余白)
【0076】
【表14】
Figure 0004453113
(以下余白)
【0077】
【表15】
Figure 0004453113
【0078】
以上の結果から、本発明例の組み合わせにおいては、静摩擦係数が低く安定していることがわかる。これに対して、比較例の組み合わせの場合は、安定はしているが静摩擦係数の値が高い。
【0079】
続いて、上記二つの摺動部材を組み合わせた摺動構造を適用したすべり支承装置について説明する。図1は、摺動面が平面であるすべり支承装置1を、図2および図3は、摺動面が球面であるすべり支承装置41及び81を示す。
【0080】
図1において、すべり支承装置1は、第一摺動部材としての平面部材2と、平面部材2に対して水平方向に摺動自在に当接した第二摺動部材としての対向部材3とを具備している。
【0081】
平面部材2は、鋼等の材料から形成された平面部材本体11と、平面部材本体11の一方の面12に一体的に形成された熱硬化性合成樹脂製の潤滑被膜13とを具備している。潤滑被膜13は、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成されている。摺動面となる潤滑被膜13の露出表面(上面)14は、平坦に形成されている。
【0082】
対向部材3は、鋼等の材料から形成され、その下面に凹部21を有する対向部材本体22と、対向部材3の凹部21に一部が埋め込まれて取り付けられた合成樹脂からなる摺動体23とを具備している。摺動面となる摺動体23の露出表面(下面)24は、平坦に形成されている。
【0083】
以上のように構成されたすべり支承装置1は、上部構造物31側に対向部材3が配されて、例えば上部構造物31にボルト等により固定され、平面部材2が地盤側に配されて、地盤側の基礎32にアンカーボルト等により固定され使用される。また、すべり支承装置1は、積層ゴムや水平ばね等の原点復帰手段を併置して使用される。そして、地震等により地盤側の基礎32に水平方向の振動が生じると、平面部材2と対向部材3との露出表面14及び24間にすべり変位が生じ、これによって地盤側の基礎32の水平方向の振動の上部構造物31への伝達が阻止され、上部構造物31を地震振動から保護する。
【0084】
しかも、すべり支承装置1では、平面部材2の摺動面をエポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成される熱硬化性合成樹脂製の潤滑被膜13で形成し、これと摺動自在に当接する対向部材3の摺動体23を合成樹脂で形成したので、平面部材2と対向部材3との間のすべり変位がほとんど抵抗なしに行なわれるために、中規模の地震振動はもちろんのこと、比較的加速度の小さい小規模の地震振動においても、基礎32の水平方向の振動の上部構造物31への伝達を阻止することができ、上部構造物31を地震振動から効果的に保護することができる。
【0085】
図2のすべり支承装置41は、第一摺動部材としてのそれぞれ対向して配された凹球面部材42および43と、凹球面部材42および43の間に配置されて、凹球面部材42および43のそれぞれに対して摺動自在に当接した第二摺動部材としての介在部材44とを具備している。
【0086】
凹球面部材42は、鋼等の材料から形成された凹球面部材本体51と、凹球面部材本体51の凹球面52に一体的に形成された熱硬化性合成樹脂製の潤滑被膜53とを具備している。潤滑被膜53は、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成されている。摺動面となる潤滑被膜53の露出表面(上面)54は、曲率半径R1を有した球面の一部として形成されている。
【0087】
凹球面部材43は、鋼等の材料から形成された凹球面部材本体61と、凹球面部材本体61の凹球面62に一体的に形成された熱硬化性合成樹脂製の潤滑被膜63とを具備している。凹球面部材本体61は、基部64と、基部64の下面に一体的に形成された円柱状若しくは角柱状等の垂下部65とを具備しており、垂下部65の下面に凹球面62が形成されている。潤滑被膜63は、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成されている。摺動面となる潤滑被膜63の露出表面(下面)66は、曲率半径R2(<R1)を有した球面の一部として形成されている。
【0088】
介在部材44は、鋼等の材料から半球状に形成された介在部材本体71と、介在部材本体71の全表面を覆って、介在部材本体71に被着された合成樹脂からなる摺動層72とを具備している。摺動層72の下方露出面(下面)73は、曲率半径R1を有した球面の一部として形成されて、露出表面54に摺動自在に接触しており、摺動層72の上方露出面(上面)74は、曲率半径R2を有した球面の一部として形成されて、露出表面66に摺動自在に接触している。
【0089】
以上のように構成されたすべり支承装置41は、上部構造物31側に凹球面部材43が配されて、例えば当該上部構造物31にボルト等により固定され、凹球面部材42が地盤側に配されて、地盤側の基礎32にアンカーボルト等により固定され使用される。すべり支承装置41は、すべり支承装置1と同様に積層ゴムや水平ばね等の原点復帰手段と併置して使用されてもよいが、原点復帰手段を用いないでそれ自体の原点復帰機能を利用して使用されてもよい。そして、地震等により地盤側の基礎32に水平方向の振動が生じると、凹球面部材42および43のそれぞれと介在部材44との間にすべり変位が生じ、これによって地盤側の基礎32の水平方向の振動の上部構造物31への伝達が阻止され、上部構造物31を地震振動から保護する。
【0090】
しかも、すべり支承装置41では、凹球面部材42および43のそれぞれの摺動面をエポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成される熱硬化性合成樹脂製の潤滑被膜53および63で形成し、これと摺動自在に当接する介在部材44の摺動層72を合成樹脂で形成したので、凹球面部材42および43のそれぞれと介在部材44との間のすべり変位がほとんど抵抗なしに行なわれるために、すべり支承装置1と同様の効果を発揮させることができる。
【0091】
図3のすべり支承装置81は、第一摺動部材としてのそれぞれ対向して配された凹球面部材82および83と、凹球面部材82および83の間に配置されて、凹球面部材82および83のそれぞれに対して摺動自在に当接した第二摺動部材としての介在部材84とを具備している。
【0092】
凹球面部材82は、鋼等の材料から形成された凹球面部材本体85と、凹球面部材本体85の凹球面86に一体的に形成された熱硬化性合成樹脂製の潤滑被膜87とを具備している。潤滑被膜87は、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成されている。摺動面となる潤滑被膜87の露出表面(上面)88は、曲率半径R1を有した球面の一部として形成されている。
【0093】
凹球面部材83は、凹球面部材82と同様に形成されており、鋼等の材料から形成された凹球面部材本体89と、凹球面部材本体89の凹球面90に一体的に形成された熱硬化性合成樹脂製の潤滑被膜91とを具備している。潤滑被膜91は、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成されている。摺動面となる潤滑被膜91の露出表面(下面)92は、曲率半径R1を有した球面の一部として形成されている。
【0094】
介在部材84は、鋼等の材料から形成された扁平状の介在部材本体93と、介在部材本体93の下面の凹部94に一部が埋め込まれて取り付けられた合成樹脂からなる摺動体95と、介在部材本体93の上面の凹部96に一部が埋め込まれて取り付けられた合成樹脂からなる摺動体97とを具備している。摺動面となる摺動体95および97のそれぞれの下方露出表面(下面)98および上方露出表面(上面)99は、それぞれ曲率半径R1を有した球面の一部として形成されて、対面する露出表面88および92に摺動自在に接触している。
【0095】
以上のように構成されたすべり支承装置81は、すべり支承装置41と同様に、上部構造物31側に凹球面部材83が配されて、例えば当該上部構造物31にボルト等により固定され、凹球面部材82が地盤側に配されて、地盤側の基礎32にアンカーボルト等により固定され使用される。すべり支承装置81でも、すべり支承装置1と同様に積層ゴムや水平ばね等の原点復帰手段と併置して使用されてもよいが、原点復帰手段を用いないでそれ自体の原点復帰機能を利用して使用されてもよい。そして、地震等により地盤側の基礎32に水平方向の振動が生じると、凹球面部材82および83のそれぞれと介在部材84との間にすべり変位が生じ、これによって地盤側の基礎32の水平方向の振動の上部構造物31への伝達が阻止され、上部構造物31を地震振動から保護し、すべり支承装置41と同様に、凹球面部材82および83のそれぞれの摺動面をエポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルおよびトリアジンチオールからなる組成物で構成される熱硬化性合成樹脂製の潤滑被膜87および91で形成し、これと摺動自在に当接する介在部材84の摺動体95および97を合成樹脂で形成したので、凹球面部材82および83のそれぞれと介在部材84との間のすべり変位がほとんど抵抗なしに行なわれるために、すべり支承装置1および41と同様の効果を発揮させることができる。
【0096】
尚、介在部材44および84の全体を、合成樹脂からなる摺動体で形成してもよい。また、すべり支承装置41および81の摺動面を球面の一部として形成したが、これに代えて、円筒面の一部として形成してもよく、要は、断面が円弧状になる凹面及び凸面として摺動面が形成されていればよい。更に、前記実施例に代えて、平面部材2、凹球面部材42および43並びに凹球面部材82および83に、合成樹脂からなる摺動体を具備せしめて、対向部材3並びに介在部材44および84に、熱硬化性合成樹脂製の潤滑被膜を具備せしめて構成してもよい。
【0097】
【発明の効果】
以上のように本発明によれば、安定かつ低い静摩擦係数および動摩擦係数を有するとともに、すべりを必要とするときに、的確かつ効果的な低摩擦すべりが行なわれる、二つの摺動部材を組み合わせた摺動構造および該摺動構造を用いたすべり支承装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の摺動構造を適用したすべり支承装置の好ましい一実施例の断面図である。
【図2】本発明の摺動構造を適用したすべり支承装置の好ましい他の実施例の断面図である。
【図3】本発明の摺動構造を適用したすべり支承装置の好ましい更に他の実施例の断面図である。
【符号の説明】
1 すべり支承装置
2 平面部材
3 対向部材
13 潤滑被膜
14 露出表面(上面)
23 摺動体
24 露出表面(下面)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding structure in which two sliding members whose sliding surfaces that are in sliding contact with each other are made of synthetic resin are combined, and a sliding support device using the sliding structure.
[0002]
In a combination of two members that are in sliding contact, when one member is a synthetic resin, a metal member such as steel is generally used as the other member. However, for various purposes and needs, ie, rust prevention, chemical resistance, electrical insulation and weight reduction, and other design requirements, the other member itself is made of synthetic resin, or at least its sliding surface is synthesized. A measure such as resin may be used.
[0003]
For example, a combination of a steel shaft coated with a synthetic resin film and a synthetic resin bearing, a combination of synthetic resin gears, a synthetic resin pipe and a push-pull (reciprocating sliding) or rotating slide inserted through the synthetic resin pipe For example, a control cable made of a combination with a wire rope coated with synthetic resin.
[0004]
[Problems to be solved by the invention]
However, in the case of a combination of sliding members made of synthetic resin, even in a tetrafluoroethylene resin known to have a low friction coefficient, the coefficient of dynamic friction is 0.1 when sliding under dry friction conditions. It is difficult to:
[0005]
In addition, in a sliding bearing device that has a function to release the displacement of a structure by sliding in response to earthquake motion, if the friction coefficient acting on the sliding surface is large, the sliding displacement is not made desired, and effective seismic isolation is not exhibited. Therefore, it is required that the frictional resistance on the sliding surface is low.
[0006]
Furthermore, since the sliding bearing device does not operate except when force is input due to an earthquake or the like, in order to obtain a stable seismic isolation effect, the friction resistance during operation is stable, that is, the coefficient of static friction. Is required to have a small change with time. That is, it is required that the coefficient of static friction is low and stable together with the low coefficient of dynamic friction.
[0007]
However, in the case of a combination of sliding members made of synthetic resin, the static friction coefficient generally shows a value that is twice or more the dynamic friction coefficient. Furthermore, in the case where the load is under load and does not always operate, the coefficient of static friction tends to gradually increase due to microscopic creep due to long-term contact between both members.
[0008]
Therefore, by applying a lubricating oil such as grease or oil to the sliding surface, both the static friction coefficient and the dynamic friction coefficient can be reduced, but the lubricating oil is discharged from the sliding surface by sliding for a short time. In addition to losing the effect, the coefficient of friction gradually increases due to the influence of solidification or deterioration over time.
[0009]
The present invention has been made to solve the above-mentioned problems, and has a stable and low static friction coefficient and dynamic friction coefficient, and when a slip is required, an accurate and effective low friction slip is performed. An object of the present invention is to provide a sliding structure in which two sliding members are combined, and a sliding support device using the sliding structure.
[0010]
[Means for Solving the Problems]
According to the present invention, the object consists of a first sliding member whose sliding surface is made of a thermosetting synthetic resin lubricating coating and a second sliding member whose sliding surface is made of synthetic resin, A sliding structure combining the first and second sliding members, wherein the lubricating coating is a coating of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol Achieved by:
[0011]
According to the present invention, the above object is also achieved by a sliding bearing device that includes the above sliding structure and that generates a slip during an earthquake and performs a seismic isolation action.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. First, of the first sliding member and the second sliding member that are in sliding contact with each other on the sliding surface, the composition constituting the lubricating film made of a thermosetting synthetic resin on the sliding surface of the first sliding member Is described.
[0013]
As the epoxy resin, conventionally known ones can be used. For example, glycidyl ether such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated bisphenol A type epoxy resin, etc. Type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin and the like. These may be used alone or in combination of two or more. Specifically, bisphenol A type liquid or solid type epoxy resin “Epicoat (trade name)” manufactured by Yuka Shell Epoxy Co., Ltd. may be mentioned. The epoxy resin forms the matrix of the synthetic resin film of the present invention and functions as an adhesive with the base.
[0014]
As the curing agent, those conventionally used as a curing agent for epoxy resins can be used, and examples thereof include polyamines, acid anhydrides, phenol resins, polyamide resins, and mercaptan compounds. Furthermore, you may use together hardening accelerators, such as tertiary amine, an imidazole derivative, and a boron fluoride complex salt, with these hardening | curing agents.
[0015]
Examples of polyamines include aliphatic polyamines such as diethylenetriamine and triethylenetetramine, alicyclic amines such as isophoronediamine and bis (4-amino-3-methylcyclohexyl) methane, and aromatics such as diaminodiphenylmethane, diaminodiphenylsulfone, and metaphenylenediamine. Heterocyclic amines, heterocyclic amines such as aminoethylpiperazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, dicyandiamide and modified ones thereof Is included. Examples of the modification method include making an adduct with an epoxy resin, ethylene oxide, propylene oxide, acrylonitrile, and ketones. Specific examples of the polyamine include modified aliphatic polyamine “EpiCure T (trade name)” manufactured by Yuka Shell Epoxy, modified alicyclic amine “EpiCure 113 (trade name)”, modified aromatic amine “Epicure W ( Product name) ".
[0016]
Examples of acid anhydrides include aliphatic acid anhydrides such as dodecyl succinic anhydride and polyazeline acid anhydride, alicyclic acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylnadic anhydride, and phthalic anhydride. , Aromatic acid anhydrides such as trimellitic anhydride and pyromellitic anhydride, and halogen-based acid anhydrides such as tetrabromophthalic anhydride and anhydrous het acid, and generally curing accelerators for tertiary amines and imidazole derivatives Used as Specific examples include “Epicure 134A (trade name)” manufactured by Yuka Shell Epoxy.
[0017]
Examples of the phenol resin include novolak type phenol resins, and generally a curing accelerator is used in combination.
[0018]
Examples of the polyamide resin include polyamide obtained from dimer acid and polyamine which are dimers of unsaturated fatty acids.
[0019]
A mercaptan compound is an aliphatic polysulfide polymer having a mercapto group -SH at both ends of the molecular structural formula, and it does not react with an epoxy resin by itself, so it needs to be used in combination with the polyamine or tertiary amine. It is. Specific examples of mercaptan compounds include “Cup Cure 3800 (trade name)” manufactured by Yuka Shell Epoxy Co., Ltd.
[0020]
The blending ratio of the epoxy resin and the curing agent is determined by the ratio between the number of epoxy groups or hydroxyl groups in the epoxy resin and the number of functional groups in the curing agent that reacts with the epoxy groups or hydroxyl groups.
[0021]
For example, when polyamine is used as the curing agent, assuming that the epoxy equivalent of the epoxy resin is E and the amine equivalent of the polyamine is A, it is polyamine (0.8 to 1.2) × Ag with respect to the epoxy resin Eg. Here, the epoxy equivalent is the number of grams of epoxy resin containing 1 gram equivalent of epoxy groups, and the amine equivalent is the number of grams of polyamine containing 1 gram equivalent of active hydrogen that reacts with epoxy groups.
[0022]
Therefore, the blending weight ratio of the epoxy resin and the curing agent varies depending on the type of epoxy resin used and the type of curing agent, but is set as follows. That is, it mix | blends in the ratio shown in Table 1 with respect to the epoxy resin Eg. Here, E is an epoxy equivalent value of the epoxy resin.
(The following margin)
[0023]
[Table 1]
Figure 0004453113
[0024]
Moreover, what is necessary is just to mix | blend 1-20g of hardening accelerators with respect to the epoxy resin Eg, when using together a hardening accelerator.
[0025]
The reactive silicone oil having an epoxy group is a silicone oil in which a part of methyl groups of dimethylpolysiloxane is substituted with a functional group containing an epoxy group. For example, it is represented by the following formula (1), (2) or (3).
(The following margin)
[0026]
[Chemical 1]
Figure 0004453113
[0027]
In the formulas (1), (2) and (3), X represents an epoxy group-containing group, for example, the following formula (4), (5), (6) or (7), and m is an integer of 5 to 10,000. And n is an integer from 2 to 100.
(The following margin)
[0028]
[Chemical 2]
Figure 0004453113
[0029]
Of the above reactive silicone oils having an epoxy group, silicone oils of the following formulas (8) and (9) are preferred.
[0030]
[Chemical Formula 3]
Figure 0004453113
[0031]
In formulas (8) and (9), m is an integer of 5 to 10,000, and n is an integer of 2 to 100.
[0032]
The reactive silicone oil having an epoxy group is an oily substance having a linear structure, but forms a three-dimensional network structure by reacting with triazine thiol described later. This three-dimensional network structure is no longer oily, but retains lubricity. The three-dimensional network structure also plays a role of improving the toughness of the lubricating coating.
[0033]
Triazine thiol is represented by the following formula (10).
[0034]
[Formula 4]
Figure 0004453113
[0035]
In the formula (10), A represents a mercapto group —SH, a dibutylamino group —N (C4H9)2Or anilino group-NHC6H5It is.
[0036]
As described above, the triazine thiol has a role as a crosslinking agent for the reactive silicone oil having an epoxy group, and causes the reactive silicone oil having an epoxy group to have a three-dimensional network structure.
[0037]
Triazine thiol has been conventionally used as a crosslinking agent for rubber and vinyl chloride, as an adhesive between metal and rubber, and as a metal surface treatment agent. In the present invention, when forming a lubricating coating, it reacts with an epoxy resin to firmly bind to the three-dimensional network structure of the reactive silicone oil having the epoxy group and also reacts with the underlying surface. Thus, it is considered that it also plays a role of improving the adhesive strength between the base and the lubricating coating.
[0038]
The blending ratio of the triazine thiol to the reactive silicone oil having an epoxy group may be more than an amount necessary for crosslinking the reactive silicone oil having an epoxy group to form a three-dimensional network structure, and preferably (triazine thiol). ) / (Weight of the reactive silicone oil having an epoxy group) = 0.3-1.
[0039]
The amount of the reactive silicone oil having an epoxy group and the triazine thiol is 100 parts by weight of the sum of the epoxy resin and the curing agent, and the sum of the amount of the reactive silicone oil having an epoxy group and the triazine thiol is 2 to 30 parts by weight, preferably 5 to 20 parts by weight. When the blending ratio is less than 2 parts by weight, the blending effect cannot be obtained, and when it exceeds 30 parts by weight, the mechanical strength of the lubricating coating is significantly reduced.
[0040]
In addition to the epoxy resin, the curing agent, the reactive silicone oil having an epoxy group, and triazine thiol, a non-reactive silicone oil can be blended for the purpose of further reducing the friction coefficient. Non-reactive silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil and dimethylpolysiloxane is substituted with polyether group, phenyl group, alkyl group, aralkyl group, fluorinated alkyl group, etc. 25 ° C.) is 100 to 50000 cSt, preferably 500 to 10000 cSt.
[0041]
This non-reactive silicone oil is retained in the three-dimensional network structure of the reactive silicone oil having the epoxy group, and the bleed-out to the sliding surface is moderately suppressed, so the blending effect is maintained over a long period of time. it can.
[0042]
The compounding amount of the non-reactive silicone oil is 2 to 10 parts by weight, preferably 3 to 7 parts by weight, where the sum of the epoxy resin and the curing agent is 100 parts by weight. When the amount is less than 2 parts by weight, the effect of the sliding property cannot be obtained, and when the amount exceeds 10 parts by weight, the mechanical strength of the lubricating coating is significantly reduced.
[0043]
Furthermore, inorganic and organic filler powders can be blended as required. Examples of inorganic and organic filler powders include inorganic powders such as graphite and boron nitride, and organic powders such as fluororesin, and the blending amount is 100 parts by weight of the sum of the epoxy resin and the curing agent. , 2 parts by weight or more from the viewpoint of blending effect, and 10 parts by weight or less from the viewpoint of workability of forming the lubricating film.
[0044]
A method for forming a lubricating coating made of thermosetting synthetic resin will be described. Epoxy resin, reactive silicone oil having an epoxy group, if necessary non-reactive silicone oil, organic, inorganic filler powder is dissolved or dispersed in an organic solvent, and then a curing agent, triazine thiol is dissolved, or After dissolving epoxy resin in organic solvent, dissolve or disperse reactive silicone oil with epoxy group, curing agent, triazine thiol, if necessary non-reactive silicone oil, organic and inorganic filler powder, solid content Of 30 to 40% by weight and a viscosity (normal temperature) of about 100 to 200 cSt is prepared.
[0045]
Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohols such as isopropyl alcohol and n-butanol, aromatic hydrocarbon solvents such as toluene and xylene, and tetrahydrofuran. These organic solvents are used alone or in combination.
[0046]
For example, a coating film is formed on the steel surface, which has been subjected to a treatment generally performed such as shot blasting or degreasing, by a method such as brushing or spraying, and a curing treatment is performed to obtain a cured coating.
[0047]
Various curing conditions can be adopted depending on what curing agent is used after the coating is formed. As an example, when an alicyclic amine is used as a curing agent, after forming a coating film, it is naturally dried or pre-dried at 80 ° C. for 30 minutes to remove the solvent, and then heated and baked at 180 ° C. for 30 minutes. To obtain a desired cured film.
[0048]
The film thickness is 5 to 100 μm, in particular 10 to 50 μm, most preferably 20 to 40 μm. If it is less than 5 μm, the homogeneity of the coating is impaired, or the durability as a lubricating coating is lowered. Moreover, when exceeding 100 micrometers, the mechanical strength of a film will be impaired and the load resistance as a sliding member will fall.
[0049]
Next, the synthetic resin constituting the sliding surface of the second sliding member that is in sliding contact with the first sliding member will be described. The synthetic resin is not particularly limited, and any thermoplastic or thermosetting resin can be used. For example, phenol resin, epoxy resin, polyolefin, polyacetal, polyamide, polybutylene terephthalate, polyphenylene sulfide, polyether ketone, aliphatic ketone, fluorine resin, polyimide resin, aromatic polyester resin, and the like can be given. Two or more of these synthetic resins may be used in combination.
[0050]
Moreover, what mix | blended the lubricating oil agent and the reinforcing agent with these can be used. Lubricating oils include lubricating oil, grease, wax, graphite, molybdenum disulfide, fluororesin, and the like, and reinforcing agents include glass powder, glass fiber, carbon powder, carbon fiber, aramid fiber, and the like.
[0051]
These synthetic resins can be used by embedding a part of a block-shaped or plate-shaped molded product in a recess formed in a backing such as metal, or by bonding or screwing to the backing surface. Various application forms are employed, such as being used as a thin film on the surface of a backing material.
[0052]
In this thin film type, a porous sintered layer of a copper alloy is provided on a steel plate, a synthetic resin is supplied onto the sintered layer, and the resin thin film is formed by applying pressure and heat firing. A layered sliding member or a synthetic resin cured film directly applied to the surface of a backing such as steel, such as a solvent-dispersed type of tetrafluoroethylene resin (trade name: Polyflon TFE enamel) manufactured by Daikin Industries, Ltd. And a cured film formed by baking, all of which can be used effectively.
[0053]
In the sliding support device of the present invention, the sliding surfaces of the first sliding member and the second sliding member that are in sliding contact with each other may be flat surfaces. The moving member has a cross-section arc-shaped concave surface having a predetermined radius of curvature, and the second sliding member has a cross-section arc-shaped convex surface having the same curvature radius as the cross-section arc-shaped concave surface. May be in sliding contact with the concave surface.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[0055]
(First sliding member)
A composition comprising components (a) to (m) shown in Tables 2 to 4 on a surface subjected to shot blasting and degreasing treatment, with a plate-like stainless steel plate SUS304 having a width of 40 mm, a length of 280 mm, and a thickness of 10 mm as a base. After spraying a mixed solvent dilution of methyl isobutyl ketone and toluene (solid content: 33% by weight), pre-drying at 80 ° C. for 30 minutes to drive off the solvent, heat-baking treatment at 180 ° C. for 30 minutes, The thickness was 40 μm.
[0056]
In the table, the epoxy resin is “Epicoat 828 (trade name), epoxy equivalent: 190” manufactured by Yuka Shell Epoxy, and the polyamine is a modified alicyclic amine “EpiCure 113 (trade name) manufactured by Yuka Shell Epoxy. ”, Acid anhydride is hexahydrophthalic anhydride, tertiary amine is benzyldimethylamine, and KF-102 is an epoxy-modified silicone oil having an alicyclic epoxy group in the side chain made by Shin-Etsu Chemical Co., Ltd. KF-102 (trade name), epoxy equivalent: 3600, viscosity: 4000 cSt ”, KF-101 is an epoxy-modified silicone oil“ KF-101 (trade name) having a glycidyl group in the side chain made by Shin-Etsu Chemical Co., Ltd. ” Epoxy equivalent: 350, viscosity: 2000 cSt ”, KF-96 is dimethyl silicone oil“ KF-96 ”manufactured by Shin-Etsu Chemical Co., Ltd. (Trade name), viscosity: 5000 cSt ”, SH510 represents methylphenyl silicone oil“ SH510 (trade name), viscosity: 500 cSt ”manufactured by Toray Dow Corning Silicone, and PTFE represents tetrafluoroethylene resin. .
[0057]
[Table 2]
Figure 0004453113
[0058]
[Table 3]
Figure 0004453113
(The following margin)
[0059]
[Table 4]
Figure 0004453113
(The following margin)
[0060]
(Second sliding member)
(A) 15% by weight of “MF06JB1-20 (trade name)” manufactured by Asahi Fiber Glass Co., Ltd. having a diameter of 10 μm and an average length of 63 μm as glass fiber powder, and “P84 (trade name)” 2 manufactured by Lenzing as polyimide resin powder. A molded product of a resin composition composed of a tetrafluoroethylene resin “Teflon 7AJ (trade name)” manufactured by Mitsui DuPont Fluorochemical Co., Ltd. The end surface of a rod-shaped member having a diameter of 10 mm and a height of 14 mm was used as a sliding surface.
(B) A molded product of a resin composition comprising 20% by weight of the above polyimide resin powder and the remaining tetrafluoroethylene resin. The end surface of a rod-shaped member having a diameter of 10 mm and a height of 14 mm was used as a sliding surface.
(C) Mitsui Dupont Fluoro Chemical Co., Ltd. tetrafluoroethylene resin “Teflon 7AJ (trade name)” 15% by weight, Daikin Industries, Ltd. tetrafluoroethylene resin “Lublon L-5 (trade name)” 25% by weight, balance A molded product of a resin composition comprising polyphenylene sulfide “Toprene PPST-4 (trade name)” manufactured by Toprene. The end surface of a rod-shaped member having a diameter of 10 mm and a height of 14 mm was used as a sliding surface.
(D) Molded product of resin composition consisting of 5% by weight of mineral oil and the remainder polyacetal “Duracon M90 (trade name)” manufactured by Polyplastics. The end surface of a rod-shaped member having a diameter of 10 mm and a height of 14 mm was used as a sliding surface.
(E) Carbon fiber “Kureha chop M-107T (trade name)” having a diameter of 18 μm and a length of 0.7 mm manufactured by Kureha Chemical Industry Co., Ltd. 20% by weight, 4 × 6 mm cotton cloth strips 25% by weight, graphite 5% by weight A molded product of a resin composition comprising the remaining phenol resin. The end surface of a rod-shaped member having a diameter of 10 mm and a height of 14 mm was used as a sliding surface.
[0061]
About the combination of the said 1st sliding member and the 2nd sliding member, the sliding characteristic was evaluated by the following method.
[0062]
Reciprocating sliding test 1: The friction coefficient and the wear amount were measured under the conditions shown in Table 5.
[0063]
[Table 5]
Sliding speed: 20cm / sec
Load: 200kgf / cm2
Stroke: 220mm
Number of cycles: 500 cycles
[0064]
Tables 6 to 12 show combinations and evaluation results of the first sliding member and the second sliding member. Here, the friction coefficient indicates the dynamic friction coefficient at the time of stability after the start of the test, and the wear amount indicates the dimensional change amount of the first sliding member and the weight change amount of the second sliding member after 500 cycles.
[0065]
[Table 6]
Figure 0004453113
(The following margin)
[0066]
[Table 7]
Figure 0004453113
[0067]
[Table 8]
Figure 0004453113
[0068]
[Table 9]
Figure 0004453113
[0069]
[Table 10]
Figure 0004453113
[0070]
[Table 11]
Figure 0004453113
[0071]
[Table 12]
Figure 0004453113
[0072]
From the above, in the case of the combination of the examples of the present invention, the friction coefficient was low and the wear amount was low for both the first sliding member and the second sliding member. On the other hand, in the case of the combination of the comparative examples, the friction coefficient was high in all cases, and the wear amount of the second sliding member was large. Furthermore, except for the combination of Cm, the coating of the first sliding member was completely worn and the base was exposed.
[0073]
Reciprocating sliding test 2: The coefficient of friction was measured under the conditions described in Table 13.
[0074]
[Table 13]
Sliding speed: 20cm / sec
Load: 200kgf / cm2
Stroke: 220mm
Number of cycles: 100 cycles of operation, 5 minutes pause intermittent test was performed 5 times.
[0075]
Tables 14 to 15 show combinations and evaluation results of the first sliding member and the second sliding member. Here, the friction coefficient indicates a static friction coefficient.
(The following margin)
[0076]
[Table 14]
Figure 0004453113
(The following margin)
[0077]
[Table 15]
Figure 0004453113
[0078]
From the above results, it can be seen that the static friction coefficient is low and stable in the combination of the examples of the present invention. On the other hand, the combination of the comparative examples is stable but has a high static friction coefficient.
[0079]
Next, a sliding support device to which a sliding structure combining the above two sliding members is applied will be described. FIG. 1 shows a sliding bearing device 1 having a flat sliding surface, and FIGS. 2 and 3 show sliding bearing devices 41 and 81 having a spherical sliding surface.
[0080]
In FIG. 1, the sliding support device 1 includes a planar member 2 as a first sliding member and an opposing member 3 as a second sliding member that is slidably contacted with the planar member 2 in the horizontal direction. It has.
[0081]
The planar member 2 includes a planar member main body 11 formed of a material such as steel, and a lubricating film 13 made of a thermosetting synthetic resin integrally formed on one surface 12 of the planar member main body 11. Yes. The lubricating coating 13 is composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. An exposed surface (upper surface) 14 of the lubricating coating 13 serving as a sliding surface is formed flat.
[0082]
The opposing member 3 is formed of a material such as steel and has a opposing member main body 22 having a recess 21 on the lower surface thereof, and a sliding body 23 made of a synthetic resin that is partially embedded in and attached to the recess 21 of the opposing member 3. It has. The exposed surface (lower surface) 24 of the sliding body 23 that becomes the sliding surface is formed flat.
[0083]
In the sliding support device 1 configured as described above, the facing member 3 is arranged on the upper structure 31 side, for example, fixed to the upper structure 31 with a bolt or the like, and the planar member 2 is arranged on the ground side. It is fixed to the foundation 32 on the ground side with anchor bolts and used. Further, the sliding support device 1 is used with an origin return means such as a laminated rubber or a horizontal spring. When horizontal vibration is generated on the ground-side foundation 32 due to an earthquake or the like, slip displacement occurs between the exposed surfaces 14 and 24 of the planar member 2 and the opposing member 3, thereby causing the ground-side foundation 32 to move horizontally. Is prevented from being transmitted to the upper structure 31 to protect the upper structure 31 from earthquake vibration.
[0084]
Moreover, in the sliding support device 1, a lubricating film made of a thermosetting synthetic resin, in which the sliding surface of the flat member 2 is composed of an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. 13 and the sliding member 23 of the opposing member 3 that is slidably in contact with the sliding member 23 is made of synthetic resin, so that the sliding displacement between the planar member 2 and the opposing member 3 is performed with almost no resistance. The transmission of the horizontal vibration of the foundation 32 to the upper structure 31 can be prevented not only in the middle-scale earthquake vibration but also in the small-scale earthquake vibration having a relatively small acceleration. Can be effectively protected from earthquake vibration.
[0085]
The sliding support device 41 of FIG. 2 is disposed between the concave spherical members 42 and 43 disposed as opposed to each other as the first sliding member, and the concave spherical members 42 and 43, and the concave spherical members 42 and 43. And an interposing member 44 as a second sliding member slidably in contact with each of the first and second members.
[0086]
The concave spherical member 42 includes a concave spherical member main body 51 formed of a material such as steel, and a lubricating film 53 made of a thermosetting synthetic resin formed integrally with the concave spherical surface 52 of the concave spherical member main body 51. is doing. The lubricating coating 53 is composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. An exposed surface (upper surface) 54 of the lubricating coating 53 serving as a sliding surface is formed as a part of a spherical surface having a radius of curvature R1.
[0087]
The concave spherical member 43 includes a concave spherical member main body 61 formed of a material such as steel, and a lubricating film 63 made of a thermosetting synthetic resin formed integrally with the concave spherical surface 62 of the concave spherical member main body 61. is doing. The concave spherical member body 61 includes a base portion 64 and a hanging portion 65 such as a columnar or prismatic shape integrally formed on the lower surface of the base portion 64, and a concave spherical surface 62 is formed on the lower surface of the hanging portion 65. Has been. The lubricating coating 63 is composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. An exposed surface (lower surface) 66 of the lubricating coating 63 serving as a sliding surface is formed as a part of a spherical surface having a radius of curvature R2 (<R1).
[0088]
The interposition member 44 includes an interposition member main body 71 formed in a hemispherical shape from a material such as steel, and a sliding layer 72 made of a synthetic resin that covers the entire surface of the interposition member main body 71 and is attached to the interposition member main body 71. It is equipped with. The lower exposed surface (lower surface) 73 of the sliding layer 72 is formed as a part of a spherical surface having a radius of curvature R1, and is slidably in contact with the exposed surface 54. The upper exposed surface of the sliding layer 72 is The (upper surface) 74 is formed as a part of a spherical surface having a radius of curvature R2 and slidably contacts the exposed surface 66.
[0089]
In the sliding support device 41 configured as described above, the concave spherical member 43 is arranged on the upper structure 31 side, for example, fixed to the upper structure 31 with a bolt or the like, and the concave spherical member 42 is arranged on the ground side. Then, it is used by being fixed to the foundation 32 on the ground side with an anchor bolt or the like. The slide support device 41 may be used in combination with origin return means such as laminated rubber and horizontal springs as in the case of the slide support device 1, but it uses its own origin return function without using the origin return means. May be used. When a horizontal vibration is generated on the ground-side foundation 32 due to an earthquake or the like, a sliding displacement is generated between each of the concave spherical members 42 and 43 and the interposition member 44, whereby the horizontal direction of the ground-side foundation 32 is generated. Is prevented from being transmitted to the upper structure 31 to protect the upper structure 31 from earthquake vibration.
[0090]
In addition, in the sliding bearing device 41, the thermosetting synthesis in which the respective sliding surfaces of the concave spherical members 42 and 43 are composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. Since the sliding layer 72 of the interposition member 44 that is formed of the resin-made lubricating coatings 53 and 63 and is slidably in contact therewith is formed of synthetic resin, the concave spherical members 42 and 43 and the interposition member 44 Since the sliding displacement between them is performed with almost no resistance, the same effect as the sliding support device 1 can be exhibited.
[0091]
The sliding support device 81 of FIG. 3 is disposed between the concave spherical members 82 and 83 and the concave spherical members 82 and 83 arranged as opposed to each other as the first sliding members, and the concave spherical members 82 and 83 are arranged. And an intervening member 84 as a second sliding member that is slidably in contact with each of the two.
[0092]
The concave spherical member 82 includes a concave spherical member main body 85 made of a material such as steel, and a lubricating film 87 made of a thermosetting synthetic resin formed integrally with the concave spherical surface 86 of the concave spherical member main body 85. is doing. The lubricating coating 87 is composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. An exposed surface (upper surface) 88 of the lubricating coating 87 serving as a sliding surface is formed as a part of a spherical surface having a radius of curvature R1.
[0093]
The concave spherical member 83 is formed in the same manner as the concave spherical member 82, and the concave spherical member main body 89 formed of a material such as steel and the heat formed integrally with the concave spherical surface 90 of the concave spherical member main body 89. And a lubricating coating 91 made of a curable synthetic resin. The lubricating coating 91 is composed of a composition comprising an epoxy resin, a curing agent, a reactive silicone oil having an epoxy group, and triazine thiol. An exposed surface (lower surface) 92 of the lubricating coating 91 serving as a sliding surface is formed as a part of a spherical surface having a curvature radius R1.
[0094]
The interposition member 84 is a flat interposition member main body 93 formed of a material such as steel, and a sliding body 95 made of synthetic resin attached and embedded in a recess 94 on the lower surface of the interposition member main body 93. And a sliding body 97 made of a synthetic resin that is partly embedded in and attached to the recess 96 on the upper surface of the interposition member main body 93. The lower exposed surface (lower surface) 98 and the upper exposed surface (upper surface) 99 of the sliding bodies 95 and 97 to be the sliding surfaces are formed as part of a spherical surface having a radius of curvature R1, respectively, and are exposed surfaces facing each other. 88 and 92 are slidably in contact.
[0095]
Similar to the sliding support device 41, the sliding support device 81 configured as described above is provided with a concave spherical member 83 on the upper structure 31 side, and is fixed to the upper structure 31 with a bolt or the like, for example. A spherical member 82 is disposed on the ground side, and is used by being fixed to the foundation 32 on the ground side by anchor bolts or the like. Similarly to the sliding support device 1, the sliding support device 81 may be used in combination with origin return means such as a laminated rubber or a horizontal spring. May be used. When a horizontal vibration is generated on the ground side foundation 32 due to an earthquake or the like, a sliding displacement is generated between each of the concave spherical members 82 and 83 and the interposition member 84, thereby causing the horizontal direction of the foundation 32 on the ground side. Is prevented from being transmitted to the upper structure 31, and the upper structure 31 is protected from earthquake vibration. Like the sliding bearing device 41, the sliding surfaces of the concave spherical members 82 and 83 are made of epoxy resin and cured. Of the intervening member 84 formed by the lubricating coatings 87 and 91 made of a thermosetting synthetic resin composed of a composition comprising an agent, a reactive silicone oil having an epoxy group, and triazine thiol. Since the moving bodies 95 and 97 are made of synthetic resin, the sliding displacement between the concave spherical members 82 and 83 and the interposition member 84 is performed with almost no resistance. In order, it is possible to exhibit the same effect as sliding bearings apparatus 1 and 41.
[0096]
In addition, you may form the whole interposition members 44 and 84 with the sliding body which consists of synthetic resins. In addition, the sliding surfaces of the sliding support devices 41 and 81 are formed as a part of a spherical surface, but instead of this, they may be formed as a part of a cylindrical surface. The sliding surface should just be formed as a convex surface. Further, instead of the above embodiment, the planar member 2, the concave spherical members 42 and 43 and the concave spherical members 82 and 83 are provided with sliding bodies made of synthetic resin, and the opposing member 3 and the interposing members 44 and 84 are provided with You may comprise and comprise the lubricating film made from a thermosetting synthetic resin.
[0097]
【The invention's effect】
As described above, according to the present invention, two sliding members are combined that have a stable and low static friction coefficient and dynamic friction coefficient, and that perform accurate and effective low friction sliding when sliding is required. A sliding structure and a sliding support device using the sliding structure can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a preferred embodiment of a sliding support device to which a sliding structure of the present invention is applied.
FIG. 2 is a cross-sectional view of another preferred embodiment of the sliding support device to which the sliding structure of the present invention is applied.
FIG. 3 is a cross-sectional view of still another preferred embodiment of the sliding support device to which the sliding structure of the present invention is applied.
[Explanation of symbols]
1 Sliding bearing device
2 Planar member
3 Opposing members
13 Lubricant coating
14 Exposed surface (top)
23 Sliding body
24 Exposed surface (bottom surface)

Claims (10)

互いに摺動面で摺動接触する第一摺動部材と第二摺動部材とを組み合わせた摺動構造であって、第一摺動部材の摺動面が熱硬化性合成樹脂製の潤滑被膜からなり、第二摺動部材の摺動面が合成樹脂からなり、前記潤滑被膜が、エポキシ樹脂、硬化剤、エポキシ基を有する反応性シリコーンオイルとしての側鎖に脂環式エポキシ基を有するエポキシ変性シリコーンオイル又は側鎖にグリシジル基を有するエポキシ変性シリコーンオイルおよびトリアジンチオールからなる組成物の被膜であり、エポキシ樹脂は、ビスフェノールA型エポキシ樹脂からなり、硬化剤は、変性脂環族アミンからなることを特徴とする、二つの摺動部材を組み合わせた摺動構造。  A sliding structure combining a first sliding member and a second sliding member that are in sliding contact with each other on a sliding surface, wherein the sliding surface of the first sliding member is a lubricating coating made of a thermosetting synthetic resin The sliding surface of the second sliding member is made of synthetic resin, and the lubricating coating is an epoxy resin, a curing agent, an epoxy having an alicyclic epoxy group in the side chain as a reactive silicone oil having an epoxy group It is a coating of a composition comprising a modified silicone oil or an epoxy-modified silicone oil having a glycidyl group in the side chain and triazine thiol, the epoxy resin comprising a bisphenol A type epoxy resin, and the curing agent comprising a modified alicyclic amine. A sliding structure in which two sliding members are combined. 潤滑被膜を構成する組成物が、エポキシ樹脂と硬化剤との和100重量部、エポキシ基を有する反応性シリコーンオイルとトリアジンチオールとの和2〜30重量部からなる、請求項1に記載の二つの摺動部材を組み合わせた摺動構造。  2. The composition according to claim 1, wherein the composition constituting the lubricating coating comprises 100 parts by weight of the sum of the epoxy resin and the curing agent, and 2 to 30 parts by weight of the sum of the reactive silicone oil having an epoxy group and the triazine thiol. A sliding structure that combines two sliding members. エポキシ樹脂と硬化剤との配合重量割合が、エポキシ樹脂のエポキシ当量をEとしたときに、(エポキシ樹脂):(硬化剤)=E:10〜E:300である、請求項1または2に記載の二つの摺動部材を組み合わせた摺動構造。  The compounding weight ratio of the epoxy resin and the curing agent is (epoxy resin) :( curing agent) = E: 10 to E: 300, where E is the epoxy equivalent of the epoxy resin. A sliding structure combining the two sliding members described. エポキシ基を有する反応性シリコーンオイルとトリアジンチオールとの配合重量割合が、(トリアジンチオール)/(エポキシ基を有する反応性シリコーンオイル)=0.03〜1である、請求項1から3のいずれか一項に記載の二つの摺動部材を組み合わせた摺動構造。  The blending weight ratio of the reactive silicone oil having an epoxy group and the triazine thiol is (triazine thiol) / (reactive silicone oil having an epoxy group) = 0.03 to 1. A sliding structure combining the two sliding members according to one item. 潤滑被膜を構成する組成物が、さらに、非反応性シリコーンオイルを、エポキシ樹脂と硬化剤との和を100重量部としたとき、2〜10重量部含有する、請求項1から4のいずれか一項に記載の二つの摺動部材を組み合わせた摺動構造。  The composition constituting the lubricating coating further comprises 2 to 10 parts by weight of a non-reactive silicone oil when the sum of the epoxy resin and the curing agent is 100 parts by weight. A sliding structure combining the two sliding members according to one item. 潤滑被膜を構成する組成物が、さらに、無機および有機充填材粉末を、エポキシ樹脂と硬化剤との和を100重量部としたとき、2〜10重量部含有する、請求項1から5のいずれか一項に記載の二つの摺動部材を組み合わせた摺動構造。  6. The composition according to claim 1, wherein the composition constituting the lubricating coating further contains 2 to 10 parts by weight of inorganic and organic filler powders when the sum of the epoxy resin and the curing agent is 100 parts by weight. A sliding structure in which the two sliding members according to claim 1 are combined. 第二摺動部材の摺動面を構成する合成樹脂が、潤滑油、グリース、ワックス、二硫化モリブデン、フッ素樹脂、ガラス粉末、ガラス繊維、炭素粉末、炭素繊維およびアラミド繊維から選択される少なくとも1種以上を含有する、請求項1から6のいずれか一項に記載の二つの摺動部材を組み合わせた摺動構造。  The synthetic resin constituting the sliding surface of the second sliding member is at least one selected from lubricating oil, grease, wax, molybdenum disulfide, fluororesin, glass powder, glass fiber, carbon powder, carbon fiber, and aramid fiber The sliding structure which combined the two sliding members as described in any one of Claim 1 to 6 containing a seed | species or more. 請求項1から7のいずれか一項に記載の摺動構造を具備しており、地震時にすべりを発生し免震作用を行なうすべり支承装置。  A sliding bearing device comprising the sliding structure according to any one of claims 1 to 7, wherein the sliding bearing device generates a slip during an earthquake and performs a seismic isolation action. 互いに摺動接触する第一摺動部材と第二摺動部材との摺動面が平面である、請求項8に記載のすべり支承装置。  The sliding support device according to claim 8, wherein the sliding surfaces of the first sliding member and the second sliding member that are in sliding contact with each other are flat. 第一摺動部材は、所定の曲率半径を有した断面円弧状凹面を有しており、第二摺動部材は、前記断面円弧状凹面と同一の曲率半径を有した断面円弧状凸面を有しており、当該凸面が前記凹面に摺動接触する、請求項8に記載のすべり支承装置。  The first sliding member has an arcuate concave surface with a predetermined radius of curvature, and the second sliding member has an arcuate convex surface with the same radius of curvature as the arcuate concave surface. The sliding bearing device according to claim 8, wherein the convex surface is in sliding contact with the concave surface.
JP27477698A 1997-09-12 1998-09-29 Sliding structure combining two sliding members and sliding bearing device using the same Expired - Lifetime JP4453113B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP27477698A JP4453113B2 (en) 1998-09-29 1998-09-29 Sliding structure combining two sliding members and sliding bearing device using the same
US09/262,349 US6245836B1 (en) 1998-04-22 1999-03-04 Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
IT1999RM000149A IT1306801B1 (en) 1998-04-22 1999-03-10 LUBRICANT COATING COMPOUND, SLIDING STRUCTURE COMBINATION OF TWO SLIDING ELEMENTS IN WHICH THE COMPOUND OF
KR10-1999-0008100A KR100441341B1 (en) 1998-04-22 1999-03-11 Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
TR1999/00567A TR199900567A2 (en) 1998-04-22 1999-03-12 The lubricant coating composition, the sliding structure connecting the two sliding elements into which the lubricant coating composition is applied, and the sliding bearing using the slider.
CNB991039696A CN1135259C (en) 1998-04-22 1999-03-12 Lubricating coating, sliding structure and sliding bearing device using the same structure
US09/833,655 US6467961B2 (en) 1997-09-12 2001-04-13 Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27477698A JP4453113B2 (en) 1998-09-29 1998-09-29 Sliding structure combining two sliding members and sliding bearing device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009229074A Division JP4911213B2 (en) 2009-09-30 2009-09-30 Sliding structure combining two sliding members and sliding bearing device using the same

Publications (2)

Publication Number Publication Date
JP2000104731A JP2000104731A (en) 2000-04-11
JP4453113B2 true JP4453113B2 (en) 2010-04-21

Family

ID=17546415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27477698A Expired - Lifetime JP4453113B2 (en) 1997-09-12 1998-09-29 Sliding structure combining two sliding members and sliding bearing device using the same

Country Status (1)

Country Link
JP (1) JP4453113B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164915B2 (en) * 1998-10-12 2008-10-15 オイレス工業株式会社 Sliding structure combining two sliding members and sliding bearing device using the same
GB2403149B (en) * 2003-06-24 2005-10-19 Anthony Bruce Pike Medical protection sheeting
JP4525166B2 (en) * 2004-05-13 2010-08-18 オイレス工業株式会社 Sliding member and sliding seismic isolation device using the sliding member
US7267319B2 (en) * 2004-11-09 2007-09-11 General Electric Company Low-friction slide-plates for rotary machines
JP4649999B2 (en) * 2005-01-18 2011-03-16 オイレス工業株式会社 Sliding seismic isolation device and seismic isolation structure using the same
DE202006019046U1 (en) * 2006-12-18 2007-04-19 Manitowoc Crane Group France SAS, Anti-friction coating for telescopic unit of e.g. mobile crane, has anti-friction paint layer which is applied on telescopic crane part substrate and is made in compressed and sliding manner by storage of nano particles
CN101508854B (en) * 2009-03-24 2011-03-23 机械科学研究总院先进制造技术研究中心 Ultrahigh-strength steel plate heat-punch member high-temperature oxidation resistant lubricate paint
JP6762413B1 (en) * 2019-12-20 2020-09-30 日鉄エンジニアリング株式会社 Sliding seismic isolation device
DE102020201078B4 (en) * 2020-01-29 2023-06-15 Maurer Engineering Gmbh Structure plain bearing and structure bearing system
CN116790304B (en) * 2023-06-28 2024-05-14 江西理工大学 Solid-oil composite super-lubrication system and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129428A (en) * 1988-11-09 1990-05-17 Masao Akimoto Earthquake-proof device
JPH02233666A (en) * 1989-03-06 1990-09-17 Kunio Mori Di(1,3-5-triazine-2,4,6-trithiol)triethanolamine complex and production thereof
JPH03230316A (en) * 1990-02-02 1991-10-14 Nippon Zeon Co Ltd Magnetic recording medium
JP2832399B2 (en) * 1991-01-14 1998-12-09 トヨタ自動車株式会社 Sliding member
JPH0868234A (en) * 1994-08-30 1996-03-12 Bridgestone Corp Seismic isolator
JPH08176269A (en) * 1994-12-27 1996-07-09 Matsushita Electric Works Ltd Epoxy resin composition for sealing
JP3620664B2 (en) * 1995-04-05 2005-02-16 大豊工業株式会社 Method for producing solid lubricant composite copper bearing material
JP3754487B2 (en) * 1995-07-14 2006-03-15 Ntn株式会社 Bearing device
JPH0931212A (en) * 1995-07-20 1997-02-04 Mitsubishi Chem Corp Abrasion-resistant ceramic-reinforced resin molded product and its production
JPH0968230A (en) * 1995-08-31 1997-03-11 Kubota Corp Manufacture of ceramic bearing
JPH1036523A (en) * 1996-07-25 1998-02-10 Ndc Co Ltd Multilayer sliding member impregnated and coated with resin and its production
JP3777229B2 (en) * 1996-10-18 2006-05-24 Ntn株式会社 Abrasion-resistant and non-adhesive coating agent and sliding member

Also Published As

Publication number Publication date
JP2000104731A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP4911213B2 (en) Sliding structure combining two sliding members and sliding bearing device using the same
KR100441341B1 (en) Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
RU2521854C2 (en) Sliding element
JP4453113B2 (en) Sliding structure combining two sliding members and sliding bearing device using the same
US6569816B2 (en) Composition having lubricity and product comprising the composition
US10184520B2 (en) Self-lubricated bearing compositions and methods of making the same
RU2361128C2 (en) Anti-friction layer for bearing element
JP2001132757A (en) Sliding structure combined with two sliding members and slide support device using the same
JP2785571B2 (en) Surface coating member
Saravanan et al. Self-lubricating SU-8 nanocomposites for microelectromechanical systems applications
JP3811529B2 (en) Rolling and sliding parts
JP2000074136A (en) Sliding structure combining two sliding members, and sliding support device using it
JP2509910B2 (en) Rolling bearing
JP4000666B2 (en) Lubricating paint
JP4319724B2 (en) Sliding structure and sliding support device combining lubricating paint and two sliding members
JP4164915B2 (en) Sliding structure combining two sliding members and sliding bearing device using the same
JP5614760B2 (en) Paint composition
JP3932619B2 (en) Lubricating paint
JP4649999B2 (en) Sliding seismic isolation device and seismic isolation structure using the same
JP4123585B2 (en) Combination structure of sliding member and mating member
JP4525166B2 (en) Sliding member and sliding seismic isolation device using the sliding member
JPH09111179A (en) Weatherstrip and coating composition for weatherstrip
JP2000161426A (en) Coating composition for slidingly supporting slide board for base isolation structure
JP4543742B2 (en) Solid lubricant and sliding member
JP4330679B2 (en) Slip isolation device and isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term