JP4452930B2 - Ship propulsion system - Google Patents

Ship propulsion system Download PDF

Info

Publication number
JP4452930B2
JP4452930B2 JP2006157335A JP2006157335A JP4452930B2 JP 4452930 B2 JP4452930 B2 JP 4452930B2 JP 2006157335 A JP2006157335 A JP 2006157335A JP 2006157335 A JP2006157335 A JP 2006157335A JP 4452930 B2 JP4452930 B2 JP 4452930B2
Authority
JP
Japan
Prior art keywords
generator
shaft
frequency converter
power
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006157335A
Other languages
Japanese (ja)
Other versions
JP2007326391A (en
Inventor
宏基 嶋屋
知幸 岩崎
Original Assignee
西芝電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西芝電機株式会社 filed Critical 西芝電機株式会社
Priority to JP2006157335A priority Critical patent/JP4452930B2/en
Publication of JP2007326391A publication Critical patent/JP2007326391A/en
Application granted granted Critical
Publication of JP4452930B2 publication Critical patent/JP4452930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supercharger (AREA)

Description

本発明は船舶の省エネルギー化が可能な船舶推進システムに関する。   The present invention relates to a ship propulsion system capable of saving energy of a ship.

従来の船舶推進システムは例えば特許文献1,2に開示されている。特許文献1では、主機の排ガスにより作動される過給機の回転軸に第1発電電動機を接続し、主機の推進軸に減速機を介して第2発電電動機を接続し、第1、第2発電電動機を互いに電気的に接続した構成が提案されている。特許文献2では、排ガスエコノマイザー過熱蒸気で推進加勢タービンを運転し、減速機を介して推進力を供給する構成が提案されている。
特公昭63−5565号公報 特公昭61−55602号公報
Conventional ship propulsion systems are disclosed in Patent Documents 1 and 2, for example. In Patent Document 1, a first generator motor is connected to a rotating shaft of a supercharger operated by exhaust gas from a main engine, a second generator motor is connected to a propulsion shaft of the main machine via a speed reducer, and first and second A configuration in which generator motors are electrically connected to each other has been proposed. Patent Document 2 proposes a configuration in which a propulsion heating turbine is operated with exhaust gas economizer superheated steam and propulsion is supplied via a reduction gear.
Japanese Examined Patent Publication No. 63-5565 Japanese Patent Publication No. 61-55602

通常、船舶の省エネルギー化として、主機に軸発電装置を取り付ける方法、排ガスエコノマイザーで蒸気を発生させタービンを駆動し,発電や推進加勢する方法、あるいは主機の過給機に発電機を取り付け発電する方法が提案されている。
しかし、これらの方法はいずれも省エネルギー効果に対して設置機器の増大によるコスト高や設置スペース、メンテナンスコストの点から一般的に普及するに至っていない。
Usually, to save energy on ships, a method of attaching a shaft generator to the main engine, a method of generating steam with an exhaust gas economizer to drive a turbine and generating or propelling power, or a generator attached to a turbocharger of the main engine to generate electricity A method has been proposed.
However, none of these methods has been widely used in terms of energy saving effect due to high cost due to an increase in installation equipment, installation space, and maintenance costs.

従来の船舶推進システムは、図4に示すように主機1の過給機4に第1発電電動機51を設置し、この第1発電電動機51と推進軸3に減速機6を介して設置された第2発電電動機52とを電気的に接続している。主機1が低負荷でプロペラ2を回転する時は第2発電電動機52で発電した電力で第1発電電動機51を駆動し過給機4を加勢し、主機1が定格運転でプロペラ2を回転する時は第1発電電動機51で発電した電力で第2発電電動機52を駆動し、主機1を加勢するものである(特許文献1参照)が、一般に過給機回転数は数万回転で運転され、主機回転数は数十回転の低速度で運転されるため、回転数を合わせるためには多段の減速機が必要となり、設置スペースとメンテナンスコストの増大を招き、信頼性が低下することになる。   As shown in FIG. 4, the conventional marine vessel propulsion system has a first generator motor 51 installed in the supercharger 4 of the main engine 1, and is installed on the first generator motor 51 and the propulsion shaft 3 via a speed reducer 6. The second generator motor 52 is electrically connected. When the main machine 1 rotates the propeller 2 with a low load, the first generator motor 51 is driven by the power generated by the second generator motor 52 to boost the supercharger 4, and the main machine 1 rotates the propeller 2 at rated operation. In some cases, the second generator motor 52 is driven by the power generated by the first generator motor 51 and the main motor 1 is energized (see Patent Document 1). However, the turbocharger is generally operated at tens of thousands of revolutions. Since the main engine speed is operated at a low speed of several tens of revolutions, a multi-stage reduction gear is required to match the rotation speed, resulting in an increase in installation space and maintenance costs, and a decrease in reliability. .

また、他の従来の船舶推進システムは、図5に示すように排ガスエコノマイザー7で発生した余剰蒸気で推進タービン9を駆動し、減速機6を介してプロペラ2へ推進力を加勢している(特許文献2参照)が、主機1の回転数は数十回転の低速度で運転されるため、回転数を合わせるためには多段の減速機が必要となり、設置スペースとメンテナンスコストの増大を招くことになる。また、主機1の回転数の変化時に、排ガスエコノマイザー7の発生蒸気量の細かな制御は困難で、推進加勢タービン9の回転数を追従させることは難しく、さらに減速機6に大きな負荷がかかる場合があり、信頼性が低下することになる。なお、5は発電機、8は蒸気タービンである。   In another conventional marine vessel propulsion system, as shown in FIG. 5, the propulsion turbine 9 is driven by surplus steam generated in the exhaust gas economizer 7 and the propulsion force is applied to the propeller 2 via the speed reducer 6. However, since the rotational speed of the main machine 1 is operated at a low speed of several tens of revolutions, a multistage reduction gear is required to match the rotational speed, resulting in an increase in installation space and maintenance cost. It will be. Further, when the rotational speed of the main engine 1 changes, it is difficult to finely control the amount of steam generated by the exhaust gas economizer 7, it is difficult to follow the rotational speed of the propulsion boosting turbine 9, and a large load is applied to the speed reducer 6. In some cases, reliability is reduced. In addition, 5 is a generator and 8 is a steam turbine.

本発明は上記事情に鑑みてなされたもので、その課題は最適な機器構成で省エネルギー効率が高く、様々な運転状況に対応可能な船舶推進システムを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a marine vessel propulsion system capable of responding to various driving situations with high energy saving efficiency with an optimum device configuration.

上記課題を達成するために、請求項1記載の発明は、過給機付き主機とプロペラを推進軸で連結し、当該推進軸に軸発電装置を設けた船舶推進システムにおいて、前記軸発電装置の出力端子を第1の周波数変換装置を介して船内電源系統に接続し、当該第1の周波数変換装置により前記軸発電装置の出力を変換して船内電源系統に供給し、前記過給機に発電機を取り付け、当該発電機の出力端子を第2の周波数変換装置を介して前記船内電源系統に接続し、当該第2の周波数変換装置により前記発電機の出力を変換して前記船内電源系統に供給し、前記主機に負荷状況を検出する主機センサーを取り付け、当該主機センサーの信号により前記第1の周波数変換装置と前記第2の周波数変換装置とを制御することにより、前記軸発電装置の発電出力と前記発電機の発電出力とを調整して前記推進軸の出力、または前記過給機の過給量や過給圧を可変とすることを特徴とする。 In order to achieve the above object, a first aspect of the present invention provides a marine vessel propulsion system in which a main engine with a supercharger and a propeller are connected by a propulsion shaft, and the shaft power generation device is provided on the propulsion shaft. An output terminal is connected to the ship power system via the first frequency converter, the output of the shaft power generator is converted by the first frequency converter and supplied to the ship power system, and the turbocharger generates power. A generator is connected, and the output terminal of the generator is connected to the inboard power system via a second frequency converter, and the output of the generator is converted by the second frequency converter to the inboard power system. by supplying, attaching the main engine sensor for detecting the load status to the main machine, controls the first frequency converter and the second frequency converter by the signal of the main engine sensors, power of the shaft power generator Characterized by said propulsion shaft output by adjusting the power output of power and the generator, or the supercharging amount and the supercharging pressure of the turbocharger variable.

請求項1記載の発明によると、荒天時などに推進力や過給が必要になった場合に、軸発電装置の発電出力と過給機に設置した発電機の発電出力を調整することで、推進軸の出力を大きくすることができる。また過給機の過給量、過給圧を可変することができ、安定した航行をすることができる。 According to the invention described in claim 1, when a thrust or supercharge is required during stormy weather, etc., by adjusting the power generation output of the shaft power generator and the power generation output of the generator installed in the supercharger, The output of the propulsion shaft can be increased. Further, the supercharging amount and supercharging pressure of the supercharger can be varied, and stable navigation can be performed.

本発明によれば、最適な機器構成で省エネルギー効率が高く、様々な運転状況に対応可能な船舶推進システムを提供することができる。   According to the present invention, it is possible to provide a marine vessel propulsion system that is highly energy-saving with an optimal device configuration and can cope with various driving situations.

以下、本発明の最良の実施形態を、図を参照して説明する。
図1は、本発明の第1の実施形態の構成図である。
図に示すように、本実施形態である船舶推進システムは、主機1とプロペラ2は推進軸3により連結され、推進軸3には軸発電装置10が設置されている。主機1には主機排ガスで駆動する過給機4が設置され、過給機4には減速機6を介して発電機5が設置されている。軸発電装置10の発電電力は周波数変換装置11で船内周波数に変換し、遮断器13を通じて船内電源系統14に供給するように接続されている。同期調相機12は軸発電装置10の出力電圧と周波数を調整する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a first embodiment of the present invention.
As shown in the figure, in the marine vessel propulsion system according to the present embodiment, the main engine 1 and the propeller 2 are connected by a propulsion shaft 3, and a shaft power generator 10 is installed on the propulsion shaft 3. The main machine 1 is provided with a supercharger 4 that is driven by main machine exhaust gas, and the supercharger 4 is provided with a generator 5 via a speed reducer 6. The power generated by the shaft power generator 10 is connected to the frequency converter 11 so as to be converted into an inboard frequency and supplied to the inboard power system 14 through the circuit breaker 13. The synchronous phase adjuster 12 adjusts the output voltage and frequency of the shaft generator 10.

本実施形態の船舶推進システムは、上記のように構成されているので、軸発電装置の省エネルギー効果に加え、排ガスエコノマイザーや蒸気タービンを設置することなく、排ガスからエネルギー回収でき、これにより高い省エネルギー効果が得られる。   Since the ship propulsion system according to the present embodiment is configured as described above, in addition to the energy saving effect of the shaft power generator, energy can be recovered from the exhaust gas without installing an exhaust gas economizer or a steam turbine. An effect is obtained.

図2は本発明の第2の実施形態の構成図である。
図に示すように、本実施形態である船舶推進システムが上記図1の第1の実施形態と異なる構成は、過給機4に高速発電機17が直結され、発電電力は周波数変換装置18で船内周波数に変換し、遮断器13を通じて船内電源系統14に接続する点であり、その他の構成は第1の実施形態と同様であるので、その説明を省略する。
FIG. 2 is a block diagram of the second embodiment of the present invention.
As shown in the figure, the ship propulsion system according to this embodiment differs from the first embodiment in FIG. 1 in that a high speed generator 17 is directly connected to the supercharger 4, and the generated power is generated by a frequency converter 18. The point is that it is converted to the inboard frequency and connected to the inboard power supply system 14 through the circuit breaker 13, and the other configuration is the same as that of the first embodiment, and the description thereof is omitted.

本実施形態は上記のように構成されているので、第1の実施形態と同様の効果に加え、過給機と高速回転機の間に減速機が不要となり、機器設置スペースの削減と減速機のメンテナンスコストを低減することができる。   Since the present embodiment is configured as described above, in addition to the same effects as those of the first embodiment, a reduction gear is not required between the supercharger and the high-speed rotating machine, and a reduction in equipment installation space and a reduction gear are achieved. The maintenance cost can be reduced.

本発明の第3の実施形態は図1もしくは図2において、主機起動時や低負荷時に排ガス量が少なく、過給機による過給が十分ではない状態において、軸発電装置10で発電した電力と船内電源系統14の両方、又はどちらか一方からの電力を発電機5または高速発電機17に供給し、モータリングして過給機4を加勢する。高速発電機17に電力供給する場合は、周波数変換装置18で所望の回転周波数に変換して過給機4を加勢する。   In FIG. 1 or FIG. 2, the third embodiment of the present invention is the power generated by the shaft power generator 10 in a state where the amount of exhaust gas is small at the time of starting the main engine or at a low load and the supercharging by the supercharger is not sufficient. Electric power from both or one of the inboard power supply systems 14 is supplied to the generator 5 or the high-speed generator 17, motored, and the supercharger 4 is energized. When supplying power to the high-speed generator 17, the frequency converter 18 converts the power into a desired rotation frequency and energizes the supercharger 4.

本実施形態は上記のように構成されているので、主機起動時の排ガスエネルギーが小さい場合や低負荷時で、過給機の過給が不足している状態において、過給機に設置した発電機をモータとして駆動することで過給を加勢できる。従って、通常行われる補助ブロワーでの送風量が削減でき、補助ブロワーの台数・容量を削減することができる。また、高速発電機をモータリングする場合は、回転周波数を周波数変換装置で可変できるので、主機の必要過給量や過給圧の変化に容易に追従できる。   Since the present embodiment is configured as described above, power generation installed in the supercharger when the exhaust gas energy at the time of starting the main engine is small or when the supercharger is insufficient at low load. Supercharging can be boosted by driving the machine as a motor. Accordingly, it is possible to reduce the amount of air blown by the auxiliary blower that is normally performed, and to reduce the number and capacity of the auxiliary blowers. Further, when motoring a high-speed generator, the rotation frequency can be varied by the frequency converter, so that it is possible to easily follow changes in the required supercharging amount and supercharging pressure of the main engine.

図3は本発明の第4の実施形態の構成図である。
図において、本実施形態である船舶推進システムが上記図1の第1の実施形態と異なる構成は、軸発電装置10の周波数変換装置11と高速発電機17の周波数変換装置18は主機センサー19の信号により常に最適な出力となるよう発電量を制御する点であり、その他の構成は、第1実施形態と同様であるので、その説明は省略する。
FIG. 3 is a block diagram of the fourth embodiment of the present invention.
In the figure, the ship propulsion system according to this embodiment differs from the first embodiment of FIG. 1 in that the frequency converter 11 of the shaft generator 10 and the frequency converter 18 of the high-speed generator 17 are This is because the amount of power generation is controlled so as to always obtain an optimum output based on the signal, and the other configuration is the same as that of the first embodiment, and the description thereof will be omitted.

本実施形態は上記のように構成されているので、荒天時などに推進力や過給が必要になった場合に、軸発電装置の発電出力と過給機に設置した発電機の発電出力を調整することで、推進軸の出力、または過給機の過給量や過給圧を可変することができ、安定した航行をすることができる。   Since this embodiment is configured as described above, when a propulsive force or supercharging is required during stormy weather, the power generation output of the shaft power generator and the power generation output of the generator installed in the supercharger are By adjusting, the output of the propulsion shaft, or the supercharging amount and supercharging pressure of the supercharger can be varied, and stable navigation can be achieved.

本発明の第5の実施形態は図1もしくは図2において、発電機5もしくは高速発電機17で発電した電力と船内電源系統14の両方、又はどちらか一方の電力を周波数変換装置11で主機の回転周波数に変換して給電し、軸発電装置10をモータリングし、主機1を加勢する。   In the fifth embodiment of the present invention, in FIG. 1 or FIG. 2, the power generated by the generator 5 or the high-speed generator 17 and / or the inboard power system 14 are converted into the main engine by the frequency converter 11. Power is converted into a rotational frequency, the shaft generator 10 is motored, and the main machine 1 is energized.

本実施形態は上記のように構成されているので、荒天時などに推進力が必要になった場合に、軸発電装置をモータとして駆動し主機を加勢できるので、推進軸の出力を大きくすることができ、主機の加勢に減速機が不要で機器設置スペースの削減とメンテナンスコストの低減ができる。また、軸発電装置の回転周波数は周波数変換装置で可変できるので、主機の回転周波数変化に容易に追従できるため、安定した航行をすることができる。   Since the present embodiment is configured as described above, when a propulsive force is required during stormy weather, etc., the shaft generator can be driven as a motor and the main engine can be energized. It is possible to reduce the equipment installation space and maintenance costs by eliminating the need for a reduction gear to support the main engine. In addition, since the rotational frequency of the shaft generator can be varied by the frequency converter, it is possible to easily follow changes in the rotational frequency of the main engine, so that stable navigation is possible.

本発明の第6実施形態は図1から図3において、遮断器13を開放し、軸発電装置10および発電機5もしくは高速発電機17の推進用電源系統と船内電源系統14を切り離す。   In FIG. 1 to FIG. 3, the sixth embodiment of the present invention opens the circuit breaker 13 and disconnects the propulsion power supply system of the shaft generator 10 and the generator 5 or the high-speed generator 17 from the inboard power supply system 14.

本実施形態は上記のように構成されているので、軸発電装置もしくは過給機に取り付けた発電機の出力変動が大きい場合でも、船内電源は安定した状態を保つことができる。   Since the present embodiment is configured as described above, even when the output fluctuation of the generator attached to the shaft generator or the supercharger is large, the in-board power supply can maintain a stable state.

本発明の第1の実施形態の構成図。The block diagram of the 1st Embodiment of this invention. 本発明の第2の実施形態の構成図。The block diagram of the 2nd Embodiment of this invention. 本発明の第4の実施形態の構成図。The block diagram of the 4th Embodiment of this invention. 従来の船舶推進システムの構成図。The block diagram of the conventional ship propulsion system. 従来の他の船舶推進システムの構成図。The block diagram of the other conventional ship propulsion system.

符号の説明Explanation of symbols

1…主機、2…プロペラ、3…推進軸、4…過給機、5,51,52…発電機、6…減速機、7…排ガスエコノマイザー、8…発電タービン、9…推進加勢タービン、10…軸発電装置、11…周波数変換装置、12…同期調相機、13…遮断器、14…船内電源系統、15…主発電機、16…船内負荷、17…高速発電機、18…周波数変換装置、19…主機センサー。   DESCRIPTION OF SYMBOLS 1 ... Main machine, 2 ... Propeller, 3 ... Propulsion shaft, 4 ... Supercharger, 5, 51, 52 ... Generator, 6 ... Reduction gear, 7 ... Exhaust gas economizer, 8 ... Power generation turbine, 9 ... Propulsion support turbine, DESCRIPTION OF SYMBOLS 10 ... Shaft generator, 11 ... Frequency converter, 12 ... Synchronous phase adjuster, 13 ... Circuit breaker, 14 ... Inboard power system, 15 ... Main generator, 16 ... Inboard load, 17 ... High speed generator, 18 ... Frequency converter Device, 19 ... Main machine sensor.

Claims (1)

過給機付き主機とプロペラを推進軸で連結し、当該推進軸に軸発電装置を設けた船舶推進システムにおいて、
前記軸発電装置の出力端子を第1の周波数変換装置を介して船内電源系統に接続し、当該第1の周波数変換装置により前記軸発電装置の出力を変換して船内電源系統に供給し、
前記過給機に発電機を取り付け、当該発電機の出力端子を第2の周波数変換装置を介して前記船内電源系統に接続し、当該第2の周波数変換装置により前記発電機の出力を変換して前記船内電源系統に供給し、
前記主機に負荷状況を検出する主機センサーを取り付け、当該主機センサーの信号により前記第1の周波数変換装置と前記第2の周波数変換装置とを制御することにより、前記軸発電装置の発電出力と前記発電機の発電出力とを調整して前記推進軸の出力、または前記過給機の過給量や過給圧を可変とすることを特徴とする船舶推進システム。
In a ship propulsion system in which a main engine with a supercharger and a propeller are connected by a propulsion shaft, and a shaft generator is provided on the propulsion shaft,
Connecting the output terminal of the shaft generator to the ship power system via the first frequency converter, converting the output of the shaft generator by the first frequency converter and supplying it to the ship power system;
A generator is attached to the turbocharger, an output terminal of the generator is connected to the inboard power supply system via a second frequency converter, and the output of the generator is converted by the second frequency converter. Supply to the inboard power system,
A main engine sensor for detecting a load condition is attached to the main engine, and the first frequency converter and the second frequency converter are controlled by a signal of the main engine sensor, thereby generating power output of the shaft generator and the A ship propulsion system that adjusts a power generation output of a generator to vary an output of the propulsion shaft, or a supercharging amount and a supercharging pressure of the supercharger.
JP2006157335A 2006-06-06 2006-06-06 Ship propulsion system Active JP4452930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157335A JP4452930B2 (en) 2006-06-06 2006-06-06 Ship propulsion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157335A JP4452930B2 (en) 2006-06-06 2006-06-06 Ship propulsion system

Publications (2)

Publication Number Publication Date
JP2007326391A JP2007326391A (en) 2007-12-20
JP4452930B2 true JP4452930B2 (en) 2010-04-21

Family

ID=38927193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157335A Active JP4452930B2 (en) 2006-06-06 2006-06-06 Ship propulsion system

Country Status (1)

Country Link
JP (1) JP4452930B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146878B2 (en) * 2008-04-14 2013-02-20 西芝電機株式会社 Ship propulsion system
JP2012047094A (en) * 2010-08-26 2012-03-08 Mitsubishi Heavy Ind Ltd Marine denitration system and marine vessel comprising the same, and control method for marine denitration system
JP5704455B2 (en) * 2011-05-27 2015-04-22 西芝電機株式会社 Surplus energy recovery system for marine main engines
JP5737662B2 (en) * 2013-10-24 2015-06-17 国立研究開発法人海上技術安全研究所 Ship jet gas supply method and jet gas control device
CN105460191B (en) * 2015-12-30 2017-08-25 浙江盛泰防务科技有限公司 A kind of Power Component of aquatic life-saving equipment

Also Published As

Publication number Publication date
JP2007326391A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US9650120B2 (en) Electric drive shaft and vehicle comprising such an electric drive shaft
US20130239568A1 (en) Turbo Assist
JP4452930B2 (en) Ship propulsion system
US20130316602A1 (en) Arrangement for steering and supplying propulsion power to propulsion system
US8299638B2 (en) Propulsion system for ships
US20130293003A1 (en) Propulsion system
RU2544268C2 (en) Propulsion system
JP5312513B2 (en) Ship propulsion system
JP2019073141A (en) Control method for vessel propulsion system, control device for vessel propulsion system, and vessel provided with control device
JP4752859B2 (en) Ship propulsion system
JP5146878B2 (en) Ship propulsion system
JP4452932B2 (en) Marine electric propulsion system
KR101344169B1 (en) Internal combustion engine system and ship
JP5704455B2 (en) Surplus energy recovery system for marine main engines
JP5374489B2 (en) Power generation equipment
JP2010053848A (en) Lift and energy saving hybrid system
KR20160128938A (en) Device for using a exhaust gas heat of a ship propulsion
AU2015200109B2 (en) Electric drive shaft and vehicle comprising such an electric drive shaft
JP4904532B2 (en) Wind power and wave power combined generator
JPS5918216A (en) Electrical propelling device
JP2011132878A (en) Propulsion device and ship equipped with the same
JPS61277804A (en) Exhaust gas turbine power apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4452930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4