JP4452373B2 - Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns - Google Patents

Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns Download PDF

Info

Publication number
JP4452373B2
JP4452373B2 JP2000108955A JP2000108955A JP4452373B2 JP 4452373 B2 JP4452373 B2 JP 4452373B2 JP 2000108955 A JP2000108955 A JP 2000108955A JP 2000108955 A JP2000108955 A JP 2000108955A JP 4452373 B2 JP4452373 B2 JP 4452373B2
Authority
JP
Japan
Prior art keywords
column
reinforced concrete
seismic isolation
bottom formwork
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000108955A
Other languages
Japanese (ja)
Other versions
JP2001295503A (en
Inventor
秀樹 木村
敬三 岩下
康博 春日
宗一 木谷
長仁 木林
富士夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000108955A priority Critical patent/JP4452373B2/en
Publication of JP2001295503A publication Critical patent/JP2001295503A/en
Application granted granted Critical
Publication of JP4452373B2 publication Critical patent/JP4452373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物の鉄筋コンクリート造(以下、RC造という場合がある。)柱の柱脚部の免震構法及び免震構造の技術分野に属し、更に云えば、前記ロッキング振動に伴う浮き上がり許容構造をRC造柱の柱脚部で実施する免震構法及び免震構造に関する。
【0002】
【従来の技術】
従来、アスペクト比が大きく、地震時のロッキング振動に伴う浮き上がり現象を発生する建物に作用する地震入力を低減させる免震構法及び免震構造の技術としては、例えば、実公平6−18996号公報、特許第2631486号公報(平成9年7月16日発行)等に種々開示されて公知である。
【0003】
前記公報に開示された従来技術はいずれも、図5Aに示したように、建物aが水平方向に大きく変位することを許容する技術思想に立脚しており、上下方向にはできるだけ変位を生じさせないため、建物aとこれを支持する基礎bとの接点を上下方向に緊結した構造を基本としている。
【0004】
【本発明が解決しようとする課題】
しかしながら、アスペクト比が大きい建物の場合、地震時の建物の動きは、図5Bに示したように、上下方向の変位を基本とするロッキング振動が支配的となり、免震装置cに大きな引張り軸力が作用する。そのため前記従来技術のように建物aと基礎bとを緊結した構造の場合には、前記引張り軸力に耐える免震装置c及び基礎bが必要となり、多数の棒状部材で結合したり、或いは転倒防止用の積層ゴム体を併用するほかない。その上、建物aの柱にも同様な引張り軸力が作用するから当該柱もそれなりに高強度な構造に構築する必要がある。
【0005】
また、都市部の建物のように隣接する建物との間隔が少ない場合には、免震層が大変形を起こすと地表部分において隣接する建物へ衝突し二次災害を起こす危険性もある。
【0006】
ところで、近年、本出願人は、特願平11−42759号(平成11年2月22日付け出願)に開示しているように、アスペクト比が大きい建物とこれを支持する支持版との接点を上下方向に緊結せず、上下方向の変位を基本とするロッキング振動に伴う浮き上がり許容構造を実施する免震方法と免震構造を開発した。この原理思想は、出願明細書の段落[0017]〜[0021]と図面の図4に記載したとおりである。
【0007】
しかしながら、前記ロッキング振動に伴う浮き上がり許容構造をRC造柱で実施した技術は、未だ開発されていない。
【0008】
したがって、本発明の目的は、特にアスペクト比が大きい建物を対象とし、地震時のロッキング振動に伴う浮き上がり許容構造をRC造柱で実施することができる鉄筋コンクリート造柱の柱脚部の免震構法及び免震構造を提供することである。
【0009】
本発明の次の目的は、建物と基礎とを緊結しないで、建物への地震入力に対して建物の浮き上がりを許容して地震力の低減化を図る技術、そして、積層ゴム等の免震装置を使用する必要がなく、地震が終了したときには残留変位がない、鉄筋コンクリート造柱の柱脚部の免震構法及び免震構造を提供することである。
【0010】
本発明の更なる目的は、建物のRC造柱に引張り軸力が発生しないため、その設計を簡略に行え、ひいては既存建物の建て替えに際して、基礎部の設計、施工の大幅な合理化を図れる、鉄筋コンクリート造柱の柱脚部の免震構法及び免震構造を提供することである。
【0011】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載した発明にかかる鉄筋コンクリート造柱の柱脚部の免震構法は、
地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物の鉄筋コンクリート造柱の柱脚部の免震構法であって、
柱主筋を基礎コンクリートの上面から建物の浮き上がり量に応じた必要長さ分だけ突き出させ、
前記基礎コンクリートの上面へ、当該鉄筋コンクリート造柱を支持し、当該鉄筋コンクリート造柱の水平方向の変位を拘束するに足る立ち上がり部を設けた底型枠兼用鋼板を載置し、前記柱主筋を前記底型枠兼用鋼板に設けた貫通孔へ貫通させて立ち上がらせ、
前記底型枠兼用鋼板を、当該鉄筋コンクリート造柱に作用する上下方向の圧縮力を伝達できるようにスタッド等の定着用治具により基礎コンクリートへ定着させ、
前記底型枠兼用鋼板における当該鉄筋コンクリート造柱の当接部分と柱主筋の立ち上がり部分に、それぞれ剥離材による縁切り処置を施し、
前記底型枠兼用鋼板をベースに柱の配筋を行うと共に型枠を組立て、コンクリートを打設してロッキング振動に伴う浮き上がりを生じる鉄筋コンクリート造柱を構築することを特徴とする。
【0012】
請求項2に記載した発明は、請求項1に記載した鉄筋コンクリート造柱の柱脚部の免震構法において、底型枠兼用鋼板は、基礎コンクリートへ埋め込んで定着させることを特徴とする。
【0013】
請求項3に記載した発明は、請求項1又は2に記載した鉄筋コンクリート造柱の柱脚部の免震構法において、基礎コンクリートの上面部と鉄筋コンクリート造柱の下面部に一致するダボ孔を設け、該ダボ孔に底型枠兼用鋼板を貫通するダボピンを嵌め込むことを特徴とする。
【0014】
請求項4に記載した発明は、請求項1〜3のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構法において、底型枠兼用鋼板の上面に、衝撃緩衝用シートなどの衝撃緩衝材を設置することを特徴とする。
【0015】
請求項5に記載した発明は、請求項1〜4のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構法において、底型枠兼用鋼板の立ち上がり部の天端に衝撃緩衝材を設置し、その上に埋殺し型枠を組み立てて鉄筋コンクリート造柱を構築することを特徴とする。
【0016】
請求項6に記載した発明にかかる鉄筋コンクリート造柱の柱脚部の免震構造は、地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物の鉄筋コンクリート造柱の柱脚部の免震構造であって、
柱主筋が基礎コンクリートの上面から建物の浮き上がり量に応じた必要長さ分だけ突き出されていること、
前記基礎コンクリートの上面に、当該鉄筋コンクリート造柱を支持し、当該鉄筋コンクリート造柱の水平方向の変位を拘束するに足る立ち上がり部を設けた底型枠兼用鋼板が載置され、前記柱主筋は前記底型枠兼用鋼板に設けられた貫通孔を貫通して立ち上がっていること、
前記底型枠兼用鋼板は、当該鉄筋コンクリート造柱に作用する上下方向の圧縮力を伝達できるようにスタッド等の定着用治具により基礎コンクリートへ定着されていること、
前記底型枠兼用鋼板における当該鉄筋コンクリート造柱の当接部分と柱主筋の立ち上がり部分は、それぞれ剥離材による縁切り処置が施され、ロッキング振動に伴う浮き上がり許容構造とされていることを特徴とする。
【0017】
請求項7に記載した発明は、請求項6に記載した鉄筋コンクリート造柱の柱脚部の免震構造において、底型枠兼用鋼板は、基礎コンクリートへ埋め込み定着されていることを特徴とする。
【0018】
請求項8に記載した発明は、請求項6又は7に記載した鉄筋コンクリート造柱の柱脚部の免震構造において、基礎コンクリートの上面部と鉄筋コンクリート造柱の下面部に一致するダボ孔が設けられ、該ダボ孔に底型枠兼用鋼板を貫通するダボピンが嵌め込まれていることを特徴とする。
【0019】
請求項9に記載した発明は、請求項6〜8のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構造において、鉄筋コンクリート造柱と底型枠兼用鋼板との間隙中に衝撃緩衝用シートなどの衝撃緩衝材が設けられていることを特徴とする。
【0020】
【発明の実施の形態及び実施例】
図1と図2は、請求項1記載の発明にかかる鉄筋コンクリート造柱の柱脚部の免震構法の実施形態を示している。この鉄筋コンクリート造柱1の柱脚部の免震構法は、地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物を構築するために実施される。
【0021】
先ず、柱主筋2を基礎コンクリート3の上面から建物の浮き上がり量に応じた必要長さ分だけ突き出させる。次に、前記基礎コンクリート3の上面へ、当該RC造柱1を支持し、当該RC造柱1の水平方向の変位を拘束するに足る立ち上がり部4aを設けた底型枠兼用鋼板4を載置し、前記柱主筋2を前記底型枠兼用鋼板4に設けた貫通孔(図示省略)へ貫通させて立ち上がらせる。前記底型枠兼用鋼板4を、当該RC造柱1に作用する上下方向の圧縮力を伝達できるようにスタッド8等の定着用治具により基礎コンクリート3へ定着させる。前記底型枠兼用鋼板4における当該RC造柱1の当接部分と柱主筋2の立ち上がり部分に、それぞれ剥離剤の塗布(図示省略)、剥離用シート9の張り付け等の剥離材による縁切り処置を施す。前記底型枠兼用鋼板4をベースに主筋6と帯筋7で柱の配筋を行うと共に型枠5を組立て、コンクリートを打設してロッキング振動に伴う浮き上がりを生じる鉄筋コンクリート造柱を構築する(請求項1記載の発明)。
【0022】
前記柱主筋2は、図2に示したように、前記底型枠兼用鋼板4の立ち上がり部分4aの内側面近傍位置に沿ってバランス良く計8本突き出させている。なお、柱主筋2の本数はこれに限定されず、前記RC造柱1に作用する水平方向のせん断力を基礎コンクリート3へ確実に伝達できる本数とする。また、前記柱主筋2の突き出し高さは前記ロッキング振動による建物の設計浮き上がり高さより高く設定して実施している。
【0023】
前記底型枠兼用鋼板4は、前記ロッキング振動に伴う浮き上がり時に支持点となる場合でも、RC造柱1からの上載荷重に耐えられ、しかもRC造柱1の落下衝撃力にも耐えられる強度とされ、床レベルに設置されている。なお、前記RC造柱1に作用する水平方向のせん断力を更に確実に基礎コンクリート3へ伝達させるべく、前記底型枠兼用鋼板4を基礎コンクリート3中に埋め込み定着させて実施しても良いし(請求項2記載の発明)、図4A,Bに示したように、前記底型枠兼用鋼板4の略中央部に、基礎コンクリート3の上面部とRC造柱1の下面部に一致するダボ孔12を設け、該ダボ孔12に前記底型枠兼用鋼板4を貫通するダボピン11を嵌め込んで実施しても良い(請求項3記載の発明)。
【0024】
前記底型枠兼用鋼板4における当該RC造柱1の当接部分と柱主筋2の立ち上がり部分に施す剥離材による縁切り処置は、前記底型枠兼用鋼板4については剥離剤を塗布することにより行い、柱主筋2の立ち上がり部分については剥離用シート9を張り付けることにより実施している。なお、縁切り処置はこれに限定されず、剥離剤の塗布のみで行っても良いし、剥離用シート9の張り付けのみで行っても良い。もちろん、前記底型枠兼用鋼板4については剥離用シート9を張り付けることにより行い、柱主筋2の立ち上がり部分については剥離剤を塗布することにより行っても良い。
【0025】
もちろん、前記剥離材による縁切り処置は、前記剥離用シート9の張り付け、剥離剤の塗布に限定されない。前記柱主筋2の立ち上がり部分については、その全体を覆う鞘管(図示省略)をかぶせて実施しても略同様の効果を奏することができる。前記底型枠兼用鋼板4については、後述する衝撃緩衝用シート13などの衝撃緩衝材を設置しても略同様の効果を奏することができる。
【0026】
また、底型枠兼用鋼板4の上面には、RC造柱1における上下方向の落下衝撃力を緩和する衝撃緩衝用シート13などの衝撃緩衝材を設置している(請求項4記載の発明)。前記衝撃緩衝材には、厚さが数cm程度の積層ゴムシート、或いは鉛板などを使用する。
【0027】
前記主筋6は、図1Aに示したように、平面的に見て、前記柱主筋2の本数及び配置と同一の本数及び配置で、図1Bに示したように、前記柱主筋2の直上位置に配設される。なお、前記主筋6の本数及び配置はこれに限定されない。
【0028】
前記帯筋7は、前記主筋6に対しては、図1Aに示したように、通例通り前記主筋6を取り囲むように配筋され、前記柱主筋2に対しては、図2に示したように、該柱主筋2を外装する剥離用シート9を取り囲むように配筋されている。また、前記帯筋5は、図1Bに示したように、構造設計上、RC造柱1の柱脚部分を密に配することが好ましい。
【0029】
ちなみに、前記鉄筋コンクリート造柱1の柱部分を埋殺し型枠5により構築する場合は、底型枠兼用鋼板4の立ち上がり部4aの天端に衝撃緩衝材10を設置し、その上に埋殺し型枠5を組み立てて鉄筋コンクリート造柱を構築する(請求項5記載の発明)。
【0030】
上述した免震構法により構築した鉄筋コンクリート造柱1の柱脚部の免震構造は、柱主筋2が基礎コンクリート3の上面から建物の浮き上がり量に応じた必要長さ分だけ突き出されている。前記基礎コンクリート3の上面に、当該鉄筋コンクリート造柱1を支持し、当該鉄筋コンクリート造柱1の水平方向の変位を拘束するに足る立ち上がり部4aを設けた底型枠兼用鋼板4が載置され、前記柱主筋2は前記底型枠兼用鋼板4に設けられた貫通孔を貫通して立ち上がっている。前記底型枠兼用鋼板4は、当該鉄筋コンクリート造柱1に作用する上下方向の圧縮力を伝達できるようにスタッド8等の定着用治具により基礎コンクリート3へ定着されている。前記底型枠兼用鋼板4における当該鉄筋コンクリート造柱1の当接部分と柱主筋2の立ち上がり部分は、それぞれ剥離剤の塗布、剥離用シート9の張り付け等の剥離材による縁切り処置が施され、ロッキング振動に伴う浮き上がり許容構造とされている(請求項6記載の発明)。
【0031】
また、鉄筋コンクリート造柱1と底型枠兼用鋼板4との間隙中に衝撃緩衝用シート13などの衝撃緩衝材が設けられている(請求項9記載の発明)。
【0032】
よって、上記免震構造は、前記剥離材による縁切り処置により、図3に示したように、RC造柱1は地震時のロッキング振動の際にこれを支持する底型枠兼用鋼板4と切り離して浮き上がり現象を生じさせることができる。また、前記底型枠兼用鋼板4を基礎コンクリート3へスタッド8により強固に定着させているので、図3に示したように、前記ロッキング振動に伴うRC造柱1の浮き上がり時に底型枠兼用鋼板4が上方にずり動くことは一切ない。
【0033】
したがって、地震時にロッキング振動が生じると、前記RC造柱1がこれを支持する底型枠兼用鋼板4から切り離されて、図3に示したように、上下方向に変位し、それに伴い建物重心が上下に動き、もって地震により建物に入るエネルギーを消費させるのである。
【0034】
以上要するに、上記免震構造は、前記RC造柱1に作用する上下方向の圧縮力は前記底型枠兼用鋼板4を介して基礎コンクリート3へ確実に伝達させ、水平方向のせん断力は前記柱主筋2を介して基礎コンクリート3へ確実に伝達させるが、上下方向の引張り力は基礎コンクリート3へ一切伝達させない構造とされている。
【0035】
なお、図示は省略するが、隣合うRC造柱1同士の間隔は、設計浮き上がりが発生する地震の大きさに応じて調整する。
【0036】
【本発明が奏する効果】
請求項1〜9に記載した発明に係る鉄筋コンクリート造柱の柱脚部の免震構法及び免震構造によれば、従来技術のように免震ゴムなどの免震装置を使用しないで、アスペクト比が大きい建物の免震化を実現でき、そうした装置類の設置を前提とする免震層は殆ど零に近く縮小化でき、建物の有効利用度が高くなる。しかも地震が終了したときには残留変位が発生しない。
【0037】
地震時に建物の浮き上がりが発生すると、同建物に作用する地震力はそれ以上に増加しない。従って、建物に作用する地震力の上限を定めることが可能となり、想定地震以上に大きい地震が作用した場合にも、建物の損傷を一定のレベル以下にできる。
【0038】
建物の柱に引張り軸力が作用しないので、その検討の必要がなく、柱の設計を簡略化できる。
【0039】
既存建物を建て替える場合には、既存の基礎及び下部躯体も残して、その上に接点を設けて新築建物を構築することにより、基礎部の設計や施工の大幅な合理化を図れる。
【図面の簡単な説明】
【図1】Aは本発明の実施形態を示した平面図であり、Bは同立面図である。
【図2】図1BのA−A線矢視図である。
【図3】RC造柱の柱脚部に浮き上がり現象が発生した状態を示した立面図である。
【図4】Aは本発明の異なる実施形態を示した平面図であり、Bは同立面図である。
【図5】Aは従来の、Bは本発明による地震エネルギーの低減化原理の説明図である。
【符号の説明】
1 鉄筋コンクリート造柱
2 柱主筋
3 基礎コンクリート
4 底型枠兼用鋼板
4a 立ち上がり部
5 型枠
6 主筋
7 帯筋
8 スタッド
9 剥離用シート
10 衝撃緩衝材
11 ダボピン
12 ダボ孔
13 衝撃緩衝用シート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation method for a column base of a column and a technology for the seismic isolation structure of a reinforced concrete structure (hereinafter sometimes referred to as an RC structure) of a building that generates a lift associated with rocking vibration during an earthquake to reduce the seismic force. More particularly, the present invention relates to a seismic isolation method and a seismic isolation structure in which the allowable lifting structure associated with the rocking vibration is implemented at the column base of an RC column.
[0002]
[Prior art]
Conventionally, as a technology of seismic isolation construction method and seismic isolation structure that reduces the seismic input acting on a building that has a large aspect ratio and generates a lifting phenomenon due to rocking vibration at the time of an earthquake, for example, Japanese Utility Model Publication No. 6-18996, Various disclosures are known in Japanese Patent No. 2631486 (issued July 16, 1997).
[0003]
As shown in FIG. 5A, all of the conventional techniques disclosed in the above publications are based on a technical idea that allows the building a to be greatly displaced in the horizontal direction, and do not cause displacement in the vertical direction as much as possible. Therefore, it is based on a structure in which the contact point between the building a and the foundation b that supports the building a is fastened in the vertical direction.
[0004]
[Problems to be solved by the present invention]
However, in the case of a building with a large aspect ratio, as shown in FIG. 5B, the building movement during an earthquake is dominated by rocking vibration based on vertical displacement, and a large tensile axial force is applied to the seismic isolation device c. Works. Therefore, in the case of the structure in which the building a and the foundation b are tightly coupled as in the prior art, the seismic isolation device c and the foundation b that can withstand the tensile axial force are required, and they are coupled by a large number of rod-shaped members or fallen down. There is no choice but to use a laminated rubber body for prevention. In addition, since the same tensile axial force acts on the column of the building a, it is necessary to construct the column as such with a high strength structure.
[0005]
In addition, when the distance between adjacent buildings such as urban buildings is small, there is a risk that if the seismic isolation layer undergoes a large deformation, it will collide with adjacent buildings on the surface and cause a secondary disaster.
[0006]
By the way, in recent years, as disclosed in Japanese Patent Application No. 11-42759 (filed on Feb. 22, 1999), the present applicant has contact points between a building having a large aspect ratio and a supporting plate that supports the building. We have developed a seismic isolation method and seismic isolation structure that implements a structure that allows lifting to be associated with rocking vibration based on vertical displacements. This principle is as described in paragraphs [0017] to [0021] of the application specification and FIG. 4 of the drawings.
[0007]
However, a technology that implements the lifting allowance structure associated with the rocking vibration with an RC pillar has not been developed yet.
[0008]
Accordingly, an object of the present invention is to provide a seismic isolation method for a column base portion of a reinforced concrete column, which can be used for an RC structure with a floating allowance structure associated with rocking vibration during an earthquake, particularly for buildings with a large aspect ratio. To provide a seismic isolation structure.
[0009]
The next object of the present invention is to provide a technology for reducing the seismic force by allowing the building to lift up against an earthquake input to the building without connecting the building and the foundation, and a seismic isolation device such as laminated rubber It is necessary to provide a seismic isolation method and seismic isolation structure for the column base of a reinforced concrete column, which does not require the use of a reinforced concrete column and has no residual displacement when the earthquake ends.
[0010]
A further object of the present invention is to provide a reinforced concrete that can simplify the design of the RC column of the building without generating a tensile axial force, and can greatly rationalize the design and construction of the foundation when rebuilding an existing building. It is to provide a seismic isolation structure and seismic isolation structure for the column base of the column.
[0011]
[Means for Solving the Problems]
As means for solving the above-described problems, the seismic isolation method for the column base of the reinforced concrete column according to the invention described in claim 1 is as follows:
It is a seismic isolation method for the column base of a reinforced concrete column in a building that reduces the seismic force by raising the rocking vibration during an earthquake,
The column main reinforcement protrudes from the upper surface of the foundation concrete by the required length according to the amount of lift of the building,
On the upper surface of the foundation concrete, a bottom formwork combined steel plate is placed with a rising part that supports the reinforced concrete column and restrains the horizontal displacement of the reinforced concrete column. Let it penetrate through the through-hole provided in the steel sheet for both formwork and stand up,
The bottom formwork combined steel sheet is fixed to the basic concrete by a fixing jig such as a stud so that the compressive force in the vertical direction acting on the reinforced concrete column can be transmitted.
In the bottom formwork combined steel sheet, the contact portion of the reinforced concrete column and the rising portion of the column main reinforcement are each subjected to edge cutting treatment with a release material,
Reinforced concrete columns are constructed by arranging the columns based on the bottom formwork and steel plate, assembling the formwork, and placing concrete to raise the rocks due to rocking vibration.
[0012]
The invention described in claim 2 is characterized in that, in the seismic isolation method for the column base portion of the reinforced concrete column described in claim 1, the bottom formwork combined steel plate is embedded in the concrete and fixed.
[0013]
The invention described in claim 3 is the seismic isolation method of the column base portion of the reinforced concrete column described in claim 1 or 2, wherein a dowel hole corresponding to the upper surface portion of the basic concrete and the lower surface portion of the reinforced concrete column is provided, A dowel pin penetrating the bottom formwork steel plate is fitted into the dowel hole.
[0014]
The invention described in claim 4 is the seismic isolation method for the column base portion of the reinforced concrete column described in any one of claims 1 to 3, wherein an impact buffering sheet or the like is provided on the upper surface of the bottom formwork steel plate. A shock-absorbing material is provided.
[0015]
According to a fifth aspect of the present invention, in the seismic isolation method for the column base portion of the reinforced concrete column according to any one of the first to fourth aspects, the shock absorbing material is provided at the top end of the rising portion of the bottom formwork steel plate. It is characterized by constructing a reinforced concrete column by assembling a mold and assembling a formwork.
[0016]
The seismic isolation structure of the column base of the reinforced concrete column according to claim 6 is a seismic isolation of the column base of the reinforced concrete column of the building that reduces the seismic force by generating a lift accompanying rocking vibration during an earthquake. Structure,
The column main reinforcement protrudes from the upper surface of the foundation concrete by the required length according to the amount of floating of the building,
On the upper surface of the foundation concrete, a bottom formwork combined steel plate is placed, which supports the reinforced concrete column and has a rising portion sufficient to restrain the horizontal displacement of the reinforced concrete column. Standing up through a through-hole provided in the steel sheet for formwork,
The bottom formwork combined steel sheet is fixed to the basic concrete by a fixing jig such as a stud so that a vertical compressive force acting on the reinforced concrete column can be transmitted,
A contact portion of the reinforced concrete column and a rising portion of the column main reinforcing bar in the bottom formwork combined steel plate are each subjected to edge cutting treatment with a release material, and have a structure that allows lifting due to rocking vibration.
[0017]
The invention described in claim 7 is characterized in that, in the base isolation structure of the column base portion of the reinforced concrete column described in claim 6, the bottom formwork combined steel plate is embedded and fixed in the foundation concrete.
[0018]
The invention described in claim 8 is the seismic isolation structure of the column base part of the reinforced concrete column described in claim 6 or 7, wherein a dowel hole corresponding to the upper surface part of the basic concrete and the lower surface part of the reinforced concrete column is provided. The dowel hole is inserted into the dowel hole so as to penetrate the bottom formwork steel plate.
[0019]
The invention described in claim 9 is the seismic isolation structure of the column base portion of the reinforced concrete column described in any one of claims 6 to 8, wherein the impact is applied to the gap between the reinforced concrete column and the bottom formwork steel plate. An impact cushioning material such as a cushioning sheet is provided.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an embodiment of a seismic isolation method for a column base portion of a reinforced concrete column according to the first aspect of the present invention. The seismic isolation method for the column base portion of the reinforced concrete column 1 is carried out in order to construct a building that reduces the seismic force by generating a lift associated with rocking vibration during an earthquake.
[0021]
First, the column main reinforcement 2 is protruded from the upper surface of the foundation concrete 3 by a required length corresponding to the amount of floating of the building. Next, on the upper surface of the foundation concrete 3, the bottom formwork combined steel plate 4 provided with a rising portion 4 a that supports the RC column 1 and restrains the horizontal displacement of the RC column 1 is placed. Then, the column main reinforcement 2 is caused to penetrate through a through hole (not shown) provided in the bottom formwork and steel plate 4 to rise. The bottom formwork and steel plate 4 is fixed to the foundation concrete 3 by a fixing jig such as a stud 8 so that the vertical compression force acting on the RC pillar 1 can be transmitted. Edge cutting treatment with a release material such as application of a release agent (not shown) and attachment of a release sheet 9 to the abutting portion of the RC column 1 and the rising portion of the column main reinforcement 2 in the bottom mold / steel plate 4. Apply. Reinforced concrete columns are constructed with the main reinforcement 6 and the strip 7 as the base, and the formwork 5 is assembled and the concrete is placed by the bottom formwork and steel plate 4 as a base, and the floating is caused by the rocking vibration. (Invention of Claim 1)
[0022]
As shown in FIG. 2, a total of eight columnar reinforcing bars 2 are protruded in a well-balanced manner along the position in the vicinity of the inner side surface of the rising portion 4 a of the bottom formwork and steel plate 4. The number of column main bars 2 is not limited to this, and the number of column main bars 2 can be surely transmitted to the foundation concrete 3 in the horizontal shearing force acting on the RC column 1. Further, the protruding height of the column main reinforcement 2 is set to be higher than the design lifting height of the building due to the rocking vibration.
[0023]
Even when the bottom formwork steel plate 4 serves as a support point when it is lifted due to the rocking vibration, the bottom mold frame steel plate 4 can withstand an overload from the RC column 1 and can withstand a drop impact force of the RC column 1. And installed at the floor level. In addition, in order to transmit the horizontal shearing force acting on the RC column 1 to the foundation concrete 3 more reliably, the bottom mold / steel plate 4 may be embedded and fixed in the foundation concrete 3. (Invention of Claim 2), as shown in FIGS. 4A and 4B, in the substantially central portion of the bottom formwork and steel plate 4, there is a dowel that coincides with the upper surface of the foundation concrete 3 and the lower surface of the RC column 1 The hole 12 may be provided, and the dowel pin 11 penetrating the bottom formwork and steel plate 4 may be fitted into the dowel hole 12 (the invention according to claim 3).
[0024]
Edge cutting with a release material applied to the abutting portion of the RC column 1 and the rising portion of the column main reinforcement 2 in the bottom mold-frame steel plate 4 is performed by applying a release agent to the bottom mold-frame steel plate 4. The rising portion of the columnar reinforcement 2 is carried out by sticking a peeling sheet 9. The edge cutting treatment is not limited to this, and may be performed only by applying a release agent, or may be performed only by attaching the release sheet 9. Of course, the bottom mold-frame steel plate 4 may be attached by attaching a release sheet 9, and the rising portion of the column main reinforcement 2 may be applied by applying a release agent.
[0025]
Of course, the edge cutting treatment with the release material is not limited to the application of the release sheet 9 and the application of the release agent. Even when the rising portion of the columnar muscle 2 is covered with a sheath pipe (not shown) covering the whole, the same effect can be obtained. The bottom mold and steel plate 4 can provide substantially the same effect even if an impact cushioning material such as an impact cushioning sheet 13 described later is installed.
[0026]
Further, on the upper surface of the bottom formwork combined steel plate 4, an impact cushioning material such as an impact cushioning sheet 13 for relaxing the vertical impact force in the RC column 1 is installed (the invention according to claim 4). . As the shock-absorbing material, a laminated rubber sheet having a thickness of about several centimeters or a lead plate is used.
[0027]
As shown in FIG. 1A, the main bars 6 have the same number and arrangement as the pillar main bars 2 as viewed in plan, and are located immediately above the column main bars 2 as shown in FIG. 1B. It is arranged. In addition, the number and arrangement | positioning of the said main reinforcement 6 are not limited to this.
[0028]
As shown in FIG. 1A, the band 7 is arranged to surround the main muscle 6 as usual, as shown in FIG. 1A, and as shown in FIG. In addition, the bars are arranged so as to surround the peeling sheet 9 that covers the column main bars 2. Further, as shown in FIG. 1B, it is preferable that the stirrup 5 is densely arranged on the column base portion of the RC column 1 in terms of the structural design.
[0029]
Incidentally, when the pillar part of the reinforced concrete column 1 is buried and constructed by the mold 5, the shock absorbing material 10 is installed at the top end of the rising part 4a of the bottom mold and steel plate 4 and the mold is buried. The frame 5 is assembled to construct a reinforced concrete column (the invention according to claim 5).
[0030]
In the seismic isolation structure of the column base part of the reinforced concrete column 1 constructed by the above-mentioned seismic isolation method, the column main reinforcement 2 protrudes from the upper surface of the foundation concrete 3 by the required length according to the amount of lifting of the building. On the upper surface of the foundation concrete 3, the bottom formwork combined steel plate 4 provided with a rising portion 4a that supports the reinforced concrete pillar 1 and restrains the horizontal displacement of the reinforced concrete pillar 1 is placed, The columnar reinforcement 2 stands up through a through hole provided in the bottom formwork combined steel plate 4. The bottom formwork combined steel plate 4 is fixed to the foundation concrete 3 by a fixing jig such as a stud 8 so that a vertical compressive force acting on the reinforced concrete column 1 can be transmitted. The abutting portion of the reinforced concrete column 1 and the rising portion of the column main reinforcement 2 in the bottom formwork / steel plate 4 are each subjected to edge cutting treatment by a release material such as application of a release agent and pasting of a release sheet 9 and the like. The structure is a structure that allows lifting due to vibration (the invention according to claim 6).
[0031]
Further, an impact cushioning material such as an impact cushioning sheet 13 is provided in the gap between the reinforced concrete column 1 and the bottom formwork combined steel plate 4 (invention 9).
[0032]
Therefore, the seismic isolation structure is separated from the bottom formwork combined steel plate 4 that supports the RC pillar 1 in the case of rocking vibration at the time of the earthquake, as shown in FIG. The floating phenomenon can be caused. Further, since the bottom formwork combined steel sheet 4 is firmly fixed to the basic concrete 3 by the studs 8, as shown in FIG. 3, the bottom formwork combined use steel sheet when the RC column 1 is lifted due to the rocking vibration. No 4 will slide up.
[0033]
Therefore, when rocking vibration occurs during an earthquake, the RC column 1 is separated from the bottom formwork and steel plate 4 supporting the RC pillar 1 and is displaced in the vertical direction as shown in FIG. It moves up and down and consumes the energy that enters the building due to the earthquake.
[0034]
In short, the above-mentioned seismic isolation structure allows the vertical compressive force acting on the RC column 1 to be reliably transmitted to the foundation concrete 3 through the bottom mold and steel plate 4 and the horizontal shear force is the column. Although it is reliably transmitted to the basic concrete 3 through the main reinforcement 2, the structure is configured such that no vertical tensile force is transmitted to the basic concrete 3.
[0035]
In addition, although illustration is abbreviate | omitted, the space | interval of adjacent RC pillars 1 is adjusted according to the magnitude | size of the earthquake which a design lift arises.
[0036]
[Effects of the present invention]
According to the seismic isolation method and the base isolation structure of the column base portion of the reinforced concrete column according to the invention described in claims 1 to 9, the aspect ratio is not used without using a base isolation device such as a base isolation rubber as in the prior art. Seismic isolation of large buildings can be realized, and the seismic isolation layer premised on the installation of such devices can be reduced to almost zero, increasing the effective utilization of the building. Moreover, no residual displacement occurs when the earthquake ends.
[0037]
If a building is lifted during an earthquake, the seismic force acting on the building will not increase any further. Therefore, it is possible to set the upper limit of the seismic force acting on the building, and even when an earthquake larger than the assumed earthquake acts, the damage to the building can be made to be below a certain level.
[0038]
Since tensile axial force does not act on the building columns, there is no need to consider it, and the design of the columns can be simplified.
[0039]
When rebuilding an existing building, the existing foundation and lower frame are also left, and a new building is built by providing contact points on the foundation, so that the design and construction of the foundation can be greatly rationalized.
[Brief description of the drawings]
FIG. 1A is a plan view showing an embodiment of the present invention, and B is an elevation view.
FIG. 2 is a view taken along the line AA in FIG. 1B.
FIG. 3 is an elevational view showing a state in which a lifting phenomenon occurs in the column base portion of the RC column.
FIG. 4A is a plan view showing a different embodiment of the present invention, and B is an elevational view.
FIGS. 5A and 5B are explanatory diagrams of the principle of reducing seismic energy according to the present invention; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reinforced concrete pillar 2 Column main reinforcement 3 Foundation concrete 4 Bottom formwork combined steel plate 4a Standing part 5 Formwork 6 Main reinforcement 7 Band reinforcement 8 Stud 9 Sheet for peeling 10 Shock absorbing material 11 Dowel pin 12 Dowel hole 13 Shock absorbing sheet

Claims (9)

地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物の鉄筋コンクリート造柱の柱脚部の免震構法であって、
柱主筋を基礎コンクリートの上面から建物の浮き上がり量に応じた必要長さ分だけ突き出させ、
前記基礎コンクリートの上面へ、当該鉄筋コンクリート造柱を支持し、当該鉄筋コンクリート造柱の水平方向の変位を拘束するに足る立ち上がり部を設けた底型枠兼用鋼板を載置し、前記柱主筋を前記底型枠兼用鋼板に設けた貫通孔へ貫通させて立ち上がらせ、
前記底型枠兼用鋼板を、当該鉄筋コンクリート造柱に作用する上下方向の圧縮力を伝達できるようにスタッド等の定着用治具により基礎コンクリートへ定着させ、
前記底型枠兼用鋼板における当該鉄筋コンクリート造柱の当接部分と柱主筋の立ち上がり部分に、それぞれ剥離材による縁切り処置を施し、
前記底型枠兼用鋼板をベースに柱の配筋を行うと共に型枠を組立て、コンクリートを打設してロッキング振動に伴う浮き上がりを生じる鉄筋コンクリート造柱を構築することを特徴とする、鉄筋コンクリート造柱の柱脚部の免震構法。
It is a seismic isolation method for the column base of a reinforced concrete column in a building that reduces the seismic force by raising the rocking vibration during an earthquake,
The column main reinforcement protrudes from the upper surface of the foundation concrete by the required length according to the amount of lift of the building,
On the upper surface of the foundation concrete, a bottom formwork combined steel plate is placed with a rising part that supports the reinforced concrete column and restrains the horizontal displacement of the reinforced concrete column. Let it penetrate through the through-hole provided in the steel sheet for both formwork and stand up,
The bottom formwork combined steel sheet is fixed to the basic concrete by a fixing jig such as a stud so that the compressive force in the vertical direction acting on the reinforced concrete column can be transmitted.
In the bottom formwork combined steel sheet, the contact portion of the reinforced concrete column and the rising portion of the column main reinforcement are each subjected to edge cutting treatment with a release material,
Reinforced concrete pillars that are reinforced concrete pillars that perform column reinforcement based on the bottom formwork combined steel sheet and assemble the formwork and place concrete to raise the rocks due to rocking vibration. Seismic isolation method for the column base.
底型枠兼用鋼板は、基礎コンクリートへ埋め込んで定着させることを特徴とする、請求項1に記載した鉄筋コンクリート造柱の柱脚部の免震構法。The seismic isolation method for a column base of a reinforced concrete column according to claim 1, wherein the bottom formwork combined steel sheet is embedded and fixed in the foundation concrete. 基礎コンクリートの上面部と鉄筋コンクリート造柱の下面部に一致するダボ孔を設け、該ダボ孔に底型枠兼用鋼板を貫通するダボピンを嵌め込むことを特徴とする、請求項1又は2に記載した鉄筋コンクリート造柱の柱脚部の免震構法。3. A dowel hole corresponding to the upper surface portion of the basic concrete and the lower surface portion of the reinforced concrete column is provided, and a dowel pin penetrating the bottom formwork combined steel sheet is fitted into the dowel hole. Seismic isolation system for column bases of reinforced concrete columns. 底型枠兼用鋼板の上面に、衝撃緩衝用シートなどの衝撃緩衝材を設置することを特徴とする、請求項1〜3のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構法。The base isolation part of the column base part of the reinforced concrete column according to any one of claims 1 to 3, wherein an impact cushioning material such as an impact cushioning sheet is installed on the upper surface of the bottom formwork steel plate. Construction method. 底型枠兼用鋼板の立ち上がり部の天端に衝撃緩衝材を設置し、その上に埋殺し型枠を組み立てて鉄筋コンクリート造柱を構築することを特徴とする、請求項1〜4のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構法。The shock absorbing material is installed at the top end of the rising portion of the bottom formwork steel plate, and the reinforced concrete pillar is constructed by assembling the formwork and assembling the formwork. Seismic isolation method for column bases of reinforced concrete columns as described in the section. 地震時にロッキング振動に伴う浮き上がりを生じさせて地震力を低減する建物の鉄筋コンクリート造柱の柱脚部の免震構造であって、
柱主筋が基礎コンクリートの上面から建物の浮き上がり量に応じた必要長さ分だけ突き出されていること、
前記基礎コンクリートの上面に、当該鉄筋コンクリート造柱を支持し、当該鉄筋コンクリート造柱の水平方向の変位を拘束するに足る立ち上がり部を設けた底型枠兼用鋼板が載置され、前記柱主筋は前記底型枠兼用鋼板に設けられた貫通孔を貫通して立ち上がっていること、
前記底型枠兼用鋼板は、当該鉄筋コンクリート造柱に作用する上下方向の圧縮力を伝達できるようにスタッド等の定着用治具により基礎コンクリートへ定着されていること、
前記底型枠兼用鋼板における当該鉄筋コンクリート造柱の当接部分と柱主筋の立ち上がり部分は、それぞれ剥離材による縁切り処置が施され、ロッキング振動に伴う浮き上がり許容構造とされていることを特徴とする、鉄筋コンクリート造柱の柱脚部の免震構造。
A seismic isolation structure for the column base of a reinforced concrete column in a building that reduces the seismic force by raising the rocking vibration during an earthquake,
The column main reinforcement protrudes from the upper surface of the foundation concrete by the required length according to the amount of floating of the building,
On the upper surface of the foundation concrete, a bottom formwork combined steel plate is placed, which supports the reinforced concrete column and has a rising portion that is sufficient to restrain the displacement of the reinforced concrete column in the horizontal direction. Standing up through a through-hole provided in the steel sheet for formwork,
The bottom formwork combined steel sheet is fixed to the basic concrete by a fixing jig such as a stud so that a vertical compressive force acting on the reinforced concrete column can be transmitted,
The contact portion of the reinforced concrete column and the rising portion of the column main reinforcing bar in the bottom formwork combined steel sheet are each subjected to edge cutting treatment with a release material, and are allowed to rise with rocking vibration. Seismic isolation structure for column base of reinforced concrete columns.
底型枠兼用鋼板は、基礎コンクリートへ埋め込み定着されていることを特徴とする、請求項6に記載した鉄筋コンクリート造柱の柱脚部の免震構造。7. The base-isolated structure for the column base of a reinforced concrete column according to claim 6, wherein the bottom formwork combined steel plate is embedded and fixed in the foundation concrete. 基礎コンクリートの上面部と鉄筋コンクリート造柱の下面部に一致するダボ孔が設けられ、該ダボ孔に底型枠兼用鋼板を貫通するダボピンが嵌め込まれていることを特徴とする、請求項6又は7に記載した鉄筋コンクリート造柱の柱脚部の免震構造。8. A dowel hole corresponding to an upper surface portion of the foundation concrete and a lower surface portion of the reinforced concrete column is provided, and a dowel pin penetrating the bottom formwork steel plate is fitted into the dowel hole. Seismic isolation structure for column bases of reinforced concrete columns as described in. 鉄筋コンクリート造柱と底型枠兼用鋼板との間隙中に衝撃緩衝用シートなどの衝撃緩衝材が設けられていることを特徴とする、請求項6〜8のいずれか1項に記載した鉄筋コンクリート造柱の柱脚部の免震構造。The reinforced concrete column according to any one of claims 6 to 8, wherein an impact buffering material such as an impact buffering sheet is provided in a gap between the reinforced concrete column and the bottom formwork steel plate. Seismic isolation structure of the column base.
JP2000108955A 2000-04-11 2000-04-11 Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns Expired - Fee Related JP4452373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108955A JP4452373B2 (en) 2000-04-11 2000-04-11 Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108955A JP4452373B2 (en) 2000-04-11 2000-04-11 Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns

Publications (2)

Publication Number Publication Date
JP2001295503A JP2001295503A (en) 2001-10-26
JP4452373B2 true JP4452373B2 (en) 2010-04-21

Family

ID=18621714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108955A Expired - Fee Related JP4452373B2 (en) 2000-04-11 2000-04-11 Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns

Country Status (1)

Country Link
JP (1) JP4452373B2 (en)

Also Published As

Publication number Publication date
JP2001295503A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP2009144494A (en) Base-isolating work method for existing buildings
KR101891942B1 (en) Earthquake reinforcement method of existing structure
JP2002061282A (en) Columnar reinforced concrete construction member
JP3780816B2 (en) Seismic isolation method for existing buildings
CN112681550A (en) Beam column structure for assembled building anti-seismic support
JP3799036B2 (en) Building basic structure and construction method
JP4448592B2 (en) Reinforcement pile fixture
KR102595835B1 (en) Seismic retrofit system using foundation integrated PC panel
JPH093921A (en) Base-isolated foundation and replacing method for base-isolation device
JP6543077B2 (en) Construction method of structure
JP4452373B2 (en) Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns
CN216515762U (en) Shock insulation structure for independent foundation of existing building
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
KR20120067402A (en) Connecting structure for precast concrete column to cast-in-place footing
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP3741975B2 (en) Joint structure of support pile and footing
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP4452372B2 (en) Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns
JP5411375B1 (en) Buildings using seismic control columns
JP5023245B1 (en) Pile head seismic isolation structure
JP3589296B2 (en) Construction method of seismic isolation structure
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP4588836B2 (en) Seismic isolation system and seismic isolation structure for reinforced concrete walls
JP4024449B2 (en) Seismic isolation method for existing buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees