JP4452260B2 - Method for preventing wrinkles in block rolling - Google Patents

Method for preventing wrinkles in block rolling Download PDF

Info

Publication number
JP4452260B2
JP4452260B2 JP2006220386A JP2006220386A JP4452260B2 JP 4452260 B2 JP4452260 B2 JP 4452260B2 JP 2006220386 A JP2006220386 A JP 2006220386A JP 2006220386 A JP2006220386 A JP 2006220386A JP 4452260 B2 JP4452260 B2 JP 4452260B2
Authority
JP
Japan
Prior art keywords
rolling
pass
bulge
rolled material
final pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006220386A
Other languages
Japanese (ja)
Other versions
JP2008043966A (en
Inventor
英樹 柿本
仁 串田
恒徳 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006220386A priority Critical patent/JP4452260B2/en
Publication of JP2008043966A publication Critical patent/JP2008043966A/en
Application granted granted Critical
Publication of JP4452260B2 publication Critical patent/JP4452260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

この発明は、分塊圧延工程で、鋼塊または連続鋳造された鋼鋳片のリバース分塊圧延や、それに引き続くホットスカーフィングによる溶削および高圧水によるノロ(溶削カス)が安定して行なわれないために発生する表面疵を低減する疵防止方法に関する。   The present invention stably performs the reverse ingot rolling of a steel ingot or continuously cast steel slab, the subsequent hot scarfing and the cutting with high pressure water in the ingot rolling process. The present invention relates to a wrinkle prevention method for reducing surface wrinkles that occur due to failure.

従来、分塊圧延における疵防止方法としては、例えば、特許文献1では、大圧下によりドッグボーン形状の凹部が形成された素材側方部を、中央部に凸状部を形成した孔型を用いて圧延することで前記凹部を両側に向けて延伸させ、ドッグボーン形状を解消させてしわ疵の発生を防止する疵防止方法が開示されている。また、特許文献2では、鋳型縦横比および分塊圧下比をパラメータとする数式で規定した長辺くぼみ比を有する鋳片を用いて、鋳片の短辺圧下を、長辺くぼみ比および圧延幾何学的形状比をパラメータとする短辺圧下比に基づいて圧延を行なう分塊圧延疵が少なくなる分塊方法が開示されている。
特開2000−176501号公報 特開2002−263797号公報
Conventionally, as a method for preventing wrinkles in block rolling, for example, Patent Document 1 uses a hole mold in which a material side portion in which a dogbone-shaped concave portion is formed by a large pressure is formed and a convex portion is formed in the central portion. A wrinkle prevention method is disclosed in which the concave portions are stretched toward both sides by rolling to eliminate the dogbone shape and prevent the generation of wrinkles. In Patent Document 2, a slab having a long side indentation ratio defined by a mathematical expression having a mold aspect ratio and a block reduction ratio as parameters is used to determine the short side reduction of the slab by the long side indentation ratio and rolling geometry. A lump method has been disclosed in which the number of lump rolls to be rolled is reduced based on the short side reduction ratio with the geometric shape ratio as a parameter.
JP 2000-176501 A JP 2002-267397 A

一方、本発明者が独自に調査したところによれば、分塊圧延鋼片に発生する表面疵の最も大きな原因は、分塊圧延の中間工程で、圧延材表面の脱炭層や酸化スケールを除去するためにガスによる溶削(ホットスカーフィング)を行なう際に、圧延材形状が不安定であると圧延材表面が一様に溶削されずに、ホットスカーフィング後の圧延で表面疵が発生したり、ホットスカーフィングのノロ(溶削カス)が圧延材表面に残存し、このノロが圧延により押さえ込まれて表面疵が発生することがわかった。   On the other hand, according to the inventor's original investigation, the biggest cause of surface flaws occurring in the piece of rolled steel is the intermediate process of the piece rolling, removing the decarburized layer and oxide scale on the surface of the rolled material. When performing hot cutting with gas (hot scarfing), if the shape of the rolled material is unstable, the surface of the rolled material will not be evenly cut and surface flaws will occur during rolling after hot scarfing. In addition, it has been found that hot scarfing scraps (cutting scraps) remain on the surface of the rolled material, and the rolls are pressed by rolling to generate surface flaws.

このような不十分な溶削により発生する疵やノロの押さえ込みによる表面疵は、前記特許文献1および特許文献2に開示された分塊圧延方法では解消することはできない。前記疵欠陥を低減するためには、分塊圧延工程で、安定した圧延材形状を造りこむ必要がある。   Such surface flaws caused by insufficient cutting and surface flaws caused by pressing down can not be eliminated by the split rolling methods disclosed in Patent Document 1 and Patent Document 2. In order to reduce the wrinkle defect, it is necessary to create a stable rolled material shape in the split rolling process.

そこで、この発明の課題は、分塊圧延工程で、安定した圧延材形状を造りこむことにより、不十分な溶削やその後の圧延により発生する表面欠陥を低減するための疵防止方法を提供することである。   Then, the subject of this invention provides the wrinkle prevention method for reducing the surface defect which generate | occur | produces by inadequate cutting and subsequent rolling by building the stable rolled material shape in a block rolling process. That is.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係る分塊圧延における疵防止方法は、ホットスカーフィング工程を備えた鋼塊または連続鋳造された鋼素材の分塊圧延における疵防止方法であって、前記ホットスカーフィング工程前の圧延最終パス入側の圧延材の両側面にそれぞれバルジ部が形成され、このバルジ部の曲率半径Rと前記最終パス入側の圧延材の側面からバルジ部の最大突出位置までの幅方向の距離Wとの比R/Wが0.5以上であることを特徴とする。   The method for preventing wrinkles in the lump rolling according to claim 1 is a method for preventing wrinkles in the lump rolling of a steel ingot or continuously cast steel material provided with a hot scarfing process, the rolling before the hot scarfing process. Bulge portions are formed on both side surfaces of the rolled material on the final pass entry side, respectively, and the radius of curvature R of this bulge portion and the distance W in the width direction from the side surface of the rolled material on the final pass entry side to the maximum protruding position of the bulge portion The ratio R / W is 0.5 or more.

一般に、分塊圧延のパススケジュールは、10数パス程度のパス数からなり、上下一対のロールにそれぞれ複数形成された孔型で、2パスまたは4パス毎に圧延材を90度回転させて順次リバース圧延され、所定の寸法に仕上げられる。とくに仕上げパス(最終パス)では、図1(a)および(b)に模式的に示すように、最終1パス前の上下のロール1、2で、バルジ部Bが形成された圧延材3の両側面(自由表面)3a、3bが、最終パスでは、上下のロール1、2に接触する圧下面となる。上記のように、R/W≧0.5となるように最終1パス前のパスで圧延材3の両側面(自由表面)3a、3bの形状を形成することにより、最終パスのロールへの噛み込み時に圧延材3の倒れが発生せず、最終パスで安定した形状の圧延材を造り込むことができる。それによって、ホットスカーフィング前の圧延材形状を安定させることが可能となる。   In general, the pass schedule of the ingot rolling is composed of about 10 or more passes, and a plurality of holes are respectively formed in a pair of upper and lower rolls, and the rolled material is sequentially rotated by 90 degrees every 2 passes or 4 passes. Reverse rolled and finished to a predetermined dimension. Particularly in the finishing pass (final pass), as schematically shown in FIGS. 1A and 1B, the rolled material 3 in which the bulge part B is formed by the upper and lower rolls 1 and 2 before the final pass is used. Both side surfaces (free surfaces) 3a and 3b become pressure-contact surfaces that contact the upper and lower rolls 1 and 2 in the final pass. As described above, by forming the shape of the both side surfaces (free surfaces) 3a and 3b of the rolled material 3 in the pass before the final pass so that R / W ≧ 0.5, The rolled material 3 does not fall during biting, and a rolled material having a stable shape can be built in the final pass. Thereby, the shape of the rolled material before hot scarfing can be stabilized.

なお、ここで、バルジBの曲率半径Rは、このバルジ部Bを、図2(a)に模式的に示すように、バルジ部Bの最も突出している位置Bmaxを通る円弧で近似したときの、この近似円C(近似円弧)の半径である。   Here, the radius of curvature R of the bulge B is obtained by approximating the bulge portion B with an arc passing through the most protruding position Bmax of the bulge portion B, as schematically shown in FIG. , The radius of this approximate circle C (approximate arc).

請求項2に係る分塊圧延における疵防止方法は、前記バルジ形状がシングルバルジまたはダブルバルジである分塊圧延工程における疵防止方法である。   The wrinkle prevention method in the partial rolling according to claim 2 is a wrinkle prevention method in the partial rolling step in which the bulge shape is a single bulge or a double bulge.

前述のように、バルジ形状をR/W≧0.5となるように圧延材の両側面を形成しておくと、バルジ形状がシングバルジのみならず、ダブルバルジであっても、仕上げ(最終)パスのロール孔型への噛み込み時に圧延材の倒れが発生せず、最終パスで安定した形状の圧延材を造り込むことができる。   As described above, if both sides of the rolled material are formed so that the bulge shape is R / W ≧ 0.5, the finish (final) can be achieved even if the bulge shape is not only a single bulge but also a double bulge. The rolled material does not fall when the pass is bitten into the roll hole mold, and a rolled material having a stable shape can be built in the final pass.

なお、バルジ部がシングルバルジの場合、前記幅方向の距離Wは、前記最終パス入側の圧延材3の両側面3s(最終1パス前のロールとの接触面F)からバルジ部Bの最大突出位置Bmaxまでの幅方向の距離W1、W2の平均値を用いることが望ましい。また、バルジ部Bがダブルバルジの場合、前記幅方向の距離Wは、図2(b)に示すように、バルジ部の最大突出位置Bmaxに近い方の、前記最終パス入側の圧延材3の側面3s(最終1パス前のロールとの接触面F)から最大突出位置Bmaxまでの幅方向の距離である。   When the bulge part is a single bulge, the distance W in the width direction is the maximum of the bulge part B from both side surfaces 3s of the rolling material 3 on the final pass entry side (contact surface F with the roll before the final one pass). It is desirable to use the average value of the distances W1 and W2 in the width direction to the protruding position Bmax. When the bulge part B is a double bulge, the distance W in the width direction is, as shown in FIG. 2B, the rolling material 3 on the final pass entry side closer to the maximum protruding position Bmax of the bulge part. This is the distance in the width direction from the side surface 3s (contact surface F with the roll before the last one pass) to the maximum protruding position Bmax.

この発明では、分塊圧延工程でのホットスカーフィング前の最終パスで圧下を受ける、最終1パス前のパス(ロール孔型)で圧延された圧延材の側面のバルジ部の形状を上述のように、バルジ部の曲率半径Rと最終パス入側の圧延材の側面からバルジ部の最大突出位置Bmaxまでの幅方向の距離Wとの比R/Wが0.5以上となるようにしたので、最終パスのロール孔型への噛み込み時に圧延材の倒れが発生せず、最終パスで安定した形状の圧延材を造り込むことができる。それによって、ホットスカーフィング前の圧延材形状を安定させることができ、分塊圧延における不十分な溶削や溶削後の後段側の圧延で発生する表面欠陥を防止することが可能となる。   In the present invention, the shape of the bulge portion on the side surface of the rolled material, which is subjected to reduction in the final pass before hot scarfing in the block rolling process and rolled in the pass before the final pass (roll hole mold), is as described above. Furthermore, the ratio R / W between the radius of curvature R of the bulge part and the distance W in the width direction from the side surface of the rolled material on the final pass entry side to the maximum protruding position Bmax of the bulge part is set to 0.5 or more. The rolled material does not fall when it is bitten into the roll hole mold in the final pass, and a rolled material having a stable shape can be built in the final pass. As a result, the shape of the rolled material before hot scarfing can be stabilized, and it is possible to prevent surface defects that occur in inadequate cutting in the batch rolling or subsequent rolling after the hot cutting.

以下に、この発明の実施形態を添付の図3から図6に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 to 6.

分塊圧延工程では、均熱炉で加熱・均熱された連続鋳造鋼鋳片などの素材は、通常、一例を図3に示す、2重可逆式分塊圧延機のロールの複数のボックス孔型1a〜1d、2a〜2dと平ロール部1e、2eを備えた上下ロール1、2で、リフト量(ロール隙)を変化させ、2パスまたは4パス毎に90度転回されて圧下方向を変えて繰り返し圧下を受けながら、順次断面積が減少して縦寸法と横寸法が作られ、最終(仕上げ)パスで、ホットスカーフィング前の所要の寸法に圧延される。図4(a)は、最終1パス前のボックス孔型1a、2aでの圧延後の圧延材3の断面形状を示すもので、図4(b)は、上ロール1のリフト量(ロール隙m)を、最終1パス前のパスから大きくした、最終パスの平ロール部1e、2eでの圧延前(噛み込み時)、および圧延後の圧延材3の断面形状をそれぞれ示すものである。図4(a)で、圧延材3のバルジ部Bはシングルバルジであり、分塊圧延の各パスのロール隙、とくに仕上げパスに近い後段側のパスのロール隙を調整することにより、バルジ部Bの曲率半径Rと前記幅方向の距離Wの比R/Wが0.5以上に形成される。ここで、バルジBの曲率半径Rは、このバルジ部Bを、図2(a)で説明したように、バルジ部Bの最も突出している位置Bmaxを通る円弧で近似したときの、この近似円(近似円弧)の半径であり、この近似円は、図4(a)に示したように、近似可能な最大(最小曲率)の円(円弧)の半径である。また、幅方向の距離Wは、最終1パス前の孔型溝底部G1、G2との接触面F(最終パス入側の圧延材3の側面3s(図4(b)参照))から前記最大突出位置Bmaxまでの距離であり、前述のように、両距離W1、W2の平均値を用いることが望ましい。   In the batch rolling process, a material such as a continuous cast steel slab heated and soaked in a soaking furnace is usually a plurality of box holes in a roll of a double reversible split mill shown in FIG. With the upper and lower rolls 1 and 2 having the molds 1a to 1d, 2a to 2d and the flat roll portions 1e and 2e, the lift amount (roll gap) is changed and the roll is turned 90 degrees every 2 or 4 passes. While being subjected to repeated reductions, the cross-sectional area is successively reduced to create vertical and horizontal dimensions, and rolled to the required dimensions before hot scarfing in the final (finishing) pass. FIG. 4A shows the cross-sectional shape of the rolled material 3 after rolling in the box hole molds 1a and 2a before the final pass, and FIG. 4B shows the lift amount (roll gap) of the upper roll 1. The cross-sectional shapes of the rolled material 3 before and after rolling at the flat roll portions 1e and 2e in the final pass, and after rolling are shown respectively, in which m) is increased from the pass before the final pass. In FIG. 4 (a), the bulge part B of the rolled material 3 is a single bulge, and the bulge part is adjusted by adjusting the roll gap of each pass of the block rolling, in particular, the roll gap of the subsequent pass close to the finishing pass. The ratio R / W of the radius of curvature R of B and the distance W in the width direction is formed to be 0.5 or more. Here, the curvature radius R of the bulge B is the approximate circle when the bulge portion B is approximated by an arc passing through the most projecting position Bmax of the bulge portion B as described with reference to FIG. This approximate circle is the radius of a circle (arc) of the maximum (minimum curvature) that can be approximated, as shown in FIG. Further, the distance W in the width direction is the maximum from the contact surface F (the side surface 3s of the rolled material 3 on the final pass entry side (see FIG. 4B)) with the hole-shaped groove bottoms G1 and G2 before the final pass. It is the distance to the protruding position Bmax, and it is desirable to use the average value of both distances W1 and W2 as described above.

このように、図4(a)に示した、最終1パス前のパスで圧延された圧延材3の側面のバルジ部Bの形状に関連した比R/Wを0.5以上に形成することによって、図4(b)に示したように、最終パスの平ロール部1e、2eへの噛み込み後、速やかに圧延材3と平ロール部1e、2eとの接触面積が大きくなるため、噛み込みに伴って圧延材3の倒れが発生せず、最終パスで安定した形状の圧延材3を造りこむことが可能となり、ホットスカーフィング前の圧延材3の形状を安定させることができる。   As described above, the ratio R / W related to the shape of the bulge portion B on the side surface of the rolled material 3 rolled in the pass before the final pass shown in FIG. 4 (b), the contact area between the rolled material 3 and the flat rolls 1e and 2e is increased immediately after the final pass is engaged with the flat rolls 1e and 2e. As a result, the rolled material 3 does not fall down, and the rolled material 3 having a stable shape can be built in the final pass, and the shape of the rolled material 3 before hot scarfing can be stabilized.

連続鋳造されたS45Cの5本の610mm角の鋼鋳片を対象として、有限要素法汎用プログラムを用いて、一例を図3に示した、2重可逆式分塊圧延機の前記上下ロール1、2の各孔型で、第1パス入側温度を900〜1200℃、仕上げ鋼片寸法を300mm×400mmとして、図5に示す基本パススケジュールで、合計13パスの分塊圧延の変形シミュレーションを実施した。その際に、No.1〜No.11パスまでの各パス孔型での圧下量配分を調節することにより、最終1パス前(No.12パス)の孔型出側(最終パス(No.13パス)入側)の前記バルジ部Bに関連した比R/Wを広範囲に変化させた。この変形シミュレーション結果を用いて分塊圧延条件を決定し、実機実験を実施した。実機実験の結果、最終1パス前(No.12パス)の孔型出側(最終パス(No.13パス)入側)での圧延材の形状(R/W)と同じ分塊圧延条件の変形シミュレーション形状とは、ほぼ一致し、表1に示す結果が得られた。表1の上段のR/Wは、前記最終1パス前の孔型出側の実機圧延材についての測定値であり、この測定値は、実機圧延材の端面の断面写真を画像解析して得たものである。表1から、R/Wが0.5以上では、最終パス(No.13パス)への噛み込みに伴う圧延材の倒れが発生せず、同パス(No.13パス)出側の圧延材の断面形状も安定して良好であった。一方、R/Wが0.1、0.3の場合には、最終パス(No.13パス)への噛み込みに伴う圧延材の倒れが発生し、同パス(No.13パス)出側の圧延材の断面形状も不安定で、不良であった。   Using the 610 mm square steel slabs of S45C continuously cast as an object, using the finite element method general-purpose program, the upper and lower rolls 1 of the double reversible block mill shown in FIG. In each of the two hole types, the first pass entry side temperature is 900-1200 ° C, the finished steel slab dimensions are 300 mm x 400 mm, and the deformation simulation of 13-roll split rolling in total is performed with the basic pass schedule shown in Fig. 5 did. At that time, by adjusting the amount of rolling reduction in each pass hole type from No.1 to No.11 pass, the hole exit side (final pass (No. The ratio R / W related to the bulge part B on the 13th pass) was changed over a wide range. Using this deformation simulation result, the block rolling conditions were determined, and an actual machine experiment was conducted. As a result of actual machine tests, the same rolling conditions as the shape of the rolled material (R / W) on the hole exit side (final pass (No. 13 pass) entry side) before the final pass (No. 12 pass) The shape almost coincides with the deformation simulation shape, and the results shown in Table 1 were obtained. The upper R / W in Table 1 is a measured value of the actual rolled material on the exit side of the hole mold before the final pass, and this measured value is obtained by image analysis of a cross-sectional photograph of the end surface of the actual rolled material. It is a thing. From Table 1, when the R / W is 0.5 or more, the rolled material does not collapse due to biting into the final pass (No. 13 pass), and the rolled material on the exit side of the same pass (No. 13 pass) The cross-sectional shape was stable and good. On the other hand, when the R / W is 0.1 or 0.3, the rolled material falls due to biting into the final pass (No. 13 pass), and the exit side of the same pass (No. 13 pass) The cross-sectional shape of the rolled material was also unstable and poor.

Figure 0004452260
Figure 0004452260

次に、変形シミュレーションで用いた610mm角のS45Cの鋼鋳片を、前段側の実機2重可逆式分塊圧延機の上下ロール1、2の各孔型で、図5に示した、前記変形シミュレーションの場合と同様の基本パススケジュールで、まず、変形シミュレーションにより、最終1パス前(No.12パス)の孔型出側および最終パス(No.13パス)出側の圧延材の形状を把握し、とくに、No.8〜No.11パスのロール隙を、No.12パス出側の圧延材側面のバルジ部の突出量が小さくなるように調整、設定した後に、合計13パスの分塊圧延を実施し、300mm×400mm角の鋼片に仕上げた。そして、最終パス後の圧延材に、2%程度のホットスカーフィングを実施した。前記分塊圧延で、最終1パス前(No.12パス)の孔型出側(最終パス(No.13パス)入側)のバルジ部Bの形状比比R/W(図4(a)参照)は、4.1で、形状比R/W≧0.5以上の要件を満たし、最終パス(No.13パス)への噛み込みに伴う圧延材の倒れが発生せず、同パス(No.13パス)出側の圧延材の断面形状も安定して良好であった。また、ホットスカーフィングを実施後に、引き続いて、ホットスカーフィング機の下流側に設置した後段側の実機2重可逆圧延機で、いずれのパス孔型でも、噛み込みに伴う倒れを発生させず、250mm角ブルームまでの圧延を実施した。ホットスカーフィング前の最終パス(No.13パス)出側の圧延材形状が安定しているため、圧延材表面(表層部)が一様に溶削され、ホットスカーフィングのノロ(溶削かす)の残存による押さえ込み疵は認められなかった。また、明瞭に脱炭層や酸化スケールを伴う溶削不足と見なされる表面疵も認められず、安定した形状で溶削を行なうことによる表面疵防止方法の効果が確認された。   Next, the 610 mm square S45C steel slab used in the deformation simulation is shown in FIG. 5 with the hole types of the upper and lower rolls 1 and 2 of the actual double-reversible-type block mill. Using the same basic pass schedule as in the simulation, first, the shape of the rolled material on the exit side of the last die (No. 12 pass) and the exit side of the final pass (No. 13 pass) is first grasped by deformation simulation. In particular, after adjusting and setting the roll gap of the No. 8 to No. 11 pass so that the protruding amount of the bulge part on the side of the rolled material on the exit side of the No. 12 pass becomes small, a total of 13 passes Rolling was performed to finish a 300 mm × 400 mm square steel piece. And about 2% hot scarfing was implemented to the rolling material after the last pass. The shape ratio R / W of the bulge part B on the hole exit side (final pass (No. 13 pass) entry side) before the final pass (No. 12 pass) in the above-mentioned block rolling (see FIG. 4A) ) Is 4.1, satisfies the requirement of shape ratio R / W ≧ 0.5 or more, and the rolled material does not fall down due to biting into the final pass (No. 13 pass). .13 pass) The cross-sectional shape of the rolled material on the exit side was also stable and good. In addition, after carrying out hot scarfing, in the subsequent double-side reversible rolling mill installed downstream of the hot scarfing machine, any pass hole type does not cause a fall due to biting, Rolling to 250 mm square bloom was performed. Because the shape of the rolled material on the exit side of the final pass (No. 13 pass) before hot scarfing is stable, the surface of the rolled material (surface layer) is uniformly welded and the hot scarfing noro ) Was not observed. In addition, surface flaws that were clearly considered as lack of cutting with decarburized layers and oxide scale were not recognized, and the effect of the method of preventing surface flaws by performing cutting with a stable shape was confirmed.

図6(a)は、前記のホットスカーフィング前の最終1パス前のパス出側での圧延材3の側面3a、3bに形成されたバルジ部Bがダブルバルジの場合を示したもので、図6(b)は、この圧延材3が、上ロール1のリフト量(ロール隙m)を最終1パス前のパスから大きくした、最終パスの平ロール部1e、2eでの圧延前(噛み込み時)、および圧延延後の断面形状をそれぞれ示すものである。ダブルバルジの場合、バルジ部B1、B2の曲率半径Rの定義はシングルバルジの場合と同様であるが、前記幅方向の距離Wは、バルジ部B1、B2の最大突出位置B1max、B2maxと、この最大突出位置B1max、B2maxにそれぞれ近い方の、最終1パス前の孔型溝底部G1、G2との接触面F(最終パス入側の圧延材3の側面3s(図2(b)参照))から前記最大突出位置B1max、B2maxまでの距離である。なお、ダブルバルジの最大突出位置B1max、B2max間の距離Kは、本発明ではとくに規定する必要はなく、前記の比R/Wを0.5以上に形成することによって、図6(b)に示したように、最終パスの平ロール部1e、2eへの噛み込み後、速やかに圧延材3と平ロール部1e、2eとの接触面積が大きくなるため、噛み込みに伴って圧延材3の倒れが発生せず、最終パスで安定した形状の圧延材3を造りこむことができ、また、バルジ部B1、B2間で折れ込み疵等の表面欠陥の発生も防止される。   FIG. 6A shows a case where the bulge portion B formed on the side surfaces 3a and 3b of the rolled material 3 on the pass exit side before the last pass before the hot scarfing is a double bulge, FIG. 6 (b) shows that the rolled material 3 has the lift amount (roll gap m) of the upper roll 1 increased from the pass before the final pass, before rolling at the flat roll portions 1e and 2e in the final pass (biting). ) And the cross-sectional shape after rolling. In the case of the double bulge, the definition of the radius of curvature R of the bulge parts B1 and B2 is the same as in the case of the single bulge, but the distance W in the width direction is the maximum protruding positions B1max and B2max of the bulge parts B1 and B2. Contact surface F with hole groove bottoms G1 and G2 that are closer to maximum projecting positions B1max and B2max, respectively, before the final pass (side surface 3s of rolling material 3 on the final pass entry side (see FIG. 2B)) To the maximum protruding positions B1max and B2max. The distance K between the maximum protrusion positions B1max and B2max of the double bulge does not need to be specified in the present invention. By forming the ratio R / W to be 0.5 or more, the distance K shown in FIG. As shown, since the contact area between the rolled material 3 and the flat roll portions 1e, 2e is increased immediately after biting into the flat roll portions 1e, 2e in the final pass, The rolled material 3 having a stable shape can be formed in the final pass without falling down, and the occurrence of surface defects such as folding folds between the bulge portions B1 and B2 is prevented.

(a)分塊圧延の最終1パス前のパスでの圧延材断面形状を模式的に示す説明図である。(b)分塊圧延の最終パスでの圧延前後の圧延材の断面形状を模式的に示す説明図である。(A) It is explanatory drawing which shows typically the rolling-material cross-sectional shape in the pass before the last 1 pass of a block rolling. (B) It is explanatory drawing which shows typically the cross-sectional shape of the rolling material before and behind rolling in the final pass of a block rolling. (a)図1(a)の圧延材のバルジ部の形状比R/Wの定義を模式的に示す説明図である(シングルバルジの場合)。(b)同上(ダブルバルジの場合)。(A) It is explanatory drawing which shows typically the definition of the shape ratio R / W of the bulge part of the rolling material of Fig.1 (a) (in the case of a single bulge). (B) Same as above (in case of double bulge). 分塊圧延機のロールの一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the roll of a block mill. (a)分塊圧延の最終1パス前のパスでの圧延材断面形状の説明図である(シングルバルジの場合)。(b)分塊圧延の最終パスでの圧延前後の圧延材の断面形状の説明図である(シングルバルジの場合)。(A) It is explanatory drawing of the rolling-material cross-sectional shape in the pass before the last 1 pass of a block rolling (in the case of a single bulge). (B) It is explanatory drawing of the cross-sectional shape of the rolling material before and behind rolling in the final pass of a block rolling (in the case of a single bulge). 分塊圧延でのパススケジュールの一例を示す説明図である。It is explanatory drawing which shows an example of the pass schedule in partial rolling. (a)分塊圧延の最終1パス前のパスでの圧延材断面形状の説明図である(ダブルバルジの場合)。(b)分塊圧延の最終パスでの圧延前後の圧延材の断面形状の説明図である(ダブルバルジの場合)。(A) It is explanatory drawing of the rolling-material cross-sectional shape in the pass before the last 1 pass of a block rolling (in the case of a double bulge). (B) It is explanatory drawing of the cross-sectional shape of the rolling material before and behind rolling in the final pass of a block rolling (in the case of a double bulge).

符号の説明Explanation of symbols

1:上ロール 1a〜1c:ロール孔型 2:下ロール
2a〜2c:ロール孔型 3:圧延材 3a、3b、3s:圧延材側面
B、B1、B2:バルジ部 Bmax、B1max、B2max:バルジ部最大突出位置C、C1、C2:近似円 F:接触面 G1、G2:孔型溝底部 P:圧下方向
1: Upper roll 1a-1c: Roll hole type 2: Lower roll 2a-2c: Roll hole type 3: Rolled material 3a, 3b, 3s: Rolled material side surface B, B1, B2: Bulge part Bmax, B1max, B2max: Bulge Part maximum projecting position C, C1, C2: approximate circle F: contact surface G1, G2: hole-type groove bottom P: rolling direction

Claims (2)

ホットスカーフィング工程を備えた鋼塊または連続鋳造された鋼素材の分塊圧延における疵防止方法であって、前記ホットスカーフィング工程前の圧延最終パス入側の圧延材の両側面にそれぞれバルジ部が形成され、このバルジ部の曲率半径Rと前記最終パス入側の圧延材の側面からバルジ部の最大突出位置までの幅方向の距離Wとの比R/Wが0.5以上であることを特徴とする分塊圧延における疵防止方法。   A method for preventing flaws in a lump rolling of a steel ingot or a continuously cast steel material provided with a hot scarfing process, wherein bulge portions are respectively formed on both side surfaces of a rolled material on a rolling final pass entrance before the hot scarfing process. The ratio R / W between the radius of curvature R of the bulge part and the distance W in the width direction from the side surface of the rolled material on the final pass entry side to the maximum protruding position of the bulge part is 0.5 or more. A method for preventing wrinkles in ingot rolling. 前記バルジ形状がシングルバルジまたはダブルバルジである請求項1に記載の分塊圧延における疵防止方法。   The method for preventing wrinkles in ingot rolling according to claim 1, wherein the bulge shape is a single bulge or a double bulge.
JP2006220386A 2006-08-11 2006-08-11 Method for preventing wrinkles in block rolling Expired - Fee Related JP4452260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220386A JP4452260B2 (en) 2006-08-11 2006-08-11 Method for preventing wrinkles in block rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220386A JP4452260B2 (en) 2006-08-11 2006-08-11 Method for preventing wrinkles in block rolling

Publications (2)

Publication Number Publication Date
JP2008043966A JP2008043966A (en) 2008-02-28
JP4452260B2 true JP4452260B2 (en) 2010-04-21

Family

ID=39178201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220386A Expired - Fee Related JP4452260B2 (en) 2006-08-11 2006-08-11 Method for preventing wrinkles in block rolling

Country Status (1)

Country Link
JP (1) JP4452260B2 (en)

Also Published As

Publication number Publication date
JP2008043966A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP2015511533A (en) Method for producing hot rolled silicon steel
JP4452260B2 (en) Method for preventing wrinkles in block rolling
JP5724749B2 (en) Manufacturing method of H-section steel
JP4456586B2 (en) Hot rolling method for strip
JP4456599B2 (en) Flat steel manufacturing method
JP3912306B2 (en) Thick steel plate manufacturing method
JP6888520B2 (en) Slab width reduction method and width reduction device
KR101990987B1 (en) Rolling apparatus for controlling width and thickness of strip
JPH10263606A (en) Manufacture of hot rolled steel plate whose surface defect is reduced
JP2007061908A (en) Method for hot-rolling bar material
JP7003841B2 (en) Manufacturing method of H-section steel
JP5742525B2 (en) Width reduction method for hot stainless steel slabs
JP4289292B2 (en) Roll for manufacturing rough slab for H-section steel and method for manufacturing rough slab
JP3430819B2 (en) Box-hole type roll and rolling method for section steel
JP2010075977A (en) Method of forming slab with sizing press
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JP5741291B2 (en) Manufacturing method of H-section steel
CN115055522A (en) Control method and system for wedge shape of rack outlet of finishing mill group
JP6005582B2 (en) Method for analyzing surface defects of rolled material and method for producing rolled material
CN117123625A (en) Control method for head edge wave problem of wide thin steel plate
JP4556744B2 (en) Manufacturing method of unequal side unequal thickness angle steel
KR101543464B1 (en) Method for manufacturing steel plate with different width
RU2336961C2 (en) Method of production of strips from low-alloyed steel
JP2020175435A (en) Manufacturing method for shaped steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Ref document number: 4452260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees