JP5742525B2 - Width reduction method for hot stainless steel slabs - Google Patents

Width reduction method for hot stainless steel slabs Download PDF

Info

Publication number
JP5742525B2
JP5742525B2 JP2011152709A JP2011152709A JP5742525B2 JP 5742525 B2 JP5742525 B2 JP 5742525B2 JP 2011152709 A JP2011152709 A JP 2011152709A JP 2011152709 A JP2011152709 A JP 2011152709A JP 5742525 B2 JP5742525 B2 JP 5742525B2
Authority
JP
Japan
Prior art keywords
width
slab
width reduction
stainless steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011152709A
Other languages
Japanese (ja)
Other versions
JP2013018021A (en
Inventor
三宅 勝
勝 三宅
松原 行宏
行宏 松原
木村 幸雄
幸雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011152709A priority Critical patent/JP5742525B2/en
Publication of JP2013018021A publication Critical patent/JP2013018021A/en
Application granted granted Critical
Publication of JP5742525B2 publication Critical patent/JP5742525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間ステンレス鋼スラブの幅圧下方法に関し、詳しくは、ステンレス鋼の熱間圧延にて、熱延鋼板の幅方向板端部近辺に長手方向全長に発生するシーム疵による歩留まり低下、特にコイル先尾端部でのシーム疵の大きな廻り込みによる歩留まり悪化を軽減することを可能とする、熱間ステンレス鋼スラブの幅圧下方法に関するものである。   The present invention relates to a method for reducing the width of a hot stainless steel slab, and more specifically, in hot rolling of stainless steel, a yield reduction due to a seam ridge generated in the entire length in the longitudinal direction near the width direction plate end of the hot rolled steel plate, In particular, the present invention relates to a method for reducing the width of a hot stainless steel slab, which can reduce the yield deterioration due to the large rounding of seam seams at the leading end of the coil.

熱間スラブの幅変更手段として、連続鋳造プロセスにて製造されたスラブを温度が低下しないうちに、あるいは一旦温度が低下した後に加熱炉に投入して所定の温度まで加熱した後、該熱間スラブの板幅方向に相対峙して設置された1対の金型にて熱間スラブを板幅方向に間欠的に圧下する幅プレス装置が用いられている。前記1対の金型の一方と他方は互いに鏡像対称形であり、圧延ライン幅方向中心面に対して面対称の位置に配置される。このような幅プレス装置では、通常、900〜2000mm程度の幅の熱間スラブに対して最大300〜350mm程度の幅圧下が行われており、連続鋳造にて同一幅に鋳造されたスラブより異なる幅の鋼板製品の製造を可能としている。これにより、連続鋳造プロセスでのモールド変更による幅変更回数の低減、熱間圧延プロセスでの幅可変のスケジュールフリー圧延の拡大、コイル単重の増大など、鋼板製造プロセスの生産性向上や合理化に大きく寄与しており、そのメリットは幅プレス装置による幅圧下能力が大きいほど増大する。   As a means for changing the width of the hot slab, the temperature of the slab manufactured by the continuous casting process is not lowered, or after the temperature is lowered, the slab is heated to a predetermined temperature after being put into a heating furnace, and then the hot slab is heated. 2. Description of the Related Art A width press apparatus that uses a pair of dies installed so as to face each other in the plate width direction of the slab to intermittently reduce the hot slab in the plate width direction is used. One and the other of the pair of molds are mirror images of each other, and are disposed at positions symmetrical with respect to the center plane in the rolling line width direction. In such a width press apparatus, a maximum width of about 300 to 350 mm is usually applied to a hot slab having a width of about 900 to 2000 mm, which is different from a slab cast to the same width by continuous casting. It is possible to manufacture steel sheets with a wide width. This greatly reduces the number of width changes due to mold changes in the continuous casting process, expands schedule-free rolling with variable width in the hot rolling process, and increases the coil weight, greatly improving the productivity and streamlining of the steel sheet manufacturing process. The merit is increased as the width reduction capability of the width press device increases.

しかしながら、幅プレスによる幅圧下量が増大すると、鋼種によっては板幅エッジ近辺の変形特性に起因して線状の表面欠陥が発生することがある。例えば、極低炭素鋼では、オーステナイト相からフェライト相へ変態する温度が高く、かつ両相の変形能が異なる(フェライト相は軟らかい)ことから、温度低下が大きいスラブ角部付近はフェライトへの変態に伴って軟化するため、幅プレスによる幅圧下や水平圧延にて局所的に重なった線状疵が発生することがある。この線状疵は、コイル長手全長に発生するため、製品歩留まりを大きく低下させる原因となることから、熱間スラブの角部付近の温度低下を抑制する目的にて幅プレス用金型の圧下面にカリバーと呼ばれる凹溝を形成し、幅圧下にてスラブ角部を鈍角に成形し、スラブ角部の温度低下を抑制することが提案されている(例えば特許文献1)。   However, when the width reduction amount by the width press increases, a linear surface defect may occur depending on the deformation characteristics in the vicinity of the sheet width edge depending on the steel type. For example, in ultra-low carbon steel, the temperature at which transformation from the austenite phase to the ferrite phase is high, and the deformability of both phases is different (the ferrite phase is soft). Since it softens with it, the linear wrinkles which overlap | superposed locally by the width reduction by a width press or horizontal rolling may generate | occur | produce. Since this linear wrinkle occurs in the entire length of the coil, it can cause a significant decrease in product yield. Therefore, it is necessary to reduce the temperature near the corner of the hot slab. On the other hand, it has been proposed to form a concave groove called a caliber and form the slab corner part into an obtuse angle under a width pressure to suppress a temperature drop of the slab corner part (for example, Patent Document 1).

また、ステンレス鋼の熱間圧延では、粗圧延初期でのスラブの水平圧延時に自由表面であるスラブ側面にシワ状の微小凹凸が形成され、この微小凹凸はその後の水平圧延にて生じる側面のバルジ変形によって板表裏面の板幅端近傍に廻り込むことから、熱延鋼板の状態では板幅より数十mmの範囲にわたってシーム疵と呼ばれる線状欠陥の集合体を形成する。このため、予めこのシーム疵の幅を考慮した余幅を設定して熱延鋼板を製造した後にこのシーム疵部をトリムして除去しなければならないことから、大幅な歩留まり低下を招くものであった。このようなステンレス鋼のシーム疵を低減させるための技術として、幅圧下用金型の圧下面の高さ方向中央部に台形状の凸部を有する金型を使用し、かつその後の粗圧延の初期の3パスではエッジャー竪ロールによる幅圧下を行わないことが提案されている(例えば特許文献2)。これは、ステンレス鋼のシーム疵がバルジ変形によるスラブ側面の廻り込みによって拡大することから、予め幅プレスにてスラブ側面を凹形状に成形してバルジ変形による幅膨らみ量を低減し、かつ粗圧延初期にて竪ロールによる幅圧下を実施しないことにより、幅プレスにて成形したスラブ側面の凹形状を維持して側面の材料が表裏面へ廻り込まないようにする効果を発揮させるものである。また、ステンレス鋼のシーム疵は、コイル長手方向の先尾端にてスラブ側面からの廻り込み量が大きくなる特徴があることから、幅プレスによる幅圧下量をスラブ長手方向で変更する技術が提案されている(例えば特許文献3、4)。尚、幅圧下用金型の圧下面に複数の傾斜部と平行部を形成したものを用いる幅圧下方法も提案されている(例えば特許文献5,6)。   Further, in the hot rolling of stainless steel, wrinkle-like micro unevenness is formed on the side surface of the slab, which is the free surface, during horizontal rolling of the slab at the initial stage of rough rolling. Since the deformation leads to the vicinity of the plate width end on the front and back surfaces of the plate, in the state of the hot-rolled steel plate, an aggregate of linear defects called seam flaws is formed over a range of several tens mm from the plate width. For this reason, since a hot-rolled steel sheet is manufactured by setting a surplus width in consideration of the width of the seam ridge in advance, the seam ridge portion must be trimmed and removed, resulting in a significant decrease in yield. It was. As a technique for reducing such a stainless steel seam wrinkle, a die having a trapezoidal convex portion at the center in the height direction of the squeezing surface of the width reduction die is used, and the subsequent rough rolling is performed. In the initial three passes, it has been proposed not to perform width reduction by an edger roll (for example, Patent Document 2). This is because the stainless steel seam trough expands as the slab side surface wraps around due to bulge deformation, so the slab side surface is formed into a concave shape in advance by a width press to reduce the amount of width bulge due to bulge deformation and rough rolling. By not carrying out the width reduction by the heel roll at the initial stage, the concave shape of the side surface of the slab formed by the width press is maintained, and the effect of preventing the side material from entering the front and back surfaces is exhibited. In addition, stainless steel seams have a feature that the amount of wrapping from the side of the slab increases at the leading end in the longitudinal direction of the coil, so a technology to change the width reduction amount by the width press in the longitudinal direction of the slab is proposed. (For example, Patent Documents 3 and 4). A width reduction method using a plurality of inclined portions and parallel portions formed on the pressing surface of the width reduction mold has also been proposed (for example, Patent Documents 5 and 6).

特開昭63−192503号公報JP-A 63-192503 特開平9−256050号公報JP-A-9-256050 特開2010−64123号公報JP 2010-64123 A 特開2010−75977号公報JP 2010-75977 A 特開2007−222894号公報JP 2007-222894 A 特開2009−190049号公報JP 2009-190049 A

しかし、前記した従来のステンレス鋼板のシーム疵低減技術は、各々以下のような問題点を有していた。
特許文献2に開示されている技術では、金型圧下面に形成する台形形状の凸部寸法を適正化することにより、大きなシーム疵低減効果が認められる。しかしながら、この効果はコイル長手方向の先尾端部近辺を除く定常部では大きいものの、依然としてコイル先尾端部近辺ではシーム疵の廻り込み量が大きいという課題を有している。特許文献2では、凸部を有する金型によってスラブ側面に凹形状を成形し、この効果を維持するために粗圧延の初期の3パスではエッジャー竪ロールによる幅圧下を実施しないため、スラブ先尾端でのフレア(鉢状の幅広がり)が大きくなる(例えば、日本鉄鋼協会「板圧延の理論と実際」p.83参照)ことが不可避である。
However, the conventional seam wrinkle reduction techniques for stainless steel sheets described above have the following problems.
In the technique disclosed in Patent Document 2, a large seam wrinkle reduction effect is recognized by optimizing the size of the trapezoidal convex portion formed on the die pressing surface. However, although this effect is large in the stationary part except for the vicinity of the leading end of the coil in the longitudinal direction, there is still a problem that the amount of seam wrap around the leading end of the coil is large. In Patent Document 2, a concave shape is formed on the side surface of the slab with a mold having a convex portion, and in order to maintain this effect, the width reduction by the edger roll is not performed in the initial three passes of rough rolling. It is inevitable that the flare at the end (bowl-shaped width spread) becomes large (for example, see “Theory and Practice of Plate Rolling” p. 83).

その後の粗圧延にて、水平圧延での幅広がりを補償するためにエッジャー竪ロールによる幅圧下を行うと、定常部と比較して幅が広いフレア部での幅圧下量が大きくなり、それに従って先尾端部でのシーム疵の内部への廻り込み量も大きくなってしまう。結局、熱間圧延後の鋼板全長に亘り同一幅を得るために、板幅エッジ部のトリム量はシーム疵の廻り込み量の最も大きいコイル先尾端部でのトリム量に制約されることから、鋼板全長に亘るトリム部分が多発し、歩留まりがあまり改善しないという問題点を有している。   In the subsequent rough rolling, if the width reduction by the edger roll is performed in order to compensate for the breadth in horizontal rolling, the width reduction amount in the flare part having a wider width than that in the steady part becomes large, and accordingly The amount of wrapping around the seam trough at the tip end will also increase. After all, in order to obtain the same width over the entire length of the steel sheet after hot rolling, the trim amount at the edge of the sheet width is limited by the trim amount at the leading end of the coil where the amount of wrap around the seam seam is the largest. There is a problem that the trim portion over the entire length of the steel plate occurs frequently and the yield is not improved so much.

特許文献3、4では、このコイル先尾端部でシーム疵の廻り込み量の低減策として、幅プレスによる幅圧下量をスラブ長手方向で変更する技術を提案している。そして、幅プレスによるスラブ定常部と先尾端部での幅圧下量の差(以後、段差量とよぶ)と段差を行う長さ(以後、段差長とよぶ)を、実験や操業データの解析から求める係数を用いた関係式にて決定することとしている。しかしながら、本発明者らの検討によると、適切な段差量や段差長は金型形状とスラブとの接触開始位置(以後、予成形長さとよぶ)との関係に大きく依存するものであるが、特許文献3、4では予成形長さに関しては一切言及されていない。   Patent Documents 3 and 4 propose a technique for changing the amount of width reduction by the width press in the longitudinal direction of the slab as a measure for reducing the amount of seam wrap around the tail end of the coil. Then, the difference in the amount of width reduction (hereinafter referred to as the step amount) and the length of the step (hereinafter referred to as the step length) between the slab steady part and the leading end of the width press, and the analysis of the operation data The relational expression using the coefficient obtained from However, according to the study by the present inventors, the appropriate step amount and step length largely depend on the relationship between the mold shape and the contact start position of the slab (hereinafter referred to as the pre-molding length), In Patent Documents 3 and 4, no mention is made regarding the preforming length.

本発明は上述した従来技術の問題点を克服すべく鋭意検討を重ねてなされたものであり、ステンレス熱延鋼板の板端部近辺に長手方向全長に発生するシーム疵による歩留まり低下、特にコイル先尾端部でのシーム疵の大きな廻り込みによる歩留まり低下を防止することを可能とする、熱間ステンレス鋼スラブの幅圧下方法を提供するものである。   The present invention has been intensively studied to overcome the above-mentioned problems of the prior art, and the yield reduction due to the seam wrinkles generated in the entire length in the longitudinal direction in the vicinity of the plate end of the stainless hot-rolled steel sheet, particularly the coil tip. The present invention provides a method for reducing the width of a hot stainless steel slab that makes it possible to prevent a decrease in yield due to a large amount of seam trough at the tail end.

上記課題を解決するため、本発明者らは鋭意検討を重ね、ステンレス鋼板のシーム疵による歩留まり低下を防止する熱間ステンレス鋼スラブの幅圧下方法を見出した。即ち、本発明は、以下の通りである。
(1)圧延ライン両側に対面設置した幅圧下用金型の各々の圧下面が、圧延ライン上流側から下流側にかけて、下流側に向かうほど対面間距離を狭める上流側傾斜部と、圧延ライン方向に平行な平行部と、下流側に向かうほど対面間距離を広げる下流側傾斜部とをこの順に連ねてなる前記1対の金型を用いて幅圧下し、その後複数パスの粗圧延の間にエッジャー竪ロールを用いて幅圧下する熱間ステンレス鋼スラブの幅圧下方法であって、前記金型を用い、前記スラブの最先端部は前記上流側傾斜部にて、同スラブの最尾端部は前記下流側傾斜部にて、同スラブの残りの部分である定常部は前記平行部にて、それぞれ幅圧下するものとし、その際、前記スラブのスラブ厚を200〜300mm、スラブ幅を800〜2000mmとし、前記最先端部及び最尾端部の実幅圧下量が、前記定常部の実幅圧下量よりも30〜50mm大きくなるようにするとともに、前記定常部の実幅圧下量を50〜350mmとすることを特徴とする、熱間ステンレス鋼スラブの幅圧下方法。
(2)前記上流側傾斜部及び下流側傾斜部は、圧延ラインに対する傾斜角度が12°以上であることを特徴とする、上記(1)に記載の熱間ステンレス鋼スラブの幅圧下方法。
(3)前記圧下面は、高さ方向中央部に台形状の凸部を有することを特徴とする、上記(1)又は(2)に記載の熱間ステンレス鋼スラブの幅圧下方法。
(4)前記エッジャー竪ロールによる幅圧下は、粗圧延入側のスラブ厚から粗途中パスの板厚への総圧下率が50%以上となってから実行することを特徴とする、上記(1)〜(3)の何れかに記載の熱間ステンレス鋼スラブの幅圧下方法。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and found a method for reducing the width of a hot stainless steel slab that prevents the yield from being lowered due to the seam of the stainless steel plate. That is, the present invention is as follows.
(1) An upstream inclined portion that narrows the distance between the opposing surfaces of the rolling reduction molds facing each other on both sides of the rolling line from the upstream side to the downstream side of the rolling line, and the rolling line direction. Width reduction using the pair of molds in which the parallel part parallel to the downstream side and the downstream inclined part that increases the distance between the faces toward the downstream side are connected in this order, and then during the multiple passes of rough rolling A method of reducing the width of a hot stainless steel slab that is reduced in width by using an edger roll, wherein the mold is used, and the most advanced portion of the slab is at the upstream inclined portion, and the most distal end of the slab. In the downstream inclined portion, the remaining portion of the slab is reduced in width by the parallel portion, and the slab thickness of the slab is 200 to 300 mm and the slab width is 800. and ~2000mm, the most Actual width reduction amount of the end portion and the outermost tail part, as well as to 30~50mm larger than the actual width reduction amount of the constant region, to the 50~350mm the actual width reduction ratio of the constant region A method for reducing the width of a hot stainless steel slab.
(2) The method for reducing the width of a hot stainless steel slab according to (1) above, wherein the upstream inclined portion and the downstream inclined portion have an inclination angle of 12 ° or more with respect to the rolling line.
(3) The method for reducing the width of a hot stainless steel slab according to (1) or (2) above, wherein the pressed surface has a trapezoidal convex portion at the center in the height direction.
(4) The width reduction by the edger roll is performed after the total reduction ratio from the slab thickness on the rough rolling entry side to the plate thickness of the rough intermediate pass becomes 50% or more, (1 ) A method for reducing the width of a hot stainless steel slab according to any one of (3) to (3).

本発明によれば、ステンレス鋼板の熱延製造時に板端部近辺で長手方向全長に発生するシーム疵による歩留まり低下、特にコイル先尾端部でのシーム疵の大きな廻り込みによる歩留まり低下を防止することができる。   According to the present invention, it is possible to prevent a decrease in yield due to a seam trough that occurs in the entire length in the longitudinal direction in the vicinity of the end of the plate during hot-rolling of a stainless steel plate, and in particular, a decrease in yield due to a large round of the seam trough at the end of the coil. be able to.

本発明によるフレアの低減効果の1例を示すグラフである。It is a graph which shows an example of the flare reduction effect by this invention. 本発明によるフレアの低減効果のもう1つの例を示すグラフである。It is a graph which shows another example of the flare reduction effect by this invention. 本発明によるフレアの低減効果の1例を示す平面図である。It is a top view which shows an example of the flare reduction effect by this invention. 本発明に用いる金型の1例を示す平面図である。It is a top view which shows an example of the metal mold | die used for this invention. 本発明によるスラブ先端部の幅プレス(金型を用いた幅圧下)方法の1例を示す説明図である。It is explanatory drawing which shows one example of the width press (width reduction using a metal mold | die) method of the slab front-end | tip part by this invention. 本発明によるスラブ尾端部の幅プレス(金型を用いた幅圧下)方法の1例を示す説明図である。It is explanatory drawing which shows one example of the width press (width reduction using a metal mold | die) method of the slab tail end part by this invention. 予成形長さの定義説明図である。It is a definition explanatory drawing of preforming length. 段差幅圧下量の定義説明図である。It is a definition explanatory drawing of level difference width reduction. 圧下面の高さ方向中央部に台形状の凸部を有する金型の1例を示す立体図である。It is a three-dimensional view showing an example of a mold having a trapezoidal convex portion at the center of the pressure surface in the height direction. 図9の要部断面図である。It is principal part sectional drawing of FIG.

以下、本発明の実施形態について図1〜図10を援用して説明する。
ステンレス鋼板の製造では前述のごとくシーム疵が発生することから、圧延によるスラブ側面の廻り込み量を低減する目的にて金型圧下面の高さ方向中央部付近に台形状の凸部を有する幅圧下用金型1が使用されている(図9、図10参照)。このような金型を用いたスラブ幅圧下である幅プレスを行うとスラブ側面に凹みが形成されるため、適正な寸法の凸形状を付与することにより、その後の水平圧延によるスラブ側面のバルジ変形をほぼ相殺することが可能となる。つまり、このような幅プレスをステンレス鋼スラブに適用することにより、ステンレス鋼板のエッジシーム疵の発生領域を大きく低減できるものである。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
In the manufacture of stainless steel sheets, seam wrinkles are generated as described above, so that the width having a trapezoidal convex portion near the center in the height direction of the die pressing surface is reduced for the purpose of reducing the amount of rolling around the slab side surface due to rolling. A reduction mold 1 is used (see FIGS. 9 and 10). When a slab width press using such a mold is performed, a dent is formed on the side surface of the slab, so that a bulge deformation of the side surface of the slab by subsequent horizontal rolling is provided by providing a convex shape with an appropriate dimension. Can be almost offset. That is, by applying such a width press to a stainless steel slab, the region where the edge seam wrinkles of the stainless steel plate are generated can be greatly reduced.

一方、図3の点線は板圧延での材料の幅広がり挙動を模式的に示したものであり、材料の先端部と尾端部は圧延での非定常変形域となることから、前記したフレアと呼ばれる鉢広がり形状となる。これは、板圧延では材料の先尾端部(前記非定常変形域であり、以下、先尾端非定常部ともいう)を除く定常部でのロールバイト内での幅広がりは、ロールバイトの前後に位置する非変形の材料部分の存在により拘束されることから、幅広がりがあまり大きくないが、最先端部はその前方に幅広がり変形を拘束する材料がない、また最尾端部はその後方に幅広がり変形を拘束する材料がない、ことから幅広がりが大きくなるものである。通常、熱間スラブの粗圧延工程では、スラブ幅を変更する目的、そして水平圧延での幅広がりを補償する目的にて、各粗圧延機に具備されたエッジャー竪ロールにて幅圧下を行っている。そして、先尾端非定常部での幅変動を低減するため、スラブ先端と尾端付近にてエッジャー竪ロールによる幅圧下量制御するショートストローク制御が行われている。   On the other hand, the dotted line in FIG. 3 schematically shows the material widening behavior in plate rolling, and the tip and tail ends of the material are unsteady deformation regions in rolling. It becomes a bowl spreading shape called. This is because, in plate rolling, the width of the roll bite in the steady part excluding the leading end part of the material (the unsteady deformation region, hereinafter also referred to as the leading end unsteady part) is Since it is constrained by the presence of the non-deformable material parts located at the front and back, the breadth is not very large, but the leading edge has no material to restrain the breadth and deformation at the front, and the tail end is the On the other hand, there is no material constraining the widening deformation, and therefore the widening becomes large. Usually, in the rough rolling process of hot slabs, width reduction is performed with an edger roll provided in each roughing mill for the purpose of changing the slab width and for the purpose of compensating for the breadth in horizontal rolling. Yes. And in order to reduce the width | variety fluctuation | variation in a leading-end unsteady part, the short stroke control which controls the width reduction amount by an edger scissors roll is performed in the slab front-end | tip and the tail end vicinity.

また、ステンレス鋼板の製造では、前記したごとく圧下面が凸形状である幅圧下用金型を用いてスラブ側面を凹形状に成形してシーム疵の低減を図るため、水平圧延による側面のバルジ変形の大きい粗圧延前半のパスではエッジャー竪ロールによる幅圧下をするとスラブ側面の凹みの深さが減少するため、通常はこれを実施しない。従来技術(例えば特許文献2)では、粗圧延入側のスラブ厚から粗途中パスの板厚への総圧下率が50%超になるまではエッジャー竪ロールによる幅圧下を実施しないことが提案されており、本発明者らの検討でも本技術はシーム疵の廻り込み量低減の観点から大きな効果を有していることを確認している。よって本発明では前記総圧下率が50%以上となってからエッジャー竪ロールによる幅圧下を実行することが好ましい。但し、前記総圧下率を95%超とすると圧延機の圧下能力限界を超えてパス数を増しても更なる減厚が困難となるため、より好ましくは、前記総圧下率が50〜95%となる範囲内でエッジャー竪ロールによる幅圧下を実行することである。   In addition, in the manufacture of stainless steel sheets, as described above, the slab side surface is formed into a concave shape by using a mold for reducing the width of the slab with a convex shape to reduce seam wrinkles. In the first half pass of rough rolling, the width of the dent on the side surface of the slab is reduced when the width is reduced by the edger roll, so this is not usually performed. In the prior art (for example, Patent Document 2), it is proposed not to carry out the width reduction by the edger roll until the total reduction ratio from the slab thickness on the rough rolling entry side to the plate thickness of the rough intermediate pass exceeds 50%. The present inventors have confirmed that the present technology has a great effect from the viewpoint of reducing the amount of seam wrap around. Therefore, in the present invention, it is preferable to execute the width reduction by the edger roll after the total reduction ratio becomes 50% or more. However, if the total rolling reduction exceeds 95%, it is difficult to reduce the thickness even if the number of passes is increased beyond the rolling capacity limit of the rolling mill. More preferably, the total rolling reduction is 50 to 95%. Within the range, the width reduction by the edger roll is executed.

しかしながら、前記したごとく、エッジャー竪ロールによる幅圧下を実施しない場合には先尾端のフレアが大きくなるため、先尾端のエッジシーム廻り込み量が増加して後工程でトリム代が大きくなって鋼板歩留まりがより大きく低下することが不可避となる。このため、粗圧延後半のパスではエッジャー竪ロールによる幅圧下を実施してフレア部を圧下し、長手方向全長に亘って板幅分布を均一にする必要がある。しかしながら、そうするためには、既に幅広がりが大きくなっている先尾端フレア部での幅圧下量が大きくなるため、それに付随して先尾端付近でのシームの廻り込み量が大きくなってしまうことが不可避となる。結局、熱間圧延後の後工程での板幅トリムでは、シーム疵の廻り込み量が大きくなっている鋼板先尾端部に合わせて全長に亘りトリムを実施することから、大きな歩留まりロスとなってしまう。   However, as described above, when the width reduction by the edger punch roll is not performed, the flare at the leading edge increases, so the amount of edge seam wrapping around the leading edge increases, and the trim margin increases in the subsequent process. It is inevitable that the yield is further reduced. For this reason, in the pass in the latter half of the rough rolling, it is necessary to reduce the flare by reducing the width by the edger roll and to make the plate width distribution uniform over the entire length in the longitudinal direction. However, in order to do so, the width reduction amount at the leading end flare portion where the width spread has already become large increases, and accordingly, the amount of seam wrap around the leading end increases. It becomes inevitable. After all, in the plate width trim in the post process after hot rolling, the trim is performed over the entire length in accordance with the steel plate leading end where the amount of seam wrap is large, resulting in a large yield loss. End up.

本発明者らは、従来技術にて提案されている、圧下面の高さ方向中央に台形状凸部を有する幅圧下用金型(図9、図10参照。台形状凸部サイズは、台形高さ=15〜65mm、台形上辺長=85〜200mm、台形下辺長=200〜300mm)を用い、かつスラブ先尾端でのシームの廻り込み量を効率的に低減する方法について鋭意検討を重ね、幅圧下用金型の圧下面の傾斜部を最大限に活用して効率的にフレアを低減することにより、結果としてコイル全長に亘りシームの廻り込み量を最小限に抑制するための技術として本発明を完成させた。完成までの途上において、前述したごとく、先尾端非定常部を除いた残りである定常部では、凸形状の圧下面を有する金型を用いること、スラブ厚から板厚への総圧下率が50%以上となってからエッジャー竪ロールによる幅圧下を実行すること、により大きなシーム廻り込み量の低減効果が得られることから、これら2つの技術事項を前提として、平行部の両側に傾斜部が連なる圧下面を有する金型を用いたスラブ先尾端の予成形技術について検討を重ねた。その結果、スラブの先端部、尾端部ともに、前記金型の傾斜部にて適正に幅プレスを行うことにより、先尾端部でのシームの廻り込み量を大きく低減できることを見出した。   The inventors of the present invention have proposed a width reduction mold having a trapezoidal convex portion at the center in the height direction of the pressing surface (see FIGS. 9 and 10). H = 15 to 65 mm, trapezoid upper side length = 85 to 200 mm, trapezoid lower side length = 200 to 300 mm), and methods for efficiently reducing the amount of seam wrap around the slab tip As a technology to minimize the amount of seam wrapping over the entire coil length by effectively reducing the flare by making the best use of the inclined part of the squeezing surface of the width reduction mold The present invention has been completed. On the way to completion, as described above, in the remaining steady portion excluding the leading end unsteady portion, using a mold having a convex-shaped pressing surface, the total reduction ratio from the slab thickness to the plate thickness is By executing the width reduction with the edger roll after reaching 50% or more, it is possible to obtain a large effect of reducing the amount of seam wrapping. Therefore, assuming these two technical matters, there are inclined parts on both sides of the parallel part. The pre-molding technology of the slab tip end using a mold with continuous pressed surfaces was studied repeatedly. As a result, it has been found that the amount of seam wrapping at the front and rear end portions can be greatly reduced by appropriately performing width pressing at the inclined portion of the mold at both the tip and tail ends of the slab.

図4は、本発明に用いる幅圧下用金型(略して金型)の1例を示す平面図(但し、圧下面は図9、図10のように台形状凸部付き)である。尚、図示の金型1は圧延ライン両側に対面設置した1対うちの1個であり、もう1個は図示の金型1の鏡像と同形であり、圧延ライン幅中心面に対する金型1の面対称位置に設置されている。図4に示す金型1の図形下部が圧下面であり、該圧下面は、圧延ライン上流側から下流側にかけて、下流側に向かうほど対面間距離を狭める上流側傾斜部2と、圧延ライン方向に平行な平行部4と、下流側に向かうほど対面間距離を広げる下流側傾斜部3とをこの順に連ねてなる。上流側傾斜部2、下流側傾斜部3は、圧延ライン方向に対する傾斜角度が夫々θ、θである。ここで、θ、θは、これらが12°未満であるとエッジシーム廻り込み量の低減効果が小さいので、12°以上とするのが好ましい。但し、これらが30°を超えると金型にスラブが噛み込み難くなるので、θ、θは、より好ましくは12°〜30°である。 FIG. 4 is a plan view showing an example of a width reduction mold (abbreviated as a mold) used in the present invention (however, the pressed surface has a trapezoidal convex portion as shown in FIGS. 9 and 10). In addition, the illustrated mold 1 is one of a pair of facing installations on both sides of the rolling line, and the other is the same shape as the mirror image of the illustrated mold 1, and the mold 1 with respect to the center line of the rolling line width. It is installed in a plane symmetrical position. The lower part of the figure of the mold 1 shown in FIG. 4 is a squeezing surface, and the squeezing surface has an upstream inclined portion 2 that narrows the facing distance from the upstream side to the downstream side of the rolling line, and the rolling line direction. The parallel portion 4 that is parallel to the downstream side and the downstream side inclined portion 3 that increases the distance between the faces toward the downstream side are connected in this order. The upstream inclined portion 2 and the downstream inclined portion 3 have inclination angles θ 1 and θ 2 with respect to the rolling line direction, respectively. Here, θ 1 and θ 2 are preferably set to 12 ° or more because they are less than 12 ° because the effect of reducing the amount of wrap around the edge seam is small. However, if these exceed 30 °, the slab becomes difficult to bite into the mold, so θ 1 and θ 2 are more preferably 12 ° to 30 °.

図5は、本発明によるスラブ先端部の幅プレス方法を示す図であり、スラブ幅Wのスラブ(熱間ステンレス鋼スラブ)5に対して先尾端を除く定常部での幅圧下後の幅がwとなる設定(幅圧下量ΔW=W―w)にて幅圧下し、かつ幅圧下パス間にてスラブ5を圧延ライン下流側に距離Lだけ搬送する条件を示している。本発明では、スラブ最先端角部を金型1の上流側傾斜部2で幅圧下し、かつ、図5に示したごとくその幅圧下量は定常部幅圧下量ΔWに対してスラブ全幅にてΔW1(スラブ片側面ではΔW1/2)だけ大きくなるように幅圧下するものである。なお、図8に示したごとく、ΔW1は金型の設定幅圧下量の増大分であり、一方、スラブ定常部に対するスラブ先端部の実幅圧下量の増大分(実幅圧下増大量という)はδ1として前記ΔW1と区別する。これは、スラブ先端圧下時のスラブと金型の位置関係により、同じ設定幅圧下量の増大分ΔW1でも、実際のスラブにおける実幅圧下増大量δ1が変化するためであり、後ほどデータをもとに説明を行う。 FIG. 5 is a view showing a width pressing method of a slab tip portion according to the present invention, and a width after width reduction at a stationary portion excluding a leading end with respect to a slab (hot stainless steel slab) 5 having a slab width W. Shows a condition in which the width is reduced by setting (width reduction amount ΔW = W−w) to be w, and the slab 5 is conveyed by a distance L downstream of the rolling line between the width reduction passes. In the present invention, the slab leading-edge corner is width-reduced by the upstream inclined portion 2 of the mold 1, and the width reduction amount is the slab full width with respect to the steady portion width reduction amount ΔW as shown in FIG. [Delta] W 1 (in the slab side surface ΔW 1/2) is to the width reduction so as to increase only. As shown in FIG. 8, ΔW 1 is an increase in the set width reduction amount of the mold, while an increase in the actual width reduction amount of the slab tip portion relative to the slab steady portion (referred to as an actual width reduction increase amount). distinguishes between the [Delta] W 1 as [delta] 1. This is because the actual width reduction increase δ 1 in the actual slab changes due to the positional relationship between the slab and the mold when the slab tip is reduced, even with the same set width reduction increase ΔW 1. The explanation is based on this.

同様に、図6は本発明によるスラブ尾端部の幅圧下方法を示す図であり、スラブ最尾端角部を金型の下流側傾斜部3で圧下し、かつ、図6に示したごとくその幅圧下量は定常部幅圧下量ΔWに対してスラブ全幅にてΔW2(スラブ片側面ではΔW2/2)だけ大きくなるように幅圧下するものである。先端部と同様に、実際のスラブにおける実幅圧下増大量をδ2として区別する。 Similarly, FIG. 6 is a view showing a method for reducing the width of the tail end of the slab according to the present invention, where the corner of the slab end is reduced by the downstream inclined portion 3 of the mold, and as shown in FIG. the width reduction amount is to width reduction so as to increase by ([Delta] W 2/2 in the slab side surface) [Delta] W 2 in slab entire width with respect to the steady portion width reduction amount [Delta] W. Similar to the tip, the actual width reduction increase in the actual slab is distinguished as δ 2 .

前述したごとく、従来では、水平圧延によって図3に点線で示したように鋼板先尾端にフレア形状が発生していたのに対し、図5、図6に示した本発明の幅圧下方法を実施することにより、粗圧延前半のパス(スラブ厚から板厚への総圧下率50%程度未満のパス)にてエッジャー竪ロールによる幅圧下を行わない場合でも、図3に実線で示すごとく鋼板全長に亘って板幅をほぼ均一にすることが可能となる。   As described above, conventionally, the flare shape has occurred at the leading end of the steel plate as indicated by the dotted line in FIG. 3 by horizontal rolling, whereas the width reduction method of the present invention shown in FIGS. By carrying out the steel plate as shown by the solid line in FIG. 3 even when the width reduction by the edger roll is not performed in the first half pass of rough rolling (pass where the total reduction ratio from slab thickness to sheet thickness is less than about 50%). The plate width can be made substantially uniform over the entire length.

以下、図1,図2を用いて本発明による効果をより具体的に説明する。図1、図2は、厚み218mm、幅1120mmのフェライト系ステンレス鋼の熱間スラブを、図4に示した幅圧下用金型(但し圧下面は図9、図10のように台形状凸部付きである凸金型)を用いて幅圧下し(定常部での幅圧下量160mm)、その後、エッジャー竪ロールによる幅圧下を行わずに3パスにて板厚107mm(総圧下率=(1-107/218)*100≒51%)まで圧下した状態での先尾端部のフレア量を調べたデータである。なお、金型1(詳しくは金型1の圧下面)の上流側傾斜角θ1、下流側傾斜角θ2はいずれも12°の条件である。図1は、スラブ最先端部を圧下する際の予成形長さLと定常部への金型の設定幅圧下量に対する最先端部へのそれの増大分ΔW1(以後、先端部の金型の段差幅圧下量とよぶ)と、3パス圧延後の先端部の平均フレア量との関係図である。なお、予成形長さとは、図7に示したごとく、スラブ最先端部を幅圧下する際のスラブ5の最先端位置から金型1の上流側傾斜部2と平行部4との交点位置までの上下流方向の距離と定義しており、スラブ5の最先端位置を原点(L=0)として、上流側傾斜部2にて先端幅圧下を開始する状態をL<0、平行部4にて先端幅圧下を開始する状態をL>0とする。また、3パス圧延後の状態では、凸金型にて形成されたスラブ側面の凹形状とその後の圧延によるバルジ変形が重畳し、板幅端は板厚方向に数mmの凹凸形状となっていることから、板厚方向に1/4厚、1/2厚、3/4厚の位置での長手方向の幅プロフィルを測定し、その3箇所の位置における定常部幅と最先端部付近の最大幅との差を平均して平均フレア量とした。 Hereinafter, the effects of the present invention will be described more specifically with reference to FIGS. FIGS. 1 and 2 show a hot slab of ferritic stainless steel having a thickness of 218 mm and a width of 1120 mm, and a mold for width reduction shown in FIG. 4 (where the pressing surface is a trapezoidal convex portion as shown in FIGS. 9 and 10). The width of the sheet is reduced by using a convex mold having a thickness of 160 mm (width reduction amount at the stationary part is 160 mm), and then the sheet thickness is 107 mm (total reduction ratio = (1) in 3 passes without performing width reduction by the edger roll. -107/218) * 100 ≈ 51%) This is data obtained by examining the flare amount at the leading end in a state where the pressure is reduced to 51%. It should be noted that the upstream side inclination angle θ 1 and the downstream side inclination angle θ 2 of the mold 1 (specifically, the pressing surface of the mold 1) are both 12 °. FIG. 1 shows the pre-forming length L 0 when rolling down the slab leading edge and the increment ΔW 1 of the leading edge with respect to the set width reduction amount of the mold to the stationary part (hereinafter referred to as gold at the tip). FIG. 5 is a relationship diagram between a mold step width reduction amount and an average flare amount at the tip after three-pass rolling. As shown in FIG. 7, the pre-molding length is from the most advanced position of the slab 5 when the slab most advanced part is reduced in width to the intersection position between the upstream inclined part 2 and the parallel part 4 of the mold 1. The state in which the leading edge position of the slab 5 starts from the origin (L 0 = 0) and the tip side width reduction starts at the upstream inclined portion 2 is L 0 <0, parallel portion The state in which the tip width reduction starts at 4 is L 0 > 0. Moreover, in the state after 3 pass rolling, the concave shape of the side surface of the slab formed by the convex mold overlaps with the bulge deformation by the subsequent rolling, and the width end of the plate becomes an uneven shape of several mm in the thickness direction. Therefore, the width profile in the longitudinal direction at the 1/4 thickness, 1/2 thickness, and 3/4 thickness positions in the plate thickness direction is measured, and the steady-state width at the three positions and the vicinity of the foremost portion are measured. The difference from the maximum width was averaged to obtain the average flare amount.

図1に示したとごとく、平均フレア量は先端部の金型の段差幅圧下量ΔW1の増大にともない低減すること、また予成形長さLが0mmの条件にてその効果が顕著であり、金型の段差幅圧下量ΔW1が50mm程度にて平均フレア量がほぼ0mmとなっている。図5は予成形長さL=0mmの条件での状況を示しているが、本条件ではスラブ先端部の実幅圧下増大量δ1が金型の段差幅圧下量ΔW1と等しくなるため、最も効率的に先端角部を傾斜状態に成形することが可能である。例えば、金型の上流側傾斜角θ1=12°で且つ予成形長さL=0mmの条件下でδ1=40mmとするためにはΔW1を40mmに設定すればよいが、予成形長さL=−50mmの条件ならば、幾何学的な関係より片側圧下量にて50mm×tan(12°)=10.6mm、すなわち両側での段差幅圧下量ΔWを40mm+2×10.6mm=61.6mmとする必要がある。また、予成形長さLがプラスの領域の条件では、スラブ5の最先端部が金型1の平行部3にて幅圧下されることから、同じ段差幅圧下量ならば、予成形長さL=0mmの条件と比べてフレアの低減効果が小さくなるものである。 As shown in FIG. 1, the average flare amount decreases with an increase in the step width reduction amount ΔW 1 of the die at the tip, and the effect is remarkable when the pre-molding length L 0 is 0 mm. When the step width reduction amount ΔW 1 of the mold is about 50 mm, the average flare amount is almost 0 mm. FIG. 5 shows the situation under the condition of the pre-forming length L 0 = 0 mm, but under this condition, the actual width reduction increase amount δ 1 at the slab tip is equal to the step width reduction amount ΔW 1 of the mold. It is possible to form the tip corner in an inclined state most efficiently. For example, in order to set δ 1 = 40 mm under the condition of the upstream angle of inclination θ 1 = 12 ° of the mold and the preforming length L 0 = 0 mm, ΔW 1 may be set to 40 mm. If length L 0 = −50 mm, 50 mm × tan (12 °) = 10.6 mm in terms of one-side reduction amount, that is, the step width reduction amount ΔW 1 on both sides is 40 mm + 2 × 10. It is necessary to set 6 mm = 61.6 mm. In addition, under the condition where the pre-forming length L 0 is positive, the leading edge of the slab 5 is width-reduced by the parallel part 3 of the mold 1. The flare reduction effect is smaller than the condition of the length L 0 = 0 mm.

同様に、図2は予成形長さL=0mmの条件下のスラブ先端部の金型の段差幅圧下量ΔW1、定常部への金型の設定幅圧下量に対する最尾端部へのそれの増大分ΔW2(以後、尾端部の金型の段差幅圧下量とよぶ)と3パス圧延後の先端部と尾端部での平均フレア量との関係図である。前記したごとく、板圧延での幅広がり挙動はロールバイト内での幅広がり変形に対するロールバイト入出側材料の拘束によって大きく影響されており、一般に、材料(被圧延材)の先端部よりも尾端部でのフレア量が大きくなる。このため、図2では段差幅圧下量0mmの条件、すなわちスラブ先尾端で段差幅圧下を行わず、スラブ全長に亘って均一な幅となるように幅プレスを行った場合には、先端部に比べて尾端部での平均フレア量が大きくなっている。これに対し、本発明に則ってスラブ先尾端で段差幅圧下を行うことで、尾端部においても金型の段差幅圧下量が50mm程度の条件にて平均フレア量がほぼ0mmとなっており、図3に示すごとく粗圧延前半のパスでのフレア量を低減し、ひいては熱間圧延後のステンレス鋼板のシーム疵による幅トリム量を大きく低減できるものである。この場合も先端部と同様に、本条件では実際のスラブ尾端部の実幅圧下増大量δ2が段差幅圧下量ΔW2と等しくなるため、最も効率的にスラブ尾端角部を傾斜状態に成形することが可能である。 Similarly, FIG. 2 shows the step width reduction amount ΔW 1 of the mold at the slab tip under the condition of the pre-molding length L 0 = 0 mm, FIG. 6 is a relationship diagram between an increase ΔW 2 (hereinafter referred to as a step width reduction amount of a die at the tail end) and an average flare amount at the tip and tail ends after three-pass rolling. As described above, the width spreading behavior in the plate rolling is greatly influenced by the restraint of the material on the roll bite entry / exit side with respect to the width spreading deformation in the roll bite, and generally the tail end rather than the tip part of the material (rolled material). The amount of flare at the part increases. For this reason, in FIG. 2, when the width press is performed so that the width of the step width is 0 mm, that is, the step width is not reduced at the leading end of the slab and the entire width of the slab is uniform. Compared with, the average flare amount at the tail end is larger. On the other hand, by performing step width reduction at the tail end of the slab according to the present invention, the average flare amount is almost 0 mm at the tail end portion under the condition that the step width reduction amount of the mold is about 50 mm. Thus, as shown in FIG. 3, the flare amount in the first half of the rough rolling can be reduced, and the width trim amount due to the seam of the stainless steel plate after hot rolling can be greatly reduced. In this case as well, the actual width reduction amount δ 2 of the actual slab tail end portion is equal to the step width reduction amount ΔW 2 under the present conditions, so that the slab tail end corner portion is inclined most efficiently. It is possible to mold it.

なお、上述の作用効果は図4の形状の金型(但し圧下面は図9、図10のように台形状凸部付きである凸金型)を用いて確認したものであるが、複数の平行部と複数の傾斜部を有する金型(例えば特許文献5,6)を用いても、同様な作用効果が得られる。又、圧下面が台形状凸部を有さず高さ方向全域に亘りフラット(換言すると、台形高さ=0mm)である金型を用いても、同様な作用効果が得られる。   In addition, although the above-mentioned effect is confirmed using the metal mold | die of the shape of FIG. 4 (however, the pressing surface is a convex metal mold | die with a trapezoidal convex part like FIG. 9, FIG. 10), Even if a mold having a parallel part and a plurality of inclined parts (for example, Patent Documents 5 and 6) is used, the same effect can be obtained. Similar effects can be obtained even when using a die whose pressing surface does not have a trapezoidal convex portion and is flat across the entire height direction (in other words, trapezoidal height = 0 mm).

また、本発明者らは、更に実験やFEM等数値解析を行って、スラブ先尾端の、金型の実幅圧下増大量δ1、δ2の適正範囲を求めた結果、スラブ先尾端の、金型の実幅圧下増大量δ1、δ2の適正範囲は、スラブ幅や定常部幅圧下量によって影響を受けるものの、スラブ厚300mm以下(但し200mm以上)、スラブ幅2000mm以下(但し800mm以上)、定常部幅圧下量350mm以下(但し50mm以上)の条件下では、δ1、δ2ともに30mm〜50mmの範囲が適正であることを見出し、これを本発明の要件とした。実幅圧下増大量を30mmよりも過小に設定すると、シーム疵の廻り込み量の増大の他、熱間圧延後に先尾端部にフレアが形成し、これを除去せざるを得ず幅トリム量が増大して歩留まりが低下し、一方、実幅圧下増大量を50mmよりも過大に設定すると、シ−ム疵の廻り込み量の増大の他、熱間圧延後に、定常部幅に比べて先尾端付近での幅が目標よりも狭くなってしまい、その部分を除去せざるを得ず歩留まり低下となる。 In addition, the present inventors further performed numerical analysis such as experiments and FEM, and obtained the appropriate range of the actual width reduction amount δ 1 , δ 2 of the mold at the slab leading end, and as a result, the slab leading end Although the appropriate range of the actual width reduction amount δ 1 and δ 2 of the mold is affected by the slab width and the steady portion width reduction amount, the slab thickness is 300 mm or less (however, 200 mm or more), and the slab width is 2000 mm or less (however, It was found that the range of 30 mm to 50 mm was appropriate for both δ 1 and δ 2 under the conditions of 800 mm or more) and the steady-state width reduction amount of 350 mm or less (however, 50 mm or more). If the actual width reduction increase is set to be less than 30mm, in addition to the increase in the amount of wrapping around the seam, flare is formed at the leading end after hot rolling, and this must be removed. On the other hand, if the increase amount of the actual width reduction is set to be larger than 50 mm, the amount of seam wrap is increased and, after hot rolling, the tip of the width of the steady portion is increased. The width in the vicinity of the tail end becomes narrower than the target, and this portion has to be removed, resulting in a decrease in yield.

フェライト系ステンレス鋼スラブを、図9に示した幅圧下用金型(但し、台形状凸部の台形高さ=20mm、台形上辺長=110mm、台形下辺長=210mm)を用い、先端部は表1、尾端部は表2に夫々、先尾端部を除く定常部の幅圧下量と共に、示す幅圧下条件で幅圧下(幅プレス)し、その後、粗圧延前半のパスではスラブから板厚への総圧下率が50%以上となった後、エッジャー竪ロールによる幅圧下を実施しつつ水平圧延を行い、次いで粗圧延後半のパスでは全長幅制御のためのエッジャー竪ロールによる幅圧下を行ってバー板厚33mmのシートバーに成形し、その直後の7パスの仕上圧延にて仕上板厚3mmのステンレス熱延鋼板を製造した。   The ferritic stainless steel slab is used for the width reduction die shown in FIG. 9 (however, the trapezoidal height of the trapezoidal convex portion = 20 mm, the trapezoid upper side length = 110 mm, and the trapezoid lower side length = 210 mm). 1. The tail end part is subjected to width reduction (width press) under the indicated width reduction condition together with the width reduction amount of the stationary part excluding the leading end part in Table 2, and then the plate thickness from the slab in the first half of rough rolling. After the total rolling reduction to 50% or more, horizontal rolling is performed while performing width reduction with an edger roll, and then in the latter half of the rough rolling, width reduction is performed with an edger roll to control the overall width. The bar was formed into a sheet bar having a thickness of 33 mm, and a hot-rolled stainless steel sheet having a finishing plate thickness of 3 mm was manufactured by 7-pass finishing rolling immediately thereafter.

該製造した鋼板についてシーム判定及び幅判定を行った。その結果を表1、表2に示す。表1のシーム判定の評価値は、定常部でのシーム疵廻り込み量に対し、先端部付近にて5mm(片側)以上の廻り込み量の増大があった場合を×、5mm未満の場合を○としている。また、幅判定の評価値は、定常部の板幅に対し、全幅にて5mm以上の幅狭まり、あるいは幅広がりが生じた場合を×としている。従来例No.1、2では、先端部の実幅圧下増大量δ1が小さいことからシーム疵の廻り込み量が大きく、また従来例No.4では実幅圧下増大量δ1が大きすぎることから、粗圧延後半のパスでのエッジャー竪ロールによる幅制御効果が不足し、結果として先端部幅が狭くなってしまったものである。また、従来例No.5は上流側傾斜角θ1を10°とした場合であり、フレア低減効果が小さくシーム判定も×であった。これに対し、本発明例では何れも、シーム判定、幅判定ともに○であり、品質良好な熱延鋼板の製造が可能であった。同様に、表2は表1の先端部に適用したのと同様の幅圧下条件を尾端部に適用した場合の結果であり、従来例No.11では、粗圧延前半のパスにて生じたフレア量が大きかったことから粗圧延後半のパスでの竪ロールによる幅制御による効果が不足し幅判定も×となっているが、それ以外は従来例、本発明例ともに表1の先端部のと同じ結果であり、本発明による幅圧下方法により、品質良好な熱延鋼板の製造が可能であった。 Seam determination and width determination were performed on the manufactured steel sheet. The results are shown in Tables 1 and 2. The evaluation value of the seam judgment in Table 1 is the case where there is an increase in the amount of wrap around 5 mm (one side) or more in the vicinity of the tip relative to the amount of wrap around the seam in the steady portion. ○. Moreover, the evaluation value of width determination is set to x when the width of the plateau of the stationary part is 5 mm or more narrowed or widened over the entire width. Conventional Example No. In Nos. 1 and 2, since the actual width reduction increase amount δ 1 at the tip is small, the amount of wraparound of the seam rod is large. In No. 4, the actual width reduction increase amount δ 1 is too large, so that the width control effect by the edger roll in the latter half of the rough rolling is insufficient, and as a result, the tip width is narrowed. Conventional example No. No. 5 is a case where the upstream side inclination angle θ 1 is 10 °, and the flare reduction effect is small, and the seam determination is also x. On the other hand, in the examples of the present invention, both the seam determination and the width determination were ◯, and it was possible to manufacture hot-rolled steel sheets with good quality. Similarly, Table 2 shows the results when the same width reduction condition as that applied to the tip portion of Table 1 is applied to the tail end portion. In No. 11, the flare amount generated in the first half of the rough rolling was large, so the effect of the width control by the rolls in the second half of the rough rolling was insufficient, and the width judgment was also x. Both the examples and the examples of the present invention had the same results as those at the tip of Table 1, and it was possible to produce hot-rolled steel sheets with good quality by the width reduction method according to the present invention.

Figure 0005742525
Figure 0005742525

Figure 0005742525
Figure 0005742525

1 金型(幅圧下用金型)
2 上流側傾斜部(傾斜角θ
3 下流側傾斜部(傾斜角θ
4 平行部
5 スラブ(熱間ステンレス鋼スラブ)
1 Mold (width reduction mold)
2 Upstream inclined part (inclination angle θ 1 )
3 Downstream inclined part (inclination angle θ 2 )
4 Parallel part 5 Slab (hot stainless steel slab)

Claims (4)

圧延ライン両側に対面設置した幅圧下用金型の各々の圧下面が、圧延ライン上流側から下流側にかけて、下流側に向かうほど対面間距離を狭める上流側傾斜部と、圧延ライン方向に平行な平行部と、下流側に向かうほど対面間距離を広げる下流側傾斜部とをこの順に連ねてなる前記1対の金型を用いて幅圧下し、その後複数パスの粗圧延の間にエッジャー竪ロールを用いて幅圧下する熱間ステンレス鋼スラブの幅圧下方法であって、
前記金型を用い、前記スラブの最先端部は前記上流側傾斜部にて、同スラブの最尾端部は前記下流側傾斜部にて、同スラブの残りの部分である定常部は前記平行部にて、それぞれ幅圧下するものとし、その際、前記スラブのスラブ厚を200〜300mm、スラブ幅を800〜2000mmとし、前記最先端部及び最尾端部の実幅圧下量が、前記定常部の実幅圧下量よりも30〜50mm大きくなるようにするとともに、前記定常部の実幅圧下量を50〜350mmとすることを特徴とする、熱間ステンレス鋼スラブの幅圧下方法。
Each squeezing surface of the width reduction molds facing each other on both sides of the rolling line is parallel to the rolling line direction, and an upstream inclined part that narrows the distance between the facings from the upstream side to the downstream side of the rolling line. Using the pair of molds in which the parallel portion and the downstream inclined portion that increases the distance between the facing surfaces as they go downstream, the width is reduced using the pair of dies, and then the edger roll is rolled during a plurality of passes of rough rolling. A method of reducing the width of a hot stainless steel slab to reduce the width using
Using the mold, the most advanced portion of the slab is the upstream inclined portion, the rearmost end portion of the slab is the downstream inclined portion, and the stationary portion that is the remaining portion of the slab is the parallel portion. In this case, the slab thickness is 200 to 300 mm, the slab width is 800 to 2000 mm, and the actual width reduction amount of the most advanced part and the rearmost part is the steady state. A method for reducing the width of a hot stainless steel slab, characterized in that the actual width reduction amount is 30 to 50 mm larger than the actual width reduction amount of the portion, and the actual width reduction amount of the stationary portion is 50 to 350 mm.
前記上流側傾斜部及び下流側傾斜部は、圧延ラインに対する傾斜角度が12°以上であることを特徴とする、請求項1に記載の熱間ステンレス鋼スラブの幅圧下方法。   2. The method for reducing the width of a hot stainless steel slab according to claim 1, wherein the upstream inclined portion and the downstream inclined portion have an inclination angle of 12 ° or more with respect to a rolling line. 前記圧下面は、高さ方向中央部に台形状の凸部を有することを特徴とする、請求項1又は2に記載の熱間ステンレス鋼スラブの幅圧下方法。   3. The method for reducing the width of a hot stainless steel slab according to claim 1, wherein the pressing surface has a trapezoidal convex portion at a central portion in the height direction. 前記エッジャー竪ロールによる幅圧下は、粗圧延入側のスラブ厚から粗途中パスの板厚への総圧下率が50%以上となってから実行することを特徴とする、請求項1〜3の何れかに記載の熱間ステンレス鋼スラブの幅圧下方法。   The width reduction by the edger punch roll is performed after the total reduction ratio from the slab thickness on the rough rolling entry side to the plate thickness of the rough halfway pass is 50% or more, The width reduction method of the hot stainless steel slab as described in any one of the above.
JP2011152709A 2011-07-11 2011-07-11 Width reduction method for hot stainless steel slabs Active JP5742525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152709A JP5742525B2 (en) 2011-07-11 2011-07-11 Width reduction method for hot stainless steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152709A JP5742525B2 (en) 2011-07-11 2011-07-11 Width reduction method for hot stainless steel slabs

Publications (2)

Publication Number Publication Date
JP2013018021A JP2013018021A (en) 2013-01-31
JP5742525B2 true JP5742525B2 (en) 2015-07-01

Family

ID=47689993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152709A Active JP5742525B2 (en) 2011-07-11 2011-07-11 Width reduction method for hot stainless steel slabs

Country Status (1)

Country Link
JP (1) JP5742525B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303601A (en) * 1987-06-04 1988-12-12 Kawasaki Steel Corp Method for controlling plate width
JP3402108B2 (en) * 1997-02-27 2003-04-28 住友金属工業株式会社 Slab width reduction method
JP2008137025A (en) * 2006-11-30 2008-06-19 Jfe Steel Kk Method for width pressing stainless steel in hot rolling and method for manufacturing hot-rolled stainless steel sheet using the same

Also Published As

Publication number Publication date
JP2013018021A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP6283617B2 (en) Method for producing hot rolled silicon steel
WO2013123682A1 (en) Pre-control method of head and tail shapes of continuous casting slab for reducing the removed amount from the head and tail of hot-rolled intermediate slab
JP5742525B2 (en) Width reduction method for hot stainless steel slabs
JP5347912B2 (en) Thick steel plate manufacturing method
CN108687132B (en) Rolling method and device for improving thickness distribution of metal plate blank
JP6365626B2 (en) Slab shape adjustment method
JP2010075977A (en) Method of forming slab with sizing press
JPS6141643B2 (en)
JP3221561B2 (en) Manufacturing method of stainless steel sheet
JP6089795B2 (en) Apparatus and method for manufacturing a differential thickness steel plate having a taper thickness difference in the plate width direction
JP4721855B2 (en) Method for reducing surface defects in hot rolling
JP4846680B2 (en) Thermal crown prediction method and thermal crown prediction apparatus
JP2006341267A (en) Free forging method and stepped anvil for free forging
JP4065251B2 (en) Hot finish rolling method that prevents drawing wrinkles
JPH0675722B2 (en) Hot width rolling method for metal slabs
JP5401926B2 (en) Slab width reduction mold and slab width reduction method using the same
JP2004025255A (en) Method for manufacturing hot rolled stainless steel sheet
JP6703306B2 (en) Method for manufacturing H-section steel
JP4608762B2 (en) Mold for width press and hot rolling method using the same
Lee et al. Deformation analysis of surface defect on hot rolling by 3-D FEM simulation
JP5024099B2 (en) Width reduction mold for hot slab and width reduction method
JPS63171254A (en) Non-solidified rolling method
JP5903826B2 (en) Hot slab sizing rolling method
CN116851457A (en) Production method for controlling black lines at edges of cold-rolled galvanized plate
JPS58215201A (en) Hot broadside rolling method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250