JP4450909B2 - Method for producing cement dispersant - Google Patents
Method for producing cement dispersant Download PDFInfo
- Publication number
- JP4450909B2 JP4450909B2 JP32658199A JP32658199A JP4450909B2 JP 4450909 B2 JP4450909 B2 JP 4450909B2 JP 32658199 A JP32658199 A JP 32658199A JP 32658199 A JP32658199 A JP 32658199A JP 4450909 B2 JP4450909 B2 JP 4450909B2
- Authority
- JP
- Japan
- Prior art keywords
- meth
- acrylic acid
- acid monomer
- peroxide value
- polyalkylene glycol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/40—Surface-active agents, dispersants
- C04B2103/408—Dispersants
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、セメント分散剤の製造方法に関する。
【0002】
【従来の技術】
ポリカルボン酸系重合体はセメント用分散剤として有用であり、それに関する種々の技術が提案されている。例えば、特公昭59-18338号公報には、ポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体及び(メタ)アクリル酸系単量体、さらにこれらの単量体と共重合可能な単量体を特定の比率で反応させることによって製造された共重合体を含むものが開示され、特開平5-238795号公報には、ポリアルキレングリコールジエステル系単量体と解離基を有する単量体を重合して得られる共重合体を含むものが開示され、特開平8-12396号公報には、ポリアルキレングリコールエステル単量体と特定の単量体との共重合体を含むものが開示されている。また、特開平11-71151号公報には、過酸化物値が0.7meq/kg以下のポリアルキレングリコールと(メタ)アクリル酸系単量体とを用いてエステル化反応させる方法が開示されている。
【0003】
【発明が解決しようとする課題】
本発明の課題は、より分散性能に優れたセメント分散剤を得ることができる製造法を提供することである。
【0004】
【課題を解決するための手段】
本発明は、ポリアルキレングリコールと、過酸化物価が5meq/kg以下である(メタ)アクリル酸系単量体とを原料としてポリアルキレングリコール(メタ)アクリル酸エステルを得、次いでカルボン酸系単量体を含有する単量体と共重合するセメント分散剤の製造方法に関する。
【0005】
【発明の実施の形態】
本発明では、過酸化物価が5meq/kg以下、好ましくは0.05〜3meq/kgである(メタ)アクリル酸系単量体を用いる。この過酸化物価は、次のように測定される。
<過酸化物価の測定方法>
(メタ)アクリル酸系単量体10g、クロロホルム35ml及び酢酸35mlをフラスコに入れ、フラスコ内を窒素で置換しながら、飽和ヨウ化カリウム溶液1mlを加えて撹拌した後、20分間放置して、褐色の試験溶液を調製した。この試験溶液を0.01規定のチオ硫酸ナトリウムを用いて溶液の褐色が消えるまで滴定し、下式に従って過酸化物価を算出した。
過酸化物価(meq/kg)=(A−B)×10/S
〔但し、
A:試料の滴定に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)
B:空試験に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)
S:試料の採取量(g)
である。〕
過酸化物価が5meq/kgを超えると、共重合体の分子量が増大し、共重合体の分散性が低下する。
【0006】
また、本発明に用いられるポリアルキレングリコールおよび(メタ)アクリル酸系単量体は、それぞれ下記一般式(I)、(II)で表されるものが好ましい。
【0007】
【化2】
【0008】
〔式中、R1は炭素数1〜22、好ましくは1〜10、より好ましくは1〜5のアルキル基、フェニル基、アルキルフェニル基、好ましくはアルキル基を示し、AOは炭素数2〜4のオキシアルキレン基又はオキシスチレン基、好ましくは炭素数2〜3のオキシアルキレン基を示し、nはオキシアルキレン基の平均付加モル数であり1〜300、好ましくは3〜200、より好ましくは5〜150の数を示し、R2は水素原子又はメチル基を示す。〕。
【0009】
これら、ポリアルキレングリコールモノアルキルエーテルと(メタ)アクリル酸系単量体の反応方法は公知の方法に準じて行うことができる。
【0010】
本発明では、このようにして得られたポリアルキレングリコール(メタ)アクリル酸エステルと、カルボン酸系単量体を含有する単量体とを共重合する。カルボン酸系単量体としては、(メタ)アクリル酸、クロトン酸等のモノカルボン酸系単量体、マレイン酸、イタコン酸、フマル酸等のジカルボン酸系単量体、又はこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜6)アンモニウム塩が好ましく、より好ましくは(メタ)アクリル酸又はこれらのアルカリ金属塩である。更に、本発明の効果を損なわない範囲内で他の共重合可能な単量体、例えば、アクリロニトリル、アクリルアミド、メタクリルアミド、スチレン、(メタ)アクリル酸エステル、スチレンスルホン酸等を反応させてもよい。
【0011】
本発明において、ポリアルキレングリコール(メタ)アクリル酸エステル(イ)と、カルボン酸系単量体を含有する単量体(ロ)との共重合比率は、流動性、流動保持性、セメントの粘性の観点から、モル比で(イ)/(ロ)=90/10〜3/97が好ましく、より好ましくは70/30〜5/95である。
【0012】
ポリアルキレングリコール(メタ)アクリル酸エステルとカルボン酸系単量体との共重合反応は、公知の方法に準じて行うことができ、回分式でも連続式でも行うことができる。これら単量体は、重合開始剤と共に反応装置に滴下することが好ましい。その際の反応温度は40〜150℃が好ましい。
【0013】
ポリアルキレングリコール(メタ)アクリル酸エステルとカルボン酸系単量体との共重合反応では、重合開始剤や連鎖移動剤を使用する。重合開始剤としては、有機過酸化物、無機過酸化物、ニトリル系化合物、アゾ系化合物、ジアゾ系化合物、スルフィン酸系化合物等が挙げられ、少なくとも1種が過硫酸塩またはアゾ化合物であることが好ましい。重合開始剤の添加量は、全単量体に対して0.1〜50モル%が好ましい。また、連鎖移動剤としては、低級アルカリメルカプタン、低級メルカプト脂肪酸、チオグリセリン、チオリンゴ酸、2−メルカプトエタノール等のチオール類が挙げられ、チオール類が好ましい。連鎖移動剤の添加量は、全単量体に対して0.1〜30モル%が好ましい。
【0014】
本発明の製造方法により得られる共重合体は、酸型のままでもセメント用分散剤として適用することができるが、酸性によるエステルの加水分解を抑制する観点から、アルカリによる中和によって塩の形にすることが好ましい。このアルカリとしては、アルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、モノ、ジ又はトリアルキル(炭素数2〜6が好ましい。)アミン、モノ、ジ又はトリアルカノール(炭素数2〜6が好ましい。)アミン等を挙げることができる。共重合体をセメント用分散剤として使用する場合は、中和によりpHを5〜7にすることが好ましい。
【0015】
本発明の製造方法により得られる共重合体の重量平均分子量(ゲルパーミエーションクロマトグラフィー法。ポリエチレンオキシド換算)は、セメント用分散剤として充分な分散性を得るため、10,000〜200,000が好ましく、20,000〜100,000が特に好ましい。
【0016】
本発明の製造方法により得られる共重合体は、ポルトランドセメント、アルミナセメント、各種混合セメント等の水硬セメント、石膏等のセメント以外の水硬材料等の分散剤として用いることができる。
【0017】
【実施例】
製造例1
ガラス製反応容器に80℃で溶融したポリエチレングリコールモノメチルエーテル(エチレンオキシド平均付加モル数115)347重量部、ハイドロキノン1重量部、p−トルエンスルホン酸13重量部を投入し、少量の空気含有窒素雰囲気下メタクリル酸183重量部(純度96.1%、水分3.9%、過酸化物価2.0meq/kg)を圧力26.7kPa下110℃で添加し、6時間反応を行った。その後、p−トルエンスルホン酸に対して1.05倍当量の48%水酸化ナトリウム水溶液を添加し130℃以下で、真空蒸留法により未反応のメタクリル酸を回収し、セメント分散剤製造用エステル反応物(A)-1を得た。(A)-1のポリアルキレングリコールメタクリレート含有量は91.1重量%(NMRにより測定、以下同様)、メタクリル酸残留物は2.3重量%(HPLCにより測定、以下同様)であった。この(A)-1を水で希釈して60%水溶液とした後、次工程の重合反応原料に使用した。
【0018】
製造例2
ガラス製反応容器にポリエチレングリコールモノメチルエーテル(エチレンオキシド平均付加モル数9)249重量部、ハイドロキノン1重量部、p−トルエンスルホン酸11重量部を投入し、少量の空気含有窒素雰囲気下、メタクリル酸260重量部(純度96重量%、水分4%、過酸化物価1.7meq/kg)を圧力は26.7kPa下100℃で添加し、6時間反応を行った。その後、p−トルエンスルホン酸に対して1.05倍当量の48%水酸化ナトリウム水溶液を添加し120℃以下で、真空蒸留法により未反応のメタクリル酸を回収し、セメント分散剤製造用エステル反応物(A)-2を得た。(A)-2のポリアルキレングリコールメタクリレート含有量は89.1重量%、メタクリル酸残留物は4.6重量%であった。この(A)-2を水で希釈して90%水溶液とした後、次工程の重合反応原料に使用した。
【0019】
製造例3
製造例1において、メタクリル酸を純度95.9%、水分4.1%、過酸化物価6meq/kgのものに代え184重量部投入した以外は同様の方法により、エステル化反応を行った。真空蒸留法により未反応のメタクリル酸を留去し、セメント分散剤製造用エステル反応物(A)-3を得た。(A)-3のポリアルキレングリコールメタクリレート含有量は87.1重量%、メタクリル酸残留物は2.6重量%であった。この(A)-3を水で希釈して60%水溶液とした後、次工程の重合反応原料に使用した。
【0020】
実施例1
ガラス製反応容器に水300重量部を仕込み、窒素雰囲気下75℃にて60%(A)-1水溶液を611重量部、メタクリル酸(純度99.9%、水分0.1%、過酸化物価0.1meq/kg)13.8重量部及び85%リン酸3重量部を混合溶解した液と15%2−メルカプトエタノール12.6重量部と15%過硫酸アンモニウム水溶液25重量部の3液を同時に90分で滴下した。次に15%過硫酸アンモニウム水溶液10重量部を30分かけて滴下し、1時間75℃で熟成させた後、48%水酸化ナトリウム水溶液19重量部を加えて中和してセメント分散剤を得た。
【0021】
このようにして得られたセメント分散剤の分散性能を下記の方法により評価したところ、モルタルフロー値は258mmであった。
【0022】
(分散性能試験)
セメントとして普通ポルトランドセメント(太平洋セメント株式会社製)900g、細骨材として千葉県君津産山砂(比重2.61、FM2.70)1636g、セメント分散剤1.6g(固形分)を含む水315gを用いて、JIS R 5201に準拠しモルタルを調整しタッピングなしでのモルタルの広がりをモルタルフロー値(mm)とした。このフロー値が大きいほど、分散性が優れていることを示している。
【0023】
実施例2
ガラス製反応容器に水490重量部を仕込み、窒素雰囲気下53℃にて90%(A)-2水溶液336重量部、メタクリル酸(純度96.1%、水分3.9%、過酸化物価2.0meq/kg)68.4重量部及び85%リン酸1.2重量部を混合溶解した液と15%2−メルカプトエタノール13.8重量部と15%過硫酸アンモニウム水溶液22重量部の3液を同時に90分で滴下した。次に15%過硫酸アンモニウム水溶液7重量部を30分で滴下し、1時間53℃で熟成させた後、48%水酸化ナトリウム水溶液55重量部を加えて中和してセメント分散剤を得た。得られたセメント分散剤の分散性を実施例1と同様に評価したところ、モルタルフロー値は232mmであった。
【0024】
実施例3
ガラス製反応容器に水327重量部を仕込み、窒素雰囲気下65℃で60%(A)-1水溶液583重量部、メタクリル酸23.8重量部、アクリル酸メチル15.9重量部及び85%リン酸3重量部を混合溶解した液と15%メルカプトコハク酸26.5重量部と15%2,2'−アゾビス(2−アミジノプロパン)二塩酸塩水溶液11重量部の3液を同時に90分で滴下し、2時間65℃で熟成させた。さらに、48%水酸化ナトリウム水溶液12重量部を加えて中和してセメント分散剤を得た。得られたセメント分散剤の分散性を実施例1と同様に評価したところ、モルタルフロー値は240mmであった。
【0025】
比較例1
実施例1において、(A)-1の代わりに(A)-3を用いる以外は同様に行った。得られたセメント分散剤の分散性を実施例1と同様に評価したところ、モルタルフロー値は205mmであった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cement dispersant.
[0002]
[Prior art]
A polycarboxylic acid polymer is useful as a dispersant for cement, and various techniques related to it have been proposed. For example, Japanese Examined Patent Publication No. 59-18338 discloses polyalkylene glycol mono (meth) acrylic acid ester monomers and (meth) acrylic acid monomers, and a monomer copolymerizable with these monomers. A copolymer containing a copolymer produced by reacting a product at a specific ratio is disclosed, and Japanese Patent Application Laid-Open No. 5-238795 discloses a polyalkylene glycol diester monomer and a monomer having a dissociating group. A polymer containing a copolymer obtained by polymerization is disclosed, and JP-A-8-12396 discloses a polymer containing a copolymer of a polyalkylene glycol ester monomer and a specific monomer. Yes. Japanese Patent Application Laid-Open No. 11-71151 discloses a method for performing an esterification reaction using a polyalkylene glycol having a peroxide value of 0.7 meq / kg or less and a (meth) acrylic acid monomer. .
[0003]
[Problems to be solved by the invention]
The subject of this invention is providing the manufacturing method which can obtain the cement dispersant more excellent in the dispersion performance.
[0004]
[Means for Solving the Problems]
The present invention provides a polyalkylene glycol (meth) acrylic acid ester from a polyalkylene glycol and a (meth) acrylic acid monomer having a peroxide value of 5 meq / kg or less, and then a carboxylic acid monomer. The present invention relates to a method for producing a cement dispersant that is copolymerized with a monomer containing a body.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a (meth) acrylic acid monomer having a peroxide value of 5 meq / kg or less, preferably 0.05 to 3 meq / kg is used. This peroxide value is measured as follows.
<Measurement method of peroxide value>
Add 10 g of (meth) acrylic acid monomer, 35 ml of chloroform and 35 ml of acetic acid to the flask, add 1 ml of saturated potassium iodide solution while stirring the flask, and then leave it for 20 minutes. A test solution was prepared. This test solution was titrated with 0.01 N sodium thiosulfate until the brown color of the solution disappeared, and the peroxide value was calculated according to the following formula.
Peroxide value (meq / kg) = (A−B) × 10 / S
[However,
A: Titration volume of 0.01 N sodium thiosulfate required for titration of sample (ml)
B: Titration of 0.01N sodium thiosulfate required for the blank test (ml)
S: Sample collection amount (g)
It is. ]
When the peroxide value exceeds 5 meq / kg, the molecular weight of the copolymer increases and the dispersibility of the copolymer decreases.
[0006]
The polyalkylene glycol and (meth) acrylic acid monomer used in the present invention are preferably those represented by the following general formulas (I) and (II), respectively.
[0007]
[Chemical formula 2]
[0008]
[Wherein, R 1 represents an alkyl group having 1 to 22 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, a phenyl group or an alkylphenyl group, preferably an alkyl group, and AO represents 2 to 4 carbon atoms. An oxyalkylene group or an oxystyrene group, preferably an oxyalkylene group having 2 to 3 carbon atoms, and n is the average number of moles added of the oxyalkylene group, 1 to 300, preferably 3 to 200, more preferably 5 to 5. 150 represents a number, and R 2 represents a hydrogen atom or a methyl group. ].
[0009]
These polyalkylene glycol monoalkyl ethers and (meth) acrylic acid monomers can be reacted according to known methods.
[0010]
In the present invention, the polyalkylene glycol (meth) acrylic acid ester thus obtained is copolymerized with a monomer containing a carboxylic acid monomer. Examples of the carboxylic acid monomer include monocarboxylic acid monomers such as (meth) acrylic acid and crotonic acid, dicarboxylic acid monomers such as maleic acid, itaconic acid and fumaric acid, and alkali metal salts thereof. , Alkaline earth metal salts, ammonium salts, mono-, di-, and trialkyl (carbon number 2 to 6) ammonium salts optionally substituted with a hydroxyl group are preferable, and (meth) acrylic acid or alkali metal salts thereof are more preferable. It is. Furthermore, other copolymerizable monomers such as acrylonitrile, acrylamide, methacrylamide, styrene, (meth) acrylic acid ester, styrenesulfonic acid and the like may be reacted within a range not impairing the effects of the present invention. .
[0011]
In the present invention, the copolymerization ratio of the polyalkylene glycol (meth) acrylic acid ester (a) to the monomer (b) containing a carboxylic acid monomer is determined by the flowability, fluidity retention, and cement viscosity. In view of the above, the molar ratio (a) / (b) = 90/10 to 3/97 is preferable, and more preferably 70/30 to 5/95.
[0012]
The copolymerization reaction of the polyalkylene glycol (meth) acrylic acid ester and the carboxylic acid monomer can be performed according to a known method, and can be performed batchwise or continuously. These monomers are preferably added dropwise to the reactor together with the polymerization initiator. In this case, the reaction temperature is preferably 40 to 150 ° C.
[0013]
In the copolymerization reaction between the polyalkylene glycol (meth) acrylate and the carboxylic acid monomer, a polymerization initiator or a chain transfer agent is used. Examples of the polymerization initiator include organic peroxides, inorganic peroxides, nitrile compounds, azo compounds, diazo compounds, sulfinic acid compounds, and the like, and at least one of them is a persulfate or an azo compound. Is preferred. The addition amount of the polymerization initiator is preferably 0.1 to 50 mol% with respect to all monomers. Moreover, as a chain transfer agent, thiols, such as a lower alkali mercaptan, a lower mercapto fatty acid, thioglycerin, thiomalic acid, 2-mercaptoethanol, are mentioned, Thiols are preferable. The addition amount of the chain transfer agent is preferably 0.1 to 30 mol% with respect to all monomers.
[0014]
The copolymer obtained by the production method of the present invention can be applied as a dispersant for cement even in an acid form, but from the viewpoint of suppressing ester hydrolysis due to acidity, the salt form is obtained by neutralization with an alkali. It is preferable to make it. As the alkali, alkali metal or alkaline earth metal hydroxide, ammonia, mono, di or trialkyl (preferably having 2 to 6 carbon atoms) amine, mono, di or trialkanol (having 2 to 6 carbon atoms). (Preferably) An amine etc. can be mentioned. When the copolymer is used as a dispersant for cement, the pH is preferably adjusted to 5 to 7 by neutralization.
[0015]
The weight average molecular weight of the copolymer obtained by the production method of the present invention (gel permeation chromatography method, converted to polyethylene oxide) is preferably 10,000 to 200,000, and preferably 20,000 to 200,000 in order to obtain sufficient dispersibility as a cement dispersant. 100,000 is particularly preferred.
[0016]
The copolymer obtained by the production method of the present invention can be used as a dispersant for hydraulic materials such as hydraulic cements such as Portland cement, alumina cement and various mixed cements, and cements such as gypsum.
[0017]
【Example】
Production Example 1
In a glass reaction vessel, 347 parts by weight of polyethylene glycol monomethyl ether (average number of moles of ethylene oxide added 115) melted at 80 ° C, 1 part by weight of hydroquinone, and 13 parts by weight of p-toluenesulfonic acid are added, and a small amount of air-containing nitrogen atmosphere 183 parts by weight of methacrylic acid (purity 96.1%, moisture 3.9%, peroxide value 2.0 meq / kg) was added at 110 ° C. under a pressure of 26.7 kPa and reacted for 6 hours. Thereafter, a 1.05 times equivalent 48% aqueous sodium hydroxide solution to p-toluenesulfonic acid was added, and unreacted methacrylic acid was recovered by vacuum distillation at 130 ° C. or lower, and an ester reaction product for producing a cement dispersant ( A) -1 was obtained. The polyalkylene glycol methacrylate content of (A) -1 was 91.1% by weight (measured by NMR, the same applies hereinafter), and the methacrylic acid residue was 2.3% by weight (measured by HPLC, the same applies hereinafter). This (A) -1 was diluted with water to make a 60% aqueous solution, and then used as a polymerization reaction raw material in the next step.
[0018]
Production Example 2
A glass reaction vessel is charged with 249 parts by weight of polyethylene glycol monomethyl ether (average number of moles of ethylene oxide 9), 1 part by weight of hydroquinone and 11 parts by weight of p-toluenesulfonic acid, and 260 weights of methacrylic acid in a small amount of air-containing nitrogen atmosphere. Parts (purity 96% by weight, moisture 4%, peroxide value 1.7 meq / kg) were added at 100 ° C. under 26.7 kPa and reacted for 6 hours. Thereafter, 1.05 times equivalent of 48% sodium hydroxide aqueous solution with respect to p-toluenesulfonic acid was added, and unreacted methacrylic acid was recovered by vacuum distillation at 120 ° C. or lower, and an ester reaction product for producing a cement dispersant ( A) -2 was obtained. The polyalkylene glycol methacrylate content of (A) -2 was 89.1% by weight, and the methacrylic acid residue was 4.6% by weight. This (A) -2 was diluted with water to make a 90% aqueous solution, and then used as a raw material for polymerization reaction in the next step.
[0019]
Production Example 3
The esterification reaction was carried out in the same manner as in Production Example 1, except that 184 parts by weight of methacrylic acid was used instead of methacrylic acid having a purity of 95.9%, a moisture content of 4.1% and a peroxide value of 6 meq / kg. Unreacted methacrylic acid was distilled off by a vacuum distillation method to obtain an ester reaction product (A) -3 for producing a cement dispersant. The polyalkylene glycol methacrylate content of (A) -3 was 87.1% by weight, and the methacrylic acid residue was 2.6% by weight. This (A) -3 was diluted with water to make a 60% aqueous solution, and then used as a raw material for polymerization reaction in the next step.
[0020]
Example 1
A glass reaction vessel was charged with 300 parts by weight of water, 611 parts by weight of a 60% (A) -1 aqueous solution at 75 ° C. under a nitrogen atmosphere, methacrylic acid (purity 99.9%, moisture 0.1%, peroxide value 0.1 meq / kg) 3) 13.8 parts by weight and 3 parts by weight of 85% phosphoric acid, 3 parts of 15% 2-mercaptoethanol, 12.6 parts by weight, and 15 parts by weight of 15% ammonium persulfate aqueous solution were added dropwise simultaneously over 90 minutes. Next, 10 parts by weight of 15% ammonium persulfate aqueous solution was added dropwise over 30 minutes and aged at 75 ° C. for 1 hour, and then neutralized by adding 19 parts by weight of 48% sodium hydroxide aqueous solution to obtain a cement dispersant. .
[0021]
When the dispersion performance of the cement dispersant thus obtained was evaluated by the following method, the mortar flow value was 258 mm.
[0022]
(Dispersion performance test)
Using ordinary portland cement (manufactured by Taiheiyo Cement Co., Ltd.) as a cement, 900 g, fine sandstone from Kimitsu mountain sand (specific gravity: 2.61, FM2.70), 1636 g, and 315 g of water containing 1.6 g (solid content) of a cement dispersant, Mortar was adjusted according to JIS R 5201, and the spread of mortar without tapping was defined as the mortar flow value (mm). The larger this flow value, the better the dispersibility.
[0023]
Example 2
A glass reaction vessel was charged with 490 parts by weight of water, 336 parts by weight of 90% (A) -2 aqueous solution at 53 ° C under a nitrogen atmosphere, methacrylic acid (purity 96.1%, moisture 3.9%, peroxide value 2.0 meq / kg) 68.4 parts by weight and 85% phosphoric acid (1.2 parts by weight) mixed and dissolved, 15% 2-mercaptoethanol (13.8 parts by weight) and 15% ammonium persulfate aqueous solution (22 parts by weight) were simultaneously added dropwise over 90 minutes. Next, 7 parts by weight of 15% ammonium persulfate aqueous solution was added dropwise over 30 minutes, and the mixture was aged at 53 ° C. for 1 hour, and then neutralized by adding 55 parts by weight of 48% sodium hydroxide aqueous solution to obtain a cement dispersant. When the dispersibility of the obtained cement dispersant was evaluated in the same manner as in Example 1, the mortar flow value was 232 mm.
[0024]
Example 3
A glass reaction vessel is charged with 327 parts by weight of water, 583 parts by weight of a 60% (A) -1 aqueous solution at 65 ° C. in a nitrogen atmosphere, 23.8 parts by weight of methacrylic acid, 15.9 parts by weight of methyl acrylate, and 3 parts by weight of 85% phosphoric acid. 3 liquids of 15% mercaptosuccinic acid 26.5 parts and 15% 2,2'-azobis (2-amidinopropane) dihydrochloride aqueous solution 11 parts at the same time were added dropwise in 90 minutes for 2 hours 65 Aged at ℃. Further, 12 parts by weight of 48% sodium hydroxide aqueous solution was added to neutralize to obtain a cement dispersant. When the dispersibility of the obtained cement dispersant was evaluated in the same manner as in Example 1, the mortar flow value was 240 mm.
[0025]
Comparative Example 1
In Example 1, it carried out similarly except having used (A) -3 instead of (A) -1. When the dispersibility of the obtained cement dispersant was evaluated in the same manner as in Example 1, the mortar flow value was 205 mm.
Claims (3)
下記方法により(メタ)アクリル酸系単量体の過酸化物価を測定し、過酸化物価が1.7〜5meq/kgである(メタ)アクリル酸系単量体を、ポリアルキレングリコールとの反応に用いる、セメント分散剤の製造方法。
<(メタ)アクリル酸系単量体の過酸化物価の測定方法>
(メタ)アクリル酸系単量体10g、クロロホルム35ml及び酢酸35mlをフラスコに入れ、フラスコ内を窒素で置換しながら、飽和ヨウ化カリウム溶液1mlを加えて撹拌した後、20分間放置して、褐色の試験溶液を調製する。この試験溶液を0.01規定のチオ硫酸ナトリウムを用いて溶液の褐色が消えるまで滴定し、下式に従って過酸化物価を算出する。
過酸化物価(meq/kg)=(A−B)×10/S〔但し、A:試料の滴定に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)
B:空試験に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)
S:試料の採取量(g)
である。〕 A cement dispersant for obtaining a polyalkylene glycol (meth) acrylate ester from a polyalkylene glycol and a ( meth) acrylic acid monomer as a raw material, and then copolymerizing with a monomer containing a carboxylic acid monomer A manufacturing method comprising :
The peroxide value of the (meth) acrylic acid monomer is measured by the following method, and the (meth) acrylic acid monomer having a peroxide value of 1.7 to 5 meq / kg is used for the reaction with the polyalkylene glycol. And manufacturing method of cement dispersant.
<Method for measuring peroxide value of (meth) acrylic acid monomer>
Add 10 g of (meth) acrylic acid monomer, 35 ml of chloroform and 35 ml of acetic acid to the flask, add 1 ml of saturated potassium iodide solution while stirring the flask, and then leave it for 20 minutes. Prepare a test solution. This test solution is titrated with 0.01 N sodium thiosulfate until the brown color of the solution disappears, and the peroxide value is calculated according to the following formula.
Peroxide value (meq / kg) = (A−B) × 10 / S [where A: titration of 0.01 N sodium thiosulfate required for titration of sample (ml)
B: Titration of 0.01N sodium thiosulfate required for the blank test (ml)
S: Sample collection amount (g)
It is. ]
下記方法により(メタ)アクリル酸系単量体の過酸化物価を測定し、過酸化物価が1.7〜5meq/kgである(メタ)アクリル酸系単量体を、ポリアルキレングリコールとの反応に用いる、セメント分散剤原料用(メタ)アクリル酸系単量体の選択方法。The peroxide value of the (meth) acrylic acid monomer is measured by the following method, and the (meth) acrylic acid monomer having a peroxide value of 1.7 to 5 meq / kg is used for the reaction with the polyalkylene glycol. And (meth) acrylic acid monomer selection method for cement dispersant raw material.
<(メタ)アクリル酸系単量体の過酸化物価の測定方法><Method for measuring peroxide value of (meth) acrylic acid monomer>
(メタ)アクリル酸系単量体10g、クロロホルム35ml及び酢酸35mlをフラスコに入れ、フラスコ内を窒素で置換しながら、飽和ヨウ化カリウム溶液1mlを加えて撹拌した後、20分間放置して、褐色の試験溶液を調製する。この試験溶液を0.01規定のチオ硫酸ナトリウムを用いて溶液の褐色が消えるまで滴定し、下式に従って過酸化物価を算出する。Add 10 g of (meth) acrylic acid monomer, 35 ml of chloroform and 35 ml of acetic acid to the flask, add 1 ml of saturated potassium iodide solution while stirring the flask, and then leave it for 20 minutes. Prepare a test solution. This test solution is titrated with 0.01 N sodium thiosulfate until the brown color of the solution disappears, and the peroxide value is calculated according to the following formula.
過酸化物価(meq/kg)=(A−B)×10/S〔但し、A:試料の滴定に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)Peroxide value (meq / kg) = (A−B) × 10 / S [where A: titration of 0.01 N sodium thiosulfate required for titration of sample (ml)
B:空試験に要した0.01規定のチオ硫酸ナトリウムの滴定量(ml)B: Titration of 0.01N sodium thiosulfate required for the blank test (ml)
S:試料の採取量(g)S: Sample collection amount (g)
である。〕It is. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32658199A JP4450909B2 (en) | 1999-11-17 | 1999-11-17 | Method for producing cement dispersant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32658199A JP4450909B2 (en) | 1999-11-17 | 1999-11-17 | Method for producing cement dispersant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001146449A JP2001146449A (en) | 2001-05-29 |
JP4450909B2 true JP4450909B2 (en) | 2010-04-14 |
Family
ID=18189423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32658199A Expired - Lifetime JP4450909B2 (en) | 1999-11-17 | 1999-11-17 | Method for producing cement dispersant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4450909B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60136858D1 (en) * | 2000-12-27 | 2009-01-15 | Nippon Catalytic Chem Ind | COPOLYMER OF POLYCARBONIC ACID TYPE, PROCESS FOR ITS PREPARATION, CEMENT ADDITIVE AND CEMENT COMPOSITION |
BRPI0410899A (en) * | 2003-06-06 | 2006-07-04 | Basf Ag | ester f, processes for preparing the same and for preparing a cross-linked hydrogel, polymer, cross-linked hydrogel, use of a polymer, composition of matter, and, uses of a reaction mixture and ester f |
JP2014152111A (en) * | 2013-02-05 | 2014-08-25 | Kao Corp | Method for producing ester |
JP6157134B2 (en) * | 2013-02-05 | 2017-07-05 | 花王株式会社 | Method for producing polycarboxylic acid polymer |
-
1999
- 1999-11-17 JP JP32658199A patent/JP4450909B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001146449A (en) | 2001-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3600100B2 (en) | Concrete admixture | |
EP1767504B1 (en) | Phosphoric ester polymer | |
US7030177B2 (en) | Powder dispersant for hydraulic compositions | |
US6444780B1 (en) | Method of producing polyetherester monomer and cement dispersants | |
FR2892420A1 (en) | New polymer having a principal hydrocarbon chain and phosphonated and polyoxyalkylated lateral groups useful e.g. to liquefy mineral particle suspension, particularly cement composition | |
JP3327809B2 (en) | Cement dispersant, method for dispersing cement and cement composition | |
CN112358584B (en) | Sterically hindered mud-resistant polycarboxylate superplasticizer and preparation method thereof | |
JP4450909B2 (en) | Method for producing cement dispersant | |
JPH10236858A (en) | Cement dispersant and production of copolymer for cement dispersant | |
JP3285820B2 (en) | Method for producing polycarboxylic acid | |
JP5433402B2 (en) | Polyalkylene glycol polymer | |
CN110845172A (en) | Preparation method of solid polycarboxylic acid slump retaining agent | |
JP5101982B2 (en) | Dispersant for hydraulic composition | |
JP4562957B2 (en) | Admixture for cement-based extrusion | |
JP3518795B2 (en) | Method for producing polyalkylene glycol (meth) acrylate | |
JP2001146447A (en) | Production of method cement-dispersing agent | |
JP5620201B2 (en) | Method for producing polyalkylene glycol monomer | |
JP4832872B2 (en) | Gypsum slurry | |
JP2001220440A (en) | Method for producing polyalkylene glycol ether | |
JP4209078B2 (en) | Powder dispersant for hydraulic composition | |
JP3535425B2 (en) | Method for producing cement dispersant | |
JP4757597B2 (en) | Dispersant for self-leveling material | |
JP4357994B2 (en) | Concrete admixture | |
JP4267100B2 (en) | Additive for cement composition for grout method | |
JP3436920B2 (en) | Admixture for hydraulic compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100127 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4450909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140205 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |