JP4357994B2 - Concrete admixture - Google Patents
Concrete admixture Download PDFInfo
- Publication number
- JP4357994B2 JP4357994B2 JP2004062215A JP2004062215A JP4357994B2 JP 4357994 B2 JP4357994 B2 JP 4357994B2 JP 2004062215 A JP2004062215 A JP 2004062215A JP 2004062215 A JP2004062215 A JP 2004062215A JP 4357994 B2 JP4357994 B2 JP 4357994B2
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- weight
- hydrogen atom
- group
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明はコンクリート混和剤に関する。 The present invention relates to a concrete admixture.
近年、高層建築物や大型構造物に対応して、コンクリートの高強度化が進んでいる。その中で、コンクリート混和剤への要求としては、高減水性やポンプ圧送時の粘性の低減と共に施工する際の流れ性などがある。 In recent years, the strength of concrete has been increased in response to high-rise buildings and large structures. Among them, the requirements for concrete admixture include high water reduction and flowability during construction as well as viscosity reduction during pumping.
高強度化に対応する高性能減水剤としては、従来からナフタレンスルホン酸ホルマリン縮合物(ナフタレン系)、メラミンスルホン酸ホルマリン縮合物(メラミン系)等がある。更に近年では、優れた分散性(スランプ値)を発現するポリアルキレングリコールモノエステル系単量体と(メタ)アクリル酸系及び/又はジカルボン酸系単量体との共重合物類等の水溶性ビニル共重合体(ポリカルボン酸系)等が知られている。しかしながら、これらの減水剤によって分散性は改善されたものの、ポンプ圧送後のコンクリートの流れ性が乏しいためコンクリート施工性が不十分である。 Conventionally, high-performance water reducing agents corresponding to the increase in strength include naphthalene sulfonic acid formalin condensate (naphthalene type), melamine sulfonic acid formalin condensate (melamine type) and the like. Furthermore, in recent years, water-soluble properties such as copolymers of polyalkylene glycol monoester monomers that exhibit excellent dispersibility (slump value) and (meth) acrylic acid and / or dicarboxylic acid monomers. Vinyl copolymers (polycarboxylic acid type) and the like are known. However, although the dispersibility is improved by these water reducing agents, the concrete workability is insufficient because the flowability of the concrete after pumping is poor.
本発明の課題は、特に高強度コンクリート分野において有用であり、高い分散性と流れ性を有し、コンクリート施工性に優れたコンクリート混和剤を提供することである。 An object of the present invention is to provide a concrete admixture that is particularly useful in the field of high-strength concrete, has high dispersibility and flowability, and is excellent in concrete workability.
本発明者は、上記課題を解決するためには、特定の単量体を好ましくは特定範囲のモル比で反応させた共重合体の混合物が有効であることを見出した。更にこの知見に基づき検討した結果、このような共重合体の混合物のなかでも、反応途中で単量体のモル比を変化させて得た共重合体の混合物、あるいは互いにモル比を異ならせて別々に共重合して得られた3種以上の共重合体の混合物が特に有効であること見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventor has found that a mixture of copolymers obtained by reacting a specific monomer with a molar ratio within a specific range is effective. Furthermore, as a result of investigation based on this knowledge, among such copolymer mixtures, a mixture of copolymers obtained by changing the molar ratio of monomers during the reaction, or different molar ratios from each other. The inventors have found that a mixture of three or more kinds of copolymers obtained by copolymerization separately is particularly effective and completed the present invention.
すなわち本発明は、下記の一般式(a)で表される単量体の少なくとも1種(A)と下記の一般式(b)で表される単量体の少なくとも1種(B)とを共重合させて得られた共重合体混合物を含有するコンクリート混和剤であって、前記単量体(A)と(B)のモル比(A)/(B)が反応途中において少なくとも1回変化されているコンクリート混和剤〔以下、コンクリート混和剤(I)という〕に関する。 That is, the present invention comprises at least one monomer (A) represented by the following general formula (a) and at least one monomer (B) represented by the following general formula (b). A concrete admixture containing a copolymer mixture obtained by copolymerization, wherein the molar ratio (A) / (B) of the monomers (A) and (B) changes at least once during the reaction. The present invention relates to a concrete admixture [hereinafter referred to as a concrete admixture (I)].
(式中、
R1,R2:水素原子又はメチル基
m:0〜2の数
R3:水素原子又は-COO(AO)nX
p:0又は1の数
AO:炭素数2〜4のオキシアルキレン基又はオキシスチレン基、好ましくは炭素数2〜3のオキシアルキレン基
n:2〜300の数
X:水素原子又は炭素数1〜18のアルキル基、好ましくは水素原子又は炭素数1〜3のア
ルキル基
を表す。)
(Where
R 1 and R 2 : hydrogen atom or methyl group
m: number from 0 to 2
R 3 : hydrogen atom or —COO (AO) n X
p: Number of 0 or 1
AO: C2-C4 oxyalkylene group or oxystyrene group, preferably C2-C3 oxyalkylene group
n: Number from 2 to 300
X: A hydrogen atom or an alkyl group having 1 to 18 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. )
(式中、
R4〜R6:水素原子、メチル基又は(CH2)m1COOM2であり、(CH2)m1COOM2はCOOM1又は他の(CH2)m1COOM2と無水物を形成していてもよく、その場合、それらの基のM1,M2は存在しない
。
M1,M2:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は置換アルキルアンモニウム基
m1:0〜2の数
を表す。)
(Where
R 4 to R 6 : a hydrogen atom, a methyl group or (CH 2 ) m 1 COOM 2 , and (CH 2 ) m 1 COOM 2 forms an anhydride with COOM 1 or other (CH 2 ) m 1 COOM 2 In that case, M 1 and M 2 of those groups are not present.
M 1 and M 2 : hydrogen atom, alkali metal, alkaline earth metal, ammonium group, alkylammonium group or substituted alkylammonium group
m1: represents a number from 0 to 2. )
また、本発明は、上記の一般式(a)で表される単量体の1種以上(A)と上記の一般式(b)
で表される単量体の1種以上(B)とを、(A)/(B)=0.02〜4の範囲内で互いにモル比を異
ならせて得られた共重合体3種以上の共重合体混合物を含有するコンクリート混和剤〔以下、コンクリート混和剤(II)という〕に関する。
In addition, the present invention provides at least one monomer (A) represented by the above general formula (a) and the above general formula (b).
Copolymers of three or more types of copolymers obtained by differentiating the molar ratio of one or more types of monomers represented by (B) with each other within the range of (A) / (B) = 0.02-4. The present invention relates to a concrete admixture containing a polymer mixture (hereinafter referred to as a concrete admixture (II)).
更に本発明は、上記本発明のコンクリート混和剤(I)及び(II)の少なくとも1つを含有するコンクリート組成物に関する。 The present invention further relates to a concrete composition containing at least one of the concrete admixtures (I) and (II) of the present invention.
〔単量体(A)〕
一般式(a)で表される単量体(A)としては、メトキシポリエチレングリコール、メトキシポリプロピレングリコール、メトキシポリブチレングリコール、メトキシポリスチレングリコール、エトキシポリエチレンポリプロピレングリコール等の片末端アルキル封鎖ポリアルキレングリコールと(メタ)アクリル酸、マレイン酸との(ハーフ)エステル化物や、(メタ)アリルアルコールとのエーテル化物、及び(メタ)アクリル酸、マレイン酸、(メタ)アリルアルコールへのエチレンオキシド、プロピレンオキシド付加物が好ましく用いられ、R3は水素原子が好ましく、pは1が、mは0が好ましい。より好ましくはアルコキシ、特にはメトキシポリエチレングリコールと(メタ)アクリル酸とのエステル化物である。ポリアルキレングリコールの平均付加モル数は2〜300モルの範囲が流動性及び流
動保持性に優れるため好ましく、2〜150モル、更には5〜130モルの範囲がより好ましい。
(Monomer (A))
Monomers (A) represented by the general formula (a) include one-end alkyl-capped polyalkylene glycols such as methoxypolyethylene glycol, methoxypolypropylene glycol, methoxypolybutylene glycol, methoxypolystyrene glycol, and ethoxypolyethylenepolypropyleneglycol ( (Meth) acrylic acid, (half) esterified product with maleic acid, etherified product with (meth) allyl alcohol, and (meth) acrylic acid, maleic acid, ethylene oxide and propylene oxide adducts to (meth) allyl alcohol R 3 is preferably a hydrogen atom, p is preferably 1, and m is preferably 0. More preferred is an esterified product of alkoxy, particularly methoxypolyethylene glycol and (meth) acrylic acid. The average added mole number of the polyalkylene glycol is preferably in the range of 2 to 300 mol because of excellent fluidity and fluid retention, and more preferably in the range of 2 to 150 mol, and more preferably in the range of 5 to 130 mol.
単量体(A)としては、より高い分散性と流れ性が得られる点から、下記一般式(a-1)で表される単量体(A-1)及び下記一般式(a-2)で表される単量体(A-2)とを併用することが好ま
しい。
As the monomer (A), from the viewpoint of obtaining higher dispersibility and flowability, the monomer (A-1) represented by the following general formula (a-1) and the following general formula (a-2) It is preferable to use a monomer (A-2) represented by
(式中、
R7:水素原子又はメチル基
AO:炭素数2〜4のオキシアルキレン基又はオキシスチレン基、好ましくは炭素数2〜3のオキシアルキレン基
n1:12〜300の数
X1:水素原子又は炭素数1〜18のアルキル基、好ましくは水素原子又は炭素数1〜3のアルキル基
を表す。)
(Where
R 7 : hydrogen atom or methyl group
AO: C2-C4 oxyalkylene group or oxystyrene group, preferably C2-C3 oxyalkylene group
n 1 : Number from 12 to 300
X 1 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. )
(式中、
R8:水素原子又はメチル基
AO:炭素数2〜4のオキシアルキレン基又はオキシスチレン基、好ましくは炭素数2〜3のオキシアルキレン基
n2:2〜290の数(ただし、一般式(a-1)中のn1との関係は、n1>n2且つ(n1−n2)≧10、好ましくは≧30、更に好ましくは≧50である。)
X2:水素原子又は炭素数1〜18のアルキル基、好ましくは水素原子又は炭素数1〜3のアルキル基
を表す。)
(Where
R 8 : hydrogen atom or methyl group
AO: C2-C4 oxyalkylene group or oxystyrene group, preferably C2-C3 oxyalkylene group
n 2 : Number of 2 to 290 (however, the relationship with n 1 in general formula (a-1) is n 1 > n 2 and (n 1 −n 2 ) ≧ 10, preferably ≧ 30, more preferably Is ≧ 50.)
X 2 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. )
〔単量体(B)〕
一般式(b)で表される単量体(B)としては、(メタ)アクリル酸、クロトン酸等のモノカルボン酸系単量体、マレイン酸、イタコン酸、フマル酸等のジカルボン酸系単量体、又はこれらの無水物もしくは塩、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜8)アンモニウム塩が好ましく、より好ましくは(メタ)アクリル酸、マレイン酸、無水マレイン酸、更
に好ましくは(メタ)アクリル酸又はこれらのアルカリ金属塩である。
(Monomer (B))
Monomers (B) represented by the general formula (b) include monocarboxylic acid monomers such as (meth) acrylic acid and crotonic acid, and dicarboxylic acid monomers such as maleic acid, itaconic acid and fumaric acid. Preference is given to monomers, or anhydrides or salts thereof, such as alkali metal salts, alkaline earth metal salts, ammonium salts, and mono-, di-, or trialkyl (2 to 8 carbon atoms) ammonium salts optionally substituted with a hydroxyl group. More preferred is (meth) acrylic acid, maleic acid, maleic anhydride, and still more preferred is (meth) acrylic acid or an alkali metal salt thereof.
〔コンクリート混和剤(I)〕
本発明のコンクリート混和剤(I)は、上記単量体(A)、(B)とを、好ましくは(A)/(B)=0.02〜4の範囲のモル比で反応させて得られた共重合体混合物を含有するが、このモル比(A)/(B)は反応途中において少なくとも1回変化されている。該モル比の変化は、増加、減少、それらの組み合わせの何れでもよい良い。該モル比を段階的ないし断続的に変化させる場合は、変化の回数は1〜10回、特に1〜5回が好ましい。また、該モル比を連続的に変化させる場合は直線的な変化、指数関数的な変化、その他の変化の何れでもよいが、変化の度合いは1分あたり0.0001から0.2、更に0.0005から0.1、特に0.001から0.05が
好ましい。また、該モル比は、変化前後のモル比(A)/(B)の少なくとも何れかが0.02〜4の範囲にあることが好ましく、特に変化前後のモル比(A)/(B)が共に0.02〜4の範囲にあることが好ましい。また、前記したようにモル比の変化は種々の態様があるが、何れの場合も、全共重合反応における該モル比(A)/(B)の最大値と最小値の差が、少なくとも0.05、特に0.05〜2.5の範囲にあることが好ましい。
[Concrete admixture (I)]
The concrete admixture (I) of the present invention was obtained by reacting the monomers (A) and (B) with a molar ratio preferably in the range of (A) / (B) = 0.02-4. Although it contains a copolymer mixture, the molar ratio (A) / (B) is changed at least once during the reaction. The change in the molar ratio may be an increase, a decrease, or a combination thereof. When the molar ratio is changed stepwise or intermittently, the number of changes is preferably 1 to 10 times, particularly preferably 1 to 5 times. Further, when the molar ratio is continuously changed, any of a linear change, an exponential change, and other changes may be used, but the degree of change is 0.0001 to 0.2, more preferably 0.0005 to 0.1, 0.001 to 0.05 is preferred. The molar ratio (A) / (B) before and after the change is preferably in the range of 0.02 to 4, and both the molar ratio (A) / (B) before and after the change are particularly preferred. It is preferable to be in the range of 0.02 to 4. Further, as described above, there are various modes of changing the molar ratio. In any case, the difference between the maximum value and the minimum value of the molar ratio (A) / (B) in the total copolymerization reaction is at least 0.05. In particular, it is preferably in the range of 0.05 to 2.5.
かかる共重合体混合物は、(A)/(B)モル比を少なくとも1回変化させて重合する工程を有する製造方法により得られるが、具体的には、単量体(A)の水溶液の滴下開始と同時に
、単量体(B)の滴下を開始し、それぞれのモル比が、所定範囲となるように滴下流量(重
量部/分)を変化させて所定時間滴下する方法が挙げられる。この方法では、単量体(A)
/(B)モル比の変化量(最大値と最小値の差)は、0.05〜2.5が好ましく、より好ましくは0.1〜2である。この方法のように反応途中で一回でもモル比を変化させることで得られ
た共重合体混合物は、一定の(A)/(B)モル比で反応させて得られる共重合体より(A)/(B)モル比の分布が広い多数の共重合体の混合物であると推測される。
Such a copolymer mixture can be obtained by a production method having a step of polymerizing by changing the (A) / (B) molar ratio at least once. Specifically, an aqueous solution of the monomer (A) is dropped. There is a method in which the dropping of the monomer (B) is started simultaneously with the start, and dropping is performed for a predetermined time while changing the dropping flow rate (parts by weight / minute) so that the respective molar ratios are within a predetermined range. In this method, monomer (A)
The change amount of the / (B) molar ratio (difference between the maximum value and the minimum value) is preferably 0.05 to 2.5, and more preferably 0.1 to 2. A copolymer mixture obtained by changing the molar ratio even once during the reaction as in this method is obtained from a copolymer obtained by reacting at a constant (A) / (B) molar ratio (A ) / (B) It is presumed to be a mixture of a large number of copolymers having a wide molar ratio distribution.
また、単量体(A)として、前記単量体(A-1)及び単量体(A-2)を用いる場合、両者の平均
重量比は(A-1)/(A-2)=0.1〜8が好ましく、より好ましくは0.2〜2.5、特に好ましくは0.4〜2の範囲である。この平均重量比は、反応に用いる全単量体の重量比の平均値である。また単量体(A-1)及び単量体(A-2)と単量体(B)の反応モル比〔(A-1)+(A-2)〕/(B)は、変化前後の該モル比の少なくとも何れかが0.02〜4、更に0.05〜2.5、特に0.1〜2の範囲にあることが好ましく、特に変化前後の該モル比が共にこれらの範囲にあることが好ましい。
When the monomer (A-1) and the monomer (A-2) are used as the monomer (A), the average weight ratio between them is (A-1) / (A-2) = 0.1-8 are preferable, More preferably, it is 0.2-2.5, Most preferably, it is the range of 0.4-2. This average weight ratio is an average value of the weight ratios of all monomers used in the reaction. The reaction molar ratio of monomer (A-1) and monomer (A-2) to monomer (B) [(A-1) + (A-2)] / (B) Is preferably in the range of 0.02 to 4, more preferably 0.05 to 2.5, and particularly preferably 0.1 to 2, and particularly preferably the molar ratio before and after the change is within these ranges.
なお、単量体の総重量の30%以上、特には50〜100%を上記のように滴下流量を変化さ
せて製造することが好ましい。
In addition, it is preferable to produce 30% or more, particularly 50 to 100% of the total weight of the monomer by changing the dropping flow rate as described above.
上記方法において、モル比や重量比の変化は、添加する単量体全ての添加速度を変えたり、添加単量体の一部のみの添加速度を変えることによって調整してもよい。また、滴下速度の変化は連続的に行ってもよいし、段階的に行ってもよく、これらを組み合わせてもよい。更に変化量は、増加あるいは減少の一元的変化のみでなく、増加、減少を交互に行ってもよい。添加する単量体は、それぞれ個別に添加してもよく、また予め単量体組成比の異なる単量体混合溶液を2種以上調製した後に順次添加してもよい。個別に滴下する場合は、添加する重量の最も多い単量体の滴下流量を一定とし、他の単量体を所定の単量体組成となるように滴下流量を変化させるのが好ましい。更に単量体滴下槽に添加する単量体の一部を仕込み、残りの単量体を連続的にあるいは段階的に変化させ単量体滴下槽に添加しながら該単量体混合溶液を滴下槽より反応槽に滴下させてもよい。あるいは、添加する単量体の一部を反応器に仕込み、残りの単量体を連続的にあるいは段階的に流量を変化させて反応器に滴下し重合させてもよい。 In the above method, the change in molar ratio or weight ratio may be adjusted by changing the addition rate of all the monomers to be added or by changing the addition rate of only a part of the added monomer. Moreover, the change of dripping speed may be performed continuously, may be performed in steps, and these may be combined. Furthermore, the amount of change may be increased or decreased alternately as well as a unified change of increase or decrease. Monomers to be added may be added individually, or may be sequentially added after preparing two or more monomer mixed solutions having different monomer composition ratios in advance. When dropping individually, it is preferable that the dropping flow rate of the monomer having the largest weight to be added is constant and the dropping flow rate is changed so that other monomers have a predetermined monomer composition. Furthermore, a part of the monomer to be added to the monomer dropping tank is charged, and the remaining monomer is continuously or stepwise changed, and the monomer mixed solution is dropped while being added to the monomer dropping tank. It may be dropped from the tank to the reaction tank. Alternatively, a part of the monomer to be added may be charged into the reactor, and the remaining monomer may be dropped into the reactor and polymerized by changing the flow rate continuously or stepwise.
上記方法において、モル比や重量比の変化の度合いは、供給する単量体の流量を流量計
や液面計等により測定し、調節する。その際、具体的な変化の度合いを決める基準は単量体の種類や仕込量(速度)による。一般に、単量体(A)の含量が増すと流れ性が良好にな
り、単量体(B)の含量が増すと分散性が良好になり、また単量体(A)の一般式(a)中のnが小さいと硬化速度が遅く分散保持性が低くなり、nが大きいと硬化速度が速く分散保持性が
高くなる傾向を示すので、目的とする性能に合わせて重合時のモル比や重量比を決めればよい。
In the above method, the degree of change in molar ratio or weight ratio is adjusted by measuring the flow rate of the monomer to be supplied with a flow meter, liquid level meter or the like. At that time, the standard for determining the specific degree of change depends on the type of monomer and the charged amount (speed). Generally, when the monomer (A) content is increased, the flowability is improved, and when the monomer (B) content is increased, the dispersibility is improved, and the general formula (a) of the monomer (A) (a) ) Is small, the curing rate is slow and the dispersion retention is low, and if n is large, the curing rate is high and the dispersion retention tends to be high. What is necessary is just to determine a weight ratio.
重合反応は溶媒の存在下で行ってもよい。溶媒としては、水、メタノール、エタノール、イソプロパノール、ブタノール等の低級アルコール;ベンゼン、トルエン、キシレン等の芳香族炭化水素;シクロヘキサン等の脂環式炭化水素;n−ヘキサン等の脂肪族炭化水素;酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類等を挙げることができる。これらの中でも、取り扱いが容易で、単量体、重合体の溶解性の点から、水、低級アルコールが好ましい。 The polymerization reaction may be performed in the presence of a solvent. Solvents include water, lower alcohols such as methanol, ethanol, isopropanol, and butanol; aromatic hydrocarbons such as benzene, toluene, and xylene; alicyclic hydrocarbons such as cyclohexane; aliphatic hydrocarbons such as n-hexane; acetic acid Examples thereof include esters such as ethyl; ketones such as acetone and methyl ethyl ketone. Among these, water and lower alcohols are preferable from the viewpoint of easy handling and solubility of the monomer and polymer.
共重合反応においては、重合開始剤を添加することができる。重合開始剤としては、有機過酸化物、無機過酸化物、ニトリル系化合物、アゾ系化合物、ジアゾ系化合物、スルフィン酸系化合物等を挙げることができる。重合開始剤の添加量は、一般式(I)、一般式(II)及び他の単量体の合計に対して0.05〜50モル%が好ましい。重合開始剤の滴下は単量体と同時に開始することが好ましい。滴下流量は変化させても一定でもよく、所望の分子量及び反応速度が得られるように設定すればよい。 In the copolymerization reaction, a polymerization initiator can be added. Examples of the polymerization initiator include organic peroxides, inorganic peroxides, nitrile compounds, azo compounds, diazo compounds, sulfinic acid compounds, and the like. The addition amount of the polymerization initiator is preferably 0.05 to 50 mol% with respect to the total of the general formula (I), the general formula (II) and other monomers. The dropping of the polymerization initiator is preferably started simultaneously with the monomer. The dropping flow rate may be changed or constant, and may be set so that a desired molecular weight and reaction rate can be obtained.
共重合反応においては、連鎖移動剤を添加することができる。連鎖移動剤としては、低級アルキルメルカプタン、低級メルカプト脂肪酸、チオグリセリン、チオリンゴ酸、2-メルカプトエタノール等を挙げることができる。特に水を溶媒として用いる場合には、これらの連鎖移動剤を添加することで、分子量調整をより安定に行うことができる。連鎖移動剤は単量体に混合あるいは個別に単量体と同時に滴下することができる。滴下流量は変化させても一定でもよく、所望の分子量が得られるように調整すればよい。共重合反応の反応温度は、0〜120℃が好ましい。 In the copolymerization reaction, a chain transfer agent can be added. Examples of the chain transfer agent include lower alkyl mercaptan, lower mercapto fatty acid, thioglycerin, thiomalic acid, 2-mercaptoethanol and the like. In particular, when water is used as a solvent, the molecular weight can be adjusted more stably by adding these chain transfer agents. The chain transfer agent can be mixed with the monomer or dropped separately at the same time as the monomer. The dropping flow rate may be changed or fixed, and may be adjusted so as to obtain a desired molecular weight. The reaction temperature for the copolymerization reaction is preferably 0 to 120 ° C.
得られたポリカルボン酸系重合体は、必要に応じて、脱臭処理をすることができる。特に連鎖移動剤としてメルカプトエタノール等のチオールを用いた場合には、不快臭が重合体中に残存しやすいため、脱臭処理をすることが望ましい。 The obtained polycarboxylic acid polymer can be deodorized as necessary. In particular, when a thiol such as mercaptoethanol is used as a chain transfer agent, an unpleasant odor tends to remain in the polymer, and therefore, it is desirable to perform a deodorization treatment.
上記の製造方法により得られるポリカルボン酸系重合体は、酸型のままでもセメント用分散剤として適用することができるが、酸性によるエステルの加水分解を抑制する観点から、アルカリによる中和によって塩の形にすることが好ましい。このアルカリとしては、アルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、モノ、ジ、トリアルキル(炭素数2〜8)アミン、モノ、ジ、トリアルカノール(炭素数2〜8)アミン等を挙げることができる。(メタ)アクリル酸系重合体をセメント用分散剤として使用する場合は、一部又は完全中和することが好ましい。 The polycarboxylic acid polymer obtained by the above production method can be applied as a dispersant for cement even in an acid form, but from the viewpoint of suppressing ester hydrolysis due to acidity, the salt is obtained by neutralization with an alkali. It is preferable to use the following form. Examples of the alkali include hydroxides of alkali metals or alkaline earth metals, ammonia, mono, di, trialkyl (2 to 8 carbon atoms) amine, mono, di, trialkanol (2 to 8 carbon atoms) amine, and the like. Can be mentioned. When a (meth) acrylic acid polymer is used as a dispersant for cement, partial or complete neutralization is preferred.
なお、上記の製造方法により得られるポリカルボン酸系重合体の重量平均分子量〔ゲルパーミエーションクロマトグラフィー法、ポリエチレングリコール換算、カラム:G4000PWXL + G2500PWXL(東ソー(株)製)、溶離液:0.2Mリン酸緩衝液/アセトニトリル=7/3(体積比)〕は、セメント用分散剤として充分な分散性を得るため、10,000〜200,000が好ましく、20,000〜100,000が特に好ましい。 The weight average molecular weight of the polycarboxylic acid polymer obtained by the above production method [gel permeation chromatography method, converted into polyethylene glycol, column: G4000PWXL + G2500PWXL (manufactured by Tosoh Corporation), eluent: 0.2M phosphorus The acid buffer / acetonitrile = 7/3 (volume ratio)] is preferably 10,000 to 200,000, particularly preferably 20,000 to 100,000, in order to obtain sufficient dispersibility as a cement dispersant.
上記の方法で本発明のコンクリート混和剤(I)を得る場合、使用された全単量体中の単量体(A)と単量体(B)の平均重量比が(A)/(B)=30/70〜99/1、更には60/40〜98/2、特に80/20〜97/3であるのが好ましい。また、単量体(A)として単量体(A-1)及び(A-2
)を用いる場合、使用された全単量体中の単量体(A-1)と(A-2)の平均重量比が(A-1)/(A-2)=10/90〜90/10、更に20/80〜80/20が好ましい。
When the concrete admixture (I) of the present invention is obtained by the above method, the average weight ratio of the monomer (A) to the monomer (B) in all the monomers used is (A) / (B ) = 30/70 to 99/1, more preferably 60/40 to 98/2, and particularly preferably 80/20 to 97/3. Further, the monomer (A) as the monomer (A-1) and (A-2
), The average weight ratio of the monomers (A-1) to (A-2) in all the monomers used is (A-1) / (A-2) = 10/90 to 90 / 10, more preferably 20/80 to 80/20.
なお、更に、アクリロニトリル、(メタ)アクリルアミド、スチレン、(メタ)アクリル酸アルキル(水酸基を有していてもよい炭素数1〜12のもの)エステル、スチレンスルホン酸等の共重合可能な単量体を併用してもよい。これらは全単量体中50重量%以下、更に30重量%以下の比率で使用できるが、0重量%が好ましい。 Furthermore, copolymerizable monomers such as acrylonitrile, (meth) acrylamide, styrene, alkyl (meth) acrylate (having 1 to 12 carbon atoms which may have a hydroxyl group) ester, styrene sulfonic acid and the like. May be used in combination. These can be used in a proportion of not more than 50% by weight, more preferably not more than 30% by weight, based on all monomers, with 0% by weight being preferred.
このように、上記の一般式(a)で表される単量体の少なくとも1種(A)と下記の一般式(b)で表される単量体の少なくとも1種(B)とを共重合させてコンクリート混和剤を製造する方法であって、前記単量体(A)と(B)のモル比(A)/(B)が反応途中において少なくとも1回変化されているコンクリート混和剤の製造方法により本発明のコンクリート混和剤(I)が得られる。 Thus, at least one monomer (A) represented by the above general formula (a) and at least one monomer (B) represented by the following general formula (b) are used together. A method for producing a concrete admixture by polymerization, wherein the molar ratio (A) / (B) of the monomers (A) and (B) is changed at least once during the reaction. The concrete admixture (I) of the present invention is obtained by the production method.
〔コンクリート混和剤(II)〕
本発明のコンクリート混和剤(II)は、上記一般式(a)で表される単量体の1種以上(A)と上記一般式(b)で表される単量体の1種以上(B)とを、(A)/(B)=0.02〜4の範囲内で互いにモル比を異ならせて得られた共重合体3種以上、好ましくは3〜10種、更に好ましくは4〜8種の共重合体混合物を含有する。該共重合体混合物は、それぞれ別々に共重合体させた3種以上の共重合体を混合して得られる。前記モル比の相違は、少なくとも0.05、更に少なくとも0.1、特に少なくとも0.2であることが好ましい。各共重合体を得る方法は前記したコンクリート混合物(I)の反応方法に準ずるが、反応の途中で(A)/(B)モル比は変化させない。
[Concrete admixture (II)]
The concrete admixture (II) of the present invention comprises one or more monomers (A) represented by the general formula (a) and one or more monomers represented by the general formula (b) ( 3) or more, preferably 3 to 10, more preferably 4 to 8 of copolymers obtained by varying the molar ratio of B) with each other within the range of (A) / (B) = 0.02-4. Contains a copolymer mixture of seeds. The copolymer mixture is obtained by mixing three or more types of copolymers that are separately copolymerized. The difference in molar ratio is preferably at least 0.05, more preferably at least 0.1, in particular at least 0.2. The method of obtaining each copolymer is in accordance with the reaction method of the concrete mixture (I) described above, but the (A) / (B) molar ratio is not changed during the reaction.
〔コンクリート組成物〕
本発明のコンクリート組成物は、上記本発明のコンクリート混和剤(I)及び(II)の少なくとも1つと、セメント、細骨材、更に粗骨材を含有する。また、高性能減水剤、AE剤、遅延剤、消泡剤、気泡剤、防水剤、防腐剤等の各種添加剤(材)を含有してもよい。これらは当業界で公知のものが用いられる。更に、高炉スラグ、フライアッシュ、シリカヒューム、石粉等の微粉末を配合してもよい。本発明のコンクリート組成物は、コンクリート混和剤(I)、(II)を、セメントに対して0.01〜5.0重量%(固形分として)、
特に0.05〜2.0重量%含有するのが好ましい。コンクリート組成物の用途も、気泡(軽量
)コンクリート、重量コンクリート、防水コンクリート、モルタル等、限定されるものではない。
[Concrete composition]
The concrete composition of the present invention contains at least one of the concrete admixtures (I) and (II) of the present invention, cement, fine aggregate, and coarse aggregate. Moreover, you may contain various additives (materials), such as a high performance water reducing agent, AE agent, a retarder, an antifoamer, a foam agent, a waterproofing agent, and antiseptic | preservative. These are known in the art. Furthermore, you may mix | blend fine powders, such as blast furnace slag, fly ash, a silica fume, and stone powder. The concrete composition of the present invention contains 0.01 to 5.0% by weight (as a solid content) of concrete admixtures (I) and (II) based on cement.
It is particularly preferable to contain 0.05 to 2.0% by weight. The use of the concrete composition is not limited to cellular (lightweight) concrete, heavyweight concrete, waterproof concrete, mortar, and the like.
本発明のコンクリート混和剤(I)、(II)によれば、スランプ19cmの条件で流動距離50cm以上、好ましくは70cm以上を発現するコンクリート組成物を得ることができる。この流動距離の測定方法は以下の通りである。 According to the concrete admixtures (I) and (II) of the present invention, it is possible to obtain a concrete composition that exhibits a flow distance of 50 cm or more, preferably 70 cm or more under a slump condition of 19 cm. The measuring method of this flow distance is as follows.
<流動距離の測定方法>
(1)スランプ
JIS A1101による。
(2)コンクリート組成物
(材料)
セメント(C):太平洋セメント製普通ポルトランドセメント(比重3.16)
細骨材(S):千葉県君津産山砂(比重2.61)
粗骨材(G):高知県鳥形山石灰砕石(比重2.72)
(W):水道水
配合比率は、W/C=40%、s/a〔砂/(砂+砂利):容積率〕=45.8%、C=425kg/m3、W=170kg/m3、S=778kg/m3、G=960kg/m3である。
(調製法)
上記の材料と混和剤を強制2軸ミキサーで90秒混練した。混和剤の添加量は、上記スランプ値が18〜20cmになるように調節。
(3)流動距離(流れ性測定)
図1(a)に示すように、長さ100cm、高さ20cm、幅20cmの塩化ビニル製の箱1に、高さ20cmの位置で下端を板で閉じたステンレス製の漏斗2にコンクリート組成物3を500mL入れ
、10秒間隔に500mlずつ落とし、箱1の上部までコンクリート組成物3が盛り上がった時
に、長手方向に流れた距離を測定し〔図1(b)〕、これを流動距離とする。なお、漏斗2
の形状は、図1(c)のように、上部開口が直径14cm、下部開口が直径7cmの逆円錐形で、
上部開口から下部開口までの距離は20cmである。該漏斗2は、平面から見たとき、箱1の短辺の中央の位置(10cmの位置)で、上部開口の縁が該短辺から3cm離れたところに設置する。また、漏斗2の下部開口の位置は箱の高さと一致する高さに設置する。測定は、スランプ18〜19cmと19〜20cmの条件下で2回行い、スランプ19cmの時の流れた距離を算出する。
<Measurement method of flow distance>
(1) Slump
According to JIS A1101.
(2) Concrete composition (material)
Cement (C): Pacific Portland normal portland cement (specific gravity 3.16)
Fine aggregate (S): Mountain sand from Kimitsu, Chiba Prefecture (specific gravity 2.61)
Coarse aggregate (G): Torigatayama lime crushed stone (specific gravity 2.72)
(W): Tap water mixing ratio, W / C = 40%, s / a [sand / (sand + gravel): volume ratio] = 45.8%, C = 425kg /
(Preparation method)
The above materials and admixture were kneaded for 90 seconds with a forced biaxial mixer. Adjust the amount of admixture so that the slump value is 18-20cm.
(3) Flow distance (flowability measurement)
As shown in Fig. 1 (a), a concrete composition is placed in a vinyl chloride box 1 having a length of 100 cm, a height of 20 cm, and a width of 20 cm, and a
As shown in Fig. 1 (c), the shape of this is an inverted cone with an upper opening of 14cm in diameter and a lower opening of 7cm in diameter.
The distance from the upper opening to the lower opening is 20 cm. The
参考例1〜7及び比較例1〜3
本例は、単量体(A)、(B)をそれぞれ個別に且つ一方の添加流量のみを段階的に変化させて添加した例である。
Reference Examples 1-7 and Comparative Examples 1-3
In this example, the monomers (A) and (B) are added individually and only one of the addition flow rates is changed stepwise.
〔i〕単量体
表1に示す単量体(A)、(B)、(C)を、表2のように用いて、以下の方法でコンクリート
混和剤を製造した。
[I] Monomer Using the monomers (A), (B), and (C) shown in Table 1 as shown in Table 2, concrete admixtures were produced by the following method.
〔ii〕コンクリート混和剤の製造
ガラス製反応容器に水321重量部を仕込み、窒素雰囲気下で78℃まで昇温した。次に、
単量体(A-IV)の60%水溶液581重量部と75%リン酸水溶液2.5重量部の混合溶液を一定流量で90分かけて滴下し、該混合溶液の滴下開始と同時に、単量体(B-I)14重量部、15%過硫
酸アンモニウム水溶液20重量部及び2-メルカプトエタノール2.4重量部の滴下を開始し、
表2のように滴下時間ごとの(A)/(B)モル比を変化させて90分間滴下した。
[Ii] Production of concrete admixture 321 parts by weight of water was charged into a glass reaction vessel, and the temperature was raised to 78 ° C. in a nitrogen atmosphere. next,
A mixed solution of 581 parts by weight of a 60% aqueous solution of monomer (A-IV) and 2.5 parts by weight of a 75% aqueous phosphoric acid solution was added dropwise over 90 minutes at a constant flow rate. (BI) 14 parts by weight, 15% ammonium persulfate aqueous solution 20 parts by weight and 2-mercaptoethanol 2.4 parts by weight,
As shown in Table 2, the (A) / (B) molar ratio for each dropping time was changed and dropped for 90 minutes.
更に同温度で60分間熟成し、15%過硫酸アンモニウム水溶液7重量部を5分で滴下120分間熟成し、48%水酸化ナトリウム水溶液8重量部を加えてコンクリート混和剤(参考例1)を得た。同様にして、表2の参考例2〜7及び比較例1〜3のコンクリート混和剤を製造した(但し仕込み成分の水溶液濃度は必要に応じて変更した。)。なお、参考例6における単量体C−1の割合は、1.30重量部/分の一定で90分間添加した。 Further, the mixture was aged for 60 minutes at the same temperature, 7 parts by weight of 15% ammonium persulfate aqueous solution was dropped in 5 minutes and aged for 120 minutes, and 8 parts by weight of 48% sodium hydroxide aqueous solution was added to obtain a concrete admixture ( Reference Example 1). . Similarly, the concrete admixtures of Reference Examples 2 to 7 and Comparative Examples 1 to 3 in Table 2 were produced (however, the aqueous solution concentration of the charged components was changed as necessary). In addition, the ratio of the monomer C-1 in Reference Example 6 was added for 90 minutes at a constant 1.30 parts by weight / minute.
参考例8
本例は、単量体(A)、(B)の混合物を二種調製し、順次添加した例である。
Reference Example 8
In this example, two mixtures of monomers (A) and (B) were prepared and added sequentially.
ガラス製反応容器に水412重量部を仕込み、窒素雰囲気下で78℃まで昇温した。次に、
表1に示す単量体(A-IV)の60%水溶液178重量部、表1に示す単量体(A-I)の84%水溶液89重量部、表1に示す単量体(B-I)12.9重量部、75%リン酸水溶液0.6重量部、2-メルカプトエタノール0.8重量部の混合溶液と15%過硫酸アンモニウム水溶液5重量部とを45分で滴
下し、次いで表1に示す単量体(A-IV)の60%水溶液178重量部、表1に示す単量体(A-I)の84%水溶液83重量部、表1に示す単量体(B-I)18.1重量部、75%リン酸水溶液0.6重量部、2-メルカプトエタノール0.9重量部の混合溶液と15%過硫酸アンモニウム水溶液6重量部
とを45分で滴下した。滴下時間ごとの(A)/(B)モル比と(A-1)/(A-2)重量比の変化を表2に示す。滴下終了後、60分間78℃で熟成させた後、15%過硫酸アンモニウム水溶液5重量部を5分で滴下した。更に120分間79℃で熟成し、48%水酸化ナトリウム水溶液13重量部
を加えてコンクリート混和剤を得た。
A glass reaction vessel was charged with 412 parts by weight of water and heated to 78 ° C. in a nitrogen atmosphere. next,
178 parts by weight of a 60% aqueous solution of the monomer (A-IV) shown in Table 1, 89 parts by weight of an 84% aqueous solution of the monomer (AI) shown in Table 1, and 12.9 parts by weight of the monomer (BI) shown in Table 1 A mixture of 0.6 part by weight, 0.6 part by weight of 75% phosphoric acid aqueous solution and 0.8 part by weight of 2-mercaptoethanol and 5 parts by weight of 15% aqueous ammonium persulfate aqueous solution was added dropwise over 45 minutes, and then the monomers shown in Table 1 (A-IV ) 60% aqueous solution 178 parts by weight, 84% aqueous solution 84% monomer (AI) shown in Table 1, 18.1 parts by weight monomer (BI) shown in Table 1, 75% phosphoric acid aqueous solution 0.6 parts by weight, A mixed solution of 0.9 parts by weight of 2-mercaptoethanol and 6 parts by weight of a 15% aqueous ammonium persulfate solution were added dropwise over 45 minutes. Table 2 shows changes in the (A) / (B) molar ratio and (A-1) / (A-2) weight ratio for each dropping time. After completion of the dropping, the mixture was aged at 78 ° C. for 60 minutes, and then 5 parts by weight of a 15% ammonium persulfate aqueous solution was added dropwise over 5 minutes. The mixture was further aged at 79 ° C. for 120 minutes, and 13 parts by weight of 48% aqueous sodium hydroxide solution was added to obtain a concrete admixture.
*(A)/(B)重量比は最終的に反応させる全単量体の平均重量比である(以下同様)。 * (A) / (B) weight ratio is the average weight ratio of all monomers to be finally reacted (the same applies hereinafter).
参考例9〜10
本例は、単量体(A-1)の滴下速度を一定とし、他の単量体の滴下速度を連続的に変化させた例である。
Reference examples 9-10
In this example, the dropping rate of the monomer (A-1) is constant, and the dropping rate of other monomers is continuously changed.
〔i〕単量体
表3に示す単量体を表3のように用いて、以下の方法でコンクリート混和剤を製造した。
[I] Monomer Using the monomers shown in Table 3 as shown in Table 3, concrete admixtures were produced by the following method.
〔ii〕コンクリート混和剤の製造
ガラス製反応容器に水329重量部を仕込み、窒素雰囲気下で78℃まで昇温した。次に、
単量体(A-I)の60%水溶液601重量部と75%リン酸水溶液2.6重量部の混合溶液を一定流量
で90分かけて滴下し、該混合溶液の滴下開始と同時に、単量体(B-I)7.6重量部、15%過硫酸アンモニウム水溶液14重量部及び2-メルカプトエタノール2重量部の滴下を開始した。このとき、単量体(A-I)の水溶液の滴下速度は3.8重量部/分で一定とし、単量体(B-I)の
滴下速度を0.39重量部/分から1.13重量部/分まで、0.0082重量部/分の割合で変化させて90分間滴下した。
[Ii] Production of concrete admixture 329 parts by weight of water was placed in a glass reaction vessel, and the temperature was raised to 78 ° C. in a nitrogen atmosphere. next,
A mixed solution of 60% aqueous solution of monomer (AI) and 2.6 parts by weight of 75% aqueous phosphoric acid solution was added dropwise over 90 minutes at a constant flow rate. ) The dropping of 7.6 parts by weight, 14 parts by weight of 15% ammonium persulfate aqueous solution and 2 parts by weight of 2-mercaptoethanol was started. At this time, the dropping rate of the aqueous solution of the monomer (AI) is constant at 3.8 parts by weight / minute, and the dropping rate of the monomer (BI) is from 0.39 parts by weight to 1.13 parts by weight / minute, 0.0082 parts by weight / minute. It was dropped at a rate of minutes and dropped for 90 minutes.
更に同温度で60分間熟成し、15%過硫酸アンモニウム水溶液7重量部を5分で滴下120分間熟成し、48%水酸化ナトリウム水溶液6重量部を加えて参考例9のコンクリート混和剤を得た。同様にして、表3の参考例10のコンクリート混和剤を製造した(但し仕込み成分の水溶液濃度は必要に応じて変更した。)。 Further, the mixture was aged for 60 minutes at the same temperature, and 7 parts by weight of 15% ammonium persulfate aqueous solution was dropped for 5 minutes in 120 minutes, and 6 parts by weight of 48% sodium hydroxide aqueous solution was added to obtain the concrete admixture of Reference Example 9. Similarly, the concrete admixture of Reference Example 10 in Table 3 was produced (however, the aqueous solution concentration of the charged components was changed as necessary).
比較例4
特公平2-7901号公報の参考例5に準じ共重合体を合成した。ガラス製反応容器に水395.5重量部を仕込み、窒素雰囲気下で95℃まで昇温した。次に、メトキシポリエチレングリ
コールモノメタクリレート(EOの平均付加モル数50)140重量部、メタクリル酸ナトリウ
ム60重量部及び水200重量部からなるモノマー水溶液と5%過硫酸アンモニウム水溶液3.0重量部のそれぞれを2時間で添加し、添加終了後さらに5%過硫酸アンモニウム水溶液1.
5重量部を1時間で添加した。その後1時間引き続いて95℃に温度を保持し、重合反応を
完結させ、平均分子量230,000の共重合体の水溶液を得た。得られた共重合体の25℃、濃
度5%での粘度は110mPa・sであった。該水溶液をコンクリート混和剤として用いた。
Comparative Example 4
A copolymer was synthesized in accordance with Reference Example 5 of Japanese Patent Publication No. 2-7901. A glass reaction vessel was charged with 395.5 parts by weight of water and heated to 95 ° C. under a nitrogen atmosphere. Next, a monomer aqueous solution consisting of 140 parts by weight of methoxypolyethylene glycol monomethacrylate (average number of added moles of EO 50), 60 parts by weight of sodium methacrylate and 200 parts by weight of water and 3.0 parts by weight of 5% ammonium persulfate aqueous solution for 2 hours. 5% ammonium persulfate aqueous solution 1.
5 parts by weight were added in 1 hour. Subsequently, the temperature was maintained at 95 ° C. for 1 hour to complete the polymerization reaction, and an aqueous copolymer solution having an average molecular weight of 230,000 was obtained. The viscosity of the obtained copolymer at 25 ° C. and a concentration of 5% was 110 mPa · s. The aqueous solution was used as a concrete admixture.
比較例5
コンクリート混和剤として、ポリカルボン酸系共重合体(FC 600 S、(株)日本触媒製)を用いた。
Comparative Example 5
A polycarboxylic acid copolymer (FC 600 S, manufactured by Nippon Shokubai Co., Ltd.) was used as a concrete admixture.
<性能評価>
参考例1〜10及び比較例1〜5で得られたコンクリート混和剤について、前記の方法により流動距離を測定した。結果を表4に示す。
<Performance evaluation>
About the concrete admixture obtained by Reference Examples 1-10 and Comparative Examples 1-5, the flow distance was measured by the said method. The results are shown in Table 4.
実施例1
参考例1と同様にして表1に示す単量体を表5のように用いてコンクリート混和剤を製造し、前記の方法により流動距離を測定した。結果を表5に示す。表5中、コンクリート混和剤No.11-1〜11-5は(A)/(B)モル比を一定にして重合した通常のコンクリート混和剤であり、コンクリート混和剤No.11-6は、No.11−1〜11-5の等量混合物である。また、No.11-7は、No.11-6と単量体の平均重量比を合わせたものであり、No.11-8はNo.11-7と単量体の平均重量比は同一であるが、滴下時間によって重量比を変化させながら重合する工程により製造したものである。この結果より単一の(A)/(B)モル比の共重合体より、該モル比が互いに異なる共重合体の3種以上の混合物が、更に該モル比を反応途中で少なくとも1回変化させて反応させた共重合体混合物が優れた性能を有することがわかる。
Example 1
A concrete admixture was produced using the monomers shown in Table 1 as shown in Table 5 in the same manner as in Reference Example 1, and the flow distance was measured by the method described above. The results are shown in Table 5. In Table 5, concrete admixtures Nos. 11-1 to 11-5 are ordinary concrete admixtures polymerized at a constant (A) / (B) molar ratio, and concrete admixtures No. 11-6 are: It is an equal mixture of No.11-1 to 11-5. In addition, No. 11-7 is a combination of No. 11-6 and the average weight ratio of the monomer. No. 11-8 is the same as No. 11-7 and the average weight ratio of the monomer. However, it is produced by a process of polymerization while changing the weight ratio depending on the dropping time. As a result, a mixture of three or more copolymers having different molar ratios from a single (A) / (B) molar ratio copolymer further changed the molar ratio at least once during the reaction. It can be seen that the copolymer mixture reacted to have excellent performance.
1…箱
2…漏斗
3…コンクリート組成物
1 ...
Claims (5)
(式中、
R1,R2:水素原子又はメチル基
m:0〜2の数
R3:水素原子
p:1の数
AO:炭素数2〜4のオキシアルキレン基
n:2〜300の数
X:水素原子又は炭素数1〜3のアルキル基
を表す。)
(式中、
R4〜R6:水素原子又はメチル基
M1,M2:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は置換アルキルアンモニウム基
m1:0〜2の数
を表す。) One or more of the monomers represented by the following general formula (a) (A) [hereinafter referred to as the monomer (A)] and one of the monomers represented by the following general formula (b) (B) [hereinafter referred to as monomer (B)] and (A) / (B) = 0 to 0.02-4, and 4 to 8 types of copolymers obtained by different molar ratios. A concrete admixture containing a copolymer mixture of the above, wherein the combination of the monomer (A) and the monomer (B) in the 4 to 8 types of copolymers is the same as each other .
(Where
R 1 and R 2 : hydrogen atom or methyl group
m: number from 0 to 2
R 3: hydrogen atom
p : number of 1
AO: C2-C4 oxyalkylene group
n: Number from 2 to 300
X: represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. )
(Where
R 4 to R 6 : hydrogen atom or methyl group
M 1 and M 2 : hydrogen atom, alkali metal, alkaline earth metal, ammonium group, alkylammonium group or substituted alkylammonium group
m1: represents a number from 0 to 2. )
(式中、(Where
RR 77 :水素原子又はメチル基: Hydrogen atom or methyl group
AO:炭素数2〜3のオキシアルキレン基AO: C2-C3 oxyalkylene group
nn 11 :12〜300の数: Number of 12-300
XX 11 :水素原子又は炭素数1〜3のアルキル基: A hydrogen atom or an alkyl group having 1 to 3 carbon atoms
を表す。)Represents. )
(式中、(Where
RR 88 :水素原子又はメチル基: Hydrogen atom or methyl group
AO:炭素数2〜3のオキシアルキレン基AO: C2-C3 oxyalkylene group
nn 22 :2〜290の数(ただし、一般式(a-1)中のn: Number of 2 to 290 (however, n in general formula (a-1) 11 との関係は、nRelationship with n 11 >n> N 22 且つ(nAnd (n 11 −n−n 22 )≧10である。)) ≧ 10. )
XX 22 :水素原子又は炭素数1〜3のアルキル基: A hydrogen atom or an alkyl group having 1 to 3 carbon atoms
を表す。)Represents. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004062215A JP4357994B2 (en) | 2004-03-05 | 2004-03-05 | Concrete admixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004062215A JP4357994B2 (en) | 2004-03-05 | 2004-03-05 | Concrete admixture |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36110899A Division JP3600100B2 (en) | 1999-12-20 | 1999-12-20 | Concrete admixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004168661A JP2004168661A (en) | 2004-06-17 |
JP4357994B2 true JP4357994B2 (en) | 2009-11-04 |
Family
ID=32709562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004062215A Expired - Lifetime JP4357994B2 (en) | 2004-03-05 | 2004-03-05 | Concrete admixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4357994B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2007002576A (en) * | 2004-09-06 | 2007-05-15 | Sika Technology Ag | Method for producing a coated basic material for a hydraulic composition, coated basic material for a hydraulic composition, additive for a hydraulic composition and method for producing a hydraulic composition. |
DE102006027035A1 (en) * | 2005-06-14 | 2007-01-11 | Basf Construction Polymers Gmbh | Polyether-containing copolymer |
JP5270843B2 (en) * | 2006-01-31 | 2013-08-21 | 株式会社日本触媒 | (Meth) acrylic acid copolymer, process for producing the same, and detergent composition using the same |
JP5401402B2 (en) * | 2010-06-07 | 2014-01-29 | Basfジャパン株式会社 | Copolymer composition for cement admixture and cement admixture |
JP5909359B2 (en) * | 2011-12-29 | 2016-04-26 | 株式会社日本触媒 | Copolymer for cement admixture, method for producing the same, and cement admixture containing the copolymer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3452083B2 (en) * | 1994-03-24 | 2003-09-29 | 株式会社フローリック | Dispersant for cement |
JPH0940446A (en) * | 1995-07-25 | 1997-02-10 | Kao Corp | Concrete admixture |
JP3423853B2 (en) * | 1996-02-22 | 2003-07-07 | 株式会社日本触媒 | Cement admixture and cement composition |
JP2992511B2 (en) * | 1997-08-06 | 1999-12-20 | 株式会社日本触媒 | Cement admixture and cement composition |
JP3278391B2 (en) * | 1997-12-16 | 2002-04-30 | 竹本油脂株式会社 | Dispersant for cement |
JP3029828B2 (en) * | 1998-01-22 | 2000-04-10 | 株式会社日本触媒 | Cement admixture and cement composition |
JP2992532B2 (en) * | 1998-03-03 | 1999-12-20 | 株式会社日本触媒 | Cement admixture |
-
2004
- 2004-03-05 JP JP2004062215A patent/JP4357994B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004168661A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3600100B2 (en) | Concrete admixture | |
TW200528415A (en) | Cement admixture | |
EP1636280A1 (en) | Cement dispersant and methods of making and using the same | |
JP6514806B2 (en) | Cement composition | |
JP4620085B2 (en) | Method for producing cement dispersant | |
JP6857500B2 (en) | Cement Additives and Cement Compositions | |
JP4459488B2 (en) | Cement dispersant | |
JP4357994B2 (en) | Concrete admixture | |
JP5101982B2 (en) | Dispersant for hydraulic composition | |
JPS641426B2 (en) | ||
JP6612735B2 (en) | Use of comb polymers for rheology control of inorganic binder compositions | |
JP4417020B2 (en) | Dispersant for hydraulic composition | |
JP4087042B2 (en) | Cement dispersant | |
JP4425775B2 (en) | Hydraulic powder dispersion copolymer | |
JP7320433B2 (en) | Polymer and cement admixture | |
JP3436920B2 (en) | Admixture for hydraulic compositions | |
JP4562964B2 (en) | Cement dispersant | |
JP2011116587A (en) | Early strengthening agent for hydraulic composition | |
JP3717758B2 (en) | Cement dispersant | |
JP4381565B2 (en) | Cement dispersant | |
JP4459491B2 (en) | Cement dispersant | |
KR101648255B1 (en) | Copolymer for cement admixture, method for preparing the same, and cement composition containing the same | |
JP6602149B2 (en) | Cement additive and cement composition | |
JPWO2020100212A1 (en) | Method for Producing Additives for Hydraulic Composition | |
JP2019123648A (en) | Cement additive, and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4357994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |