JP4447982B2 - Aluminum material with excellent ductility - Google Patents

Aluminum material with excellent ductility Download PDF

Info

Publication number
JP4447982B2
JP4447982B2 JP2004219112A JP2004219112A JP4447982B2 JP 4447982 B2 JP4447982 B2 JP 4447982B2 JP 2004219112 A JP2004219112 A JP 2004219112A JP 2004219112 A JP2004219112 A JP 2004219112A JP 4447982 B2 JP4447982 B2 JP 4447982B2
Authority
JP
Japan
Prior art keywords
rolling
elongation
aluminum material
cold rolling
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219112A
Other languages
Japanese (ja)
Other versions
JP2006057111A (en
Inventor
洋二 宇宿
堅 勝又
和弘 井之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004219112A priority Critical patent/JP4447982B2/en
Priority to MYPI20050689A priority patent/MY170612A/en
Priority to CN 200510051689 priority patent/CN1661122A/en
Publication of JP2006057111A publication Critical patent/JP2006057111A/en
Application granted granted Critical
Publication of JP4447982B2 publication Critical patent/JP4447982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Description

この発明は、ドロ−フィン材などのように高い伸び加工性が要求される用途に好適なアルミニウム材に関するものである。 The present invention, mud - is relates to a suitable aluminum material for applications where high elongation workability such as fin material may be required.

熱交換器に用いられるプレートフィンでは、チューブが挿通されるカラー部をドロー成形やドローレス成形によって形成している(例えば特許文献1)。このような成形、特に張出し加工や紋り加工における成形性を確保するためには、成形中の材料の破断を防止するためには、材料として高い伸びが不可欠である。ただし、調質をO材にしてしまうと伸びは得られるが、再結晶粒界を起点としたカラー割れが発生するため、一般に調質にはH22が使用されている。例えば、DC鋳造などによって得られるJIS A1050や1200等の純アルミニウム系の材料では、H22などの軟質処理を行うことによって適度な伸び(25%以上)加工性を得ることができ、上記したドロー成形によるカラー部の形成を良好に行うことができる。
また、最近では、生産性の向上や組織の微細化を意図して連続鋳造圧延によりアルミニウム材を製造することが行われており、上記したプレートフィンなどへの採用も考慮されている。
特開平5−230579号公報
In a plate fin used for a heat exchanger, a collar portion through which a tube is inserted is formed by draw molding or drawless molding (for example, Patent Document 1). In order to ensure moldability in such molding, particularly overhanging and patterning, high elongation as a material is indispensable for preventing breakage of the material during molding. However, if the tempering is made of an O material, elongation can be obtained, but color cracks starting from the recrystallized grain boundaries occur, so H22 is generally used for tempering. For example, a pure aluminum-based material such as JIS A1050 or 1200 obtained by DC casting or the like can obtain an appropriate elongation (25% or more) workability by performing a soft treatment such as H22. The color part can be formed satisfactorily by the above.
In recent years, aluminum materials have been manufactured by continuous casting and rolling with the intention of improving productivity and refining the structure, and their use for the above-described plate fins is also considered.
JP-A-5-230579

しかし、上記1050や1200で示される組成を有する連続鋳造圧延材では、H22処理によっても伸びは最大でも20%程度であり、25%以上の伸びを必要とするプレートフィンのカラー成形には不適当であり、高い伸びが必要とされる成形加工では連続鋳造圧延材の使用は不可能であるとされていた。
このため、本願発明者等は、連続鋳造圧延材の伸び・エリクセン値改善の検討を行ったところ、歪を付与するために、ある程度の圧下率で冷間圧延後、合金成分であるFeの均一な析出を目的とした析出処理の導入を行うことにより伸びを大きく改善できることを確認し、本発明を完成するに至ったものである。
However, the continuous cast rolled material having the composition indicated by 1050 or 1200 has a maximum elongation of about 20% even by the H22 treatment, and is not suitable for color molding of plate fins that require an elongation of 25% or more. Therefore, it has been said that it is impossible to use a continuously cast rolled material in a forming process that requires high elongation.
For this reason, the inventors of the present application have examined the improvement of the elongation and Erichsen value of the continuously cast rolled material, and in order to give distortion, after cold rolling at a certain degree of reduction, the alloy component Fe is uniform. It has been confirmed that the elongation can be greatly improved by introducing a precipitation treatment for the purpose of proper precipitation, and the present invention has been completed.

本発明は、上記事情を背景としてなされたものであり、連続鋳造圧延材であっても、プレートフィンなど、高い伸び加工性を要求される用途に使用可能なアルミニウム材を提供することを目的とする。 The present invention was made against the background of the above circumstances, and an object of the present invention is to provide an aluminum material that can be used for applications that require high stretch workability, such as plate fins, even if it is a continuously cast rolled material. To do.

すなわち、上記課題を解決するため、本発明の延性に優れたアルミニウム材は、純アルミニウムからなる連続鋳造圧延材で、金属組織中に板表面から観察して最大長さが2.0μm以上でアスペクト比が3以上の金属間化合物が30個/10000(μm)以上分布していることを特徴とする That is, in order to solve the above-mentioned problems, the aluminum material excellent in ductility of the present invention is a continuously cast rolled material made of pure aluminum, and has an aspect with a maximum length of 2.0 μm or more as observed from the plate surface in the metal structure. 30 or 10,000 (μm) 2 or more intermetallic compounds having a ratio of 3 or more are distributed .

また、純アルミニウムには、その他にFeなどを不可避的に含有している。このFeの含有量は、例えば、0.2〜1.0%を例示することができる。
また、純アルミニウムの不可避不純物としては、Fe以外に、Siを示すことができ、Si含有量としては0.2%以下を例示することができる。
その他の不純物量について本願発明は特に含有量を規制するものではないが、本発明の純アルミニウムとしては、Al純度が99.0%以上であるのが望ましい。
本発明に係るアルミニウム材においては、金属間化合物の最大長さを制御することが重要であり、最大長さ2.0μm以上でアスペクト比が3以上の金属間化合物が30個/10000(μm)以上で分布している場合に優れた延性を得ることができる。30個/10000(μm)未満の場合は一部に過飽和に固溶しているFeが存在しているため延性が低下する。
In addition, pure aluminum unavoidably contains Fe and the like. Examples of the Fe content include 0.2 to 1.0%.
Moreover, as an inevitable impurity of pure aluminum, Si can be shown besides Fe, and 0.2% or less can be illustrated as Si content.
Although the present invention does not particularly limit the content of other impurities, the pure aluminum of the present invention preferably has an Al purity of 99.0% or more.
In the aluminum material according to the present invention, it is important to control the maximum length of the intermetallic compound. There are 30 intermetallic compounds having a maximum length of 2.0 μm or more and an aspect ratio of 3 or more / 10000 (μm). Excellent ductility can be obtained when the distribution is 2 or more. In the case of less than 30 pieces / 10000 (μm) 2, ductility is lowered because Fe partially dissolved in supersaturation exists.

純アルミニウムからなる本発明のアルミニウム材では、25%以上の伸び特性を得ることができる。その結果、プレートフィンのドロー成形にも耐え得る成形性が得られる。したがって、本発明のアルミニウム材は、ドローフィン材に好適のものである。ただし、本発明のアルミニウム材の用途がこれに限定されるものではなく、高い伸び特性が要求される種々の用途材として用いることができる。   In the aluminum material of the present invention made of pure aluminum, an elongation characteristic of 25% or more can be obtained. As a result, moldability that can withstand draw molding of the plate fins is obtained. Therefore, the aluminum material of the present invention is suitable for a draw fin material. However, the use of the aluminum material of the present invention is not limited to this, and can be used as various application materials that require high elongation characteristics.

本発明のアルミニウム材の製造方法では、純アルミニウム材料を用いる。該純アルミニウム材料は、連続鋳造圧延によって製造される。連続鋳造圧延は、鋳造から熱間圧延に至る工程を独立して行う必要がなく、これら工程を連続して行うことを可能にするものである。本発明では、連続鋳造圧延は、双ロール法、ベルト法等の公知の方法により行うことができ、本発明としては特定の方法に限定されるものではない。ただし、連続鋳造圧延に際し、70℃/秒以上の冷却速度で純アルミニウム連続鋳造圧延材を得るのが望ましい。これは、70℃/秒未満の冷却速度であると、Feが固溶せず晶出してしまうため、その後に圧下後高温析出処理を行ってもAl−Fe系金属間化合物が析出しないためである。上記範囲の冷却速度で急速冷却された連続鋳造圧延材は、組織が微細化され、さらに高い強度を示す。   In the method for producing an aluminum material of the present invention, a pure aluminum material is used. The pure aluminum material is produced by continuous casting and rolling. Continuous casting and rolling does not require independent processes from casting to hot rolling, and enables these processes to be performed continuously. In the present invention, the continuous casting and rolling can be performed by a known method such as a twin roll method or a belt method, and the present invention is not limited to a specific method. However, in continuous casting and rolling, it is desirable to obtain a pure aluminum continuous casting and rolling material at a cooling rate of 70 ° C./second or more. This is because when the cooling rate is less than 70 ° C./second, Fe does not dissolve but crystallizes, and even if high-temperature precipitation is performed after the reduction, the Al—Fe intermetallic compound does not precipitate. is there. The continuously cast rolled material rapidly cooled at a cooling rate in the above range has a fine structure and exhibits higher strength.

冷間圧延
上記により得られる連続鋳造圧延材は冷間圧延に供される。
(1)冷間圧延前半(圧下率30〜70%)
冷間圧延においては、その中途で後述する高温析出処理を行うものとし、高温析出処理に至るまでの冷間圧延では、合計の圧下率を30〜70%に規制している。
すなわち、連続鋳造後から高温析出処理に至るまでには必ず所定の圧下率での冷間圧延による圧下が必要である。圧下率が30%未満であると、析出に必要な歪が得られず、その後の高温析出処理時に効率良くFeを析出させることが難しく、このため、H22に調整したときに十分な伸びを得ることができない。したがって圧下率としては30%以上が必要である。一方、70%を越える圧下率で圧下を行うと高温析出処理後に冷間圧延を行っても、高温析出処理から最終板厚までの圧下量が少なすぎるため、H22に調整した際に十分な伸びが得られない。したがって高温析出処理前の冷間圧延圧下率を30〜70%に限定する。さらに、実操業のことを考えると30%未満の圧下率では高温析出処理時間を24hr超行わないと十分な伸びが得られないため、好ましくは40%以上の圧下率で冷間圧延を行う。また、上記上限を定めた理由と同様の理由により上限として60%が適当である。
Cold rolling The continuously cast rolled material obtained as described above is subjected to cold rolling.
(1) First half of cold rolling (rolling ratio 30-70%)
In the cold rolling, a high temperature precipitation treatment to be described later is performed in the middle, and the total rolling reduction is regulated to 30 to 70% in the cold rolling up to the high temperature precipitation treatment.
That is, it is necessary to perform cold rolling at a predetermined rolling reduction after continuous casting until high temperature precipitation treatment. If the rolling reduction is less than 30%, the strain necessary for precipitation cannot be obtained, and it is difficult to deposit Fe efficiently during the subsequent high-temperature precipitation treatment. For this reason, sufficient elongation is obtained when adjusted to H22. I can't. Therefore, a reduction rate of 30% or more is necessary. On the other hand, if the reduction is performed at a reduction ratio exceeding 70%, even if cold rolling is performed after the high temperature precipitation treatment, the amount of reduction from the high temperature precipitation treatment to the final sheet thickness is too small. Cannot be obtained. Therefore, the cold rolling reduction ratio before the high temperature precipitation treatment is limited to 30 to 70%. Furthermore, considering the actual operation, sufficient rolling cannot be obtained unless the high temperature precipitation treatment time is over 24 hours at a reduction rate of less than 30%. Therefore, cold rolling is preferably performed at a reduction rate of 40% or more. Further, 60% is appropriate as the upper limit for the same reason as the reason for setting the upper limit.

(2)高温析出処理(500℃〜640℃)
連続鋳造圧延後、30〜70%の圧下率で冷間圧延したあとに、500℃〜640℃の高温析出処理を行うことにより、Feの析出物が均一に析出し、最終冷間圧延後にH22に調整すると25%以上の、従来に得られなかった高い伸びを得ることができる。高温析出処理は連続鋳造圧延材では従来得られなかった高い伸びを得るには不可欠である。
その理由を以下に説明する。冷却速度の速い連続鋳造法では冷却速度の遅いDC鋳造法と比較するとFeが過飽和に固溶している。このような状態で冷間圧延を行ってもH22に調整した際に十分な伸びを得ることができない。しかし、ある程度の圧下率で冷間圧延したあとに、高温でFeの析出処理を行うとFeが均一に析出し、従来にない高い伸びを得ることができることとなる。
(2) High temperature precipitation treatment (500 ° C to 640 ° C)
After continuous casting and rolling, after cold rolling at a rolling reduction of 30 to 70%, by performing high temperature precipitation treatment at 500 ° C. to 640 ° C., Fe precipitates are uniformly deposited, and after the final cold rolling, H22 When adjusted to 25%, a high elongation of 25% or more, which could not be obtained conventionally, can be obtained. The high temperature precipitation treatment is indispensable for obtaining a high elongation that has not been obtained with a continuous cast rolled material.
The reason will be described below. In the continuous casting method having a high cooling rate, Fe is supersaturated as compared with the DC casting method having a low cooling rate. Even if cold rolling is performed in such a state, sufficient elongation cannot be obtained when adjusting to H22. However, if the Fe precipitation treatment is performed at a high temperature after cold rolling at a certain rolling reduction, Fe is uniformly precipitated, and an unprecedented high elongation can be obtained.

上記の高温析出処理の温度としては500℃以上の温度が必要であり、500℃未満ではFeの析出が十分になされない。なお、Feを短時間で均一に析出させるためには、より高い温度が好ましいが、640℃を越えると局部的なブリスターが発生し、製品として外観を損ねるため、高温析出処理温度としては500〜640℃が適当である。さらに、実操業のことを考えると500℃未満の熱処理では熱処理時間を24hr超行わないと十分な伸びが得られない。また、640℃超の熱処理では熱処理炉が短期間で傷んでしまう。これらの理由で高温析出処理の下限温度は、550℃が好ましく、上限温度は630℃が好ましく、さらに下限温度570℃、上限温度610℃が一層好ましい。
また、熱処理時間としては保持時間として少なくとも1時間は行わないと十分な伸びを得ることができないので、1時間以上が望ましい。また、熱処理の保持時間は長時間行えばより確実にFeの析出を促進させることができるが、24時間を越える保持を行っても生産性の観点から不利である。したがって、高温析出処理の熱処理時間としては1〜24時間が適当であり、さらに好ましくは2〜10時間が適当である。
The temperature for the high-temperature precipitation treatment requires a temperature of 500 ° C. or higher. If the temperature is lower than 500 ° C., Fe is not sufficiently precipitated. In order to precipitate Fe uniformly in a short time, a higher temperature is preferable. However, if it exceeds 640 ° C., local blisters are generated and the appearance of the product is impaired. 640 ° C is suitable. Furthermore, considering the actual operation, heat treatment at less than 500 ° C. cannot achieve sufficient elongation unless the heat treatment time is over 24 hours. In addition, in the heat treatment above 640 ° C., the heat treatment furnace is damaged in a short period of time. For these reasons, the lower limit temperature of the high temperature precipitation treatment is preferably 550 ° C., the upper limit temperature is preferably 630 ° C., more preferably the lower limit temperature 570 ° C. and the upper limit temperature 610 ° C.
Further, the heat treatment time is preferably 1 hour or longer because sufficient elongation cannot be obtained unless the holding time is at least 1 hour. Further, if the heat treatment is held for a long time, the precipitation of Fe can be promoted more reliably, but holding for more than 24 hours is disadvantageous from the viewpoint of productivity. Accordingly, the heat treatment time for the high temperature precipitation treatment is suitably 1 to 24 hours, more preferably 2 to 10 hours.

(3)冷間圧延後半
上記高温析出処理を行った後は、さらに冷間圧延を行って所望の最終厚さにする。この冷間圧延後半での圧下率は、本発明としては特に限定されない。ただし、冷間圧延後半での圧下量が不十分であると材料の伸びが十分に大きくならないため、冷間圧延後半での圧下率は、90%以上とするのが望ましい。
(3) Cold rolling latter half After performing the said high temperature precipitation process, it cold-rolls further and it is set as desired final thickness. The rolling reduction in the latter half of the cold rolling is not particularly limited as the present invention. However, if the amount of reduction in the second half of cold rolling is insufficient, the elongation of the material will not be sufficiently increased. Therefore, the reduction ratio in the second half of cold rolling is desirably 90% or more.

仕上げ焼鈍(220〜300℃)
上記冷間圧延後、仕上げの焼鈍を行うことによって材料が軟質化されて高い伸びを示す。この仕上げ焼鈍の加熱温度としては220〜300℃が好ましい。220℃未満では焼鈍効果が十分に得られず、300℃を越えると、再結晶し、これがカラー割れの起点となるため、上記範囲が好適なものとして示される。
Finish annealing (220-300 ° C)
After the cold rolling, the material is softened and annealed at a high elongation by finishing annealing. The heating temperature for the finish annealing is preferably 220 to 300 ° C. If it is less than 220 ° C., the annealing effect is not sufficiently obtained, and if it exceeds 300 ° C., it is recrystallized and this becomes the starting point of color cracking, so the above range is shown as being suitable.

以上説明したように、本発明のアルミニウム材、DC鋳造品と同等で従来の連続鋳造圧延に比べて高い伸び特性を有する。したがって、プレートフィンのドロー加工のように高い伸び成形性を必要とされる用途材においても良好に成形加工を行うことが可能となる。
そして、本発明のアルミニウム材は、高い伸び特性が要求される熱交換器のフィンなどに使用することができ、連続鋳造圧延材としてDC鋳造品と同レベルの伸び・エリクセン値を有する。
As described above, the aluminum material of the present invention is equivalent to a DC cast product and has high elongation characteristics as compared with conventional continuous casting and rolling . Therefore, it becomes possible to perform satisfactory molding in applications materials required high elongation moldability as draw working of the plate fins.
And the aluminum material of this invention can be used for the fin of a heat exchanger etc. in which a high elongation characteristic is requested | required, and has an elongation and Erichsen value of the same level as DC casting as a continuous cast rolling material.

以下に、本発明の一実施形態を説明する。
純アルミニウム系の材料を用意し、適宜の方法により溶解し、連続鋳造圧延に供する。連続鋳造圧延の際しては、双ロール法などの適宜の方法によって鋳造、圧延の一連の工程を連続して行う。該工程においては、好適には70℃/秒以上の冷却速度で連続鋳造圧延する。
得られた連続鋳造圧延材は、ライン上にて、または他施設において冷間圧延に供する。
冷間圧延では、高温析出処理を挟むものとし、高温析出処理に至るまでに、合計で30〜70%の圧下率で冷間圧延を行う。この際のパス数は特に限定されない。
Hereinafter, an embodiment of the present invention will be described.
A pure aluminum material is prepared, melted by an appropriate method, and subjected to continuous casting and rolling. In continuous casting and rolling, a series of casting and rolling processes are continuously performed by an appropriate method such as a twin roll method. In this step, continuous casting and rolling is preferably performed at a cooling rate of 70 ° C./second or more.
The obtained continuous cast rolled material is subjected to cold rolling on a line or in another facility.
In the cold rolling, the high temperature precipitation treatment is sandwiched, and the cold rolling is performed at a reduction rate of 30 to 70% in total until reaching the high temperature precipitation treatment. The number of passes at this time is not particularly limited.

上記析出処理前の冷間圧延の後に、高温析出処理を行う。
高温析出処理では、500〜640℃(好適には550℃〜630℃)で1〜24時間(好適には2〜10時間)の加熱を行い、主として連続鋳造圧延によって基地中に固溶しているFeを析出物として析出させる。
その後は、さらに冷間圧延を行って最終板厚とする。この冷間圧延での圧下率は特に限定されないが、通常は90%以上の圧下率で圧延される。
After the cold rolling before the precipitation treatment, a high temperature precipitation treatment is performed.
In the high temperature precipitation treatment, heating is performed at 500 to 640 ° C. (preferably 550 ° C. to 630 ° C.) for 1 to 24 hours (preferably 2 to 10 hours), and the solid solution is mainly dissolved in the base by continuous casting rolling. Fe is deposited as precipitates.
Thereafter, cold rolling is further performed to obtain a final thickness. Although the rolling reduction in this cold rolling is not particularly limited, it is usually rolled at a rolling reduction of 90% or more.

このアルミニウム材に対し、220〜300℃で、例えば1〜24時間の加熱を行って仕上げ焼鈍を行って、材料を軟化させる。この仕上げ焼鈍によってアルミニウム材の伸びは25%以上を示す。   The aluminum material is heated at 220 to 300 ° C. for 1 to 24 hours, for example, and subjected to finish annealing to soften the material. By this finish annealing, the elongation of the aluminum material is 25% or more.

次に、該アルミニウム材1をプレートフィンとするために、カラー部5を形成する工程を図1に基づいて説明する。
アルミニウム材1の所望の箇所にカラー部用に張り出し加工を行い、該張り出し部分1aに対しさらに数次の絞り加工を行うドロー加工を行う。この絞りが行われた張り出し部分1bに孔2を開けるピアス加工を行ってカラー粗部3を形成する。このカラー粗部3にはさらにフレア加工を行って所望のカラー部5を形成する。これら一連の工程では、上記アルミニウム材1の伸び特性が良好であることから破断などを招くことなく成形を行うことができる。
Next, in order to make the aluminum material 1 into a plate fin, a process of forming the collar portion 5 will be described with reference to FIG.
The aluminum material 1 is stretched at a desired location for the collar portion, and the stretched portion 1a is subjected to draw processing for further several drawing operations. The rough collar portion 3 is formed by performing a piercing process to open the hole 2 in the overhanging portion 1b where the drawing has been performed. The rough color portion 3 is further flared to form a desired color portion 5. In these series of steps, the aluminum material 1 has good elongation characteristics, so that it can be molded without causing breakage.

このような成形を経て得られるプレートフィン材10は、図2に示すように、カラー部5の高さによって間隔を規制するようにして多数を積層し、前記孔2にチューブ20を挿通して固定されている。なお、チューブ20の固定に際しては、チューブ20を、孔2の内径よりも多少外径が小さい形状にしておき、積層したプレートフィン10の孔2内にチューブ20を挿入した状態で、チューブ20をプラグ(図示しない)などで拡径してチューブ20の外周部をカラー部5に押付けることでプレートフィン10とチューブ20との固定を行っている。   As shown in FIG. 2, the plate fin material 10 obtained through such molding is laminated in a large number so that the interval is regulated by the height of the collar portion 5, and the tube 20 is inserted into the hole 2. It is fixed. When fixing the tube 20, the tube 20 is shaped so that the outer diameter is slightly smaller than the inner diameter of the hole 2, and the tube 20 is inserted in the hole 2 of the laminated plate fin 10. The plate fin 10 and the tube 20 are fixed by expanding the diameter with a plug (not shown) and pressing the outer periphery of the tube 20 against the collar portion 5.

なお、本発明は、発明の範囲を逸脱しない範囲においては変更可能であり、上記実施形態に限定されない。
例えば、上記実施形態では、高い伸び加工性を有する本発明のアルミニウム材をプレートフィン材に用いる場合について説明したが、本発明としては、上記アルミニウム材の用途がプレートフィンに限定されるものではなく、伸び加工性が要求される種々の用途に用いることができる。
The present invention can be modified without departing from the scope of the invention, and is not limited to the above embodiment.
For example, in the above embodiment has described the case of using the aluminum material of the present invention having a working stretch have high the plate fin material, as the present invention, in which the above aluminum material use is limited to the plate fins And can be used for various applications that require stretch workability.

Si:0.1%、Fe:0.7%、残部Alおよび不可避不純物よりなる純アルミニウム材を、表1に示す冷却速度によって双ロール法の連続鋳造圧延によって製造した。板厚7.2mmに製造された上記純アルミニウム材を、表1に示す圧下率で高温析出処理前の冷間圧延を行い、次いで、表1に示す温度、時間で高温析出処理を行い、その後、表1に示す圧下率で0.1mmの最終板厚まで冷間圧延した後、仕上げ焼鈍(250℃、6時間加熱)により調質を行った供試材を作製した。なお、比較のため、上記析出前の冷間圧延、高温析出処理を行うことなく最終板厚とし、上記仕上げ焼鈍を行った供試材を作製した。
金属間化合物の分布は板表面を走査型電子顕微鏡を用いて板表面から観察を行い、金属間化合物の最大長さ、アスペクト比(最大長さ/最小長さ)および一定面積における存在数を測定した。
上記各供試材について、引張強度と伸びを測定し、その結果を表1に示した。
A pure aluminum material composed of Si: 0.1%, Fe: 0.7%, the balance Al and inevitable impurities was produced by continuous casting rolling using a twin roll method at the cooling rate shown in Table 1. The pure aluminum material manufactured to a plate thickness of 7.2 mm is cold-rolled before the high temperature precipitation treatment at the rolling reduction shown in Table 1, and then subjected to the high temperature precipitation treatment at the temperature and time shown in Table 1. After cold rolling to a final plate thickness of 0.1 mm at the rolling reduction shown in Table 1, a test material was prepared that was tempered by finish annealing (250 ° C., 6 hours heating). For comparison, a test material having the final thickness was prepared without performing cold rolling and high-temperature precipitation treatment before the above-described precipitation, and a sample material having been subjected to the above-described finish annealing was produced.
The distribution of intermetallic compounds is observed from the surface of the plate using a scanning electron microscope, and the maximum length, aspect ratio (maximum length / minimum length) of the intermetallic compound, and the number of existence in a certain area are measured. did.
About each said test material, the tensile strength and elongation were measured and the result was shown in Table 1.

その後、上記各供試材に対し、ドロー加工法によりフィン径9.40mm、フィンピッチ(カラー部高さ)1.8〜3.0mmの条件でフィンプレス加工を行い、成形性評価を行った。成形性評価は各フィンピッチにおいて成形したフィンを観察し、カラー部に亀裂または破断を生じずに良好に成形できたものを○、材料に少しでも亀裂または破断が生じたものを×とした。   Thereafter, the above test materials were subjected to fin press processing under the conditions of a fin diameter of 9.40 mm and a fin pitch (color part height) of 1.8 to 3.0 mm by a draw processing method, and formability was evaluated. . The moldability was evaluated by observing the fins formed at each fin pitch. The case where the collar part was able to be formed satisfactorily without causing cracks or breakage was evaluated as “◯”, and the case where the material was cracked or broken as little as “X”.

上記成形性の評価結果を表1に示した。
表1より明らかなように本発明例はドロー加工方法においては所定の強度を得ながらも、高い伸びを有し、高い成形性が得られている。
一方、本発明範囲外である比較例は、成形性が悪くドロー加工法に適したものではなかった。
The moldability evaluation results are shown in Table 1.
As is apparent from Table 1, the present invention example has a high elongation and a high formability while obtaining a predetermined strength in the draw processing method.
On the other hand, out of range of the ratio Comparative Examples of the present invention, it did not moldability suitable for bad draw processing methods.

Figure 0004447982
Figure 0004447982

本発明の一実施形態を説明する工程図である。It is process drawing explaining one Embodiment of this invention. 同じくプレートフィン材およびチューブを示す図である。It is a figure which similarly shows a plate fin material and a tube.

符号の説明Explanation of symbols

1 アルミニウム材
2 孔
5 カラー部
10 プレートフィン材
1 Aluminum material 2 Hole 5 Collar portion 10 Plate fin material

Claims (1)

純アルミニウムからなる連続鋳造圧延材で、金属組織中に板表面から観察して最大長さが2.0μm以上でアスペクト比が3以上の金属間化合物が30個/10000(μm)以上分布していることを特徴とする延性に優れたアルミニウム材。 It is a continuous cast rolled material made of pure aluminum, and 30 or 10,000 (μm) 2 or more intermetallic compounds having a maximum length of 2.0 μm or more and an aspect ratio of 3 or more are observed in the metal structure from the plate surface. An aluminum material with excellent ductility characterized by
JP2004219112A 2004-02-25 2004-07-27 Aluminum material with excellent ductility Expired - Fee Related JP4447982B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004219112A JP4447982B2 (en) 2004-02-25 2004-07-27 Aluminum material with excellent ductility
MYPI20050689A MY170612A (en) 2004-02-25 2005-02-23 Aluminum material excellent in ductility and production method for the aluminum material.
CN 200510051689 CN1661122A (en) 2004-02-25 2005-02-25 Aluminous materials having excellent ductility and mfg. method for same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004050078 2004-02-25
JP2004214717 2004-07-22
JP2004219112A JP4447982B2 (en) 2004-02-25 2004-07-27 Aluminum material with excellent ductility

Publications (2)

Publication Number Publication Date
JP2006057111A JP2006057111A (en) 2006-03-02
JP4447982B2 true JP4447982B2 (en) 2010-04-07

Family

ID=36104835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219112A Expired - Fee Related JP4447982B2 (en) 2004-02-25 2004-07-27 Aluminum material with excellent ductility

Country Status (1)

Country Link
JP (1) JP4447982B2 (en)

Also Published As

Publication number Publication date
JP2006057111A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
KR101455606B1 (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP2020500108A (en) Gear rack steel plate having a maximum thickness of 177.8 mm manufactured by continuous casting billet and method for manufacturing the same
KR20060133996A (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
CN113308653B (en) Aluminum lithium alloy heat treatment preparation method based on spray forming
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP5313554B2 (en) High temperature forming method of Al-Mg-Si alloy plate
JP3810902B2 (en) Aluminum alloy fin material and method for producing aluminum alloy fin material
JP3345839B2 (en) Method of manufacturing high strength aluminum alloy fin material for forming
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JP4447982B2 (en) Aluminum material with excellent ductility
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP4257736B2 (en) Aluminum continuous cast and rolled plate with excellent ductility
JP2931136B2 (en) Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP2004502038A (en) Manufacturing method of aluminum foil for fins
JP2007270348A (en) Method for manufacturing body for automobile
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JP4704557B2 (en) Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JP2931137B2 (en) Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JPS5910987B2 (en) Aluminum alloy with excellent formability and method for manufacturing its thin plate
JP2018178193A (en) Aluminum alloy-made processed product and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees