JP4443397B2 - Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element - Google Patents

Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element Download PDF

Info

Publication number
JP4443397B2
JP4443397B2 JP2004360288A JP2004360288A JP4443397B2 JP 4443397 B2 JP4443397 B2 JP 4443397B2 JP 2004360288 A JP2004360288 A JP 2004360288A JP 2004360288 A JP2004360288 A JP 2004360288A JP 4443397 B2 JP4443397 B2 JP 4443397B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
electrode
optical semiconductor
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004360288A
Other languages
Japanese (ja)
Other versions
JP2006173197A (en
Inventor
誠 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2004360288A priority Critical patent/JP4443397B2/en
Publication of JP2006173197A publication Critical patent/JP2006173197A/en
Application granted granted Critical
Publication of JP4443397B2 publication Critical patent/JP4443397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Description

本発明は、パッケージの薄型化及び小型化に好適な光半導体素子及び光半導体装置並びに光半導体素子の製造方法に関する。   The present invention relates to an optical semiconductor element, an optical semiconductor device, and a method for manufacturing an optical semiconductor element suitable for reducing the thickness and size of a package.

従来、表面実装型の発光ダイオードは、特許文献1に記載されているように、通常、発光素子を基板上に接着し、ワイヤーボンディングやバンプによって基板との導通を確保した後に樹脂封止してパッケージ化されている。
例えば、1本のワイヤーボンディングで電気的接続を行う場合、図11の(a)(b)に示すように、pn接合面Jを上部に配すると共に上面に電極パターン1が一つ形成された発光素子2を、一対の配線パターン3A、3Bが形成された基板4の一方の配線パターン3A上に半田等(図示略)で接着固定し、発光素子2の下面側と電気的に接続する。
Conventionally, as described in Patent Document 1, surface-mounted light-emitting diodes are usually bonded with a resin after bonding a light-emitting element on a substrate and securing conduction with the substrate by wire bonding or bumps. It is packaged.
For example, when electrical connection is performed by one wire bonding, as shown in FIGS. 11A and 11B, the pn junction surface J is disposed on the upper side, and one electrode pattern 1 is formed on the upper surface. The light emitting element 2 is bonded and fixed with solder or the like (not shown) on one wiring pattern 3A of the substrate 4 on which the pair of wiring patterns 3A and 3B is formed, and is electrically connected to the lower surface side of the light emitting element 2.

さらに、Au細線等のワイヤー5で発光素子2の電極パターン1と基板4の他方の配線パターン3Bとをワイヤーボンディングで接続する。この状態で、透明な封止樹脂部6で発光素子2を封止することでパッケージ化している。   Further, the electrode pattern 1 of the light emitting element 2 and the other wiring pattern 3B of the substrate 4 are connected by wire bonding with a wire 5 such as an Au fine wire. In this state, the light emitting element 2 is sealed with a transparent sealing resin portion 6 to be packaged.

また、2本のワイヤーボンディングで電気的接続を行う場合、図12の(a)(b)に示すように、pn接合面Jを上面側に配すると共に一対の電極パターン1A、1Bが上面に形成された発光素子12を、一対の配線パターン3A、3Bが形成された基板4の一方の配線パターン3A上に半田等(図示略)で接着固定し、発光素子12の下面側と電気的に接続する。なお、一対の電極パターン1A、1Bは、一方が発光素子12のp側電極とされ、他方が発光素子12のn側電極とされている。さらに、一方のワイヤー5Aで発光素子12上の一方の電極パターン1Aと基板4の一方の配線パターン3Aとをワイヤーボンディングで接続すると共に、他方のワイヤー5Bで発光素子12上の他方の電極パターン1Bと基板4の他方の配線パターン3Bとをワイヤーボンディングで接続している。   When electrical connection is made by two wire bondings, as shown in FIGS. 12A and 12B, the pn junction surface J is arranged on the upper surface side, and the pair of electrode patterns 1A and 1B are formed on the upper surface. The formed light emitting element 12 is bonded and fixed with solder or the like (not shown) on one wiring pattern 3A of the substrate 4 on which the pair of wiring patterns 3A and 3B is formed, and is electrically connected to the lower surface side of the light emitting element 12. Connecting. Note that one of the pair of electrode patterns 1 </ b> A and 1 </ b> B is a p-side electrode of the light-emitting element 12, and the other is an n-side electrode of the light-emitting element 12. Furthermore, one electrode pattern 1A on the light emitting element 12 and one wiring pattern 3A on the substrate 4 are connected by wire bonding with one wire 5A, and the other electrode pattern 1B on the light emitting element 12 is connected with the other wire 5B. And the other wiring pattern 3B of the substrate 4 are connected by wire bonding.

さらに、図13の(a)(b)に示すように、ワイヤーボンディングを用いずにバンプ8で電気的接続を行う場合、上記図12に示した発光素子12を下向き、すなわちpn接合面Jを下側にし、基板4の一方の配線パターン3A上に一方の電極パターン1Aを配すると共に他方の配線パターン3B上に他方の電極パターン1Bを配するようにして、それぞれバンプ8で接着固定することにより、発光素子12と配線パターン3A、3Bとを電気的に接続している。   Further, as shown in FIGS. 13A and 13B, when the electrical connection is made by the bumps 8 without using wire bonding, the light emitting element 12 shown in FIG. One electrode pattern 1A is disposed on one wiring pattern 3A of the substrate 4 on the lower side, and the other electrode pattern 1B is disposed on the other wiring pattern 3B, and each of them is bonded and fixed with bumps 8. Thus, the light emitting element 12 and the wiring patterns 3A and 3B are electrically connected.

特開2004−193451号公報(第2頁、図1、図6)Japanese Unexamined Patent Publication No. 2004-193451 (second page, FIG. 1 and FIG. 6)

上記従来の電気的接続では、ワイヤーボンディングを用いる場合、ワイヤー5、5A、5Bが露出しない程度しか、封止樹脂部6の高さを低くすることができず、パッケージ全体を薄くすることが困難であった。また、ワイヤーボンディングのためのスペースを上面の電極に設ける必要があるため、大きな電極により光が遮られてしまう不都合があった。さらに、ワイヤー5、5A、5Bが上面側に配されるため、ワイヤー5、5A、5Bが光を遮ってしまうという不都合もあった。
また、バンプ8を用いる場合、封止樹脂部6の高さを低くすることは可能であるが、バンプ8の形成にコストがかかり、実装についてもフェイスダウンボンディングのために時間がかかり、検査もしにくいという不都合があった。
In the above-described conventional electrical connection, when wire bonding is used, the height of the sealing resin portion 6 can be reduced only to the extent that the wires 5, 5A, 5B are not exposed, and it is difficult to make the entire package thin. Met. Moreover, since it is necessary to provide a space for wire bonding in the electrode on the upper surface, there is a problem that light is blocked by a large electrode. Furthermore, since the wires 5, 5 </ b> A, 5 </ b> B are arranged on the upper surface side, there is a disadvantage that the wires 5, 5 </ b> A, 5 </ b> B block light.
In addition, when the bump 8 is used, it is possible to reduce the height of the sealing resin portion 6. However, the formation of the bump 8 is costly, and the mounting is time-consuming for face-down bonding. There was an inconvenience that it was difficult.

本発明は、前述の課題に鑑みてなされたもので、ワイヤーやバンプを用いずに電極の電気的接続ができ、効率的に発光又は受光が可能で低コストな光半導体素子及び光半導体装置並びに光半導体素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. An optical semiconductor element, an optical semiconductor device, and a low-cost optical semiconductor element that can electrically connect electrodes without using wires or bumps, can efficiently emit or receive light, and An object of the present invention is to provide a method for manufacturing an optical semiconductor element.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の光半導体素子は、p型半導体層とn型半導体層とを積層してなる略長方形状の素子本体と、素子本体の角部の少なくとも一つを面取りした又は切り欠いた領域に形成されp型半導体層又はn型半導体層に他の層とは絶縁状態で電気的に導通する角部電極と、を備えていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the optical semiconductor element of the present invention includes a substantially rectangular element body formed by laminating a p-type semiconductor layer and an n-type semiconductor layer, and a region where at least one corner of the element body is chamfered or notched. The p-type semiconductor layer or the n-type semiconductor layer is provided with a corner electrode that is electrically connected to other layers in an insulated state.

すなわち、この光半導体素子では、素子本体の角部の面取り領域又は切り欠き領域に角部電極が形成されているので、基板上に実装する際に、基板上の電極と角部電極とをハンダペーストやAgペースト等の導電性接着剤で接着及び導通を図ることで、ワイヤーボンディングを不要とすることができる。したがって、パッケージ化の際に封止樹脂部の高さを低く抑えることができると共に、ワイヤーによる光の遮断を無くすことができる。そして、上面ではなく角部に電極が配されているので、発光又は受光の際に電極が光を遮ることを極力避けることができ、発光面積又は受光面積を最大限確保することができる。さらに、角部に電極が配されることで、実装後の外観検査等が容易になる。また、バンプが不要となり、ハンダペーストやAgペースト等の導電性接着剤で基板との接着及び導通を図ることで、少ない工程及び低コストで容易に実装することができると共に、小型化を図ることができる。このように、本発明では、パッケージ化した際に全体として薄型化及び小型化を低コストで図ることができると共に、効率的な発光又は受光を得ることができる。   That is, in this optical semiconductor element, the corner electrode is formed in the chamfered region or the cutout region of the corner of the element body. Therefore, when mounting on the substrate, the electrode on the substrate and the corner electrode are soldered. By bonding and conducting with a conductive adhesive such as paste or Ag paste, wire bonding can be eliminated. Therefore, the height of the sealing resin portion can be kept low during packaging, and light blocking by the wire can be eliminated. Since the electrodes are arranged not at the top surface but at the corners, it is possible to avoid as much as possible that the electrodes block the light during light emission or light reception, and the light emission area or light reception area can be ensured to the maximum. Furthermore, by providing electrodes at the corners, visual inspection after mounting becomes easy. In addition, bumps are not required, and by mounting and conducting with a substrate with a conductive adhesive such as solder paste or Ag paste, it can be easily mounted with a small number of steps and at a low cost. Can do. Thus, according to the present invention, when packaged, the overall thickness and size can be reduced at low cost, and efficient light emission or light reception can be obtained.

また、本発明の光半導体素子は、角部電極が、p型半導体層及びn型半導体層のうち一方に他の層とは絶縁状態で電気的に導通する第1の角部電極と、p型半導体層及びn型半導体層のうち他方に他の層とは絶縁状態で電気的に導通する第2の角部電極と、からなることを特徴とする。すなわち、この光半導体素子では、第1の角部電極と第2の角部電極とで、p型半導体層及びn型半導体層の電気的接続を行うことにより、サファイヤ基板等の絶縁性基板を光半導体素子の成長用基板に用いた場合でも、ワイヤーを用いずにp型半導体層及びn型半導体層のそれぞれの導通を得ることができる。   In the optical semiconductor element of the present invention, the corner electrode has a first corner electrode electrically connected to one of the p-type semiconductor layer and the n-type semiconductor layer in an insulated state from the other layer, and p The second corner electrode, which is electrically conductive with the other layer in an insulated state, is formed on the other of the n-type semiconductor layer and the n-type semiconductor layer. That is, in this optical semiconductor element, an insulating substrate such as a sapphire substrate is formed by electrically connecting the p-type semiconductor layer and the n-type semiconductor layer with the first corner electrode and the second corner electrode. Even when used as a growth substrate for an optical semiconductor element, it is possible to obtain electrical continuity between the p-type semiconductor layer and the n-type semiconductor layer without using wires.

さらに、本発明の光半導体素子は、角部電極が、素子本体の対角位置に配された一対の角部に形成されていることを特徴とする。すなわち、この光半導体素子では、角部電極が対角位置の角部に形成されているので、発光又は受光の指向性に偏りが少なくなり、実装基板への接着も対角位置である両端で行われるため、バランスの良い高い接着強度を得ることができる。   Furthermore, the optical semiconductor element of the present invention is characterized in that the corner electrodes are formed at a pair of corners arranged at diagonal positions of the element body. In other words, in this optical semiconductor element, the corner electrodes are formed at the corners of the diagonal position, so that the directivity of light emission or light reception is less biased, and adhesion to the mounting substrate is also performed at both ends at the diagonal positions. As a result, a well-balanced and high adhesive strength can be obtained.

また、本発明の光半導体素子は、角部電極が、素子本体の一側面の両側に配された一対の角部に形成されていることを特徴とする。すなわち、この光半導体素子では、一側面の両側に角部電極が配されているので、上記一側面を実装基板への接着面とする側面実装を行う場合、一対の角部電極全体にわたってハンダペーストやAgペースト等の導電性接着剤で接着を行うことができ、高い接着強度を得ることができる。   The optical semiconductor element of the present invention is characterized in that the corner electrodes are formed at a pair of corner portions arranged on both sides of one side surface of the element body. That is, in this optical semiconductor element, the corner electrodes are arranged on both sides of one side surface. Therefore, when performing side mounting using the one side surface as an adhesive surface to the mounting substrate, the solder paste is formed over the entire pair of corner electrodes. It is possible to bond with a conductive adhesive such as Ag paste or Ag paste, and high adhesive strength can be obtained.

本発明の光半導体装置は、一対の配線パターンが形成された基板と、一対の配線パターン上に接着された上記本発明の光半導体素子と、光半導体素子の周囲を覆う封止樹脂部と、を備え、角部電極と該角部電極に対応する配線パターンとが導電性接着材料で接着されていることを特徴とする。
この光半導体装置では、角部電極と配線パターンとが導電性接着材料で接着されて上記本発明の光半導体素子が基板上に実装されているので、薄い封止樹脂部とすることができ、薄型かつ小型にパッケージ化された発光ダイオードやフォトダイオード等を低コストで得ることができる。
An optical semiconductor device of the present invention includes a substrate on which a pair of wiring patterns is formed, the optical semiconductor element of the present invention bonded on the pair of wiring patterns, a sealing resin portion covering the periphery of the optical semiconductor element, The corner electrode and the wiring pattern corresponding to the corner electrode are bonded with a conductive adhesive material.
In this optical semiconductor device, the corner electrode and the wiring pattern are bonded with a conductive adhesive material, and the optical semiconductor element of the present invention is mounted on the substrate. Light-emitting diodes, photodiodes, and the like that are thin and small packaged can be obtained at low cost.

本発明の光半導体素子の製造方法は、p型半導体層とn型半導体層とを積層してなる半導体ウエハーにスルーホール又は凹部を複数形成する工程と、スルーホール又は凹部の内面にp型半導体層又はn型半導体層に他の層とは絶縁状態で電気的に導通する角部電極を形成する工程と、スルーホール又は凹部をダイシングラインの交差位置に配して格子状に半導体ウエハーをダイシングして略長方形のチップ状に分割する工程と、を有することを特徴とする。   The method for producing an optical semiconductor device of the present invention includes a step of forming a plurality of through holes or recesses in a semiconductor wafer formed by laminating a p-type semiconductor layer and an n-type semiconductor layer, and a p-type semiconductor on the inner surface of the through holes or recesses. A step of forming a corner electrode that is electrically insulated from other layers on the layer or the n-type semiconductor layer, and dicing the semiconductor wafer in a lattice shape by arranging a through hole or a recess at the intersection of the dicing lines And a step of dividing the chip into substantially rectangular chips.

この光半導体素子の製造方法では、半導体ウエハーの状態で予め形成したスルーホール又は凹部をダイシングラインの交差位置に配してダイシングすることにより、一つのスルーホール又は凹部で4つの光半導体素子の角部電極を同時に形成することができる。したがって、加工数が少なくなり、上記本発明の光半導体素子を低コストで容易に作製することが可能になる。   In this method of manufacturing an optical semiconductor element, through holes or recesses formed in advance in the state of a semiconductor wafer are placed at the intersection of dicing lines and diced, so that the corners of four optical semiconductor elements can be obtained with one through hole or recess. The partial electrodes can be formed simultaneously. Therefore, the number of processes is reduced, and the optical semiconductor element of the present invention can be easily manufactured at low cost.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る光半導体素子によれば、素子本体の角部の切り欠き領域又は面取り領域に角部電極が形成されているので、ワイヤーボンディングやバンプが不要となり、パッケージ化した際に全体として薄型化及び小型化を低コストで図ることができると共に、角部電極が光を遮らないことから効率的な発光又は受光を得ることができる。したがって、この光半導体素子を実装した本発明の光半導体装置によれば、薄型かつ小型で高輝度の発光ダイオードや高受光感度のフォトダイオード等を低コストで得られ、これらを実装スペースが小さい又は薄型の筐体を有する機器に搭載することが可能になる。
また、本発明に係る光半導体素子の製造方法によれば、半導体ウエハーの状態で予め形成したスルーホール又は凹部をダイシングラインの交差位置に配してダイシングすることにより、効率的に角部電極を形成して低コストで上記本発明の光半導体素子を作製することができ、生産性を向上させることができる。
The present invention has the following effects.
That is, according to the optical semiconductor device of the present invention, the corner electrode is formed in the notched region or the chamfered region of the corner portion of the device body, so that wire bonding and bumps are not necessary, and the entire body when packaged. As described above, it is possible to reduce the thickness and size at low cost and to obtain efficient light emission or light reception because the corner electrode does not block light. Therefore, according to the optical semiconductor device of the present invention on which this optical semiconductor element is mounted, a thin, small, high-brightness light-emitting diode, a photodiode with high light receiving sensitivity, and the like can be obtained at low cost, and the mounting space is small or It can be mounted on a device having a thin casing.
In addition, according to the method for manufacturing an optical semiconductor element according to the present invention, the corner electrode is efficiently formed by dicing a through hole or a recess formed in advance in the state of a semiconductor wafer at the intersection of dicing lines. Thus, the optical semiconductor element of the present invention can be manufactured at low cost, and productivity can be improved.

以下、本発明に係る光半導体素子及び光半導体装置並びに光半導体素子の製造方法の第1実施形態を、図1を参照しながら説明する。   A first embodiment of an optical semiconductor element, an optical semiconductor device, and an optical semiconductor element manufacturing method according to the present invention will be described below with reference to FIG.

本実施形態の光半導体装置は、図1の(a)に示すように、例えば赤外線発光ダイオードであって、p側配線パターン13A及びn側配線パターン13Bが形成された基板14と、該基板14上にハンダやAgペースト等の導電性接着材料(図示略)で接着される発光素子(光半導体素子)22と、該発光素子22の周囲を覆う封止樹脂部6と、を備えている。
上記基板14は、例えば略直方体形状のガラスエポキシ基板、BTレジン基板、セラミックス基板やメタルコア基板等の絶縁性基板である。また、p側配線パターン13A及びn側配線パターン13Bは、発光素子22との導通及びマザーボード等の外部基板に実装するための電極として、側面を介して表裏面にわたって形成されている。
As shown in FIG. 1A, the optical semiconductor device of the present embodiment is an infrared light emitting diode, for example, and includes a substrate 14 on which a p-side wiring pattern 13A and an n-side wiring pattern 13B are formed, and the substrate 14. A light emitting element (optical semiconductor element) 22 bonded with a conductive adhesive material (not shown) such as solder or Ag paste, and a sealing resin portion 6 covering the periphery of the light emitting element 22 are provided.
The substrate 14 is an insulating substrate such as a substantially rectangular parallelepiped glass epoxy substrate, a BT resin substrate, a ceramic substrate, or a metal core substrate. Further, the p-side wiring pattern 13A and the n-side wiring pattern 13B are formed over the front and back surfaces through the side surfaces as electrodes for conduction with the light emitting element 22 and mounting on an external substrate such as a motherboard.

上記発光素子22は、例えばGaAs系半導体素子の赤外線発光ダイオード素子であって、図1の(b)に示すように、シリコン基板等のp型半導体基板17上にp型半導体層15及びn型半導体層16がこの順に成長されてpn接合面Jを上面側に有した略直方体形の素子本体20と、素子本体20の一つの角部を面取りした領域に形成されn型半導体層16に他の層とは絶縁状態で電気的に導通するn側角部電極18(第2の角部電極)と、を有したものである。   The light-emitting element 22 is, for example, an infrared light-emitting diode element of a GaAs-based semiconductor element, and as shown in FIG. The semiconductor layer 16 is grown in this order to form a substantially rectangular parallelepiped element body 20 having a pn junction surface J on the upper surface side, and an n-type semiconductor layer 16 formed in a region where one corner of the element body 20 is chamfered. This layer has an n-side corner electrode 18 (second corner electrode) that is electrically conductive in an insulated state.

上記発光素子22は、p側配線パターン13A及びn側配線パターン13Bに対応して下面にp側電極パターン11A及びn側電極パターン11Bが形成されている。
この発光素子22は、p側電極パターン11A及びn側電極パターン11Bをp側配線パターン13A及びn側配線パターン13B上に配してハンダやAgペースト(図示略)で接着することにより、基板14上に実装される。
The light emitting element 22 has a p-side electrode pattern 11A and an n-side electrode pattern 11B formed on the lower surface corresponding to the p-side wiring pattern 13A and the n-side wiring pattern 13B.
The light emitting element 22 includes a substrate 14 by arranging the p-side electrode pattern 11A and the n-side electrode pattern 11B on the p-side wiring pattern 13A and the n-side wiring pattern 13B and bonding them with solder or Ag paste (not shown). Implemented above.

上記n側角部電極18は、発光素子22の上下にわたって延在してn型半導体層16とn側電極パターン11Bとを電気的に導通させている。このn側角部電極18は、角部を面取りした領域にSiO2等の絶縁膜19を介して金属膜を施して形成されている。すなわち、n側角部電極18は、p型半導体層15及びp型半導体基板17に対し、絶縁膜19により電気的に絶縁されている。また、n側角部電極18は、一端が上面に形成された上面電極10まで達していると共に、他端が下面のn側電極パターン11Bに達している。p側電極パターン11Aは、p型半導体基板17の下面に直接形成されている。 The n-side corner electrode 18 extends over and under the light emitting element 22 and electrically connects the n-type semiconductor layer 16 and the n-side electrode pattern 11B. The n-side corner electrode 18 is formed by applying a metal film to a region where the corner is chamfered via an insulating film 19 such as SiO 2 . That is, the n-side corner electrode 18 is electrically insulated from the p-type semiconductor layer 15 and the p-type semiconductor substrate 17 by the insulating film 19. The n-side corner electrode 18 has one end reaching the upper surface electrode 10 formed on the upper surface and the other end reaching the n-side electrode pattern 11B on the lower surface. The p-side electrode pattern 11 </ b> A is directly formed on the lower surface of the p-type semiconductor substrate 17.

上記封止樹脂部6は、略直方体形状とされ、発光素子22の発光波長に対して透明なエポキシ系やシリコーン系等の樹脂材料で形成されている。
上記p型半導体層15及びn型半導体層16は、単層ではなく組成や不純物濃度が異なる複数の半導体層からなる層である。
The sealing resin portion 6 has a substantially rectangular parallelepiped shape, and is formed of a resin material such as epoxy or silicone that is transparent with respect to the emission wavelength of the light emitting element 22.
The p-type semiconductor layer 15 and the n-type semiconductor layer 16 are not a single layer but a layer composed of a plurality of semiconductor layers having different compositions and impurity concentrations.

このように本実施形態では、素子本体20の角部の面取り領域にn側角部電極18が形成されているので、基板14上に実装する際に、基板14上のn側電極パターン11Bとn側角部電極18とをハンダペーストやAgペースト等で接着及び導通を図ることで、ワイヤーボンディングを不要とすることが可能になる。したがって、パッケージ化の際に封止樹脂部6の高さを低く抑えることができると共に、ワイヤーによる光の遮断を無くすことができる。そして、上面ではなく角部に電極が配されているので、発光の際に電極が光を遮ることを極力避けることができ、発光面積を最大限確保することができる。   As described above, in the present embodiment, the n-side corner electrode 18 is formed in the chamfered region of the corner of the element body 20, and therefore when mounted on the substrate 14, the n-side electrode pattern 11B on the substrate 14 By bonding and conducting the n-side corner electrode 18 with solder paste, Ag paste, or the like, wire bonding can be eliminated. Accordingly, the height of the sealing resin portion 6 can be kept low during packaging, and light blocking by the wire can be eliminated. Since the electrodes are arranged not at the upper surface but at the corners, it is possible to prevent the electrodes from blocking light during light emission as much as possible, and to ensure the maximum light emitting area.

さらに、角部に電極が配されることで、実装後の外観検査等が容易になる。また、バンプが不要となり、ハンダペーストやAgペースト等で基板14との接着及び導通を図ることで、少ない工程及び低コストで容易に実装することができると共に、小型化を図ることができる。このように、本発明では、パッケージ化した際に全体として薄型化及び小型化を低コストで図ることができると共に、効率的な発光を得ることができる。   Furthermore, by providing electrodes at the corners, visual inspection after mounting becomes easy. In addition, bumps are not required, and by bonding and conduction with the substrate 14 with solder paste, Ag paste, or the like, it is possible to easily mount with fewer steps and low cost, and to achieve downsizing. Thus, according to the present invention, when packaged, the overall thickness and size can be reduced at low cost, and efficient light emission can be obtained.

次に、本発明に係る第2実施形態を、図2を参照しながら説明する。なお、以下の各実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment according to the present invention will be described with reference to FIG. In the following description of each embodiment, the same constituent elements described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では一つのn側角部電極18だけでn型半導体層16とn側配線パターン13Bとの電気的接続を行っているのに対し、第2実施形態の発光素子(光半導体素子)32では、図2の(a)(b)に示すように、2つのn側角部電極18でn型半導体層16とn側配線パターン13Bとの電気的接続を行っている点である。すなわち、第2実施形態の発光素子32は、素子本体30の一側面の両側に配された一対の角部にn側角部電極18がそれぞれ形成されている。なお、図2の(a)において、p側電極パターン11A及びp側配線パターン13Aは図示されていないが、これらはn側角部電極18が両側に形成されている一側面の反対に位置する側面側の下面に配されている。   The difference between the second embodiment and the first embodiment is that in the first embodiment, the n-type semiconductor layer 16 and the n-side wiring pattern 13B are electrically connected by only one n-side corner electrode 18. On the other hand, in the light emitting element (optical semiconductor element) 32 of the second embodiment, as shown in FIGS. 2A and 2B, the n-type semiconductor layer 16 and the n side are formed by two n side corner electrodes 18. The electrical connection with the wiring pattern 13B is performed. That is, in the light emitting element 32 of the second embodiment, the n-side corner electrodes 18 are respectively formed at a pair of corner portions arranged on both sides of one side surface of the element body 30. In FIG. 2A, the p-side electrode pattern 11A and the p-side wiring pattern 13A are not shown, but they are positioned opposite to the one side where the n-side corner electrode 18 is formed on both sides. It is arranged on the lower surface on the side surface side.

本実施形態では、2つのn側角部電極18が設けられているので、一つのn側角部電極18の場合よりも高い接着強度を得ることができる。
なお、図2の(c)に示す発光素子(光半導体素子)42は、第2実施形態における他の例を示したものである。すなわち、この発光素子42では、n側角部電極18が素子本体40の対角位置の角部に形成されている。この発光素子42では、n側角部電極18が対角位置の角部に形成されているので、発光の指向性に偏りが少なくなり、基板14への接着も対角位置である両端で行われるため、バランスの良い高い接着強度を得ることができる。
In the present embodiment, since two n-side corner electrodes 18 are provided, a higher adhesive strength than that of a single n-side corner electrode 18 can be obtained.
A light emitting element (optical semiconductor element) 42 shown in FIG. 2C shows another example in the second embodiment. That is, in the light emitting element 42, the n-side corner electrode 18 is formed at the corner of the element body 40 at the diagonal position. In this light emitting element 42, since the n-side corner electrode 18 is formed at the corner of the diagonal position, the directivity of light emission is less biased, and adhesion to the substrate 14 is also performed at both ends at the diagonal position. Therefore, a well-balanced and high adhesive strength can be obtained.

次に、本発明に係る第3実施形態を、図3を参照しながら説明する。   Next, a third embodiment according to the present invention will be described with reference to FIG.

第3実施形態と第2実施形態との異なる点は、第2実施形態では2つのn側角部電極18がどちらもn型半導体層16とn側配線パターン13Bとの電気的接続を行っているのに対し、第3実施形態では、図3の(a)(b)に示すように、発光素子(光半導体素子)52に形成されたp側角部電極(第1の角部電極)28及びn側角部電極(第2の角部電極)18の一対の角部電極でp側配線パターン13A及びn側配線パターン13Bとの電気的接続が行われている点である。また、第2実施形態の発光素子32は、p型半導体基板17上に各層が成長されているのに対し、第3実施形態の発光素子52では、サファイヤ基板等の絶縁性基板37上にp型半導体層15及びn型半導体層16がこの順で成長された素子本体50を採用している点でも異なっている。   The difference between the third embodiment and the second embodiment is that, in the second embodiment, the two n-side corner electrodes 18 both electrically connect the n-type semiconductor layer 16 and the n-side wiring pattern 13B. In contrast, in the third embodiment, as shown in FIGS. 3A and 3B, the p-side corner electrode (first corner electrode) formed on the light emitting element (optical semiconductor element) 52 is formed. The pair of corner electrodes 28 and the n-side corner electrode (second corner electrode) 18 are electrically connected to the p-side wiring pattern 13A and the n-side wiring pattern 13B. In the light emitting device 32 of the second embodiment, each layer is grown on the p-type semiconductor substrate 17, whereas in the light emitting device 52 of the third embodiment, p is formed on the insulating substrate 37 such as a sapphire substrate. Another difference is that an element body 50 in which the type semiconductor layer 15 and the n-type semiconductor layer 16 are grown in this order is employed.

すなわち、第3実施形態では、発光素子52に、p型半導体層15及びp側電極パターン11Aとを他の層とは絶縁状態で電気的に導通させるp側角部電極28と、n型半導体層16とn側電極パターン11Bとを他の層とは絶縁状態で電気的に導通させるn側角部電極18と、が形成されている。上記p側角部電極28は、n側角部電極18と同様に、発光素子52の上下にわたって延在してp型半導体層15とp側電極パターン11Aとを電気的に導通させている。すなわち、p側角部電極28は、n型半導体層16に対し、絶縁膜19により電気的に絶縁されている。また、p側角部電極28は、角部を面取りした領域にSiO2等の絶縁膜19を介して金属膜を施して形成されている。このp側角部電極28は、一端が上面に形成されたp側上面電極10Aまで達していると共に、他端が下面のp側電極パターン11Aに達している。 That is, in the third embodiment, the p-side corner electrode 28 that electrically connects the p-type semiconductor layer 15 and the p-side electrode pattern 11A to the light emitting element 52 while being insulated from other layers, and the n-type semiconductor. An n-side corner electrode 18 is formed which electrically connects the layer 16 and the n-side electrode pattern 11B to each other in an insulated state. Similar to the n-side corner electrode 18, the p-side corner electrode 28 extends over the light emitting element 52 and electrically connects the p-type semiconductor layer 15 and the p-side electrode pattern 11 </ b> A. That is, the p-side corner electrode 28 is electrically insulated from the n-type semiconductor layer 16 by the insulating film 19. Further, the p-side corner electrode 28 is formed by applying a metal film to a region where the corner is chamfered via an insulating film 19 such as SiO 2 . One end of the p-side corner electrode 28 reaches the p-side upper surface electrode 10A formed on the upper surface, and the other end reaches the p-side electrode pattern 11A on the lower surface.

また、p側電極パターン11A及びn側電極パターン11Bとp側配線パターン13A及びn側配線パターン13Bとは、ハンダやAgペースト(図示略)によって接着され、電気的に接続されている。   Further, the p-side electrode pattern 11A and the n-side electrode pattern 11B and the p-side wiring pattern 13A and the n-side wiring pattern 13B are bonded and electrically connected by solder or Ag paste (not shown).

上面に配されるn型半導体層16は、表面にn側上面電極10Bが形成されていると共に、図3の(b)に示すように、p型半導体層15の一部が露出するようにパターニングされてエッチングにより除去されている。この露出したp型半導体層15の表面にp側上面電極10Aが形成されている。なお、p側上面電極10A及びn側上面電極10Bは、充分な電気的導通が得られる最小面積で形成され、それぞれ素子本体50の上面角部に配されている。   The n-type semiconductor layer 16 disposed on the upper surface has an n-side upper surface electrode 10B formed on the surface, and a part of the p-type semiconductor layer 15 is exposed as shown in FIG. It is patterned and removed by etching. A p-side upper surface electrode 10 </ b> A is formed on the exposed surface of the p-type semiconductor layer 15. The p-side upper surface electrode 10 </ b> A and the n-side upper surface electrode 10 </ b> B are formed with a minimum area where sufficient electrical continuity can be obtained, and are respectively disposed on the upper surface corners of the element body 50.

この本実施形態では、p側角部電極28とn側角部電極18とで、p型半導体層15及びn型半導体層16とp側電極パターン11A及びn側電極パターン11Bとのそれぞれの電気的接続を行うことにより、サファイヤ基板等の絶縁性基板37を発光素子52の成長用基板に用いた場合でも、ワイヤーボンディングを用いずに上面側のp型半導体層15及びn型半導体層16との導通を得ることができる。   In the present embodiment, the p-side corner electrode 28 and the n-side corner electrode 18 are respectively used for the p-type semiconductor layer 15 and the n-type semiconductor layer 16 and the p-side electrode pattern 11A and the n-side electrode pattern 11B. Even when the insulating substrate 37 such as a sapphire substrate is used as a growth substrate for the light emitting element 52, the upper p-type semiconductor layer 15 and the n-type semiconductor layer 16 can be connected to each other without using wire bonding. Can be obtained.

なお、図3の(c)に示す発光素子(光半導体素子)62は、第3実施形態における他の例を示したものである。すなわち、この発光素子62では、n側角部電極18とp側角部電極28とが互いに素子本体60の対角位置の角部に形成されている。この発光素子60では、n側角部電極18とp側角部電極28とが互いに対角位置の角部に形成されているので、第2実施形態の他の例と同様に、発光の指向性に偏りが少なくなり、基板14への接着も対角位置である両端で行われるため、バランスの良い高い接着強度を得ることができる。   In addition, the light emitting element (optical semiconductor element) 62 shown in FIG. 3C shows another example in the third embodiment. That is, in the light emitting element 62, the n-side corner electrode 18 and the p-side corner electrode 28 are formed at the corners of the element body 60 at diagonal positions. In the light emitting element 60, since the n-side corner electrode 18 and the p-side corner electrode 28 are formed at the corners opposite to each other, the direction of light emission is the same as in other examples of the second embodiment. Since the bias is less and the adhesion to the substrate 14 is performed at both ends at the diagonal positions, a well-balanced and high adhesion strength can be obtained.

次に、本発明に係る第4実施形態を、図4を参照しながら説明する。   Next, a fourth embodiment according to the present invention will be described with reference to FIG.

第4実施形態と第3実施形態との異なる点は、第3実施形態では、発光素子52の角部を面取りした領域にp側角部電極28及びn側角部電極18を形成しているのに対し、第4実施形態では、図4(a)(b)に示すように、発光素子(光半導体素子)72が、素子本体70の角部を切り欠いた領域にp型半導体層15に他の層とは絶縁状態で電気的に導通するp側角部電極38と、n型半導体層16に他の層とは絶縁状態で電気的に導通するn側角部電極48と、を備えている点である。
また、第3実施形態では絶縁性基板37が基板14側とされて接着されているのに対し、第4実施形態では、発光波長に対し透明なp型半導体基板17を用い、基板14と反対側、すなわち上面側にp型半導体基板17を配してpn接合面Jを基板14側に配している点でも異なっている。
The difference between the fourth embodiment and the third embodiment is that, in the third embodiment, the p-side corner electrode 28 and the n-side corner electrode 18 are formed in a region where the corner of the light emitting element 52 is chamfered. On the other hand, in the fourth embodiment, as shown in FIGS. 4A and 4B, the light-emitting element (optical semiconductor element) 72 is formed in the p-type semiconductor layer 15 in the region where the corners of the element body 70 are notched. In addition, a p-side corner electrode 38 that is electrically connected to other layers in an insulated state, and an n-side corner electrode 48 that is electrically connected to the n-type semiconductor layer 16 in an insulated state are provided. It is a point that has.
Further, in the third embodiment, the insulating substrate 37 is bonded to the substrate 14 side, whereas in the fourth embodiment, the p-type semiconductor substrate 17 that is transparent to the emission wavelength is used and opposite to the substrate 14. Another difference is that the p-type semiconductor substrate 17 is disposed on the side, that is, the upper surface side, and the pn junction surface J is disposed on the substrate 14 side.

すなわち、本実施形態では、素子本体70の角部を切り欠いた領域にp側角部電極38及びn側角部電極48を設けて、pn接合面J側を下面にして接着しているため、p側角部電極38及びn側角部電極48がp型半導体基板17を介して放射される光の妨げに全くならず、より効率的な光の取り出しが可能である。
なお、図4の(c)に示す発光素子(光半導体素子)82は、第4実施形態における他の例を示したものである。すなわち、この発光素子82では、n側角部電極48とp側角部電極38とが互いに素子本体80の対角位置の角部に形成されており、第3実施形態の他の例と同様に、バランスの良い高い接着強度を得ることができる。
That is, in the present embodiment, the p-side corner electrode 38 and the n-side corner electrode 48 are provided in the region where the corner portion of the element body 70 is notched, and are bonded with the pn junction surface J side being the lower surface. The p-side corner electrode 38 and the n-side corner electrode 48 do not interfere with the light emitted through the p-type semiconductor substrate 17, and more efficient light extraction is possible.
A light emitting element (optical semiconductor element) 82 shown in FIG. 4C shows another example in the fourth embodiment. That is, in this light emitting element 82, the n-side corner electrode 48 and the p-side corner electrode 38 are formed at the corners of the diagonal position of the element body 80, and is the same as in the other examples of the third embodiment. In addition, a well-balanced and high adhesive strength can be obtained.

次に、本発明に係る第5実施形態を、図5を参照しながら説明する。   Next, a fifth embodiment according to the present invention will be described with reference to FIG.

第5実施形態と第3実施形態との異なる点は、第3実施形態では、基板14の上面に垂直な方向に発光するようにpn接合面Jと基板14の上面とを平行にして発光素子52を接着しているのに対し、第5実施形態では、図5に示すように、基板14の側方に向けて発光するように、pn接合面Jを基板14の上面に対して垂直にし、p側角部電極28及びn側角部電極18が両側に配された側面を接着面として発光素子52を基板14上に接着している点である。また、発光素子52は、p側角部電極28及びn側角部電極18の全長にわたってハンダペーストHで基板14上に接着されている。なお、発光素子52は、発光波長に対して透明なエポキシ系やシリコーン系等の樹脂(図示略)で周囲を封止される。   The difference between the fifth embodiment and the third embodiment is that in the third embodiment, the pn junction surface J and the upper surface of the substrate 14 are made parallel to each other so as to emit light in a direction perpendicular to the upper surface of the substrate 14. On the other hand, in the fifth embodiment, the pn junction surface J is set perpendicular to the upper surface of the substrate 14 so that light is emitted toward the side of the substrate 14 as shown in FIG. The p-side corner electrode 28 and the n-side corner electrode 18 are bonded to the substrate 14 with the side surfaces disposed on both sides as adhesive surfaces. The light emitting element 52 is bonded to the substrate 14 with solder paste H over the entire length of the p-side corner electrode 28 and the n-side corner electrode 18. The periphery of the light emitting element 52 is sealed with an epoxy resin or silicone resin (not shown) that is transparent to the emission wavelength.

この本実施形態では、p側角部電極28及びn側角部電極18が両側に配された側面を接着面として、発光素子52が側面実装されるので、一対の角部電極の全長にわたってハンダペーストHで接着を行うことで、配線パターンへの導通を図ると同時に高い接着強度を得ることができる。したがって、側面発光の薄型発光ダイオードが得られ、例えば携帯電話の液晶バックライト用等、狭い領域への実装に好適である。なお、ハンダペーストHの代わりに、Agペーストを用いても構わない。   In this embodiment, since the light emitting element 52 is mounted on the side surface with the side surface where the p-side corner electrode 28 and the n-side corner electrode 18 are arranged on both sides as the adhesive surface, the solder is covered over the entire length of the pair of corner electrodes. By bonding with the paste H, high adhesion strength can be obtained at the same time as conducting to the wiring pattern. Therefore, a thin light emitting diode with side emission can be obtained, which is suitable for mounting in a narrow area, for example, for a liquid crystal backlight of a mobile phone. Instead of the solder paste H, an Ag paste may be used.

次に、本発明に係る光半導体素子の製造方法について、図6から図10を参照して説明する。   Next, a method for manufacturing an optical semiconductor device according to the present invention will be described with reference to FIGS.

まず、図1の(b)に示す第1実施形態の発光素子22を作製する場合、図6の(a)に示すように、p型半導体層15やn型半導体層16を成長させた半導体ウエハーWに予めスルーホールSを複数形成しておく。このスルーホールSは、エッチング加工、レーザ加工、ドリル等による機械加工等で形成する。このスルーホールSは、後で行うダイシングの際のダイシングラインLの交差位置に配して形成しておく。ただし、スルーホールSは、ダイシングラインLの交差位置のうち、発光素子22の一つの角部のみに対応するように形成される。次に、この半導体ウエハーWの状態で、スルーホールSの内面にp型半導体層15又はn型半導体層16に他の層とは絶縁状態で電気的に導通するn側角部電極18を形成する。この際、先にスルーホールSの内面にSiO2等の絶縁膜19を形成し、その上に無電解メッキ等により金属膜を形成してn側角部電極18を形成する。 First, when the light emitting element 22 of the first embodiment shown in FIG. 1B is manufactured, as shown in FIG. 6A, a semiconductor in which a p-type semiconductor layer 15 and an n-type semiconductor layer 16 are grown. A plurality of through holes S are formed in the wafer W in advance. The through hole S is formed by etching, laser processing, machining by a drill, or the like. The through hole S is formed at a position where the dicing line L intersects when dicing is performed later. However, the through hole S is formed so as to correspond to only one corner of the light emitting element 22 among the intersection positions of the dicing line L. Next, in this semiconductor wafer W state, an n-side corner electrode 18 is formed on the inner surface of the through-hole S and is electrically connected to the p-type semiconductor layer 15 or the n-type semiconductor layer 16 while being insulated from other layers. To do. At this time, an insulating film 19 such as SiO 2 is first formed on the inner surface of the through hole S, and a metal film is formed thereon by electroless plating or the like to form the n-side corner electrode 18.

さらに、この半導体ウエハーWの上面に上面電極10をパターニングにより所定位置に形成する。また、この半導体ウエハーWの下面にp側電極パターン11A及びn側電極パターン11Bをパターニングにより所定位置に形成する。
次に、半導体ウエハーWを、図6の(b)に示すように、ダイシングラインLの交差位置にスルーホールSが位置するようにして格子状にダイシングし、図6の(c)に示すように、略長方形のチップ状に分割して発光素子22を作製する。
Further, the upper surface electrode 10 is formed at a predetermined position on the upper surface of the semiconductor wafer W by patterning. Further, the p-side electrode pattern 11A and the n-side electrode pattern 11B are formed at predetermined positions on the lower surface of the semiconductor wafer W by patterning.
Next, as shown in FIG. 6B, the semiconductor wafer W is diced into a lattice shape so that the through holes S are located at the intersections of the dicing lines L, and as shown in FIG. Then, the light emitting element 22 is manufactured by dividing the chip into substantially rectangular chips.

このように半導体ウエハーWの状態で予めスルーホールSを複数形成しておき、これらスルーホールSをダイシングラインLの交差位置に配してダイシングすることにより、一つのスルーホールSで4つの発光素子22のn側角部電極18を同時に形成することができる。したがって、加工数が少なくなり、発光素子22を低コストで容易に作製することが可能になる。   In this way, a plurality of through holes S are formed in advance in the state of the semiconductor wafer W, and these through holes S are arranged at the intersections of the dicing lines L so that dicing is performed, so that four light emitting elements can be formed with one through hole S. Twenty-two n-side corner electrodes 18 can be formed simultaneously. Therefore, the number of processes is reduced, and the light emitting element 22 can be easily manufactured at low cost.

次に、図2の(b)(c)に示す第2実施形態の発光素子32及び発光素子42を作製する場合、前述した発光素子22の製造工程とほぼ同様であるが、図7の(a)(b)(c)及び図8の(a)(b)(c)に示すように、形成するスルーホールSの配置が異なっている。すなわち、発光素子32を作製する場合は、図7の(a)(b)(c)に示すように、スルーホールSが、ダイシングラインLの交差位置のうち、発光素子32の一側面の両側に位置する一対の角部に対応するように形成される。また、発光素子42を作製する場合は、図8の(a)(b)(c)に示すように、スルーホールSが、ダイシングラインLの交差位置のうち、発光素子42の対角位置の一対の角部に対応するように形成される。   Next, when manufacturing the light emitting element 32 and the light emitting element 42 of the second embodiment shown in FIGS. 2B and 2C, the manufacturing process of the light emitting element 22 is almost the same as that described above, but FIG. As shown in (a), (b), (c) and FIGS. 8 (a), (b), and (c), the arrangement of the through holes S to be formed is different. That is, when the light emitting element 32 is manufactured, as shown in FIGS. 7A, 7B, and 7C, the through hole S is located on both sides of one side surface of the light emitting element 32 at the intersection position of the dicing line L. It is formed so as to correspond to a pair of corners located at. When the light emitting element 42 is manufactured, as shown in FIGS. 8A, 8 </ b> B, and 8 </ b> C, the through hole S is located at the diagonal position of the light emitting element 42 in the crossing position of the dicing line L. It is formed so as to correspond to a pair of corners.

次に、図4の(b)に示す第4実施形態の発光素子72を作製する場合、図1の(b)に示す発光素子22の製造方法と異なる点は、図9の(a)(b)(c)に示すように、スルーホールSではなく、凹部UをダイシングラインLの交差位置に配して形成する点である。この凹部Uは、スルーホールSと同様に、エッチング加工、レーザ加工、ドリル等による機械加工等で形成するが、半導体ウエハーWを貫通させずにp型半導体基板17の途中までの加工で形成する。
また、図4の(c)に示す第4実施形態の他の例である発光素子82を作製する場合は、図10の(a)(b)(c)に示すように、形成する凹部Uが、ダイシングラインLの交差位置のうち、発光素子82の対角位置の一対の角部に対応するように形成される。
Next, when manufacturing the light emitting device 72 of the fourth embodiment shown in FIG. 4B, the manufacturing method of the light emitting device 22 shown in FIG. 1B is different from that shown in FIG. b) As shown in (c), not the through hole S but the concave portion U is formed at the intersection of the dicing lines L. The concave portion U is formed by etching, laser processing, machining by a drill or the like, similar to the through hole S, but is formed by processing up to the middle of the p-type semiconductor substrate 17 without penetrating the semiconductor wafer W. .
Moreover, when producing the light emitting element 82 which is another example of 4th Embodiment shown to (c) of FIG. 4, as shown to (a) (b) (c) of FIG. 10, the recessed part U to form is formed. Is formed so as to correspond to a pair of corners of the diagonal position of the light emitting element 82 among the intersecting positions of the dicing line L.

なお、本発明の技術範囲は上記各実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
上記各実施形態では、基板14に実装する光半導体素子として、赤外線LED(発光ダイオード)を採用したが、他の波長のLED、例えば青色LED、赤色LEDや緑色LEDを採用しても構わない。なお、青色LEDを発光素子として採用して該発光素子をYAG蛍光体入り樹脂で封止し、青色光をYAG蛍光体入り樹脂により白色光に変換させる白色LEDとしても構わない。
また、光半導体素子として、LEDだけでなく、LD(半導体レーザ)やPD(フォトダイオード)に適用しても構わない。
The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
In each of the above embodiments, an infrared LED (light emitting diode) is employed as the optical semiconductor element mounted on the substrate 14, but an LED having another wavelength, for example, a blue LED, a red LED, or a green LED may be employed. Alternatively, a blue LED may be employed as the light emitting element, the light emitting element may be sealed with a resin containing a YAG phosphor, and a white LED that converts blue light into white light using a resin containing a YAG phosphor may be used.
Further, the optical semiconductor element may be applied not only to an LED but also to an LD (semiconductor laser) or a PD (photodiode).

本発明に係る第1実施形態の光半導体装置及び光半導体素子を示す断面図及び斜視図である。It is sectional drawing and perspective view which show the optical semiconductor device and optical semiconductor element of 1st Embodiment which concern on this invention. 本発明に係る第2実施形態の光半導体装置、光半導体素子及び他の例を示す断面図及び斜視図である。It is sectional drawing and a perspective view which show the optical semiconductor device of 2nd Embodiment which concerns on this invention, an optical semiconductor element, and another example. 本発明に係る第3実施形態の光半導体装置、光半導体素子及び他の例を示す断面図及び斜視図である。It is sectional drawing and perspective view which show the optical semiconductor device of 3rd Embodiment which concerns on this invention, an optical semiconductor element, and another example. 本発明に係る第3実施形態の光半導体装置、光半導体素子及び他の例を示す断面図及び斜視図である。It is sectional drawing and perspective view which show the optical semiconductor device of 3rd Embodiment which concerns on this invention, an optical semiconductor element, and another example. 本発明に係る第4実施形態の光半導体装置を示す斜視図である。It is a perspective view which shows the optical semiconductor device of 4th Embodiment concerning this invention. 第1実施形態に係る発光素子について、その製造方法を工程順に示す要部斜視図である。It is a principal part perspective view which shows the manufacturing method about the light emitting element which concerns on 1st Embodiment in order of a process. 第2実施形態に係る発光素子について、その製造方法を工程順に示す要部斜視図である。It is a principal part perspective view which shows the manufacturing method about the light emitting element which concerns on 2nd Embodiment in process order. 第2実施形態に係る発光素子の他の例について、その製造方法を工程順に示す要部斜視図である。It is a principal part perspective view which shows the manufacturing method in order of process about the other example of the light emitting element which concerns on 2nd Embodiment. 第3実施形態に係る発光素子について、その製造方法を工程順に示す要部斜視図である。It is a principal part perspective view which shows the manufacturing method about the light emitting element which concerns on 3rd Embodiment in process order. 第3実施形態に係る発光素子の他の例について、その製造方法を工程順に示す要部斜視図である。It is a principal part perspective view which shows the manufacturing method in order of process about the other example of the light emitting element which concerns on 3rd Embodiment. 本発明に係る従来例において、1本のワイヤーを用いた発光ダイオードを示す断面図及び発光素子を示す斜視図である。In the prior art example which concerns on this invention, it is sectional drawing which shows the light emitting diode using one wire, and a perspective view which shows a light emitting element. 本発明に係る従来例において、2本のワイヤーを用いた発光ダイオードを示す断面図及び発光素子を示す斜視図である。In the prior art example which concerns on this invention, it is sectional drawing which shows the light emitting diode using two wires, and a perspective view which shows a light emitting element. 本発明に係る従来例において、バンプを用いた発光ダイオードを示す断面図及び発光素子を示す斜視図である。In the prior art example which concerns on this invention, it is sectional drawing which shows the light emitting diode using bump, and a perspective view which shows a light emitting element.

符号の説明Explanation of symbols

6…封止樹脂部、11A…p側電極パターン、11B…n側電極パターン、2、12、22、32、42、52、62、72、82…発光素子(光半導体素子)、13A…p側配線パターン、13B…n側配線パターン、14…基板、15…p型半導体層、16…n型半導体層、18、48…n側角部電極(第2の角部電極)、20、30、40、50、60、70、80…素子本体、28、38…p側角部電極(第1の角部電極)、J…pn接合面、L…ダイシングライン、S…スルーホール、U…凹部、W…半導体ウエハー   6 ... Sealing resin portion, 11A ... p-side electrode pattern, 11B ... n-side electrode pattern, 2, 12, 22, 32, 42, 52, 62, 72, 82 ... light emitting element (optical semiconductor element), 13A ... p Side wiring pattern, 13B ... n-side wiring pattern, 14 ... substrate, 15 ... p-type semiconductor layer, 16 ... n-type semiconductor layer, 18, 48 ... n-side corner electrode (second corner electrode), 20, 30 , 40, 50, 60, 70, 80 ... element body, 28, 38 ... p-side corner electrode (first corner electrode), J ... pn junction surface, L ... dicing line, S ... through hole, U ... Recess, W ... Semiconductor wafer

Claims (6)

半導体基板上又は絶縁性基板上にp型半導体層とn型半導体層と積層され上面と下面とに電極を有してなる略方形状の素子本体と、
前記素子本体の上下にわたって延在する角部の少なくとも一つを面取りし領域に、上下にわたって延在して前記p型半導体層又は前記n型半導体層と下面の電極とを電気的に導通させて形成され前記p型半導体層又は前記n型半導体層に他の層とは絶縁状態で電気的に導通する角部電極と、を備えていることを特徴とする光半導体素子。
And a p-type semiconductor layer and the n-type semiconductor layer is laminated on a semiconductor substrate or an insulating substrate, a substantially straight square-like element body comprising an electrode on the upper and lower surfaces,
The p-type semiconductor layer or the n-type semiconductor layer and the lower electrode are electrically connected to each other by extending in the vertical direction in a region where at least one of the corners extending over the element body is chamfered. The p-type semiconductor layer or the n-type semiconductor layer is formed with a corner electrode that is electrically insulated from other layers and is an optical semiconductor element.
前記角部電極が、前記p型半導体層及び前記n型半導体層のうち一方に他の層とは絶縁状態で電気的に導通する第1の角部電極と、
前記p型半導体層及び前記n型半導体層のうち他方に他の層とは絶縁状態で電気的に導通する第2の角部電極と、からなることを特徴とする請求項1に記載の光半導体素子。
A first corner electrode electrically connected to one of the p-type semiconductor layer and the n-type semiconductor layer in an insulated state from the other layer;
2. The light according to claim 1, further comprising: a second corner electrode that is electrically insulated from the other layer of the p-type semiconductor layer and the n-type semiconductor layer and is electrically insulated from the other layers. Semiconductor element.
前記角部電極が、前記素子本体の対角位置に配された一対の上下にわたって延在する角部に形成されていることを特徴とする請求項1又は2に記載の光半導体素子。 3. The optical semiconductor element according to claim 1, wherein the corner electrode is formed at a pair of upper and lower corner portions arranged at diagonal positions of the element body. 前記角部電極が、前記素子本体の一側面の両側に配された一対の上下にわたって延在する角部に形成されていることを特徴とする請求項1又は2に記載の光半導体素子。 3. The optical semiconductor element according to claim 1, wherein the corner electrode is formed on a pair of upper and lower corner portions arranged on both sides of one side surface of the element body. 一対の配線パターンが形成された基板と、
前記一対の配線パターン上に接着された請求項1から4のいずれか一項の光半導体素子と、
前記光半導体素子の周囲を覆う封止樹脂部と、を備え、
前記角部電極と該角部電極に対応する前記配線パターンとが導電性接着材料で接着されていることを特徴とする光半導体装置。
A substrate on which a pair of wiring patterns are formed;
The optical semiconductor element according to any one of claims 1 to 4, which is bonded onto the pair of wiring patterns;
A sealing resin portion covering the periphery of the optical semiconductor element,
The optical semiconductor device, wherein the corner electrode and the wiring pattern corresponding to the corner electrode are bonded with a conductive adhesive material.
請求項1から5のいずれか一項に記載の光半導体素子の製造方法であって、
半導体基板上又は絶縁性基板上にp型半導体層とn型半導体層と積層されてなる半導体ウエハーにスルーホール複数形成する工程と、
前記スルーホール内面に前記p型半導体層又は前記n型半導体層に他の層とは絶縁状態で電気的に導通する角部電極を形成する工程と、
前記スルーホールダイシングラインの交差位置に配して格子状に前記半導体ウエハーをダイシングして略方形のチップ状に分割する工程と、を有することを特徴とする光半導体素子の製造方法。
It is a manufacturing method of the optical semiconductor element according to any one of claims 1 to 5,
Forming a plurality of through holes in a semiconductor wafer in which a p-type semiconductor layer and an n-type semiconductor layer are laminated on a semiconductor substrate or an insulating substrate;
Forming a corner electrode electrically connected to the p-type semiconductor layer or the n-type semiconductor layer on the inner surface of the through hole in an insulated state from the other layers;
Method for manufacturing an optical semiconductor element characterized by and a step of dividing the arranged into chips substantially straight square by dicing the semiconductor wafer into a lattice shape at intersections through holes dicing line.
JP2004360288A 2004-12-13 2004-12-13 Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element Expired - Fee Related JP4443397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360288A JP4443397B2 (en) 2004-12-13 2004-12-13 Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360288A JP4443397B2 (en) 2004-12-13 2004-12-13 Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2006173197A JP2006173197A (en) 2006-06-29
JP4443397B2 true JP4443397B2 (en) 2010-03-31

Family

ID=36673637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360288A Expired - Fee Related JP4443397B2 (en) 2004-12-13 2004-12-13 Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP4443397B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295783B2 (en) * 2007-02-02 2013-09-18 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
JPWO2008123020A1 (en) 2007-03-09 2010-07-15 三洋電機株式会社 Semiconductor device and manufacturing method thereof
KR101456268B1 (en) * 2008-03-31 2014-11-04 서울반도체 주식회사 Light emitting diode chip for package without wire bonding, light emitting diode package using the same, fabricating method of the light emitting diode chip and fabricating method of the light emitting diode package
KR101420848B1 (en) 2008-06-23 2014-07-17 서울반도체 주식회사 Light emitting device
JP5218087B2 (en) * 2009-01-19 2013-06-26 三菱電機株式会社 Semiconductor device
JP2013157496A (en) * 2012-01-31 2013-08-15 Sony Corp Light-emitting element, method of manufacturing the same, and light-emitting device
AT513747B1 (en) 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers
WO2017208321A1 (en) * 2016-05-31 2017-12-07 サンケン電気株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2006173197A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
EP2299503A2 (en) Light-emitting device package and method of manufacturing the same
KR101092063B1 (en) Light emitting device package and method for fabricating the same
JP2005322937A (en) Semiconductor light emitting device equipped with flexible substrate
JP2005057265A (en) Mount for semiconductor light emitting device
JP2003007929A (en) Semiconductor chip and manufacturing method therefor
TW201517310A (en) Semiconductor light emitting device
US7126163B2 (en) Light-emitting diode and its manufacturing method
KR20120105950A (en) Wafer level led package and method of fabricating the same
JP4443397B2 (en) Optical semiconductor element, optical semiconductor device, and method of manufacturing optical semiconductor element
JP2007335462A (en) Semiconductor compound element, and its fabrication process
KR20180111941A (en) Light emitting diode, method of manufacturing light emitting diode, light emitting diode display device, and manufacturing method of light emitting diode display device
JP2005123657A (en) Chip-type light emitting device and its manufacturing method
JP2006073618A (en) Optical element and manufacturing method thereof
KR101762597B1 (en) Substrate for semiconductor light emitting device
US20200243731A1 (en) Light emitting device package and method of manufacturing light emitting device package
KR101764129B1 (en) Semiconductor light emitting device and method of manufacturing the same
JPH11177131A (en) Semiconductor light emitting element chip and method for mounting the element
JPH10150227A (en) Chip-type light emitting device
EP2221890B1 (en) Light emitting device package
JP2006173196A (en) Light emitting device and light emitting diode using the same
KR102471801B1 (en) Semiconductor light emitting device
US20210376212A1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2000323754A (en) Chip type light-emitting element
JP2008041922A (en) Light emitting device
JP3938337B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees