JP4443163B2 - Battery case formation method for lead acid battery - Google Patents

Battery case formation method for lead acid battery Download PDF

Info

Publication number
JP4443163B2
JP4443163B2 JP2003281340A JP2003281340A JP4443163B2 JP 4443163 B2 JP4443163 B2 JP 4443163B2 JP 2003281340 A JP2003281340 A JP 2003281340A JP 2003281340 A JP2003281340 A JP 2003281340A JP 4443163 B2 JP4443163 B2 JP 4443163B2
Authority
JP
Japan
Prior art keywords
battery
battery case
alloy
lead
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281340A
Other languages
Japanese (ja)
Other versions
JP2004356080A (en
Inventor
徳則 本間
滋 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003281340A priority Critical patent/JP4443163B2/en
Publication of JP2004356080A publication Critical patent/JP2004356080A/en
Application granted granted Critical
Publication of JP4443163B2 publication Critical patent/JP4443163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、長寿命の鉛蓄電池が効率良く得られる電槽化成方法に関する。   The present invention relates to a method for forming a battery case in which a long-life lead-acid battery can be efficiently obtained.

鉛蓄電池の極板格子は、例えば、鉛合金格子に、鉛粉と一酸化鉛粉を希硫酸で混練したペースト状活物質を充填し保持させ、これを熟成乾燥して作製される。前記熟成乾燥は、ペースト状活物質の水分除去、強度向上、活物質の結晶成長、極板格子表面に腐食層を形成するなどを目的として行われる。前記腐食層は極板格子と活物質の化学的結合力を向上させる働きがある。   The electrode plate lattice of the lead storage battery is produced, for example, by filling a lead alloy lattice with a paste-like active material obtained by kneading lead powder and lead monoxide powder with dilute sulfuric acid, and aging and drying the paste. The aging drying is performed for the purpose of removing moisture from the paste-like active material, improving the strength, crystal growth of the active material, and forming a corrosion layer on the surface of the electrode plate lattice. The corrosion layer has a function of improving the chemical bonding force between the electrode plate lattice and the active material.

前記熟成乾燥後の極板格子は正負各複数枚をセパレータを挟んで交互に積層して極板群とし、前記極板群の正極同士および負極同士をそれぞれリードで連結して電槽内に収容し、前記電槽の開口部に蓋を熱溶着し、前記蓋に設けた注入口から希硫酸を注入し、その後、前記リードを介して通電して極板の電槽化成が行われる(例えば、特許文献1参照)。   The electrode plate lattice after the aging and drying is formed by alternately laminating a plurality of positive and negative plates with a separator in between, and a positive electrode group and a negative electrode of the electrode plate group are connected with leads, respectively, and accommodated in a battery case. Then, a lid is thermally welded to the opening of the battery case, dilute sulfuric acid is injected from an inlet provided in the cover, and then electricity is passed through the lead to form a battery case of the electrode plate (for example, , See Patent Document 1).

一般に、前記電槽化成は、化成時間短縮のために比較的大きい電流を通電して行っており、転極後は化成効率が急激に低下するため、放電または休止を入れながら通電電流を段階的に下げていく方法が採られている。   In general, the battery case is formed by energizing a relatively large current in order to shorten the formation time, and after the reversal, the formation efficiency rapidly decreases. The method of lowering is taken.

ところで、近年、電池寿命の向上を目的に、耐食性鉛合金の正極格子が開発された(特願2002−116593)。   By the way, in recent years, a positive electrode lattice of a corrosion-resistant lead alloy has been developed for the purpose of improving battery life (Japanese Patent Application No. 2002-116593).

特開平11−126604号公報(〔0012〕)JP-A-11-126604 ([0012])

しかし、前記耐食性鉛合金の正極板子は熟成乾燥時に腐食層が形成され難く、正極格子と活物質間の化学的結合力が低いため、電槽化成初期の急激な分極により発生するガス(正極から酸素ガス、負極から水素ガス)が極板格子と活物質間に発生し、その結果、活物質が極板格子から剥離するという問題があった。   However, the positive electrode plate of the corrosion-resistant lead alloy is difficult to form a corrosion layer during aging drying and has a low chemical bonding force between the positive electrode lattice and the active material. Oxygen gas, hydrogen gas from the negative electrode) was generated between the electrode plate lattice and the active material, and as a result, there was a problem that the active material was peeled off from the electrode plate lattice.

一方、電槽化成をガスが発生しない低電流で行うと電槽化成に長時間を要し生産性が低下するという問題がある。   On the other hand, when the battery case formation is performed at a low current that does not generate gas, there is a problem that the battery case formation takes a long time and productivity is lowered.

このようなことから、本発明者等は、耐食性鉛合金の極板格子表面に腐食層を形成する方法について検討し、電槽化成前に予備充電を行うことにより腐食層が形成されることを知見し、さらに検討を重ねて本発明を完成させるに至った。   For this reason, the present inventors examined a method for forming a corrosion layer on the surface of the electrode plate lattice of the corrosion-resistant lead alloy, and confirmed that the corrosion layer is formed by performing precharging before the battery case is formed. As a result of further knowledge and further studies, the present invention has been completed.

請求項1記載発明は、正極格子にPb−Ca−Sn−Ba−Al合金、またはPb−Ca−Sn−Ba合金から成る耐食性鉛合金を用いた鉛蓄電池の電槽化成方法において、前記電槽化成前にガス発生電位を超えない通電電流密度が、正極で活物質1gあたり3.5〜7.1mAであり、負極で活物質1gあたり4.1〜8.3mAである電流を10分間以上電槽化成時間の5%以下の範囲で通電して予備充電することを特徴とする鉛蓄電池の電槽化成方法である。 The invention according to claim 1 is a battery case forming method for a lead storage battery using a corrosion-resistant lead alloy made of a Pb-Ca-Sn-Ba-Al alloy or a Pb-Ca-Sn-Ba alloy for a positive electrode grid. The current density that does not exceed the gas generation potential before the formation is 3.5 to 7.1 mA per gram of the active material at the positive electrode and the current that is 4.1 to 8.3 mA per gram of the active material at the negative electrode for 10 minutes or more. It is a battery case formation method of a lead storage battery characterized by energizing and precharging in a range of 5% or less of the battery case formation time .

請求項2記載発明は、前記耐食性鉛合金がさらにAg、Bi、Tlのうちの少なくとも1種を添加した鉛合金であることを特徴とする請求項1記載の鉛蓄電池の電槽化成方法である。 The invention according to claim 2 is the battery case forming method for a lead storage battery according to claim 1, wherein the corrosion-resistant lead alloy is a lead alloy to which at least one of Ag, Bi, and Tl is further added. is there.

以上に説明したように、本発明は、電槽化成前に所定の予備充電を行って極板格子表面に腐食層を形成して電槽化成初期の発生ガスによる活物質の剥離を防止した電槽化成方法であり、熟成乾燥工程で腐食層が形成され難い耐食性鉛合金の正極格子を用いた鉛蓄電池に適用してその寿命特性が著しく向上する。また前記予備充電により、転極後の電槽化成が化成電流を段階的に下げなくても良好に行えるようになり電槽化成時間が短縮できる。また極板格子と電解液とが反応して生成する不導体物質が減少し電槽化成が低抵抗下で効率良く行えるようになる。依って、工業上顕著な効果を奏する。   As described above, the present invention provides a battery that prevents the active material from being separated by the generated gas at the initial stage of battery case formation by performing a predetermined precharge before the battery case formation to form a corrosive layer on the electrode plate lattice surface. It is a tank chemical conversion method, and is applied to a lead storage battery using a positive electrode grid of a corrosion-resistant lead alloy in which a corrosion layer is not easily formed in an aging and drying process, and its life characteristics are remarkably improved. Further, by the preliminary charging, the battery case formation after the reversal can be performed satisfactorily without lowering the formation current stepwise, and the battery case formation time can be shortened. In addition, the non-conductive material produced by the reaction between the electrode plate lattice and the electrolytic solution is reduced, and the battery case can be formed efficiently under low resistance. Therefore, there is an industrially significant effect.

本発明の電槽化成方法は、電槽化成前に予備充電を行って極板格子表面に腐食層を形成し、それにより極板格子と活物質の化学的結合力を高め、電槽化成初期に発生するガスにより活物質が極板格子から剥離するのを防止したものである。この場合、ガスは活物質表面から発生する。   The battery case forming method of the present invention performs precharging before forming the battery case to form a corrosion layer on the surface of the electrode plate lattice, thereby increasing the chemical bonding force between the plate plate lattice and the active material, This prevents the active material from being peeled off from the electrode plate lattice by the gas generated in the substrate. In this case, the gas is generated from the active material surface.

前記予備充電を行うことにより、(1)転極後の化成効率の低下が抑制され、電槽化成を放電や休止を入れて段階的に下げて行う必要がなくなり電槽化成時間が短縮できる、(2)極板格子と電解液とが反応して生成する不導体物質が減少し電槽化成が低抵抗下で効率良く行えるようになる、などの効果も得られる。   By performing the preliminary charging, (1) the decrease in the formation efficiency after the reversal is suppressed, and it is not necessary to perform the battery case formation step by step by discharging or resting, and the battery case formation time can be shortened. (2) The effect of reducing the amount of non-conducting substance produced by the reaction between the electrode plate lattice and the electrolytic solution and enabling efficient formation of the battery case under low resistance is also obtained.

本発明は、耐食性鉛合金の正極格子を用いた鉛蓄電池に適用してその効果が発現される。前記耐食性鉛合金としては、Caを微量に規定したPb−Ca−Sn−Ba−Al合金、前記鉛合金にAg、Bi、Tlのうちの少なくとも1種を添加して強度を向上させた合金やCaを微量に規定したPb−Ca−Sn−Ba合金、前記鉛合金にAg、Bi、Tlのうちの少なくとも1種を添加して強度を向上させた合金などが挙げられる。   The present invention is applied to a lead-acid battery using a positive electrode grid of a corrosion-resistant lead alloy, and the effect is manifested. Examples of the corrosion-resistant lead alloy include a Pb—Ca—Sn—Ba—Al alloy with a small amount of Ca, an alloy in which at least one of Ag, Bi, and Tl is added to the lead alloy to improve the strength. Examples thereof include a Pb—Ca—Sn—Ba alloy with a small amount of Ca, and an alloy in which the strength is improved by adding at least one of Ag, Bi, and Tl to the lead alloy.

本発明において、予備充電における通電電流の上限は、活物質剥離防止のためガス発生電位を超えない電流であり、下限は予備充電時間が大幅に増加しない電流である。具体的には、正極では活物質1gあたり3.5〜7.1mA、負極では活物質1gあたり4.1〜8.3mAである。 In the present invention, the upper limit of the energization current in the precharge is a current that does not exceed the gas generation potential for preventing the active material from peeling, and the lower limit is a current that does not significantly increase the precharge time. Specifically, the positive electrode active material per 1g 3.5~7.1M A, a negative electrode as an active material 1g per 4.1~8.3m A.

本発明において、予備充電時間は、10分未満では腐食層が十分形成されない場合があるので10分以上に規定する。20分以上が特に望ましい。
予備充電時間が余り長いと生産性が低下するので、その上限は電槽化成時間の5%程度が望ましい。
In the present invention, the precharge time is specified to be 10 minutes or more because a corrosive layer may not be sufficiently formed if it is less than 10 minutes. 20 minutes or more is particularly desirable.
If the precharge time is too long, the productivity decreases, so the upper limit is preferably about 5% of the battery case formation time.

以下に、本発明を実施例により詳細に説明する。
(実施例1)
Pb−Ca−Sn−Ba−Al系耐食性鉛合金極板(高さ53.8mm、幅51mm)にペースト状活物質を17.6g充填した正極格子4枚と、Pb−Ca−Sn−Al系耐食性鉛合金極板(高さ54.3mm、幅51mm)に活物質を15.2g充填した負極格子4枚をセパレータを挟んで交互に積層し、前記正極格子同士および負極格子同士をそれぞれリードで連結して極板群を作製した。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Four Pb—Ca—Sn—Ba—Al corrosion-resistant lead alloy electrode plates (height 53.8 mm, width 51 mm) filled with 17.6 g of a paste-like active material, and Pb—Ca—Sn—Al system Corrosion-resistant lead alloy electrode plates (height 54.3 mm, width 51 mm) and four negative electrode grids filled with 15.2 g of active material are alternately stacked with a separator interposed therebetween, and the positive electrode grids and the negative electrode grids are respectively connected by leads. The electrode group was produced by linking.

次に、前記極板群を30℃の水槽中で、表1に示す種々の突入電流で10分間予備充電を行い、次いで3.8Aの突入電流で電槽化成を行い、予備充電突入時と電槽化成突入時における正負両極の電位のピーク値を硫酸第一水銀電極を参照極として測定した。   Next, the electrode plate group is precharged for 10 minutes in various inrush currents shown in Table 1 in a 30 ° C. water tank, and then the battery is formed with an inrush current of 3.8 A. The peak value of the positive and negative electrodes at the time of battery tank formation was measured using a mercuric sulfate electrode as a reference electrode.

なお、前記予備充電ではガス発生のない突入電流を下記方法により確認した。即ち、正極板を30℃の水槽に入れて定電位で1.2Vから0.1V刻みで充電してガスが激しく発生する電位が1.5Vであり、正極では1.5V未満の電流を通電すればガスが発生しないことを確認し、同様に負極板については−0.8Vから−0.1V刻みで充電して−1.1Vになるまでの電流を通電すればガスが発生しないことを確認し、これを越える卑な電位ではガスが発生することを確認した。   In addition, inrush current without gas generation in the preliminary charging was confirmed by the following method. That is, the positive electrode plate is placed in a water bath at 30 ° C. and charged at a constant potential in increments of 1.2 V to 0.1 V, and the potential at which gas is vigorously generated is 1.5 V. The positive electrode is energized with a current of less than 1.5 V It is confirmed that no gas is generated. Similarly, the negative electrode plate is charged at a rate of -0.8 V to -0.1 V and supplied with a current of -1.1 V, and no gas is generated. It was confirmed that gas was generated at a low potential exceeding this.

表1には予備充電突入電流と時間および正負両極の電流密度を、表2には予備充電突入電流とその時の正負各極の電位のピーク値と続けて3.8Aでの電槽化成をした時の正負各極の電位のピーク値を示した。   Table 1 shows precharge inrush current, time and current density of both positive and negative poles, and Table 2 shows precharge inrush current and peak values of positive and negative polarities at that time, followed by battery case formation at 3.8A. The peak value of the potential of each positive and negative electrode was shown.

なお、表1、2において、No.1の予備充電突入電流値が小さい場合(比較例1)は、その時間を長くすることで、正負各極の電位のピーク値を低くすることが出来、No.1の場合、予備充電時間を20分とした結果はいずれも正負各極の電位のピーク値をガスが発生しない電位に抑えることが出来た。特にNo.2〜4は10分と言う短期間で予備充電が行え好ましく、その時の電流密度が請求項発明に相当するものである。No.5〜8はいずれもガス発生電位を超えるもので比較例(比較例)として、またNo.9は従来例(比較例)として示した。 In Tables 1 and 2, no. When the precharge inrush current value of No. 1 is small (Comparative Example 1) , the peak value of the potential of each positive and negative electrode can be lowered by lengthening the time. In the case of 1, the result of setting the precharge time to 20 minutes was that the peak value of the potential of each positive and negative electrode could be suppressed to a potential at which no gas was generated. In particular, no. Nos. 2 to 4 are preferable because the preliminary charging can be performed in a short period of 10 minutes, and the current density at that time corresponds to that of the first aspect of the invention. No. Nos. 5 to 8 exceeded the gas generation potential, and as comparative examples (Comparative Example 2 ), No. 5-8. 9 is shown as a conventional example (Comparative Example 3 ).

表2から明らかなように、予備充電および3.8A電槽化成時に正負両極でガス発生電位を超えない予備充電電流は0.5A以下である。   As is apparent from Table 2, the precharge current that does not exceed the gas generation potential at the positive and negative electrodes during precharge and 3.8 A battery case formation is 0.5 A or less.

但し、3.8A電槽化成時の電位のピーク値は予備充電電流が小さいほどガス発生電位に近づいており、予備充電の突入電流が0.13Aのもの(No.1)に至っては正負両極ともガス発生電位を超えているが。これは前記の通り予備充電時間が短いため0.13Aの低電流では腐食層が十分形成されなかったためである。これを解消するために予備充電時間を長くすることで解消し得るが生産性が低下する。従って、予備充電はガスが発生しない上限の電流(0.5A)を通電して行うのが望ましい。   However, the peak value of the potential at the time of 3.8A battery case formation is closer to the gas generation potential as the precharge current is smaller, and when the inrush current of precharge is 0.13A (No. 1), it is positive and negative Both exceed the gas generation potential. This is because the precharge time is short as described above, and the corrosion layer was not sufficiently formed at a low current of 0.13A. In order to solve this problem, it can be solved by lengthening the preliminary charging time, but the productivity is lowered. Therefore, it is desirable to perform the preliminary charging by energizing an upper limit current (0.5 A) that does not generate gas.

なお、使用した鉛合金は、0.04Ca−0.1Sn−0.008Ba−0.02Al−残Pbである。   In addition, the used lead alloy is 0.04Ca-0.1Sn-0.008Ba-0.02Al-residual Pb.

(実施例2)
実施例1で用いたのと同じ極板群を30℃の水槽に入れ、0.5Aの電流を通電して予備充電した。充電時間は10分間〜1時間の間で種々に変化させた。
(Example 2)
The same electrode plate group as used in Example 1 was put in a 30 ° C. water tank, and a current of 0.5 A was applied to precharge it. The charging time was variously changed between 10 minutes and 1 hour.

次いで突入電流3.8Aで電槽化成を行った。突入時における正負両極の電位のピーク値を硫酸第一水銀電極を参照極として測定した。   Next, the battery case was formed with an inrush current of 3.8 A. The peak values of the positive and negative electrodes at the time of entry were measured using a mercuric sulfate electrode as a reference electrode.

(比較例
予備充電時間を5分間とした他は、実施例2と同じ方法により電槽化成を行い、正負両極の電位のピーク値を測定した。
(Comparative Example 4 )
A battery case was formed by the same method as in Example 2 except that the precharge time was 5 minutes, and the peak values of the positive and negative electrode potentials were measured.

(比較例
予備充電を行わなかった他は、実施例2と同じ方法により電槽化成を行い、正負両極の電位のピーク値を測定した。実施例2および比較例の測定結果を表3に示す。
(Comparative Example 5 )
A battery case was formed by the same method as in Example 2 except that the preliminary charging was not performed, and the peak values of the positive and negative electrode potentials were measured. Table 3 shows the measurement results of Example 2 and Comparative Examples 4 and 5 .

表3から明らかなように、予備充電を10分以上行った場合は、正負両極とも電位のピーク値はガス発生電位より十分低い電位になっている。この場合、総化成時間を短くするためには予備充電時間は10分にするのが良い。   As is apparent from Table 3, when precharging is performed for 10 minutes or more, the peak value of the potential is sufficiently lower than the gas generation potential in both the positive and negative electrodes. In this case, the precharge time is preferably 10 minutes in order to shorten the total formation time.

(実施例3)
実施例1で作製したのと同じ極板群を6セル直列に接続して12V系の鉛蓄電池を組立て、予備充電および電槽化成を種々条件で行った。その後JIS規定の40℃軽負荷寿命試験を行った。予備充電および電槽化成(第1充電、放電、第2充電)での充放電電気量は各条件で等しくした。
(Example 3)
The same electrode plate group produced in Example 1 was connected in series with 6 cells to assemble a 12V lead acid battery, and precharging and battery formation were performed under various conditions. Thereafter, a 40 ° C. light load life test stipulated by JIS was conducted. The amount of charge / discharge electricity in the preliminary charge and battery case formation (first charge, discharge, second charge) was the same under each condition.

(比較例
予備充電を行わなかった他は、実施例3と同じ条件で電槽化成および寿命試験を行った。
実施例3および比較例の寿命試験結果を表4に示す。
(Comparative Example 6 )
A battery case formation and a life test were performed under the same conditions as in Example 3 except that the preliminary charging was not performed.
Table 4 shows the life test results of Example 3 and Comparative Example 6 .

表4から明らかなように、予備充電を行ったもの(No.1〜5)は行わなかったもの(No.6)より寿命特性が優れた。中でも予備充電を0.5A(電流密度は表1参照)通電して行ったもの(No.3〜5)は特に優れた。   As is clear from Table 4, the life characteristics were superior to those (No. 1-5) that were precharged (No. 6). Among them, those (Nos. 3 to 5) in which preliminary charging was performed by energizing 0.5 A (see Table 1 for current density) were particularly excellent.

No.5は、転極後、化成電流を段階的に下げずに総化成時間を短縮したものであるが、寿命特性はNo.3、4と比べて遜色のないレベルであった。   No. No. 5 is a product in which the total formation time is shortened without decreasing the formation current stepwise after the reversal. Compared with 3 and 4, it was a level comparable to that.

前記寿命特性の向上は、予備充電による極板格子表面の腐食層形成の他、不導体物質の減少にも依存している。   The improvement in the life characteristics depends on the formation of a corrosive layer on the surface of the electrode plate lattice by precharging, and also on the reduction of non-conductive materials.

以上、正極格子にPb−Ca−Sn−Ba−Al系合金を用いた鉛蓄電池について説明したが、前記合金にAg、Bi、Tlのうちの少なくとも1種を適量添加した鉛合金の正極格子を用いた鉛蓄電池においても同様の効果が得られることは、別途行った実験により確認した。   The lead storage battery using the Pb—Ca—Sn—Ba—Al alloy for the positive electrode lattice has been described above. However, a lead alloy positive electrode lattice in which an appropriate amount of at least one of Ag, Bi, and Tl is added to the alloy is used. It was confirmed by a separate experiment that the same effect was obtained in the lead storage battery used.

なお、鉛合金としては、上記に記載した鉛合金の他、Pb−Ca−Sn−Ba系合金およびこれにAg、Bi、Tlのうちの少なくとも1種を適量添加した鉛合金についても同様の効果が得られることを確認した。Alを含まない鉛合金の製法に際しては、非酸化性雰囲気で製法することが好ましく、このことによりCaの酸化による消失を防止し得、Ca量を制御し易い。   In addition to the lead alloys described above, the lead alloy has the same effect as the Pb—Ca—Sn—Ba alloy and a lead alloy to which an appropriate amount of at least one of Ag, Bi, and Tl is added. It was confirmed that When producing a lead alloy that does not contain Al, it is preferable to produce the lead alloy in a non-oxidizing atmosphere. This makes it possible to prevent disappearance of Ca due to oxidation and to easily control the amount of Ca.

鉛合金の各成分の好ましい範囲は、Caは0.02質量%から0.05質量%未満、Snは0.4質量%から2.5質量%、Baは0.002質量%から0.014質量%、Alは0.005質量%から0.04質量%、Agは0.005質量%から0.07質量%、Biは0.01質量%から0.1質量%、Tlは0.001質量%から0.05質量%である。これらの組成範囲の合金に対し効果が顕著であり、特にCa量が0.05質量%未満の鉛合金での効果が好ましいものであった。   Preferred ranges for each component of the lead alloy are as follows: Ca is 0.02% by mass to less than 0.05% by mass, Sn is 0.4% by mass to 2.5% by mass, and Ba is 0.002% by mass to 0.014%. Mass%, Al is 0.005 mass% to 0.04 mass%, Ag is 0.005 mass% to 0.07 mass%, Bi is 0.01 mass% to 0.1 mass%, and Tl is 0.001. % By mass to 0.05% by mass. The effect was remarkable for alloys having these composition ranges, and the effect was particularly preferable with a lead alloy having a Ca content of less than 0.05% by mass.

Claims (2)

正極格子にPb−Ca−Sn−Ba−Al合金、またはPb−Ca−Sn−Ba合金から成る耐食性鉛合金を用いた鉛蓄電池の電槽化成方法において、前記電槽化成前にガス発生電位を超えない通電電流密度が、正極で活物質1gあたり3.5〜7.1mAであり、負極で活物質1gあたり4.1〜8.3mAである電流を10分間以上電槽化成時間の5%以下の範囲で通電して予備充電することを特徴とする鉛蓄電池の電槽化成方法。 In a battery formation method for a lead storage battery using a corrosion-resistant lead alloy made of a Pb-Ca-Sn-Ba-Al alloy or a Pb-Ca-Sn-Ba alloy for a positive electrode grid, a gas generation potential is set before the battery formation. The current density that does not exceed is 3.5 to 7.1 mA per gram of active material at the positive electrode, and the current that is 4.1 to 8.3 mA per gram of active material at the negative electrode is 10 % or more and 5% of the battery formation time. A battery case forming method for a lead-acid battery, wherein the battery is energized and precharged in the following range . 前記耐食性鉛合金がさらにAg、Bi、Tlのうちの少なくとも1種を添加した鉛合金であることを特徴とする請求項1記載の鉛蓄電池の電槽化成方法。 2. The battery forming method for a lead storage battery according to claim 1, wherein the corrosion-resistant lead alloy is a lead alloy to which at least one of Ag, Bi, and Tl is added.
JP2003281340A 2003-05-07 2003-07-28 Battery case formation method for lead acid battery Expired - Fee Related JP4443163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281340A JP4443163B2 (en) 2003-05-07 2003-07-28 Battery case formation method for lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003129474 2003-05-07
JP2003281340A JP4443163B2 (en) 2003-05-07 2003-07-28 Battery case formation method for lead acid battery

Publications (2)

Publication Number Publication Date
JP2004356080A JP2004356080A (en) 2004-12-16
JP4443163B2 true JP4443163B2 (en) 2010-03-31

Family

ID=34067015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281340A Expired - Fee Related JP4443163B2 (en) 2003-05-07 2003-07-28 Battery case formation method for lead acid battery

Country Status (1)

Country Link
JP (1) JP4443163B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244301B (en) * 2011-05-26 2013-08-28 江苏永达电源股份有限公司 Container formation process for lead acid storage battery
CN105206844B (en) * 2015-08-28 2017-07-28 天能电池集团有限公司 A kind of preparation method of the lead accumulator grid comprising lead graphene composite material
CN109280808A (en) * 2018-08-23 2019-01-29 淄博火炬能源有限责任公司 Novel positive grid of low calcium rare earth alloy and preparation method thereof
CN116287858B (en) * 2023-03-30 2023-11-28 巨江电源科技有限公司 Lead-based barium sodium aluminum alloy for negative grid of lead-acid storage battery, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004356080A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4443163B2 (en) Battery case formation method for lead acid battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP5196732B2 (en) Method for producing lead-acid battery
RU2237318C2 (en) Electrolyte composition for lead accumulator battery
JP4081698B2 (en) Lead-acid battery charging method
US4046642A (en) Method of making electric storage batteries
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP4483308B2 (en) Lead acid battery
JP3858300B2 (en) Lead acid battery
JP3185300B2 (en) Sealed lead-acid battery
JPS58115775A (en) Lead-acid battery
JPH0234758Y2 (en)
US724387A (en) Method of producing storage-battery plates.
JP2003178806A (en) Charging control method of lead-acid battery
JP2001338644A (en) Method of manufacturing pole plate for calcium battery
JP2004327157A (en) Storage battery
JPH11176449A (en) Sealed lead-acid battery
US3296028A (en) Lead storage battery electrode alloy composition
JP2006140032A (en) Lead-acid battery
JP2008091189A (en) Sealed lead acid storage battery
JP2003234128A (en) Charging method of lead acid storage battery
JP2000173643A (en) Lead-acid battery
JPH11260374A (en) Manufacture of electrode plate for lead-acid battery and lead-acid battery using the electrode plate
JPH0745301A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Ref document number: 4443163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees