JP4442958B2 - Air-conditioning structure with enhanced heat storage effect of water container - Google Patents

Air-conditioning structure with enhanced heat storage effect of water container Download PDF

Info

Publication number
JP4442958B2
JP4442958B2 JP25667999A JP25667999A JP4442958B2 JP 4442958 B2 JP4442958 B2 JP 4442958B2 JP 25667999 A JP25667999 A JP 25667999A JP 25667999 A JP25667999 A JP 25667999A JP 4442958 B2 JP4442958 B2 JP 4442958B2
Authority
JP
Japan
Prior art keywords
heat
water container
water
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25667999A
Other languages
Japanese (ja)
Other versions
JP2001082888A (en
Inventor
誠一 前田
Original Assignee
株式会社イゼナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イゼナ filed Critical 株式会社イゼナ
Priority to JP25667999A priority Critical patent/JP4442958B2/en
Publication of JP2001082888A publication Critical patent/JP2001082888A/en
Application granted granted Critical
Publication of JP4442958B2 publication Critical patent/JP4442958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Central Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は家屋等の建築構造物の床面或いは天井面を介して内部空間を冷暖房する構造に係り、特に水或いはこれに類する液体を充填した袋状の容器を用いる冷暖房構造に関する。
【0002】
【従来の技術】
発明者等は水或いはこれに類する液体を充填した袋状の容器を家屋等の構造物の床面下部等に配置し、床面を介して室内空間を冷暖房する構造を提案している(特願平5−135178号、同5−19983号、同10−42981号等)。この冷暖房構造は次のような基本構成を有している。
【0003】
即ち、図10及び図11において、根太と称される仕切材52により構造物(家屋)の床面51の下部に形成された空間内に袋状の水容器60がそれぞれ配置されている。これらの水容器60には例えば電気ヒータEH等の熱源が配置されている。暖房時には電気ヒータEH等の熱源からの熱は水容器60に伝達され、水容器60内の水Wはこの熱により循環流動して水容器60全体が均一に加熱され、この熱が床面51を介して室内に伝達される。また加熱用の熱源の外に例えば冷水の通過するパイプ等を配置することにより夏期には冷房を行うことも可能である。なお、以下実施例も含め「水」の語は、不凍液、粘度調整剤等の添加物が添加されたものも含む広い意味で使用する。
【0004】
上記構成の床冷暖房構造では、充填された水Wの循環流動により水容器1全体が均一に加熱或いは冷却されるため、加熱用熱源或いは冷却用熱源の何れも、水容器60に対して小型に形成することができる。また媒体が比熱の大きい水であるため、熱源の温度調整を頻繁に行うことなく室内を安定して冷暖房することが可能となる等、床面下部に電気ヒータや温水パイプ等を直接配置した構成に比較して冷暖房の効率及び経済性の何れについても優れた冷暖房構造を提供することが可能となった。
【0005】
【発明が解決しようとする課題】
上記水容器60を使用する冷暖房構造は上述のように多くの利点を有するが、自然の熱源の利用という点では当該冷暖房構造の有する潜在的能力を十分に利用しているとは言いがたい面もある。
【0006】
図12において、例えば冬季には日照角度が小さくなるため部屋の奥まで日が射し、床面51を介して太陽光による熱NH1 が水容器60内の水Wに伝達され、この水Wを温めることになる。この場合熱NH1 は水容器60の上部から加わるため、水容器60内の水は上層(図中符号Uで示す)から温められる結果となり、水容器60内では水の対流は生じない。即ち、熱せられた上層Uの水の熱NH2 は太陽光による熱NH1 との関係において、NH2 <NH1 であればNH1 の熱を蓄えて、下層Lへと伝熱する。一方日が陰ったり夕方となる等によってNH2 >NH1 となれば床面51から放熱することになる。
【0007】
このように水容器60の上部から熱が供給される場合は、熱NH1 の蓄熱には水Wの上層部を中心とした水Wの全容量の一部しか関与できないことになる。即ち水容器60内に充填してある水Wの熱容量の一部を利用しただけとなる。もし、この水W全体に伝熱できれば太陽光による熱NH1 は水W全体にほぼ均一に伝達されるため水Wの上層部Uが急激に昇温することもなくなり、従って太陽光による熱NH1 を受ける間中ほぼNH2 <NH1 となって、水からの放熱を最小限にし、この熱NH1 を効果的に蓄熱することが可能となる。
【0008】
上述のような太陽光等の自然の熱NH1 のみを受ける状態となる場合としては、家人が不在である場合等であろうから、例えば夕方或いは夜になって家人が帰ってきて熱源EH等の人工の熱源を作動させた場合に、水の保有する熱量対応して当該人工の熱源の熱量をその分減少させることが可能となり省エネルギー化を実現することが可能となる。
【0009】
【課題を解決するための手段】
電気ヒータ或いは水パイプを通過する加熱水等による床暖房装置ではこのような自然の熱NH1 を利用することはその構造上、本来的に不可能であるのに対して、発明者等が先に提案している水を利用する冷暖房構造において初めて実現可能となるものである。本発明はこのように水を用いた冷暖房構造の有する潜在能力をより効果的に発揮するよう構成した冷暖房構造である。
【0010】
即ち、本発明は、水容器内に充填してある水に対して当該水の対流が生じない方向から熱が加えられた際にこの水の全体に対して均等に熱が蓄積されるよう、水容器自体に或いはこの水容器に近接して、熱伝導性の高い物質或いは高い熱輻射を行う物質からなる部材を配置させることにより、水の対流が期待出来ない方向からの熱を、水容器内の水に対して均等に伝達、蓄積するよう構成したことを特徴とする水容器を用いた冷暖房構造である。なお、本発明において水容器に加わる熱は水を加熱させるための熱の他、水を冷却させるマイナスの熱も含むものである。
【0011】
【発明の実施の形態】
内部に水を充填する水容器を構成するフィルム状素材として構成される積層材の一部を、例えばアルミ泊、銅泊等の熱伝導性の高い材料により形成し、例えば水容器の上部から熱を加えた際に、当該熱は上記熱伝導性の高い材料により水容器下部に熱伝導され、水容器内の水が全体的に加熱される。なお、以下実施例も含めて特に断らない限り「熱」の語は水を加熱するための熱エネルギーを示すこととする。
【0012】
また熱伝導による他、水容器内部の少なくとも上下内面に熱輻射の高い材料から成る部材を配置し、水容器上部から加えられた熱により上部の部材が加熱され、かつこの上部の部材が加熱することより内部の水を通して下部の部材が輻射(放射)により加熱され、かつ加熱された下部部材により水容器内の水は下層からも加熱され、或いはこの加熱による対流を生じて全体に均一に加熱されるよう構成する。
【0013】
【実施例】
以下本発明の実施例を図面を参考に説明する。
図1は第1の実施例を示す。同図は従来例を示す図11と同様に、水容器の横断面部分図であるが、後述する実施例を示す図も含めて、本発明の構成を明瞭に示すため、電気ヒータEH等の人工的な加熱媒体の位置しない部分の断面図として現されている。
【0014】
図1において、符号1は水容器であり、従来の水容器と同様仕切材52により区画された床面51の下部空間部に収納されている。水容器1はフィルム状の材料により形成され、家屋の建築現場において注水されるよになっている。フィルム材は複数の材料からなる積層材として形成されており、この積層材の一つがアルミや銅等の熱伝導性の良好な材料からなる箔(以下「熱伝導箔」と称する)2となっている。なお、この熱伝導箔2は通常金属箔であるため、他の積層材がビニル等の高分子材料により形成されていても、気体の通過をほぼ完全に阻止でき、内部の水を長年に渡って安定的に保持する防護膜としての機能も発揮する。
【0015】
この構成において、床面51の上部から太陽光等による熱NH1 が加わると、その熱は水容器1の熱伝導箔2を加熱し、この熱は伝導熱NH2 として水容器1の底部まで熱伝導され、内部の水Wをほぼ均一に加熱する。この均一な加熱と水の大きな比熱により、熱NH1 による熱エネルギーは比較的長時間この水Wに蓄えられ、例えば図11に示す電気ヒータEH等の人工の熱源を作動させるときに、省エネルギー化を図ることができる。また、水容器1の底面に配置された人工熱源により水容器1内の水を加熱する場合には、図に示す熱NH2 の伝導方向とは逆に、水容器1の上部に向かって伝熱され、水の対流と合わせて水容器1内の水を早期に均一加熱することが可能となる。
【0016】
図2乃至図4は第2の実施例を示す。この実施例では水容器1の内面上下に前記熱伝導箔2と同効の熱伝導部材3A及び3Bがそれぞれ配置されている。3Cはこれら熱伝導箔3A、3Bの間に介在配置された熱伝導部材である。この熱伝導部材3Cは、図3に示すように注水前の水容器1が折り畳み可能なように、可撓性を有する熱伝導性材料により形成されている。なお、この熱伝導部材3Cは前記熱伝導部材3A、3Bと同様の金属箔とすることにより可撓性を保持することができる。
【0017】
この熱伝導部材3Cは図4に示すように水容器1の長手方向に対して列を成して配置されており、電気ヒータ等により水容器下部から加熱された際に、内部の水Wの対流を阻害しないようになっている。
【0018】
この実施例においては床面51に加わった熱NH1 は熱伝導部材3Cを介して水容器1の上部の熱伝導部材3Aから下部の熱伝導部材3Bに伝達され、この結果以後は上記第1の実施例と同様に水容器1内の水は均一に加熱される。
【0019】
図5は第3の実施例を示す。符号4A及び4Bは水容器1内部の上下に配置された伝熱部材であって、このうち符号4Aで示す熱伝導部材は熱ビームの放射量の大きい部材により形成された輻射伝熱部材として構成されている。この輻射伝熱部材としては、例えばアルミニウム表面がアルマイト処理されたもの等が考えられる。なお、何らかの部材を用いた熱の伝達は多くの場合、伝導、輻射、対流の3つの要素を全て含んでおり、上記輻射伝熱部材はこのうち輻射による熱の伝達量が相対的に多いものを意味している。従って輻射に加えて伝導も良好な材料であればより効果的な熱の伝達が可能となる。
【0020】
上記の構成において、床面51に加わった熱NH1 は輻射伝熱部材4Aに伝達され、加熱された輻射伝熱部材4Aは熱ビームNH3 を放射する。この熱ビームNH3 を受けた下部の伝熱部材4Bは加熱されて水容器1の下層の水を伝導加熱し、水容器1内の水Wは対流を生じてほぼ均一に加熱される。
【0021】
図6は上記第3の実施例の変形例を示す。この例では輻射伝熱部材が、符号4で示すように水容器1の内周面の全面に配置してある。これにより床面51に加わった熱NH1 は輻射伝熱部材4の上部から放射される輻射ビームNH3 の他、水容器1の側壁部側からの伝導熱NH2 としても、輻射伝熱部材4の水容器底部側に伝達され、これによってより効率的に熱の伝達が行われる。
【0022】
なお上記の構成の輻射伝熱部材4は図7に示すように、折り畳み状態の水注入前の水容器1において、図示のように折り畳まれるようにしておけば、この輻射伝熱部材4を比較的肉厚に形成しておいても水容器1の体積の変化に追随することができる。
【0023】
図8及は第4の実施例を示す。符号5は水容器1の上部を覆うように配置された断面略コの字型の伝熱用金属フレームである。これにより水容器1は床面51の下部でこの金属フレムー5に覆われるように配置されることになる。この構成において床面51に加わった熱NH1 は金属フレーム5を介して伝導熱NH2 として熱伝導され、内部の水Wがほぼ均一に加熱される。なおこの金属フレーム5には熱の均等な伝達という本来の効果の他に次のような副次的効果がある。
【0024】
先ず水容器1を施工中の床に配置して水を充填する際に金属フレーム5の上面が床面51の下面の位置にあるため、金属フレーム5に対する水容器1の接触具合を見ることにより水容器1に対する水の供給料を調整することができる。また、水容器1に対する水の注入を完了したならば、床面51を形成するが、この床面形成は床材を仕切り材(根太)52に釘打ちすることにより行われる。この場合、打ちつけた釘によって誤って水容器1を破損する可能性があるが、この金属フレーム5が釘による水容器1の損傷を防護する防護材としても機能し、破損事故を防止することができる。
【0025】
図9は前記第4の実施例と関連する第5の実施例を示す。
この実施例では床面下部の空間に第1の金属フレーム6Aが配置される。この第1の金属フレーム6Aは上部が開放空間となるよう床面下部空間内に配置され、水容器1はこの第1の金属フレーム6A内に収納された状態で床面下部空間内に配置される。この状態の水容器1に対して第2の金属フレーム6Bが、前記第1の金属フレーム6Aに対して蓋をするようにして配置され、水容器1はこれら第1及び第2の金属フレーム6A、6B内に収納された状態となる。なお電気ヒータEH等の加熱部材は第1の金属部材6Aと水容器1との間に介在配置される。この実施例においては床面51に加わった熱NH1 は熱伝導により伝導熱NH2 として水容器1の下部に伝達され、水容器1内の水Wをほぼ均一に加熱する。またこの金属フレーム6A、6Bも前記のような副次的効果を有する他、更に第1の金属フレーム6Aは、床張後に何らかの理由により万一漏水があっても漏出した水の水受けとして作用するという効果も生じる。
【0026】
以上本発明を、水容器内部の水が加熱される場合を例に説明したが、加わった熱が水を冷却する場合、即ちマイナスの熱量が加わった場合にも効果的に作用する。例えば、夏期において床下の通風を図ることにより水容器下面にマイナスの熱量を加える場合、従来の構成では水容器内の水は下層から冷やされるため、水の対流は期待できず、床面を効果的に冷却することはできない。これに対して伝熱部材があれば水容器上部にマイナスの熱量が伝達され、水容器1内の水はほぼ均一に冷却され、床面冷房の省エネルギー化が実現できる。
【0027】
なお、各実施例に示された本発明構成を個別に実施する他、例えば図1に示す実施例と図5に示す実施例を併用することにより熱伝導と熱輻射の両方を併用する等各種の構成が可能である。
【0028】
【発明の効果】
本発明は以上各実施例により説明したように、水容器内の水の対流による伝熱が期待できない位置から水に対して熱量が供給された場合に、水容器内の水に対して均等に伝熱することより熱の蓄積にあまり関与しなかった水の層も有効に利用することによって水容器を用いた冷暖房構造の潜在的能力を十分に発揮することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す水容器の断面部分図である。
【図2】本発明の第2の実施例を示す水容器の断面図である。
【図3】図1に示す水容器から水を抜いた状態の水容器断面図である。
【図4】図2のA−A線による断面部分図である。
【図5】本発明の第3の実施例を示す水容器の断面図である。
【図6】上記第3の実施例の変形例を示す水容器の断面図である。
【図7】図6に示す水容器の注水前の状態を示す水容器断面図である。
【図8】本発明の第4の実施例を示す水容器の断面図である。
【図9】本発明の第5の実施例を示す水容器の断面図である。
【図10】水容器の配置状態を示す床面平面図である。
【図11】図10のB−B線による断面図である。
【図12】従来の水容器の蓄熱・放熱状態を示す水容器の断面部分図である。
【符号の説明】
1 水容器
2 熱伝導箔
3A、3B 熱伝導部材
4A、輻射伝熱部材
4B 伝熱部材
5 金属フレーム
6A 下部金属フレーム
6B 上部金属フレーム
NH1 熱(水容器内の水の対流が起こらない方向から加えられたもの)
NH2 伝導熱
NH3 熱ビーム(輻射)
W (水容器1内の)水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure for cooling and heating an internal space via a floor surface or a ceiling surface of a building structure such as a house, and more particularly to a cooling and heating structure using a bag-like container filled with water or a liquid similar thereto.
[0002]
[Prior art]
The inventors have proposed a structure in which a bag-like container filled with water or a liquid similar thereto is arranged at the lower part of the floor of a structure such as a house and the indoor space is cooled and heated via the floor (special feature). Application Nos. 5-135178, 5-19983, and 10-42981). This air conditioning structure has the following basic configuration.
[0003]
That is, in FIG.10 and FIG.11, the bag-shaped water container 60 is each arrange | positioned in the space formed in the lower part of the floor surface 51 of a structure (house) by the partition material 52 called joist. These water containers 60 are provided with a heat source such as an electric heater EH. At the time of heating, heat from a heat source such as the electric heater EH is transmitted to the water container 60, and the water W in the water container 60 is circulated and flowed by this heat so that the entire water container 60 is uniformly heated. Is transmitted through the room. In addition, it is possible to perform cooling in the summer by arranging, for example, a pipe through which cold water passes outside the heat source for heating. In addition, the term “water”, including the examples below, is used in a broad sense including those added with additives such as antifreeze and viscosity modifiers.
[0004]
In the floor cooling / heating structure with the above configuration, the entire water container 1 is uniformly heated or cooled by the circulating flow of the filled water W, so that either the heating heat source or the cooling heat source is smaller than the water container 60. Can be formed. In addition, since the medium is water with a large specific heat, it is possible to stably cool and heat the room without frequently adjusting the temperature of the heat source. Compared to the above, it is possible to provide an air conditioning structure that is superior in both efficiency and economic efficiency.
[0005]
[Problems to be solved by the invention]
Although the air conditioning structure using the water container 60 has many advantages as described above, it is difficult to say that the potential capacity of the air conditioning structure is sufficiently utilized in terms of the use of a natural heat source. There is also.
[0006]
In FIG. 12, for example, in the winter season, the sunshine angle is small, so that the sun shines to the back of the room, and heat NH 1 due to sunlight is transmitted to the water W in the water container 60 through the floor 51. Will warm up. In this case, since heat NH 1 is applied from the upper part of the water container 60, the water in the water container 60 is heated from the upper layer (indicated by the symbol U in the figure), and no convection of water occurs in the water container 60. That is, the heat NH 2 of the heated water in the upper layer U stores the heat of NH 1 and transfers it to the lower layer L if NH 2 <NH 1 in relation to the heat NH 1 from sunlight. On the other hand, if NH 2 > NH 1 due to the shade or evening, heat is radiated from the floor 51.
[0007]
When heat is supplied from the upper part of the water container 60 as described above, only a part of the total capacity of the water W centering on the upper layer part of the water W can be involved in the heat storage of the heat NH 1 . That is, only a part of the heat capacity of the water W filled in the water container 60 is used. If heat can be transferred to the entire water W, the heat NH 1 due to sunlight is transmitted almost uniformly to the entire water W, so that the upper layer U of the water W will not rise rapidly, and therefore the heat NH due to sunlight. While receiving 1 , almost NH 2 <NH 1 , minimizing heat dissipation from water and effectively storing this heat NH 1 .
[0008]
The case where only the natural heat NH 1 such as sunlight as described above is received may be a case where the house is absent, for example, the house comes back in the evening or at night, and the heat source EH or the like. When the artificial heat source is operated, the amount of heat of the artificial heat source can be reduced correspondingly to the amount of heat held by water, and energy saving can be realized.
[0009]
[Means for Solving the Problems]
In a floor heating device using heated water or the like passing through an electric heater or a water pipe, it is inherently impossible to use such natural heat NH 1 due to its structure. This can be realized for the first time in the air-conditioning structure using water proposed in the above. The present invention is an air-conditioning structure configured to more effectively exhibit the potential of the air-conditioning structure using water.
[0010]
That is, according to the present invention, when heat is applied from the direction in which convection of the water does not occur with respect to the water filled in the water container, heat is accumulated evenly over the entire water. By placing a member made of a substance having high thermal conductivity or a substance that performs high heat radiation in or near the water container itself, heat from a direction in which convection of water cannot be expected is It is an air-conditioning structure using a water container characterized by being configured to transmit and accumulate evenly with respect to the water inside. In the present invention, heat applied to the water container includes not only heat for heating water but also minus heat for cooling water.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A part of the laminated material configured as a film-like material constituting a water container filled with water is formed of a material having high thermal conductivity such as aluminum stay, copper stay, etc. Is added, the heat is conducted to the lower part of the water container by the material having high heat conductivity, and the water in the water container is entirely heated. In addition, unless otherwise indicated below including an Example, the word "heat" shall show the thermal energy for heating water.
[0012]
In addition to heat conduction, a member made of a material with high heat radiation is disposed on at least the upper and lower inner surfaces of the water container, and the upper member is heated by the heat applied from the upper part of the water container, and the upper member is heated. Therefore, the lower member is heated by radiation (radiation) through the internal water, and the water in the water container is also heated from the lower layer by the heated lower member, or the convection by this heating is generated and the whole is heated uniformly. To be configured.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a first embodiment. This figure is a partial cross-sectional view of a water container, similar to FIG. 11 showing the conventional example. However, in order to clearly show the configuration of the present invention, including the figures showing examples described later, the electric heater EH etc. It is shown as a cross-sectional view of a portion where the artificial heating medium is not located.
[0014]
In FIG. 1, the code | symbol 1 is a water container, and is accommodated in the lower space part of the floor 51 divided by the partition material 52 similarly to the conventional water container. The water container 1 is formed of a film-like material, and water is poured at a construction site of a house. The film material is formed as a laminated material composed of a plurality of materials, and one of the laminated materials is a foil (hereinafter referred to as “thermal conductive foil”) 2 made of a material having good thermal conductivity such as aluminum or copper. ing. In addition, since this heat conductive foil 2 is usually a metal foil, even if the other laminated material is formed of a polymer material such as vinyl, the passage of gas can be almost completely prevented, and the internal water can be kept for many years. It also functions as a protective film that holds it stably.
[0015]
In this configuration, when heat NH 1 due to sunlight or the like is applied from the upper part of the floor 51, the heat heats the heat conductive foil 2 of the water container 1, and this heat reaches the bottom of the water container 1 as conductive heat NH 2. Conducted by heat, the water W inside is heated almost uniformly. Due to the uniform heating and the large specific heat of water, the heat energy from the heat NH 1 is stored in the water W for a relatively long time. For example, when an artificial heat source such as the electric heater EH shown in FIG. Can be achieved. In addition, when water in the water container 1 is heated by an artificial heat source disposed on the bottom surface of the water container 1, it is transmitted toward the upper part of the water container 1 in the opposite direction to the conduction direction of the heat NH 2 shown in the figure. It is heated, and it becomes possible to heat the water in the water container 1 uniformly at an early stage together with the convection of water.
[0016]
2 to 4 show a second embodiment. In this embodiment, heat conductive members 3A and 3B having the same effect as the heat conductive foil 2 are disposed above and below the inner surface of the water container 1, respectively. 3C is a heat conductive member disposed between these heat conductive foils 3A and 3B. This heat conductive member 3C is formed of a heat conductive material having flexibility so that the water container 1 before water injection can be folded as shown in FIG. The heat conducting member 3C can maintain flexibility by using the same metal foil as that of the heat conducting members 3A and 3B.
[0017]
As shown in FIG. 4, the heat conducting members 3C are arranged in a row with respect to the longitudinal direction of the water container 1, and when heated from the lower part of the water container by an electric heater or the like, The convection is not disturbed.
[0018]
In this embodiment, the heat NH 1 applied to the floor 51 is transmitted from the upper heat conduction member 3A of the water container 1 to the lower heat conduction member 3B via the heat conduction member 3C. As in the first embodiment, the water in the water container 1 is heated uniformly.
[0019]
FIG. 5 shows a third embodiment. Reference numerals 4A and 4B are heat transfer members disposed above and below the water container 1, and the heat conduction member indicated by reference numeral 4A is configured as a radiation heat transfer member formed by a member having a large radiation amount of heat beams. Has been. As this radiant heat transfer member, for example, an alumite treated aluminum surface can be considered. Note that heat transfer using any member often includes all three elements of conduction, radiation, and convection, and the radiation heat transfer member has a relatively large amount of heat transfer due to radiation. Means. Therefore, if the material has good conduction in addition to radiation, more effective heat transfer is possible.
[0020]
In the above configuration, the heat NH 1 applied to the floor 51 is transmitted to the radiant heat transfer member 4A, and the heated radiant heat transfer member 4A radiates the heat beam NH 3 . The lower heat transfer member 4B that has received the heat beam NH 3 is heated to conduct and heat the water below the water container 1, and the water W in the water container 1 is convected and heated almost uniformly.
[0021]
FIG. 6 shows a modification of the third embodiment. In this example, the radiant heat transfer member is disposed on the entire inner peripheral surface of the water container 1 as indicated by reference numeral 4. As a result, the heat NH 1 applied to the floor surface 51 is not limited to the radiation beam NH 3 radiated from the upper part of the radiant heat transfer member 4, but can also be used as the conduction heat NH 2 from the side wall of the water container 1. 4 is transmitted to the bottom side of the water container 4, whereby heat is transmitted more efficiently.
[0022]
As shown in FIG. 7, the radiant heat transfer member 4 having the above structure is compared with the radiant heat transfer member 4 if the foldable water container 1 is folded as shown in the figure before the water injection. Even if it is formed to have a suitable thickness, it is possible to follow the change in the volume of the water container 1.
[0023]
8 and 4 show a fourth embodiment. Reference numeral 5 denotes a heat transfer metal frame having a substantially U-shaped cross section disposed so as to cover the upper portion of the water container 1. As a result, the water container 1 is disposed so as to be covered with the metal frame 5 at the lower part of the floor 51. In this configuration, the heat NH 1 applied to the floor surface 51 is thermally conducted as conduction heat NH 2 through the metal frame 5, and the water W inside is heated almost uniformly. The metal frame 5 has the following secondary effects in addition to the original effect of uniform heat transfer.
[0024]
First, when the water container 1 is placed on the floor under construction and filled with water, the upper surface of the metal frame 5 is located at the lower surface of the floor surface 51. The water supply fee for the water container 1 can be adjusted. Further, when the injection of water into the water container 1 is completed, the floor surface 51 is formed. This floor surface formation is performed by nailing the floor material to the partition material (joist) 52. In this case, there is a possibility that the water container 1 may be accidentally damaged by the nail that is struck, but this metal frame 5 also functions as a protective material that protects the water container 1 from being damaged by the nail, thereby preventing a breakage accident. it can.
[0025]
FIG. 9 shows a fifth embodiment related to the fourth embodiment.
In this embodiment, the first metal frame 6A is disposed in the space below the floor surface. The first metal frame 6A is disposed in the lower floor surface space so that the upper portion is an open space, and the water container 1 is disposed in the lower floor surface space in a state of being accommodated in the first metal frame 6A. The The second metal frame 6B is disposed so as to cover the water container 1 in this state so as to cover the first metal frame 6A, and the water container 1 is provided with the first and second metal frames 6A. , 6B. A heating member such as the electric heater EH is disposed between the first metal member 6A and the water container 1. In this embodiment, the heat NH 1 applied to the floor surface 51 is transmitted to the lower part of the water container 1 as conduction heat NH 2 by heat conduction, and the water W in the water container 1 is heated almost uniformly. The metal frames 6A and 6B also have the secondary effects as described above, and the first metal frame 6A functions as a water receiver for leaked water even if water leaks for some reason after flooring. It also has the effect of
[0026]
Although the present invention has been described above by taking the case where the water inside the water container is heated as an example, the present invention works effectively even when the applied heat cools the water, that is, when a negative amount of heat is applied. For example, when adding a negative amount of heat to the bottom surface of the water container by ventilating under the floor in summer, the water in the water container is cooled from the lower layer in the conventional configuration, so water convection cannot be expected, and the floor surface is effective. Cannot be cooled. On the other hand, if there is a heat transfer member, a negative amount of heat is transmitted to the upper part of the water container, the water in the water container 1 is cooled almost uniformly, and energy saving of the floor cooling can be realized.
[0027]
In addition to implementing the present invention configuration shown in each embodiment individually, for example, by using both the embodiment shown in FIG. 1 and the embodiment shown in FIG. Is possible.
[0028]
【The invention's effect】
As described in the above embodiments, the present invention is equally applied to the water in the water container when heat is supplied to the water from a position where heat transfer due to convection of the water in the water container cannot be expected. By effectively utilizing the water layer that was not much involved in the heat accumulation rather than transferring heat, the potential capability of the cooling / heating structure using the water container can be fully exhibited.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a water container showing a first embodiment of the present invention.
FIG. 2 is a sectional view of a water container showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a water container in a state where water is drained from the water container shown in FIG.
4 is a partial sectional view taken along line AA in FIG. 2;
FIG. 5 is a sectional view of a water container showing a third embodiment of the present invention.
FIG. 6 is a cross-sectional view of a water container showing a modification of the third embodiment.
7 is a cross-sectional view of a water container showing a state before water injection of the water container shown in FIG.
FIG. 8 is a cross-sectional view of a water container showing a fourth embodiment of the present invention.
FIG. 9 is a sectional view of a water container showing a fifth embodiment of the present invention.
FIG. 10 is a floor plan view showing the arrangement of water containers.
11 is a cross-sectional view taken along line BB in FIG.
FIG. 12 is a partial cross-sectional view of a water container showing a heat storage and heat dissipation state of a conventional water container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water container 2 Thermal conductive foil 3A, 3B Thermal conductive member 4A, Radiation heat transfer member 4B Heat transfer member 5 Metal frame 6A Lower metal frame 6B Upper metal frame NH 1 Heat (from the direction in which convection of water in the water container does not occur) Added)
NH 2 conduction heat NH 3 heat beam (radiation)
W (in water container 1)

Claims (3)

水容器内に水又はこれと同効の液体を充填し、この充填された液体を加熱或いは冷却することにより冷房又は暖房を行う冷暖房構造であって、熱を伝達する熱伝導部材を、水容器を構成する材料の一部として用い、或いは独立した部材として当該水容器に近接して配置する冷暖房構造において、当該熱伝導部材は水容器内部の上下に配置され、かつ上下の熱伝導部材の間には水が充填されている空間を通過して他の熱伝導部材が介在配置されていることを特徴とする水容器の蓄熱効果を高めた冷暖房構造。In the water container filled with liquid water or this same effect, a heating and cooling structure for a cooling or heating by heating or cooling the filled liquid, a heat conducting member for transferring heat, water container In the air-conditioning structure used as a part of the material constituting the water container or disposed as an independent member in the vicinity of the water container, the heat conducting member is disposed above and below the water container and between the upper and lower heat conducting members. The air-conditioning structure which improved the heat storage effect of the water container characterized by passing through the space filled with water and other heat-conducting members being interposed. 水容器内に水又はこれと同効の液体を充填し、この充填された液体を加熱或いは冷却することにより冷房又は暖房を行う冷暖房構造であって、熱を伝達する熱伝導部材を、水容器を構成する材料の一部として用い、或いは独立した部材として当該水容器に近接して配置する冷暖房構造において、水容器内面のうち上下の内面には熱伝導部材が配置され、上部の熱伝導部材は熱輻射量の大きい輻射伝熱部材であって、当該輻射伝熱部材から放射される熱ビームが下面の熱伝導部材に伝達され、当該加熱された下面の熱伝導部材により水容器内に対流を生じるよう構成したことを特徴とする水容器の蓄熱効果を高めた冷暖房構造。In the water container filled with liquid water or this same effect, a heating and cooling structure for a cooling or heating by heating or cooling the filled liquid, a heat conducting member for transferring heat, water container In the air-conditioning structure used as a part of the material constituting the water container or in the vicinity of the water container as an independent member, heat conduction members are arranged on the upper and lower inner surfaces of the water container inner surface, and the upper heat conduction member Is a radiant heat transfer member with a large amount of heat radiation, and the heat beam radiated from the radiant heat transfer member is transmitted to the heat conduction member on the lower surface, and is convected into the water container by the heated heat conduction member on the lower surface. The air-conditioning structure which improved the heat storage effect of the water container characterized by comprising so that it may produce. 水容器の上下の面のうち少なくとも上面が、水容器とは独立した金属フレームにより覆われていることを特徴とする請求項1又は2記載の水容器の蓄熱効果を高めた冷暖房構造。The cooling / heating structure with enhanced heat storage effect of the water container according to claim 1 or 2 , wherein at least an upper surface of the upper and lower surfaces of the water container is covered with a metal frame independent of the water container.
JP25667999A 1999-09-10 1999-09-10 Air-conditioning structure with enhanced heat storage effect of water container Expired - Fee Related JP4442958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25667999A JP4442958B2 (en) 1999-09-10 1999-09-10 Air-conditioning structure with enhanced heat storage effect of water container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25667999A JP4442958B2 (en) 1999-09-10 1999-09-10 Air-conditioning structure with enhanced heat storage effect of water container

Publications (2)

Publication Number Publication Date
JP2001082888A JP2001082888A (en) 2001-03-30
JP4442958B2 true JP4442958B2 (en) 2010-03-31

Family

ID=17295974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25667999A Expired - Fee Related JP4442958B2 (en) 1999-09-10 1999-09-10 Air-conditioning structure with enhanced heat storage effect of water container

Country Status (1)

Country Link
JP (1) JP4442958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6526979B2 (en) * 2015-02-06 2019-06-05 株式会社イゼナ House heating and cooling structure
CN110056762B (en) * 2019-05-17 2023-12-19 中国科学院理化技术研究所 Low-temperature liquid storage tank

Also Published As

Publication number Publication date
JP2001082888A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US4213448A (en) Thermosiphon solar space heating system with phase change materials
US4913985A (en) Battery temperature regulation system
US5070933A (en) Temperature regulating system
JP2006284071A (en) Solar heating system
BR112020007332A2 (en) air conditioning module
US4674476A (en) Solar heating and cooling apparatus
US5316872A (en) Passive cooling system
JP4442958B2 (en) Air-conditioning structure with enhanced heat storage effect of water container
JP2004301470A (en) Underground heat utilizing system
US6857425B2 (en) Solar energy collector system
JP2008170068A (en) Temperature adjusting device for building
JPH0658685A (en) Heat accumulating panel
JP2009162469A (en) Air conditioning system and unit building
JP4268506B2 (en) Heating and cooling device and heating device
JP2007322013A (en) Heat storage-hot water combination heating system
JP2003074884A (en) Solar hot air regenerative floor heater
JP4499900B2 (en) Heat transfer floor structure material and floor structure using this floor structure material
JP3838194B2 (en) Heating system
JPH06257800A (en) Air conditioner
JP4575053B2 (en) Underfloor temperature control device with temperature control means and underfloor temperature control building
KR20100055140A (en) Heating system using solar heat including heating panel used latent heat
JP2000234750A (en) Floor heating structure
JP4011236B2 (en) Air-conditioning structure using water containers
US8371288B2 (en) Solar collector/heat exchanger
JP2007078256A (en) Floor cooling/heating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Ref document number: 4442958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees