JP3838194B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP3838194B2
JP3838194B2 JP2002345151A JP2002345151A JP3838194B2 JP 3838194 B2 JP3838194 B2 JP 3838194B2 JP 2002345151 A JP2002345151 A JP 2002345151A JP 2002345151 A JP2002345151 A JP 2002345151A JP 3838194 B2 JP3838194 B2 JP 3838194B2
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat storage
heating
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002345151A
Other languages
Japanese (ja)
Other versions
JP2004177025A (en
Inventor
裕三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2002345151A priority Critical patent/JP3838194B2/en
Publication of JP2004177025A publication Critical patent/JP2004177025A/en
Application granted granted Critical
Publication of JP3838194B2 publication Critical patent/JP3838194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、夏期等の非暖房時に得られた熱を有効利用して冬季に暖房を行う暖房システムに関する。
【0002】
【従来の技術】
この種の暖房システムとしては、例えば、図11に示すように、夏期の太陽熱を利用して生成された温水を冬期の暖房に利用するものがある。この暖房システム50は、同図に示すように、蓄熱媒体としての水が貯留される、地中に設けられた蓄熱槽51と、家屋の屋根面等に設置され、太陽熱を集熱するソーラー集熱器52と、蓄熱槽51とソーラー集熱器52とを接続する、一次側循環ポンプ53aを有する一次側循環回路53とを備えており、蓄熱槽51内に貯留された水を、ソーラー集熱器52に循環供給することで温水が生成され、この温水が蓄熱槽51に貯留されるようになっている。
【0003】
また、この暖房システム50では、家屋内に、床暖房フロアやファンコンベクタ等の温水暖房端末装置54が設置されており、蓄熱槽51に貯留された温水を、二次側循環ポンプ55aを有する二次側循環回路55を介して、温水暖房端末装置54に循環供給することによって、家屋内の暖房が行われるようになっている。
【0004】
【特許文献1】
特開平9−101061号公報
【特許文献2】
特開平11−211159号公報
【0005】
【発明が解決しようとする課題】
従って、こういった暖房システム50では、日射の強い夏場に生成した温水を蓄熱槽51に貯留しておき、この蓄熱槽51に貯留された温水を冬場の暖房に有効利用することができるという利点がある。
【0006】
しかしながら、蓄熱槽51に貯留された温水を暖房熱源として利用するためには、上述したように、二次側循環ポンプ55aや循環配管等からなる二次側循環回路55を設け、この二次側循環回路55によって、蓄熱槽51に貯留された温水を家屋内に設置されたファンコンベクタ等の温水暖房端末装置54に循環供給しなければならず、蓄熱槽51に貯留された温水を利用する二次側機器等のイニシャルコストやランニングコストが高くなるといった問題がある。
【0007】
そこで、この発明の課題は、蓄熱槽に貯留された温水等の蓄熱媒体を暖房熱源として利用する二次側機器等のイニシャルコストやランニングコストを最小限に抑えることができる暖房システムを提供することにある。
【0008】
【課題を解決するための手段及びその効果】
上記の課題を解決するため、請求項1にかかる発明は、暖房しようとする建物の直下において、地中に設けられた蓄熱槽と、少なくとも、非暖房時に、補助熱源から得られる熱を利用して加熱された蓄熱媒体を前記蓄熱槽に貯留することによって集熱する集熱手段と、暖房時に、前記蓄熱槽内に蓄えられた熱を、前記建物の床に伝導する熱伝導手段とを備え、前記熱伝導手段は、前記建物の床に埋設された金属製の放熱部材と、下端側を前記蓄熱槽に貯留された蓄熱媒体に浸漬するヒートパイプと、このヒートパイプの上端部に固着された、前記ヒートパイプを前記放熱部材に取り付ける金属製の取付部材とを備えており、前記放熱部材は、上端側に向かって内周面が徐々に大径になるように形成されたテーパ部及びこのテーパ部の下端側に連設された、内周面に雌ねじが形成されたストレート部を有する円筒部材を備え、前記取付部材は、前記円筒部材の前記テーパ部に嵌り込むテーパ部及びこのテーパ部の下端側に連設された、外周面に雄ねじが形成されたストレート部を有し、前記取付部材は、そのストレート部が、そのテーパ部の外周面を前記円筒部材の前記テーパ部の内周面に接触離反させることができるように、前記円筒部材の前記ストレート部にねじ込まれていることを特徴とする暖房システムを提供するものである。
【0009】
以上のように、この暖房システムでは、蓄熱槽内の蓄熱媒体に蓄えられた熱を、熱伝導手段によって、建物の床や建物内の空気に伝導することで、建物内を暖房するようにしたので、従来の暖房システムのように、温水暖房端末装置や二次側循環ポンプ等の二次側循環回路を設置する必要がなく、二次側機器のイニシャルコストやランニングコストを最小限に抑えつつ、低コストで家屋内の暖房を行うことが可能となる。
【0010】
またの暖房システムでは、熱伝導手段建物の床に埋設された金属製の放熱部材と、下端側を前記蓄熱槽に貯留された蓄熱媒体に浸漬するヒートパイプと、このヒートパイプの上端部に固着された、前記ヒートパイプを前記放熱部材に取り付ける金属製の取付部材とを備えているので、蓄熱槽内の蓄熱媒体に蓄えられた熱を、建物の床に効率よく伝導することができ、暖房効率が向上する。
【0011】
また、この暖房システムでは、取付部材のストレート部を、放熱部材を構成している円筒部材のストレート部に完全にねじ込むと、円筒部材のテーパ部の内周面と取付部材のテーパ部の外周面とが密接した状態で、ヒートパイプが放熱部材に装着され、ヒートパイプの熱が、取付部材を介して、放熱部材に良好に伝導される状態となり、円筒部材に対する取付部材のねじ込み量を小さくすると、円筒部材のテーパ部の内周面と取付部材のテーパ部の外周面とが相互に離反して、取付部材と放熱部材との間の伝熱面積が減少し、ヒートパイプの熱が、取付部材を介して、放熱部材に伝導されにくい状態となるので、暖房負荷に応じて、放熱部材に対する取付部材のねじ込み量を調整することで、暖房能力を調整することができる。
【0012】
また、上記の課題を解決するため、請求項2にかかる発明は、暖房しようとする建物の直下において、地中に設けられた蓄熱槽と、少なくとも、非暖房時に、補助熱源から得られる熱を利用して加熱された蓄熱媒体を前記蓄熱槽に貯留することによって集熱する集熱手段と、暖房時に、前記蓄熱槽内に蓄えられた熱を、前記建物の床に伝導する熱伝導手段とを備え、前記熱伝導手段は、前記建物の床に埋設された金属製の放熱部材と、下端側を前記蓄熱槽に貯留された蓄熱媒体に浸漬するヒートパイプとを備えており、前記放熱部材は、前記ヒートパイプをスライド可能に挿通するストレート状の円筒部材を有し、前記ヒートパイプの上端部には、前記円筒部材に挿通された前記ヒートパイプを昇降させる操作棒が連結されていることを特徴とする暖房システムを提供するものである。
【0013】
以上のように構成された暖房システムは、請求項1にかかる発明の暖房システムと同様に、蓄熱槽内の蓄熱媒体に蓄えられた熱を、建物の床に効率よく伝導することができるので、暖房効率が向上する。また、この暖房システムでは、操作棒を操作することによってヒートパイプを昇降させることで、放熱部材の円筒部材に対するヒートパイプの接触面積を変化させることができるので、暖房負荷に応じて、ヒートパイプを昇降させることで、暖房能力を調整することができる。
【0014】
【発明の実施の形態】
以下、実施の形態について図面を参照して説明する。図1に示すように、この暖房システム1は、家屋C内を暖房するためのものであり、家屋Cの直下において、地中に設けられた蓄熱槽10と、補助熱源としての太陽熱によって加熱された蓄熱媒体(温水)を蓄熱槽10に貯留することによって集熱する集熱手段20と、蓄熱槽10内の蓄熱媒体(温水)に蓄えられた熱を、家屋Cの床Fに伝導する熱伝導手段30とを備えている。
【0015】
前記蓄熱槽10は、図1に示すように、地中に形成されたコンクリート層11と、このコンクリート層11の内側に形成された断熱層12と、この断熱層12の内側に配設された、金属またはFRP等の材料で作られた貯留容器13とによって構成されており、貯留容器13内は、蓄熱媒体として導入された水道水等の水によって充満されている。
【0016】
前記集熱手段20は、図1に示すように、家屋Cの屋根面に設置されるソーラー集熱器21と、蓄熱槽10とソーラー集熱器21とを接続する往き配管22a及び戻り配管22bと、往き配管22aに設置された、蓄熱槽10内に貯留された蓄熱媒体(水)を汲み上げてソーラー集熱器21に供給する循環ポンプ23とを備えており、往き配管22aは、蓄熱槽10の下部側に滞留している温度の低い蓄熱媒体をソーラー集熱器21に供給することができるように、蓄熱槽10の下部側まで延びていると共に、戻り配管22bは、ソーラー集熱器21によって加熱された蓄熱媒体が、温度の高い蓄熱媒体が滞留している蓄熱槽10の上部側に放出されるように、蓄熱槽10の上部側で開放されている。
【0017】
なお、この集熱手段20は、集熱温度、即ち、ソーラー集熱器21の出口側における蓄熱媒体の温度が蓄熱槽10の下部に滞留している蓄熱媒体の温度より所定温度(例えば、7℃)以上高くなると、循環ポンプ23を起動して、蓄熱運転を行うようになっており、集熱温度と蓄熱槽10の下部に滞留している蓄熱媒体の温度との差が所定温度(例えば、3℃)以下になると、循環ポンプ23の運転を停止し、蓄熱運転を行わないようになっている。
【0018】
前記熱伝導手段30は、図1〜図3に示すように、家屋Cの床Fに埋設された熱伝導性の良好な金属製の放熱部材31とヒートパイプ36とを備えており、ヒートパイプ36は、その上端部に固着された、熱伝導性の良好な金属製の取付部材37を介して、放熱部材31に取り外し可能に装着されるようになっている。
【0019】
前記放熱部材31は、図2(a)、(b)に示すように、上端側に向かって徐々に大径になるように形成されたテーパ部33及びこのテーパ部33の下端側に連設された、内周面に雌ねじ34aが形成されたストレート部34からなる円筒部材32と、テーパ部33の外周面から径方向外側に張り出す複数の放熱フィン35とを備えており、円筒部材32は家屋Cの床Fの厚みと略同一の長さ(高さ)を有している。従って、この放熱部材31が家屋Cの床Fに埋設された状態では、床Fの上面にテーパ部33のテーパ穴が、床Fの下面にはストレート部34のねじ穴がそれぞれ開放された状態となっている。
【0020】
前記ヒートパイプ36は、沸点が50℃付近である常温で液体の熱伝導媒体が金属管に密封されたものであり、放熱部材31に装着された状態では、蓄熱槽10を構成しているコンクリート層11、断熱層12及び貯留容器13を貫通して、液化した前記熱伝導媒体が溜まる金属管の下半部が蓄熱槽10内に貯留された蓄熱媒体に浸漬されるようになっている。
【0021】
従って、蓄熱槽10に貯留された蓄熱媒体によってヒートパイプ36の下半部が50℃以上に加熱されると、金属管に密封された熱伝導媒体が気化し、蓄熱媒体に蓄えられた熱が潜熱として吸収された状態で、熱伝導媒体が金属管内を上昇する。気化した熱伝導媒体が金属管の上端部まで到達すると、熱伝導媒体は、放熱部材31を介して、家屋Cの床Fによって冷却されるので、即ち、放熱部材31を介して、家屋Cの床Fに潜熱を放出することになるので、再び、液化し、熱伝導媒体が金属管内を降下する。このように、金属管に密封された熱伝導媒体が状態変化を繰り返しながら、吸放熱を繰り返すことによって、蓄熱槽10に貯留されている蓄熱媒体に蓄えられた熱が家屋Cの床Fに伝導されることになる。
【0022】
前記取付部材37は、図3に示すように、上述した円筒部材32のテーパ部33に嵌り込むテーパ部38と、このテーパ部38の下端に連設され、外周面に円筒部材32の雌ねじ34aに螺合する雄ねじ39aが形成されたストレート部39とを備えており、テーパ部38の上面には、取付部材37のストレート部39を放熱部材31のストレート部34にねじ込む際、回転操作するための操作部37aが設けられている。
【0023】
従って、図4に示すように、取付部材37のストレート部39を、放熱部材31を構成している円筒部材32のストレート部34に完全にねじ込むと、円筒部材32のテーパ部33の内周面と取付部材37のテーパ部38の外周面とが密接した状態で、ヒートパイプ36が放熱部材31に装着され、ヒートパイプ36の熱が、取付部材37を介して、放熱部材31に良好に伝導される状態となる。
【0024】
一方、図5に示すように、円筒部材32に対する取付部材37のねじ込み量を小さくすると、円筒部材32のテーパ部33の内周面と取付部材37のテーパ部38の外周面とが相互に離反するので、取付部材37と放熱部材31との間の伝熱面積が減少し、ヒートパイプ36の熱が、取付部材37を介して、放熱部材31に伝導されにくい状態となる。
【0025】
また、放熱部材31からヒートパイプ36を取り外すと、円筒部材32のテーパ穴やねじ穴及び蓄熱槽10におけるヒートパイプ36の貫通穴が開放された状態となるので、図6及び図7に示すように、放熱部材31における円筒部材32のテーパ部33に嵌り込むテーパ部41と、このテーパ部41の下端に連設され、外周面に円筒部材32の雌ねじ34aに螺合する雄ねじ42aが形成されたストレート部42と、このストレート部42の下端に連設され、蓄熱槽10におけるヒートパイプ36の貫通穴に挿通される閉鎖部43とを備えた合成樹脂製の閉鎖部材40を装着することによって、蓄熱槽10におけるヒートパイプ36の貫通穴を閉塞することができるようになっている。なお、テーパ部41の上面には、閉鎖部材40のストレート部42を放熱部材31のストレート部34にねじ込む際、回転操作するための操作部40aが設けられている。
【0026】
以上のように構成された暖房システム1では、夏場等の非暖房期は、放熱部材31からヒートパイプ36を取り外し、図7に示すように、放熱部材31に閉鎖部材40を装着することによって、蓄熱槽10におけるヒートパイプ36の貫通穴を閉塞しておく。これによって、日射の強い夏場等の非暖房期には、集熱手段20によって、蓄熱槽10内の蓄熱媒体に太陽熱が蓄えられ、蓄熱媒体に蓄えられた太陽熱はほとんど放熱されることなく、冬場等の暖房期まで保持されることになる。
【0027】
一方、冬場等の暖房期は、逆に、放熱部材31から閉鎖部材40を取り外し、図4に示すように、放熱部材31にヒートパイプ36を装着することによって、ヒートパイプ36の下半部を蓄熱槽10内に貯留された蓄熱媒体に浸漬する。これによって、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱が、放熱部材31及びヒートパイプ36からなる熱伝導手段30を介して家屋Cの床Fに伝導され、床Fが昇温することによって家屋C内が暖房される。このとき、図5に示すように、暖房負荷に応じて、放熱部材31に対する取付部材37のねじ込み量を調整することによって、放熱部材31に対するヒートパイプ36(取付部材37)の接触面積を変化させることで、暖房能力を適宜調整すればよい。
【0028】
以上のように、この暖房システム1では、集熱手段20によって、蓄熱槽10内の蓄熱媒体に蓄えられた熱を、熱伝導手段30によって、家屋Cの床Fに伝導することで、家屋C内を暖房するようにしたので、蓄熱槽を使用した従来の暖房システムのように、温水暖房端末装置や、蓄熱槽内に貯留された温水を温水暖房端末装置に循環供給するための二次側循環ポンプ及び配管等からなる二次側循環回路を設置する必要がなく、二次側機器のイニシャルコストやランニングコストを最小限に抑えつつ、低コストで家屋C内の暖房を行うことが可能となる。
【0029】
また、この暖房システム1では、蓄熱媒体に蓄えられた太陽熱を家屋Cの床Fに伝導する熱伝導手段30として、多数の放熱フィン35を有する放熱部材31と、金属管に密封された熱伝導媒体の状態変化によって熱を伝導するヒートパイプ36とを使用し、家屋Cの床Fに埋設された放熱部材31にヒートパイプ36を装着するようにしたので、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱を、効率よく放熱部材31に伝導することができ、しかも、床Fに対する伝熱面積が大きくなるので、ヒートパイプ36から放熱部材31に伝導された熱を、効率よく床Fに伝導することができる。従って、この暖房システム1では、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱を利用して、家屋C内を効率よく暖房することが可能となる。
【0030】
また、この暖房システム1では、上述したように、夏場等の非暖房期は、放熱部材31からヒートパイプ36を取り外し、放熱部材31に閉鎖部材40を装着することによって、蓄熱槽10内の蓄熱媒体から家屋Cの床Fへの熱伝導を極力抑えるようにしているので、蓄熱槽10に貯留された蓄熱媒体からの無駄な放熱が抑えられ、良好な蓄熱効率を確保することができる。
【0031】
なお、上述した実施形態では、熱伝導手段30として、多数の放熱フィン35を有する放熱部材31を使用しているが、これに限定されるものではなく、ヒートパイプ36の使用本数を増やすことができるのであれば、必ずしも、放熱部材31を使用する必要はなく、ヒートパイプ36を床Fに直接または放熱フィンを備えていない単なる支持部材を介して取り付けるようにしてもよい。
【0032】
また、上述した実施形態では、熱伝導手段30として、テーパ部33を有する円筒部材32を備えた放熱部材31と、この放熱部材31の円筒部材32に嵌り込むテーパ部38を有する取付部材37が固着されたヒートパイプ36とを使用し、放熱部材31の円筒部材32に対する取付部材37のねじ込み量を変化させることによって、円筒部材32に対する取付部材37の接触面積を変化させ、これによって、放熱部材31とヒートパイプ36との間の熱伝導性能を変化させるようにしているが、これに限定されるものではなく、例えば、図8(a)、(b)に示すように、ストレート状の円筒部材32Aと、その円筒部材32Aの外周面から径方向外側に張り出す複数の放熱フィン35Aとによって放熱部材31Aを構成すると共に、この放熱部材31Aの円筒部材32Aに、上端に操作棒36aが連結されたヒートパイプ36をスライド可能に挿通し、操作棒36aを操作することによってヒートパイプ36を昇降させることで、放熱部材31A(円筒部材32A)に対するヒートパイプ36の接触面積を変化させることも可能である。
【0033】
また、上述した実施形態では、非暖房期にヒートパイプ36を放熱部材31から完全に取り外すようにしているが、これに限定されるものではなく、例えば、図7に示す熱伝導手段の場合、図9に示すように、非暖房期には、操作棒36aを押し下げることによって、ヒートパイプ36を円筒部材32Aから完全に離脱させるようにしてもよく、図10に示すように、ヒートパイプ36の操作棒36aを、放熱部材31Aの円筒部材32Aや蓄熱槽10におけるヒートパイプ36の貫通穴に挿通される閉塞部材40Aが取り付けられた操作棒36Aに取り替えるようにしてもよい。
【0034】
また、上述した実施形態では、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱を家屋Cの床Fに伝導するようにしているが、これに限定されるものではなく、例えば、ヒートパイプ36の上端部を家屋内の空間に突出させ、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱を家屋C内の空気に伝導することによって、家屋C内を暖房することも可能である。
【0035】
また、上述した実施形態では、熱伝導手段30として、金属管に密封された熱伝導媒体の状態変化によって熱を伝導するヒートパイプ36を使用しているが、これに限定されるものではなく、熱伝導率の高い物質(例えば、アルミニウム、銅といった金属類等)によって形成された単なる筒状部材や棒状部材等を使用することも可能である。
【0036】
また、上述した実施形態では、蓄熱槽10内の蓄熱媒体に蓄えられた太陽熱を暖房用の熱源としてのみ使用しているが、例えば、給湯系統への給水管を蓄熱槽10内に導入することにより、蓄熱媒体に蓄えられた太陽熱を給湯用の補助熱源として使用することも可能であり、ヒートパイプ36を温水洗浄弁座の洗浄水タンクに導入することによって、蓄熱媒体に蓄えられた太陽熱を尻洗浄用の温水を生成するための熱源として使用することも可能である。
【0037】
また、上述した実施形態では、補助熱源として太陽熱を利用しているが、これに限定されるものではなく、発電機等の排熱を補助熱源として利用することも可能である。
【図面の簡単な説明】
【図1】この発明にかかる暖房システムの一実施形態を示す概略構成図である。
【図2】(a)は同上の暖房システムに採用されている熱伝導手段を構成している放熱部材を示す斜視図、(b)は同上の放熱部材を示す断面図である。
【図3】同上の熱伝導手段を構成しているヒートパイプ及びその取付部材を示す断面図である。
【図4】同上のヒートパイプを同上の放熱部材に装着した状態を示す断面図である。
【図5】同上の放熱部材に対する同上のヒートパイプ(取付部材)の接触面積を変化させた状態を示す断面図である。
【図6】同上の放熱部材に装着される閉鎖部材を示す断面図である。
【図7】同上の閉鎖部材を同上の放熱部材に装着した状態を示す断面図である。
【図8】(a)、(b)は同上の熱伝導手段における変形例を示す断面図である。
【図9】同上の熱伝導手段における非暖房期の使用状態を示す断面図である。
【図10】同上の熱伝導手段における他の変形例を示す断面図である。
【図11】蓄熱槽を使用した従来の暖房システムを示す概略構成図である。
【符号の説明】
1 暖房システム
10 蓄熱槽
11 コンクリート層
12 断熱層
13 貯留容器
20 集熱手段
21 ソーラー集熱器
22a 往き配管
22b 戻り配管
23 循環ポンプ
30 熱伝導手段
31、31A 放熱部材
32、32A 円筒部材
33 テーパ部
34 ストレート部
34a 雌ねじ
35、35A 放熱フィン
36 ヒートパイプ
36a、36A 操作棒
37 取付部材
37a 操作部
38 テーパ部
39 ストレート部
39a 雄ねじ
40、40A 閉鎖部材
40a 操作部
41 テーパ部
42 ストレート部
43 閉鎖部
C 家屋
F 床
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating system that performs heating in winter by effectively using heat obtained during non-heating such as in summer.
[0002]
[Prior art]
As this type of heating system, for example, as shown in FIG. 11, there is a system that uses hot water generated by using solar heat in summer for heating in winter. As shown in the figure, the heating system 50 is installed in a ground heat storage tank 51 in which water as a heat storage medium is stored, a roof surface of a house, etc., and a solar collector that collects solar heat. A heater 52, a primary-side circulation circuit 53 having a primary-side circulation pump 53a that connects the heat-storage tank 51 and the solar heat collector 52, and water collected in the heat-storage tank 51 The hot water is generated by circulating supply to the heater 52, and the hot water is stored in the heat storage tank 51.
[0003]
Further, in this heating system 50, a hot water heating terminal device 54 such as a floor heating floor or a fan convector is installed in the house, and the hot water stored in the heat storage tank 51 is supplied to the second having a secondary circulation pump 55a. Heating the house is performed by circulatingly supplying the hot water heating terminal device 54 via the secondary circuit 55.
[0004]
[Patent Document 1]
JP-A-9-101061 [Patent Document 2]
Japanese Patent Laid-Open No. 11-211159
[Problems to be solved by the invention]
Therefore, in such a heating system 50, the hot water produced | generated in the summertime with strong solar radiation is stored in the thermal storage tank 51, and the hot water stored in this thermal storage tank 51 can be effectively utilized for the heating in winter. There is.
[0006]
However, in order to use the hot water stored in the heat storage tank 51 as a heating heat source, as described above, the secondary side circulation circuit 55 including the secondary side circulation pump 55a and the circulation pipe is provided, and this secondary side The hot water stored in the heat storage tank 51 must be circulated and supplied to the hot water heating terminal device 54 such as a fan convector installed in the house by the circulation circuit 55, and the hot water stored in the heat storage tank 51 is used. There is a problem that the initial cost and running cost of the secondary device and the like are high.
[0007]
Then, the subject of this invention is providing the heating system which can suppress initial cost and running cost of secondary side equipment etc. which use heat storage media, such as warm water stored in a heat storage tank, as a heating heat source to the minimum. It is in.
[0008]
[Means for solving the problems and effects thereof]
In order to solve the above-mentioned problems, the invention according to claim 1 uses a heat storage tank provided in the ground directly under a building to be heated and heat obtained from an auxiliary heat source at least during non-heating. A heat collecting means for collecting heat by storing the heated heat storage medium in the heat storage tank, and heat conduction means for conducting heat stored in the heat storage tank to the floor of the building during heating. The heat conducting means is fixed to a metal heat radiating member embedded in the floor of the building, a heat pipe dipping the lower end side in a heat storage medium stored in the heat storage tank, and an upper end portion of the heat pipe. A metal mounting member for attaching the heat pipe to the heat radiating member, and the heat radiating member includes a tapered portion formed so that an inner peripheral surface gradually becomes larger in diameter toward an upper end side; On the lower end side of this taper Provided with a cylindrical member having a straight portion with an internal thread formed on the inner peripheral surface, and the mounting member is provided continuously with a tapered portion fitted into the tapered portion of the cylindrical member and a lower end side of the tapered portion. The mounting member may have a straight portion having a male thread formed on the outer peripheral surface, and the mounting member may cause the straight portion to contact and separate the outer peripheral surface of the tapered portion from the inner peripheral surface of the tapered portion of the cylindrical member. The heating system is characterized by being screwed into the straight portion of the cylindrical member so as to be able to do so.
[0009]
As described above, in this heating system, the heat stored in the heat storage medium in the heat storage tank is conducted to the building floor or air in the building by the heat conduction means, thereby heating the inside of the building. As with conventional heating systems, there is no need to install a secondary circulation circuit such as a hot water heating terminal device or a secondary circulation pump, minimizing the initial cost and running cost of the secondary equipment, Heating of the house can be performed at low cost.
[0010]
Further, in this heating system, the heat conduction means comprises a heat pipe immersing a metallic heat dissipating member that is embedded in the building floor, in the heat storage medium that is storing the lower side to the heat storage tank, the heat pipe Since it has a metal mounting member that is fixed to the upper end portion and attaches the heat pipe to the heat radiating member, the heat stored in the heat storage medium in the heat storage tank is efficiently conducted to the floor of the building. There can, the heating efficiency is improved.
[0011]
Further, in this heating system, when the straight portion of the mounting member is completely screwed into the straight portion of the cylindrical member constituting the heat dissipation member, the inner peripheral surface of the tapered portion of the cylindrical member and the outer peripheral surface of the tapered portion of the mounting member When the heat pipe is attached to the heat dissipation member, the heat of the heat pipe is well conducted to the heat dissipation member through the mounting member, and the screwing amount of the mounting member to the cylindrical member is reduced. The inner peripheral surface of the tapered portion of the cylindrical member and the outer peripheral surface of the tapered portion of the mounting member are separated from each other, the heat transfer area between the mounting member and the heat radiating member is reduced, and the heat of the heat pipe is attached Since it becomes difficult to be conducted to the heat radiating member via the member, the heating capacity can be adjusted by adjusting the screwing amount of the mounting member to the heat radiating member according to the heating load.
[0012]
Moreover, in order to solve said subject, the invention concerning Claim 2 has the heat | fever obtained from an auxiliary heat source at the time of the non-heating at least in the thermal storage tank provided in the ground directly under the building which is going to be heated. A heat collecting means for collecting heat by storing the heat storage medium heated by use in the heat storage tank; and a heat conducting means for conducting heat stored in the heat storage tank to the floor of the building during heating. The heat conducting means includes a metal heat radiating member embedded in the floor of the building, and a heat pipe that immerses the lower end side in a heat storage medium stored in the heat storage tank, and the heat radiating member Has a straight cylindrical member through which the heat pipe is slidably inserted, and an operation rod for moving up and down the heat pipe inserted through the cylindrical member is connected to an upper end portion of the heat pipe. Features It is intended to provide a heating system.
[0013]
Since the heating system configured as described above can efficiently conduct the heat stored in the heat storage medium in the heat storage tank to the floor of the building, similarly to the heating system of the invention according to claim 1, Heating efficiency is improved. Further, in this heating system, the contact area of the heat pipe with respect to the cylindrical member of the heat radiating member can be changed by raising and lowering the heat pipe by operating the operation rod. By raising and lowering, the heating capacity can be adjusted.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, this heating system 1 is for heating the inside of the house C, and is heated by the solar heat as an auxiliary heat source and the heat storage tank 10 provided in the ground directly under the house C. Heat collecting means 20 that collects heat by storing the stored heat storage medium (warm water) in the heat storage tank 10, and heat that conducts heat stored in the heat storage medium (warm water) in the heat storage tank 10 to the floor F of the house C Conduction means 30.
[0015]
As shown in FIG. 1, the heat storage tank 10 is disposed inside the concrete layer 11 formed in the ground, the heat insulating layer 12 formed inside the concrete layer 11, and inside the heat insulating layer 12. The storage container 13 is made of a material such as metal or FRP. The storage container 13 is filled with water such as tap water introduced as a heat storage medium.
[0016]
As shown in FIG. 1, the heat collecting means 20 includes a solar heat collector 21 installed on the roof surface of the house C, a forward piping 22a and a return piping 22b that connect the heat storage tank 10 and the solar heat collecting device 21. And a circulation pump 23 that is installed in the forward piping 22a and pumps up a heat storage medium (water) stored in the thermal storage tank 10 and supplies it to the solar heat collector 21. The forward piping 22a is a thermal storage tank. 10 is extended to the lower side of the heat storage tank 10 so that the low-temperature heat storage medium staying at the lower side of the solar battery can be supplied to the solar heat collector 21, and the return pipe 22 b The heat storage medium heated by 21 is open | released by the upper side of the heat storage tank 10 so that it may discharge | release to the upper side of the heat storage tank 10 in which the high temperature heat storage medium is staying.
[0017]
The heat collecting means 20 has a predetermined temperature (for example, 7) from the temperature of the heat storage medium, that is, the temperature of the heat storage medium on the outlet side of the solar heat collector 21 is staying in the lower part of the heat storage tank 10. When the temperature is higher than [° C.], the circulation pump 23 is started to perform the heat storage operation, and the difference between the heat collection temperature and the temperature of the heat storage medium staying in the lower part of the heat storage tank 10 is a predetermined temperature (for example, 3 ° C.) or less, the operation of the circulation pump 23 is stopped and the heat storage operation is not performed.
[0018]
As shown in FIGS. 1 to 3, the heat conducting means 30 includes a heat radiating member 31 and a heat pipe 36, which are embedded in the floor F of the house C and have good heat conductivity, and a heat pipe. 36 is detachably mounted on the heat radiating member 31 through a metal mounting member 37 having a good thermal conductivity and fixed to the upper end portion thereof.
[0019]
As shown in FIGS. 2A and 2B, the heat dissipating member 31 is provided continuously with a tapered portion 33 formed so as to gradually increase in diameter toward the upper end side and the lower end side of the tapered portion 33. The cylindrical member 32 includes a straight portion 34 having an internal thread 34 a formed on the inner peripheral surface thereof, and a plurality of radiating fins 35 projecting radially outward from the outer peripheral surface of the tapered portion 33. Has the same length (height) as the thickness of the floor F of the house C. Therefore, in a state where the heat radiating member 31 is embedded in the floor F of the house C, the tapered hole of the tapered portion 33 is opened on the upper surface of the floor F, and the screw hole of the straight portion 34 is opened on the lower surface of the floor F. It has become.
[0020]
The heat pipe 36 is a concrete in which the heat storage medium 10 having a boiling point near 50 ° C. is sealed in a metal tube at a normal temperature, and the heat storage tank 10 is formed in a state where the heat pipe 36 is mounted on the heat radiating member 31. The lower half part of the metal tube that penetrates the layer 11, the heat insulating layer 12, and the storage container 13 and stores the liquefied heat conduction medium is immersed in the heat storage medium stored in the heat storage tank 10.
[0021]
Therefore, when the lower half of the heat pipe 36 is heated to 50 ° C. or more by the heat storage medium stored in the heat storage tank 10, the heat conduction medium sealed in the metal pipe is vaporized, and the heat stored in the heat storage medium is While being absorbed as latent heat, the heat transfer medium rises in the metal tube. When the vaporized heat transfer medium reaches the upper end of the metal tube, the heat transfer medium is cooled by the floor F of the house C via the heat dissipating member 31, that is, through the heat dissipating member 31, Since the latent heat is released to the floor F, it liquefies again and the heat transfer medium descends in the metal tube. In this way, heat stored in the heat storage medium stored in the heat storage tank 10 is conducted to the floor F of the house C by repeatedly absorbing and releasing heat while the heat conductive medium sealed in the metal tube repeats state changes. Will be.
[0022]
As shown in FIG. 3, the attachment member 37 is connected to the tapered portion 33 of the cylindrical member 32 described above and a lower end of the tapered portion 38, and has an internal thread 34 a of the cylindrical member 32 on the outer peripheral surface. And a straight portion 39 formed with a male screw 39a to be screwed to the upper surface of the taper portion 38 for rotating the straight portion 39 of the mounting member 37 into the straight portion 34 of the heat radiating member 31. The operation unit 37a is provided.
[0023]
Therefore, as shown in FIG. 4, when the straight portion 39 of the mounting member 37 is completely screwed into the straight portion 34 of the cylindrical member 32 constituting the heat radiating member 31, the inner peripheral surface of the tapered portion 33 of the cylindrical member 32. The heat pipe 36 is attached to the heat radiating member 31 in a state in which the outer peripheral surface of the taper portion 38 of the mounting member 37 is in close contact, and the heat of the heat pipe 36 is conducted well to the heat radiating member 31 through the mounting member 37. It will be in a state to be.
[0024]
On the other hand, as shown in FIG. 5, when the screwing amount of the mounting member 37 to the cylindrical member 32 is reduced, the inner peripheral surface of the tapered portion 33 of the cylindrical member 32 and the outer peripheral surface of the tapered portion 38 of the mounting member 37 are separated from each other. Therefore, the heat transfer area between the mounting member 37 and the heat radiating member 31 is reduced, and the heat of the heat pipe 36 is not easily conducted to the heat radiating member 31 via the mounting member 37.
[0025]
Further, when the heat pipe 36 is removed from the heat radiating member 31, the tapered hole and screw hole of the cylindrical member 32 and the through hole of the heat pipe 36 in the heat storage tank 10 are opened, so as shown in FIGS. 6 and 7. Further, a taper portion 41 fitted into the taper portion 33 of the cylindrical member 32 in the heat radiating member 31 and a male screw 42a that is connected to the lower end of the taper portion 41 and is engaged with the female screw 34a of the cylindrical member 32 are formed on the outer peripheral surface. By attaching a closing member 40 made of synthetic resin provided with a straight portion 42 and a closing portion 43 that is connected to the lower end of the straight portion 42 and is inserted into the through hole of the heat pipe 36 in the heat storage tank 10. The through hole of the heat pipe 36 in the heat storage tank 10 can be closed. An operation portion 40 a is provided on the upper surface of the taper portion 41 for rotating the straight portion 42 of the closing member 40 into the straight portion 34 of the heat dissipation member 31.
[0026]
In the heating system 1 configured as described above, in a non-heating period such as summer, the heat pipe 36 is removed from the heat radiating member 31, and the closing member 40 is attached to the heat radiating member 31 as shown in FIG. The through hole of the heat pipe 36 in the heat storage tank 10 is closed. As a result, in the non-heating period such as summertime when the solar radiation is strong, solar heat is stored in the heat storage medium in the heat storage tank 10 by the heat collecting means 20, and the solar heat stored in the heat storage medium is hardly dissipated in the winter season. It will be held until the heating period.
[0027]
On the other hand, during the heating period such as winter, conversely, the closing member 40 is removed from the heat radiating member 31, and the heat pipe 36 is attached to the heat radiating member 31, as shown in FIG. It is immersed in the heat storage medium stored in the heat storage tank 10. Thereby, the solar heat stored in the heat storage medium in the heat storage tank 10 is conducted to the floor F of the house C through the heat conduction means 30 including the heat radiating member 31 and the heat pipe 36, and the floor F is heated. House C is heated. At this time, as shown in FIG. 5, the contact area of the heat pipe 36 (mounting member 37) with respect to the heat radiating member 31 is changed by adjusting the screwing amount of the mounting member 37 with respect to the heat radiating member 31 according to the heating load. Then, what is necessary is just to adjust a heating capability suitably.
[0028]
As described above, in the heating system 1, the heat collected in the heat storage medium in the heat storage tank 10 by the heat collecting means 20 is conducted to the floor F of the house C by the heat conducting means 30, so that the house C Because the inside is heated, the secondary side for circulating and supplying hot water heating terminal device and hot water stored in the heat storage tank to the hot water heating terminal device as in the conventional heating system using the heat storage tank There is no need to install a secondary circulation circuit consisting of a circulation pump and piping, etc., and it is possible to heat the house C at low cost while minimizing the initial cost and running cost of the secondary equipment. Become.
[0029]
Moreover, in this heating system 1, as the heat conduction means 30 which conducts the solar heat stored in the heat storage medium to the floor F of the house C, the heat conduction member 31 having a large number of heat radiation fins 35 and the heat conduction sealed in the metal tube. Since the heat pipe 36 that conducts heat by changing the state of the medium is used and the heat pipe 36 is attached to the heat radiating member 31 embedded in the floor F of the house C, the heat pipe 36 is stored in the heat storage medium in the heat storage tank 10. The generated solar heat can be efficiently conducted to the heat radiating member 31, and the heat transfer area to the floor F is increased, so that the heat conducted from the heat pipe 36 to the heat radiating member 31 is efficiently conducted to the floor F. can do. Therefore, in the heating system 1, it is possible to efficiently heat the house C using solar heat stored in the heat storage medium in the heat storage tank 10.
[0030]
Further, in the heating system 1, as described above, in the non-heating period such as summer, the heat pipe 36 is removed from the heat radiating member 31 and the closing member 40 is attached to the heat radiating member 31, thereby storing heat in the heat storage tank 10. Since heat conduction from the medium to the floor F of the house C is suppressed as much as possible, useless heat radiation from the heat storage medium stored in the heat storage tank 10 can be suppressed, and good heat storage efficiency can be ensured.
[0031]
In the above-described embodiment, the heat radiating member 31 having a large number of heat radiating fins 35 is used as the heat conducting means 30. However, the present invention is not limited to this, and the number of heat pipes 36 used may be increased. If possible, it is not always necessary to use the heat radiating member 31, and the heat pipe 36 may be attached to the floor F directly or via a simple support member that does not include the heat radiating fins.
[0032]
In the above-described embodiment, the heat conducting member 30 includes the heat radiating member 31 including the cylindrical member 32 having the tapered portion 33 and the mounting member 37 having the tapered portion 38 that fits into the cylindrical member 32 of the heat radiating member 31. By using the fixed heat pipe 36 and changing the screwing amount of the mounting member 37 to the cylindrical member 32 of the heat radiating member 31, the contact area of the mounting member 37 with respect to the cylindrical member 32 is changed. However, the present invention is not limited to this. For example, as shown in FIGS. 8A and 8B, a straight cylinder is used. The heat radiating member 31A is constituted by the member 32A and a plurality of heat radiating fins 35A projecting radially outward from the outer peripheral surface of the cylindrical member 32A. A heat pipe 36 slidably inserted into the cylindrical member 32A of the heat radiating member 31A is slidably inserted into the cylindrical member 32A, and the heat pipe 36 is moved up and down by operating the operating bar 36a. It is also possible to change the contact area of the heat pipe 36 with the member 32A).
[0033]
Further, in the above-described embodiment, the heat pipe 36 is completely removed from the heat radiating member 31 in the non-heating period. However, the present invention is not limited to this. For example, in the case of the heat conducting means shown in FIG. As shown in FIG. 9, in the non-heating period, the operation pipe 36a may be pushed down to completely remove the heat pipe 36 from the cylindrical member 32A. As shown in FIG. The operation rod 36a may be replaced with an operation rod 36A to which a closing member 40A inserted into a through hole of the heat pipe 36 in the heat storage tank 10 or the cylindrical member 32A of the heat radiating member 31A is attached.
[0034]
Moreover, in embodiment mentioned above, although the solar heat stored in the thermal storage medium in the thermal storage tank 10 is conducted to the floor F of the house C, it is not limited to this, For example, of the heat pipe 36 It is also possible to heat the house C by projecting the upper end portion into the space in the house and conducting solar heat stored in the heat storage medium in the heat storage tank 10 to the air in the house C.
[0035]
Further, in the above-described embodiment, the heat conduction unit 30 uses the heat pipe 36 that conducts heat by changing the state of the heat conduction medium sealed in the metal tube, but is not limited thereto. It is also possible to use a simple cylindrical member, rod-shaped member, or the like formed of a material having high thermal conductivity (for example, metals such as aluminum and copper).
[0036]
Moreover, in embodiment mentioned above, although the solar heat stored in the thermal storage medium in the thermal storage tank 10 is used only as a heat source for heating, for example, introducing the water supply pipe to a hot water supply system in the thermal storage tank 10 Thus, it is also possible to use solar heat stored in the heat storage medium as an auxiliary heat source for hot water supply, and by introducing the heat pipe 36 into the cleaning water tank of the hot water cleaning valve seat, the solar heat stored in the heat storage medium can be used. It is also possible to use it as a heat source for generating warm water for butt washing.
[0037]
Moreover, in embodiment mentioned above, although the solar heat is utilized as an auxiliary | assistant heat source, it is not limited to this, It is also possible to utilize exhaust heat, such as a generator, as an auxiliary | assistant heat source.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a heating system according to the present invention.
FIG. 2A is a perspective view showing a heat radiating member constituting a heat conducting means employed in the heating system same as above, and FIG. 2B is a cross-sectional view showing the heat radiating member same as the above.
FIG. 3 is a cross-sectional view showing a heat pipe and its mounting member constituting the heat conduction means.
FIG. 4 is a cross-sectional view showing a state in which the same heat pipe is mounted on the heat radiating member.
FIG. 5 is a cross-sectional view showing a state in which the contact area of the heat pipe (mounting member) is changed with respect to the heat radiating member.
FIG. 6 is a cross-sectional view showing a closing member attached to the heat dissipation member.
FIG. 7 is a cross-sectional view showing a state in which the above-described closing member is attached to the above-described heat radiating member.
FIGS. 8A and 8B are cross-sectional views showing a modification of the heat conducting means.
FIG. 9 is a cross-sectional view showing a use state in a non-heating period in the heat conducting means same as above.
FIG. 10 is a cross-sectional view showing another modification of the heat conducting means.
FIG. 11 is a schematic configuration diagram showing a conventional heating system using a heat storage tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating system 10 Thermal storage tank 11 Concrete layer 12 Heat insulation layer 13 Storage container 20 Heat collecting means 21 Solar collector 22a Outward piping 22b Return piping 23 Circulation pump 30 Heat conduction means 31, 31A Heat radiation member 32, 32A Cylindrical member 33 Tapered part 34 Straight part 34a Female thread 35, 35A Radiation fin 36 Heat pipe 36a, 36A Operation rod 37 Mounting member 37a Operation part 38 Taper part 39 Straight part 39a Male screw 40, 40A Closing member 40a Operation part 41 Taper part 42 Straight part 43 Closing part C House F Floor

Claims (2)

暖房しようとする建物の直下において、地中に設けられた蓄熱槽と、
少なくとも、非暖房時に、補助熱源から得られる熱を利用して加熱された蓄熱媒体を前記蓄熱槽に貯留することによって集熱する集熱手段と、
暖房時に、前記蓄熱槽内に蓄えられた熱を、前記建物の床に伝導する熱伝導手段とを備え
前記熱伝導手段は、前記建物の床に埋設された金属製の放熱部材と、下端側を前記蓄熱槽に貯留された蓄熱媒体に浸漬するヒートパイプと、このヒートパイプの上端部に固着された、前記ヒートパイプを前記放熱部材に取り付ける金属製の取付部材とを備えており、
前記放熱部材は、上端側に向かって内周面が徐々に大径になるように形成されたテーパ部及びこのテーパ部の下端側に連設された、内周面に雌ねじが形成されたストレート部を有する円筒部材を備え、
前記取付部材は、前記円筒部材の前記テーパ部に嵌り込むテーパ部及びこのテーパ部の下端側に連設された、外周面に雄ねじが形成されたストレート部を有し、
前記取付部材は、そのストレート部が、そのテーパ部の外周面を前記円筒部材の前記テーパ部の内周面に接触離反させることができるように、前記円筒部材の前記ストレート部にねじ込まれていることを特徴とする暖房システム。
A heat storage tank installed in the ground directly under the building to be heated,
At least at the time of non-heating, heat collecting means for collecting heat by storing a heat storage medium heated using heat obtained from an auxiliary heat source in the heat storage tank,
A heat conducting means for conducting heat stored in the heat storage tank to the floor of the building during heating ;
The heat conducting means is fixed to a metal heat radiating member embedded in the floor of the building, a heat pipe dipping the lower end side in a heat storage medium stored in the heat storage tank, and an upper end portion of the heat pipe. A metal mounting member for mounting the heat pipe to the heat radiating member,
The heat dissipating member has a tapered portion formed so that the inner peripheral surface gradually becomes larger in diameter toward the upper end side, and a straight having an internal thread formed on the inner peripheral surface, which is connected to the lower end side of the tapered portion. A cylindrical member having a portion,
The mounting member has a taper portion that fits into the taper portion of the cylindrical member, and a straight portion that is connected to the lower end side of the taper portion and has an external thread formed on the outer peripheral surface.
The mounting member is screwed into the straight portion of the cylindrical member so that the straight portion can contact and separate the outer peripheral surface of the tapered portion from the inner peripheral surface of the tapered portion of the cylindrical member. A heating system characterized by that.
暖房しようとする建物の直下において、地中に設けられた蓄熱槽と、
少なくとも、非暖房時に、補助熱源から得られる熱を利用して加熱された蓄熱媒体を前記蓄熱槽に貯留することによって集熱する集熱手段と、
暖房時に、前記蓄熱槽内に蓄えられた熱を、前記建物の床に伝導する熱伝導手段とを備え、
前記熱伝導手段は、前記建物の床に埋設された金属製の放熱部材と、下端側を前記蓄熱槽に貯留された蓄熱媒体に浸漬するヒートパイプとを備えており、
前記放熱部材は、前記ヒートパイプをスライド可能に挿通するストレート状の円筒部材を有し、
前記ヒートパイプの上端部には、前記円筒部材に挿通された前記ヒートパイプを昇降させる操作棒が連結されていることを特徴とする暖房システム。
A heat storage tank installed in the ground directly under the building to be heated,
At least at the time of non-heating, heat collecting means for collecting heat by storing a heat storage medium heated using heat obtained from an auxiliary heat source in the heat storage tank,
A heat conducting means for conducting heat stored in the heat storage tank to the floor of the building during heating;
The heat conduction means includes a metal heat radiating member embedded in the floor of the building, and a heat pipe that immerses the lower end side in a heat storage medium stored in the heat storage tank,
The heat dissipation member has a straight cylindrical member that is slidably inserted through the heat pipe,
The heating system is characterized in that an operating rod for raising and lowering the heat pipe inserted through the cylindrical member is connected to an upper end portion of the heat pipe .
JP2002345151A 2002-11-28 2002-11-28 Heating system Expired - Fee Related JP3838194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345151A JP3838194B2 (en) 2002-11-28 2002-11-28 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345151A JP3838194B2 (en) 2002-11-28 2002-11-28 Heating system

Publications (2)

Publication Number Publication Date
JP2004177025A JP2004177025A (en) 2004-06-24
JP3838194B2 true JP3838194B2 (en) 2006-10-25

Family

ID=32706401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345151A Expired - Fee Related JP3838194B2 (en) 2002-11-28 2002-11-28 Heating system

Country Status (1)

Country Link
JP (1) JP3838194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158124A (en) * 2014-01-24 2015-09-03 みやび建設株式会社 Heat transfer equipment, building structure and method of forming building structure
JP5898754B1 (en) * 2014-11-14 2016-04-06 株式会社ジオパワーシステム Floor support and building air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044678A (en) * 2017-03-27 2017-08-15 天津城建大学 The buried direct Radiant Floor Heating System of gravity assisted heat pipe
CN107218641A (en) * 2017-07-13 2017-09-29 天津中德应用技术大学 Radiant floor heating system and its method of work, heat Calculation method based on energy substitution technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158124A (en) * 2014-01-24 2015-09-03 みやび建設株式会社 Heat transfer equipment, building structure and method of forming building structure
JP5898754B1 (en) * 2014-11-14 2016-04-06 株式会社ジオパワーシステム Floor support and building air conditioning system
JP2016095100A (en) * 2014-11-14 2016-05-26 株式会社ジオパワーシステム Floor support medium and building air conditioning system

Also Published As

Publication number Publication date
JP2004177025A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US20030037907A1 (en) Solar energy heater with heat pipe and heat exchanger
CN201074915Y (en) Solar water heater
JPWO2006038508A1 (en) Solar cell system and thermoelectric combined solar cell system
CA2742908A1 (en) A solar water heater
US20060011193A1 (en) Water pre-heating arrangement
CN107509362A (en) A kind of Phase cooling type electronic cabinet
JP2013122370A (en) Solar water heater
CN106788237B (en) A kind of Novel photo modification high-efficiency photovoltaic system
JP3838194B2 (en) Heating system
CN105515527B (en) A kind of solar energy couples Multisource heat pump integrated system
CN106712579A (en) Air energy thermoelectric generation device
CN211233402U (en) Liquid heating equipment with double-layer heating structure
KR102172762B1 (en) Portable hot water boiler
KR102184623B1 (en) Power generating apparatus using solar heat
CN108870508B (en) Heat exchange system
CN203027646U (en) Heat dissipation device
CN207379094U (en) Solar energy heat-storage tank
Ito et al. Studies of a thermosyphon system with a heat source near the top and heat sink at the bottom
CN201197247Y (en) Cooling apparatus
CN113764808A (en) Battery heat management device and automobile
CN216218437U (en) Quick radiating display screen power
CN110863626A (en) Wall heating plate
CN221349311U (en) Heating structure of energy storage in season is striden in coupling of well deep water fever type geothermal energy
CN216244943U (en) Solar energy integration energy storage box based on phase change energy storage technology
KR101370071B1 (en) Heating apparatus using passive solar heating with energy save function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees